7
A

e

{91102 el o 9ol e el ol el el el el e el el el et e el

TR

SPARSE DIRECTION-OF-ARRIVAL ESTIMATION WITH

CONSTRAINED ANTENNA ARRAYS

BY
SALEH AHMED YASLAM ALAWSH

RPN

A Dissertation Presented to the
DEANSHIP OF GRADUATE STUDIES

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY

(3¢ 37 3 e e e e e e e e e o e e e o e e el el el b

L S S S S S S S S SRR SR SRS

0 In

:ﬁ:{_ﬁ ELECTRICAL ENGINEERING

Mo

x April 2018

T P P P P P P A A R A A o o



KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

DHAHRAN- 31261, SAUDI ARABIA
DEANSHIP OF GRADUATE STUDIES

This thesis, written by Saleh Ahmed Yaslam Alawsh under the direction of his thesis

advisor and approved by his thesis committee, has been presented and accepted by the

Dean of Graduate Studies, in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY IN ELECTRICAL ENGINEERING.

C &

Dr. Ali A. Alshaikhi

Dr. Salam A. Zummo
Dean of Graduate Studies

3]2\C°

Date

=

Dr. Ali Mugqaibel

Gy i

Dr. Azzedine Zerguine
(Member)

Dr. Salam A. Zummo

(Member) , , !é '/

i v

Dr. Mohammad S. Sharawi

(Member)QK

=
Dr. Samir N. Al-Ghadhban
(Member)




© SALEH AHMED YASLAM ALAWSH

2018



:ﬁ;’(/z’cﬂef Zo 7ty
%reﬂz‘a’

Lrothors

Iisters

Wﬁ; and” Children
Retatrves

Frdonds f Ve{}/ﬂ%z’re

i



ACKNOWLEDGMENTS

First and foremost thanks to Allah for giving me strength, patience, and ability to

accomplish this research.

My deep acknowledgement for my parents who spent their life prays and asks Allah to help

me during my study.

I would like to express my thankful for my advisor Dr. Ali Hussein Muqaibel for his
guidance and support during my dissertation. I appreciate his incredible patience, his
continued guidance, and encouragement all through my graduate studies. It is my luck to
work with Dr. Mugqaibel during my Master and PhD programs. I have got excellent
background in measurements, antenna arrays, communications, and signal processing.
During my research with Dr. Muqaibel, I have increased my knowledge in the area of

interest. Actually, no words can express my appreciation for my advisor.

I would like to give special acknowledgment to the King Fahd University of Petroleum &
Minerals, Hadhramout University for Science & Technology and Hadhramout

Establishment for Human Development for supporting my graduate studies.

I would like to acknowledge the Deanship of Scientific Research (DSR) at King Fahd

University of Petroleum and Minerals (KFUPM) for funding and supporting this work.

I would like to extend my appreciation to my committee members Professor Azzedine
Zerguine, Professor Salam A. Zummo, Professor Mohammad S. Sharawi, and Dr. Samir
Al-Ghadhban for their suggestions and valuable comments that definitely enrich the
dissertation.

i1



Special thanks to my brothers (Fahmi, Anies, and Waleed), sisters, wife, and children for
being there whenever I needed them. Many thanks to all my relatives who keep on touch
all the time in order not to feel being lonely outside my country. Distinct thanks to our
neighbors staying here in the Kingdom. I really appreciate their welcome all the time and

being like my family or even more.

No words could satisfy my thanks for Engineer Abdullah Ahmed Bugshan for his
continuous encouragement and support. During my study, I always find him wherever
needed. He used to give us most of his valuable time to set with us and solve problems if

any.

Exceptional thanks to my colleagues, Dr. Abdi Talib, Dr. Mohammed Tamim, and Mr. Ali
AlBeladi. Many thanks to Mr. Ahmed Oweis, Mr. Saeed Alamoudi, Mohammed
Aldhaheri, Mr. Omar Al Khazragi, Mohammed Yafeai, and Abdulmalik Almazrua for their
valuable help . I would also like to acknowledge all my friends everywhere especially at

KFUPM campus who share with me my happiness and life.

Saleh Ahmed Yaslam Alawsh

v



TABLE OF CONTENTS

ACKNOWLEDGMENTS ....ooouuummunssessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnsssees 111
TABLE OF CONTENTS ..ccccumussssssnssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssee \
LIST OF TABLES.......esssseeetssssssesessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssns XI
LIST OF FIGURES. ...ouuuseetssssssssssssssssssssssssssssssssssssssssssasssssssssssssssssssssssssssssssssssssssssssssssssases XII
LIST OF ABBREVIATIONS.....ccesssmmmssecsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssns XVII
LIST OF SYMBOLS ..ooouuuuunsecesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnns XIX
LIST OF NOTATIONS AND OPERATIONS ...ooumecessssssssssssssssssssssssssssssssssssssssssssssnnans XXIV
1N 1Y 0 17 Uy XXV
Al GARLA 1 uuuressssssessssssesssssssessssssses s ases AR R RS R RR SRR RS R RS R R AR R R RS R RS RR RS XXIX
CHAPTER 1 INTRODUCTION......csssssmmsseesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnes 1
B I 0 11T T PPPPPPPRt 1
1.2 Research ContribULiONS ..........cooriieeieeecciiiiiccc et ee e s s e reeeea s se s s s s s e e nanssssssssesennnssssssssesennnnssssnsnenes 2
1.3 MOIVALION ..ot r st e see e s e e e erna s e e s s s s e e nnnssssssssesennnssssssssseennnnsssssssseesnnnsssssssseeennnnssssnsnnnen 4



1.4 Problem STAt@mMENT ......ccceeeeeriiiiiiiieeieeiieeerteeeeeneeeeereeeeeanssseeeseeesnsssssssssesssssssssssssssssnnssssssssssssnnnsssssssseens 5

B R 0 o 1T ot YN 6
1.6 Thesis Organization ..........ccccvvveeeiiiiiiiiiiieieeiiiierree s sss e s s s s sass s e e e s s s s s snsseeessssssssnns 7
CHAPTER 2 TECHNICAL BACKGROUND.....cccccusmmmmnmsamssnsssmssnssssssssssssasssssssssasssssssssssssnssnsas 8
2.1 INErOAUCEION ..cueeiiiiiiiiiiiiiiiiiiissississsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnsns 8
2.2 Algorithms for DOA EStimation: A REVIEW ........ccccceeeriirsisssssssssssssssssssssssssssssssssssssssssssssssssnsssssssssssssnnnns 9
2.3 SYSTEM IMIOGEL.......eeeeccccsrsrrsssssssss s s ssssssssssssssssssssssssssssssssssssssnssnsssnssssssnssnsnnnnnnnnnnnnnns 11
2.4 Technical Back8roUNd..........cccceiiiiiiiiiiiiiiiiiiiiiiiiisssisssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss 13
2.4.1 Source Localization through DOA .........ooiiiiiiiiieeee ettt sttt be e e e 13
2.4.2 Antenna and Array CONfiGUIatioNS .......cuiiiiiiiee ettt e e rre e e erare e e e e bt e e e e atee e ssabaeeesntreeeenns 15
2.4.3 Overview of Basic DOA Estimation AlgOritNmS........cocciiiiiiiiie e et 16
2.4.4 PerformManCe IMEBLIICS ..eeiiiuiiiieeiieeeciee ettt cete e sttt e et e e s saae e e s st e e e s ateeessseeeesntaeesesseeesnnseeessnssnenanns 22
2.5 Chapter SUMMAAIY ....ccceeuiiiiiieeiieeieeerrieeenessseeestseennsssssssssssesnsssssssssssssnnssssssssssssnnnsssssssssssnnnnssssssssssnnnnes 24
CHAPTER 3 DOA ESTIMATION WITH PRACTICAL ANTENNA ARRAYS ......ccccinme 25
3.1 Practical LImitations ....c.cccceeeeiiiiiiiieeieiiiiiiinerecn st sass e e s aanne e 25
3.2 Evaluation and COMPAriSON ..........cciiiiiirieeiceiiiiieeneeeseesereeennnsssssesseeesnnssssssssssssnnssssssssssssnnnsssssssssssnnnnes 28
3.2.1 Comparison for DOA Estimation AlgOrithms ........cccccuiiiiiiiei e 29
3.2.2 Results for Localizing @ SiNGIE SOUICE ......cccuvieeeiiiie ettt e aee e e s e e e e sneaeeennnes 31
3.2.3 Results for Localizing MUILIPIE SOUICES .........uuuiiiiiiei ettt e et e e e e e e naaeee s 38
3.2.4 Source LOCation DEPENUENCY ...cccocuiiiiiieie ettt e e e eecrte et e e e e st aee e e e e e e seabbeeeeaaeesesaataeeeaeesennssaeneas 45

vi



I B o o Yo Y31 V- T oSS 48

3.3 Chapter SUMMArY.....cccciiiiiiiiiiiiiiiisiisssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss 50

CHAPTER 4 EXPERIMENTAL DOA ESTIMATION USING SPARSE ARRAYS IN

REALISTIC CHANNELS. ......oicciiitmstmsnnsmssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnsanssnssnssnssnssens 52
4.1 DOA Estimation with Moving Coprime Array Configuration ..........ccccceeriiiiiiiiiiinisssssssssssssssssssssssssnnnns 53
A1 T INEPOTUCTION .ttt ettt e b e bt e bt e s bt e bt e s bt e e bt e s beeeneesbaeeaneeeanes 53
4.1.2 Signal Model with MoVing COPriME AITaY ......ceceeriiiterierireeeniee sttt e see st e eseee st e esseesbeeesseessbeeesaeesnes 55
4.1.3 Latency (Waiting TIME) ..cuviiiiciiee e ctiee ettt e st e e et e e et e e s s tae e e e ttaeesaraaesaasseeeessaeesansaseeansreeeanns 63
4.1.4 Experimental Setup and DiscusSioN Of RESUILS .......cccccuiiiiiiiiie ettt et eree e e earee e 65
4.1.5 CoNCIUAING REMAIKS ...eeiuteiiiieiiii ettt sttt st ettt sae e st e e bt e sab e s bt e sbeeesseesbeeeneeeanes 70
4.2 Sparse DOA Estimation Based on Software-Defined Radio Platform .........ccccceeiiviiiieneeenniiiisiinnnnnns 71
2.1 INTPOTUCTION .ttt sttt e s e bt e s b e e e bee s b e e e neesbaeeneesanes 71
A V3 =11 T 1Y, o Yo 1= USSP 74
e o o T= T g a 1Y N 2= BT AU o PSP 76
4.2.4 ReSUIS aNd DiSCUSSION .....eiiiiiiiiiiiie ittt sttt sttt sab e s bee s bt e neesbaeeneesanes 81
B Y e g ol [8Te [T F=ql 2 U= o g - o SRR UPPRRN 84
4.3 Prototyping Coprime Arrays with Directive Radiation Pattern...........ccceevviiiiiiiinniiniisiissnsssssssssssssssnnns 85
43,1 INTFOTUCTION ...ttt et e r et sn e san e st saeene s 85
4.3.2 DOA Signal Model with Directive ANtENNAS ........uuiiiieiiieiirreee et s e brae e e e s e e sanees 88
4.3.3 Array CONTIGUIAtION ..uuviiiiiie ettt e e e et e e e e e s et b e e e e e e e e sesbataeeeaeeeeenntaaseeassennnses 89
4.3.4 GAiN aNd PRaS@ RESPONSES .....uureeeiviieieitieteeetteeesitteeeessteeessseeesssaeesassseeessssessssssseesasssesesasseeessnsseesanns 90
4.3.5 Simulation and Results Based on Simulated Arrays .........occeeeeicieeiecieeecceeeesee e seee e seree e 94
4.3.6 Simulation and Results Based on Fabricated Arrays........cccceeeeiieciiiieiie e e e e e 103
4.3.7 CoNCIUAING REMAIKS ..veeieiiiie ettt e et e e st e e et e e e esnnae e e sasaeeeesnsaeeeennaeeesnneeenn 106



CHAPTER 5 GENERALIZED MULTI-LEVEL PRIME ARRAYS FOR SPARSE

R4 W1 1 g 8 108
5.1 INErOTUCHION ..ceeeeeeeeeereeeeeeeeeeeeeeeeeeememeeesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnss 108
5.2 SYStemM MOEL.....cccciiiiniriiiiiiiiinenteiiiiisnsseees s sssssssssssesssssssssssnssssssssssssssnssssssssssssssnnssesssssssssnnnnens 113
5.2.1 Multi-Level Prime Array (MLPA) .....ooo ettt ettt e e te e e s etae e e s ata e e e snae e e snsaeessntaeaeanes 113
5.2.2 Special Cases of MLPA CoNfigUIatioNs........cueiiiiiiieriiieiieerii sttt 115
5.3 The Difference Coarray Prospective in IMILPA............cccceeeeeeeeeeemeeeeeesmsmsssssssssssssssssssssssssssssssssssssssssssss 118
5.4 MLPA DesSign AILEINALIVES .....cceeeeeeeeeeeeeeeeeeeeeeeneeeeeeeeeeeeeeeemeeeeseseesesssssssssssssssssssssssssssssssssssssnsnnnsnnnnnnnn 120
5.4.1 Selecting the NUMDEr Of SENSOIS ....ccccuiiiiiiiiie ettt e et e e et e e e s tbe e e eestee e esabaeeesabreaeenes 121
5.4.2 The Ordered Inter-Element SPACiNG ......c.cooviiiiiiiiieeiiieeeete ettt st s s 123
5.5 The Optimum MLPA ConfigUrations ..........eeeeeeeeeeeeeeeeeeeeeenmmmmmsmsssssssssssssssssssssssssssssssssssssssssssssssssssssss 128
5.6 An Upper Bound of the Achievable DOFs of the 3LPA............ceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneesennnne 129
5.6.1 An Upper Bound of DOFs for the 3LPA CONFIZ.A.....cccuiii ittt e e svee e e svre e e 133
5.6.2 An Upper Bound of DOFs for the 3LPA CONFIZ.B......cccueviiiiiieiiiiie et eteee et e e svee e e 137
5.7 Results and ANAlYSis .....eeeeeeeeeeemmeeeeememememeemmeeeeeeeeeeeeeeeeeieeieeeeeeeiesssssesssssssssssssssssssssssssssssssssssssssssssssssss 138
5.7.1 MLPAs with Minimum NUMDBEr Of SENSOIS.....cccuiiiiiiiiiiiieiriie sttt sre e sbeesree e 138
I N & AV @o Yo =0 =Y o S PRSR 139
5.7.3 The Number of Lags versus the Number of SENSOrS........cccueviiiieeieiiii e 148
5.7.4 OPLIMUIM AITQYS coiitiieieiiite ettt et ee e ettt e sett e e s sttt e e ettt e e sabteeesabaeesasteeesubaeessabaeessassaeesassaeessseeesnnns 151
5.7.5 NUMDEr Of UNIt SPACINGS ..eeeuiiieiiiiiieieiee ettt sttt e st e e sabee e s st te e s sbte e e sbbaeessabeeesnans 156
5.7.6 Upper Bound of the DOFS Of BLPA.........oiii ettt et e e e e s ee e e s tae e e s nae e e snsaeeesnnreaeanes 157
5.8 Chapter SUMMAIY......cceeeeeeeeeeeeeeeeeeeeeeesssesesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnsnnnnnnnns 159



CHAPTER 6 SPARSE DOA ESTIMATION BASED ON MULTI-LEVEL PRIME ARRAY

WITH COMPRESSION......ccccicmininmsmisnissnsssssassssissssssssssssssasssssssssssssssssssssssasssssssssasssnsssssasssnsas 161
6.1 INErOTUCHION ..ceeeeeeeeeeeeeieeeeeeeeeneeeeeeeeeememssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnss 161
6.2 SYSEEM MOAEL.......ceeeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseesssssasssssssssssssssssssssasssnsssnsssssssnsssnsnnnnnnnnnnnnnnnnnn 166
6.2.1 Multi-Level Prime Array (MLPA) .....ooo ettt e ettt e e tte e e s atae e e satae e e snae e e snsaeessntaeeeanes 166
6.2.2 DOA SIZNAI IMOTEN ...ttt st sttt bt e st e sab e e st e e sabeesanee e 167
6.3 Multi-Level Prime Array With Compressed Subarray (MLPAC) .......ccceeceervemreeeereccsssnnneeneessssssnnnnens 169
6.4 SIMUIAtioN and RESUILS ....ccciiiiiiiiieeriiiiiiiientenisiiisssnssesssssssssssnsssessssssssssnssesssssssssssnnssssssssssssnnnnens 175
6.4.1 Impact of Compression 0N the DOFS ........cccviiiiiiie e e eeree e st e e e e rare e e eeabaeeesereeeenes 175
6.4.2 StatistiCal EFrOr ANGIYSIS...cccueiiiiieiiieite ettt sttt sttt et sbe e st e s it e e st e e saee e sabeesareesabeesaneenas 176
6.5 Chapter SUMMAIY.....ccceueeeeeeeeeeeeeeeeemeeemsesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss 183

CHAPTER 7 DOA ESTIMATION WITH TWO DIMENSIONAL MLPA ARRAY

CONFIGURATION .octiiieiimisnisemssnssnmsssssssssssssssssssssssssassssssssssssssssnssssssassss snssasssnssnsssnssassnsssnssas 185
B L1 e 11Tt R 185
7.2 SYStEM IMOAEL....... it e e e s e e e rre e ss e s s e s e s na s s ssssesennnsssssssssssnnnnsssssssseesnnnnssssssnanes 189
A W o] o To 1Y =To AV - 1SR PUPU 189
A A0 R 10 N L[4 - o [ PSR 191
7.3 2D-DOA Estimation via Sparse Representation........cccccceeeeeeeeeeeeeeeeeeeemeeneeeseessssssssssssssssssssssssssssssssnns 193
7.4 SIMUlation and RESUIES ......ceeeeeeeeeeeemmemminnenneeeeineeeiieeieneiieeeieeieeeeeeesssssssssssssssssssssssssssssssssssssssssssssssssnss 195
7.4.1 Difference Coarray iN 2D ... ittt ettt et e et e e e st e e sabae e s s be e e s stteeesbbaeeesbeeeeaan 196
7.4.2 Impact of COMPIreSSION iN 2D ...iciiuiieeecieieeeiieeeceeeeestee e eeeee e e st aeeessreeeesenseeeessteeessseesesnseesesnssesaanes 198

iX



7.4.3 StatistiCal Error ANAlYSiS.....cccuiieiieiieecciee ettt e e s e e et e e s eatae e e s tr e e e eseeeesnraeeesnrreeeann 199

7.5 CRAPLEE SUMMAIY.....oucevereeveeeseesseesseessesssassssassssesessasssbassssasessessssasessasesbases et sasassasassasessaassanessas 200
CHAPTER 8 CONCLUSIONS AND FUTURE WORK........rrrrnrcrsssnssmsssnssmssssssnesns 201
8.1 SUMMACY Of FINGINGS v.v.vvvrevveresveesseesseressesssassssasssassssasssassssassssessssessssassssassssasssassssassssaessaassanssses 201
8.2 SUZZESLIONS FOr FULUFE WOTK «..vvcvvereversvenesseressasessesssasssasssasssessssasessasessanessanessasessanessasessansssanassas 204
BIBLIOGRAPHY ...ciiiiiiininienisnississnisssssssssssssssssssssssssssssssss snssasssnsssssssssassss ssnssasssnsssssanssasas 206
PUBLICATIONS FROM THE DISSERTATION.....cococrrrrcrcrssrersmsssessessssssesssssssesasnsnnns 219
T 7 222



LIST OF TABLES

Table 4-1: NI-USRP 2950R SPeCifiCations........cccveevierieeiiieniieeiieniieeieesiie e esene e enne 75
Table 5-1: Main steps to select the number of sensors in each subarray...........cc..c........ 123

Table 5-2: Main steps to decide on the inter-element spacing and select the best

MLPA CONTIGUIAtION ......eeiiiiiiiieiieeieeciie ettt eeae b e e 126
Table 5-3: 3LPA Config.A and Config.B characteristics ..........cceeverveerienieeniienieennens 130
Table 5-4: MLPA configurations using the minimum possible number of sensors ....... 140
Table 5-5: Comparison between array’s characteristics for N =10 ..........cccceevvverirennnns 142
Table 5-6: 3LPA characteristics for IV = 12.......ccccceceririirienieiieieeeee e 143
Table 5-7: 4LPA characteristics fOr IV = 106........ccccecerirririieniiieeeeeeeeeeee e 146
Table 5-8: 3LPA versus 4LPA characteristics for N = 20.......cccceevevienirieniinenieneene 148
Table 5-9: Design alternatives for 4LPA ........c.cooviiiiiiiiieiieeeeeeee e 153
Table 5-10: Design alternatives for SLPA ........coooiiiiiiieeeeeeeee e 155
Table 5-11: Design alternatives for 6LPA .........ccccvviviiiieiiieeeeee e 155
Table 6-1: The ordered inter-element spacing for different MLPA levels..................... 167
Table 6-2: Comparison between array’s characteristics for N =10 ........c.cccccvvvrrvrennneen. 174
Table 6-3: 3LPA and 3LPAC characteristics for N =12 ........ccccceeviiniiniiniiiiinicnens 174
Table 6-4: 4LPA and 4LPAC characteristics for N =14 ........ccccceeiiiniriiniiiienieeens 174

X1



Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:

Figure 3-1:

Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 3-7:
Figure 3-8:

Figure 3-9:

LIST OF FIGURES

System model for source localization ............cccceecieviieiiieniienienieeieeeie e 12
Main topics Of the StUAY .......ccoiieiieriiiiiieieceeee e 14
DOA versus antenna 10Cations ...........oceeuerierieriienienieeieeeeee e 14
Main steps of /1-SVD algorithm...........cccoooveeiiiiiiniiieiieeeeeeeee e 21

Spatial spectra for uncorrelated and correlated sources with DOAs

0f 63°, 73%aNAd N = 8 oo 29
RMSE versus SNR for different Nand K =1......ccccoccevviniininiinienieieeene, 31
RMSE versus d/A for N=2,4,8 SNR=20dB,and K=1........ceuvereeun...... 33
3dB beamwidth versus d/A for different N, SNR =20 dB,and K =1 ........... 34
3dB and 6dB beamwidth versus SNR for different N,and K=1.................. 35
RMSE versus T for different N when SNR =20dBand K=1........c............ 36
3dB beamwidth as function of 7 for different Nwhen K =1 ........c...ccce.e. 37
RMSE versus SNR for different Nand K =2 ......c..ccooeiiiiiiiininiiiiceeee, 39
RMSE versus d/A for two sources and different NV...........cccccevveiienineneenen. 40

Figure 3-10: Probability of source resolvability versus 7 with SNR = 10 dB

(dashed lines), SNR =20 dB (solid lines) and N=4, 8........c.eeevveerreennneen. 41

Figure 3-11: Bias in localizing two sources versus angular separation with

SNR =10 dB (solid lines), 20 dB (dotted lines), N=8,and K =2 .............. 43

Figure 3-12: Probability of source resolvability versus SNR: upper subplots N =4

(solid lines), N = 8 (dashed lines), and lower subplots: 8 = [60°, 80°] (solid

lines), 8 = [60°, 100°] (dashed 1INes).......ccccueereiiierciiiinieeeie e 44

xii



Figure 3-13: RMSE in degree versus source location and the number of elements

With SNR =0 dB...oiiiiiiiicc e 46
Figure 3-14: PRR versus source location and the number of elements with

SNR =0 dB ..t 47

Figure 3-15: Beamwidth in degree versus source location and the number of elements

With SNR =0 dB....ooiiiiiiiic e 48
Figure 3-16: Average processing time versus the number of elements..........c...ccceeueenee. 49
Figure 4-1: Coprime array structure and the corresponding difference coarray............... 57
Figure 4-2: System model for DOA eStimation..........cceecueruieneriienieniinienienieeie e 58
Figure 4-3: Latency versus the total number of antenna elements .............ccccceevevvenieennen. 64
Figure 4-4: Moving coprime array and scene layout............cecceveerieniniienienennienienceean 66
Figure 4-5: Measurements SELUP .......cc.eevuirieruierierieriienieetesteesieete et eeesieeseeeneeseeesaeeneeas 67

Figure 4-6: Normalized spectrum versus frequency and estimated DOA using Lasso
algorithm for moving COPrime array .......ccccveeevveeerieeeriireeeieerreeesieeeevee e 69

Figure 4-7: Normalized spectrum versus frequency and estimated DOA using

MUSIC algorithm for a ULA ........oooiiiiieeceeeee e e 70
Figure 4-8: NI-USRP 2950R mMOdUIE .......cooiiiiiiiiiiiiiiiiicceeeeeeceeeeeee e 76
Figure 4-9: The whole system installed on a rack ...........ccceeiiiiiiiiiiiice 77
Figure 4-10: DOA eStimation SETUP ......cocueertiiriieriieeiieeieeite sttt ettt eeeans 78
Figure 4-11: The received signals before and after phase calibration .............cccccoeeeeneee. 80
Figure 4-12: The phase of the received signals when the transmitter at zero degree ....... 81
Figure 4-13: The normalized spectrum using different algorithms ............cccceeiiininicen. 82

xiil



Figure 4-14:

Figure 4-15:

Figure 4-16:

Figure 4-17:

Figure 4-18:

Figure 4-19:

Figure 4-20:

Figure 4-21:

Figure 4-22:

Figure 4-23:

Figure 4-24:

Figure 4-25:

Estimated angles versus actual angles based on ULA and coprime

array for a Single tranSMITLET .........c.eevveeriierieeiieeie et 84
Characteristics and layout of coprime array of patch elements ................... 91
Gain and phase responses for a printed coprime array with

monopole and patch elements............cceevciieiieniieiienieiee e 92
Gain and phase responses for printed ULAs of monopole elements............ 93
Gain and phase responses for printed ULAs of patch elements .................. 94
Normalized spectra using Lasso versus DOA in noise free environment

for coprime array with isotropic and directive antennas.............ccccceeueeneenee. 97
RMSE versus SNR when 6~[-40°, 40°] using Lasso algorithm for

(a) isotropic and (b) directed antenna .............ccoecceeeeieeriieecieenieeieeeee e 98
RMSE versus SNR for different source distributions (a) 8~[-40°, 40°]

and (b) 8~[-50°, 50°] based on different algorithms with 6 =11................ 99
RMSE versus number of samples for different source arrivals

based on different algorithms with § = 11 ........cccoooiiiiiiiiiiii e, 101
RMSE versus SNR when 8~[-50°, 50°] using (a) MUSIC and

(b) Lasso algorithms with isotropic and directive antennas for different unit
inter-element spacing, K =4 sources, and 6 = 11 .......ccccccoveininiiincnneen. 102
RMSE versus SNR of coprime array of monopole and patch

elements for different source distributions using Lasso and MUSIC

algorithms With 6 = 11 ..o 104

Experimental setup with 5-element ULA using patch antenna elements .. 105

Xiv



Figure 4-26: Estimated DOA versus the actual angle using six different printed

arrays with monopole and patch antenna elements..............cccceeeveerrennenn. 106
Figure 5-1: The MLPA configuration............ccocceveeierieneenienienieeieeceieeee e 115
Figure 5-2: MLPAS With NV = 10 SENSOTIS....cccueruiiriirieriieieeieniieieete ettt 116

Figure 5-3: Difference coarray of the 3LPA configuration using m = [2,3,7]

anNd 8 =[Ma, M3, M1]d ..ottt 119
Figure 5-4: MLPA characteristics: (a) Number of pairwise coprime integer

vectors versus &, (b) Number of inter-element spacing versus N,.............. 127
Figure 5-5: The difference coarray of 3LPA configurations and PA configurations ..... 142
Figure 5-6: 3LPAs with N = 12 sensors (ii)-(iii) using m; = [3,4,7] and

(1IV)-(V) USING 12 = [2,5,7] cveeeeereeieeee sttt 144
Figure 5-7: 4LPAs with N = 16 sensors using m = [3,4,5,7] .cc.cccvverrrerieniieeiienieereenen. 146

Figure 5-8: MLPA features including 3LPA, 4LPA, SLPA, and 6LPA versus the

NUMDET OF SENSOTS ..ottt et 150
Figure 5-9: The optimal inter-element spacing versus N for 3LPA...........ccocceviiiene. 152
Figure 5-10: The optimal inter-element spacing versus N for 4LPA..........ccccovieeienee. 153
Figure 5-11: The optimal inter-element spacing versus N for SLPA..........ccccovieeienen. 154
Figure 5-12: The optimal inter-element spacing versus N for 6LPA..........c..cccoceeenee. 156
Figure 5-13: Number of unit spacings versus the total number of elements .................. 157

Figure 5-14: The upper bounds of the achievable DOFs for 3LPA
Config. A and Config.B .......cccoooiiiiiiiieeeeeeee e 159

Figure 6-1: The 3LPA and 3LPAC configurations and the corresponding weight ........ 172

XV



Figure 6-2:

Figure 6-3:

Figure 6-4:

Figure 6-5:

Figure 6-6:

Figure 7-1:

Figure 7-2:

Figure 7-3:

Figure 7-4:

Spatial spectra estimated using MUSIC (upper subplots) and CS (lower
subplots) algorithms for PA (column 2), PAC15 (column 2), and PAC23
(column 3) Config.A using N =10 and with K =16 .......cccceeveiririinenennne 176
RMSE versus SNR for (a)-(b) 3LPA and 3LPAC (c)-(d) PA and PAC with

K =12 sources, and N = 10. MUSIC (dotted lines) and CS (solid lines).... 180
RMSE as a function of the SNR for 3LPA and 3LPAC with K = 15 sources
and N = 12 elements. MUSIC (dotted lines) and CS (solid lines)............... 181
RMSE versus number of samples for the 3LPA Config.A and its compressed
versions with K = 12 sources, SNR = 0 dB, and N = 10 elements. MUSIC
(dotted lines) and CS (S0lid 1INES) .....ccoveeeiieriiiiiieiiecieerie et 182
RMSE versus different window size for the 3LPA Config.A and its
compressed versions with K = 12 sources, SNR = 0 dB, and N = 10 elements.
MUSIC (dotted lines) and CS (solid lin€s) .......cccceevverreeriiiiiieniieiieeieeeens 183
Parallel MLPA configurations for 2D-DOA estimation........c..cceceeveennneee 190
The difference coarray of (a) Ref. [138], [139], (b) Ref. [140], [141], (¢c)-(d)
2D-3LPA and its difference coarray (e)-(f) 2D-3LPAC22 and its difference
COATTAY .vvveeeuvreeeurreenuseeesseeensseeensseeasseeasseessseesssseesssseessseesnsseesssseesnsseesnsseesns 197
2D-DOA estimation based on 2D-3LPA and 2D-3LPAC22 using CS

with K = 26 sources in noise free and N =24 elements ..........ccccceeeeeueennee. 198
RMSE versus SNR based on 2D-3LPA and 2D-3LPAC22 using CS

With K=16,0=3,and N =24 ......cccieiiriimiriniiieeeeecceeceeeeeee 200

XVi



Abbreviation
1D

2D
3LPA
4LPA
SLPA
6LPA
AMSDL
BPDN
CACIS
CS

DF
DOA
DOD
DOFs
ESPRIT
EVD
HFSS
GCD
LabVIEW
MIMO
MLPA
MLPAC
MRA

LIST OF ABBREVIATIONS

Stand for
One dimensional
Two dimensional
Three-level prime array
Four-level prime array
Five-level prime array
Six-level prime array
Antennas and Microwave Structure Design Laboratory
Basis pursuit de-noising
Coprime array with compressed inter-element spacing
Compressive sensing
Direction finding
Direction of arrival
Direction of departure
Degrees-of-freedom
Estimation of signal parameter via rotational invariance techniques
Eigen value decomposition
High frequency structure simulator
Greatest common divisor
Laboratory virtual instrument engineering workbench
Multiple-input-multiple-output
Multi-level prime array
Multi-level prime array with compressed subarray

Minimum redundancy array

Xvii



Abbreviation
MUSIC
MVDR
NI
NMRA
VNA
PCI
PRR
PXI
RF
RMSE
Rx
SFCW
SDR
SNR
SVD
TDOA
TOA
TRL
Tx
UCA
ULA
URA
USRP

UWB

Stand for
Multiple signal classification
Minimum variance distortionless response
National instruments
Nested MRA
Vector network analyzer
Peripheral component interconnect
Peak-to-ripple ratio
eXtensions for instrumentation
radio frequency
Root mean square error
Receiver
Stepped frequency continuous wave
Software-defined radio
Signal-to-noise ratio
Singular value decomposition
Time difference of arrival
Time of arrival
Telecommunication research lab
Transmitter
Uniform circular arrays
Uniform linear array
Uniform rectangular arrays
Universal software radio peripheral

Ultra-wideband

Xviil



LIST OF SYMBOLS

Symbol Indication
A Amplitude of the estimated spectrum
A(9) Steering matrix
Ag A matrix constructed with rows of specific permutations of m,,_
A,;(0) Steering matrix of directive antenna elements
A Extended steering matrix
AW Steering matrix (2D case)
A, A sensing matrix constructed using all possible angles (2D case)
A, A matrix with rows having N,, pairwise coprime integers
a(o) Steering vector
AD Steering matrix (2D case)
a®(a;) | Steering vector (2D case)
a; Angle between the i*" source and the y-axis
a';g Discretized angle at the i*" grid point
B A matrix constructed by appending a vector to the extended matrix, [K, i]
B The corresponding matrix of B for real data, B = [real(B)7,imag(B)"]”
BS A sensing matrix constructed using all possible DOA
b A vector that contains signal power of all K sources, b =
[02,02,..,02]T, and scaled by e /7 €°s(B) (2D case)
Bi Angle between the i*" source and the x-axis
Cp A set of the virtual sensors within the difference coarray
CMmLpA Number of possible ordered inter-element spacing for an MLPA
c Compression factor in MLPAC
€ A user specified bound for [j-norm

X1X



Symbol

Indication

NerNe- Number of unique lags in L. and L_, respectively
Np Total number of unique lags in Lp
m Number of unique integers in L;
D Dimension or aperture size of the array
p® Aperture size (2D case)
d Unit inter-element spacing
fc Carrier frequency
G(0) Complex gain matrix of all antenna elements
g.(0) Complex gain vector of the i*" antenna element
PRCH) Complex gain of the i*" antenna element form the i*" angle
I Identity matrix
I A vector constructed by vectorizing I
I, A vector of length I, X 1 with “1” at the (I, + 1)*"
K Number of sources to be estimated
k; A counter of integer numbers 0 < k; < M; — 1
L A matrix contains the Eigen values of Y after applying SVD
Liter Total number of Monte Carlo trails
L., L; Positions of the cross-differences and their mirrors of the MLPA
]Lcij’ cij A subset of L., constructed by taking all differences between IP; and P;,
Vj > i, and its negative mirror position
L, A set which account for the intersection between ILCL.]., I[.;ij, Vi, i
L, Ly Positions of the self-differences and their mirrors of the MLPA
Lp A set of unique integers within the difference coarray

An entry that belong to L. and Ly, respectively

An entry that belong to L, and Lg, respectively

XX



Indication

lug Number of unique lags in the difference coarray
leg Number of consecutive lags in the difference coarray
A Wavelength
Ag Regularized parameter
m A vector that contains N,, pairwise coprime integers
m® A vector that contains N, pairwise coprime integers (2D case)
M; Number of elements in the i** subarray
M A matrix that contains N rows of all possible pairwise coprime vectors
m,_ The nt* row of M
Total number of receive antenna elements or sensors
c Number of MLPA configurations for a specific N and N,,
N, Number of subarrays or array level
Ng Number of pairwise coprime vectors valid to construct an MLPA
Ngy White Gaussian noise matrix after applying SVD
Ny Number of possible angles within the sampling grid of 8
N, Number of possible angles within the sampling grid of «
n(t) White Gaussian noise vector
nsY White Gaussian noise vector after applying SVD
P(0) Total averaged output power out of an array as a function of 6
P(w) Total averaged output power out of an array as a function of w
P A set of element locations within the array
P; A subset of element locations within the i*" subarray
p Positions of the elements within the array
Pm Position of the m*" antenna element

XX1



Indication

q Eigenvector associated with N — K smallest eigenvalues

Ry Covariance matrix of the transmitted signals

Ryy Covariance matrix of the received data

Ry@y@ | Covariance matrix of the received data in 2D

R3; Spatially smoothed matrix
r A vector generated by appending the noise variance to b

ré Sparse vector over the discretized grid search

ré Estimated sparse vector using Lasso over the discretized grid search
S Transmitted signals matrix

Ssv Transmitted signals matrix (sparse) after applying SVD (sparse)
sV Transmitted signal vector after applying SVD

) [,-norm to find the sparse variable

s(t) Transmitted signal

o} Signal power of the i*" source

o2 Noise variance
X Diagonal matrix contains the Eigen values of R3; after applying EVD
S Ordered inter-element spacing vector of all subarrays

S; Inter-element spacing of the i*" subarray normalized by d

sO Ordered inter-element spacing vector of all subarrays (2D case)

gi(‘) Inter-element spacing of the i*" subarray normalized by d (2D case)
T Number of samples or snapshots

A6 Absolute value of the difference between the DOAs for two sources
9; DOA of the it" source

08 Discretized DOA at the it" grid point

XX1i



Symbol Indication
0 Estimated DOA
0345 3dB beamwidth
O¢an 6dB beamwidth
U Signal subspace
u An arbitrary vector belong to [P
V, Noise subspace
\% An arbitrary vector belong to P
Va Number of unit spacings
w Weight vector
w Weight function
Y Received measurement matrix
Yo Received measurement matrix (2D case)
Ysv Received measurement matrix after applying SVD
y>V(k) | Received measurement vector after applying SVD
y(t) Received measurement vector
y®(t) | Received measurement vector (2D case)
va(t) Weighted received signal
z A complex vector resulting from vectorizing the covariance matrix
Z, A vector extracted from z based on the consecutive lags
Z The real vector of z which constructed as Z = [real(z)”,imag(z)"]"

xxiil



LIST OF NOTATIONS AND OPERATIONS

Notation
Lower-case
Upper-case

EC)
diag(x)
X
Iy
)
o
Ok
vec(.)

12, I 11

|-
7+

Re(.) and Im(.)

Cln k) = (Z)

P(n, k)
n!

U

N

Denote
Vectors
Matrices
Statistical expectation operator
A diagonal matrix that uses the elements of x as its diagonal elements
Kronecker product
Identity matrix of size N X N
Complex conjugation of a matrix or vector
Transpose of a matrix or vector
Conjugate transpose of a matrix or vector
Vectorizing a matrix into a vector by column-wise
Euclidean [, and [; Norms
Cardinality operation
Set of positive integers
Real and imaginary parts of complex element

Combination of

Permutations

Factorial operation: n(n — 1)(n — 2) ... ... xX2x1
Union operation on sets

Intersection operation on sets

A subset of or equal to

XX1V



ABSTRACT

Full Name : [Saleh Ahmed Yaslam Alawsh]

Thesis Title : [Sparse Direction-of-Arrival Estimation with Constrained Antenna
Arrays]

Major Field : [Electrical Engineering]

Date of Degree : [April 2018]

A set of antenna/sensor elements arranged in a certain geometry is called an antenna/sensor
array. One application of antenna arrays is to estimate the direction of arrival (DOA) of
signals emitted from certain sources. DOA estimation has many applications in beam
steering to improve signal reception and interference suppression. Generally, the received
signal is corrupted by different impairments as it propagates through the communication
channel. These impairments include noise, multipath, narrowband/wideband interference,
etc. Therefore, a robust technique is needed to estimate the DOA of the received signal.
Multiple signal classification (MUSIC) and estimation of signal parameter via rotational
invariance techniques (ESPRIT) are among the main used estimation techniques.
Compressive sensing (CS) was also proposed for DOA estimation due to its ability to work
with reduced data. In general, the number of sources to be estimated is small. Therefore,
sparse reconstruction can be exploited to work with reduced data sets and hence shorter

processing time.

Hardware implementation of DOA techniques in handheld wireless devices has two main

constraints. First, limited number of antennas and second, limited inter-element spacing.
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DOA estimation with constrained arrays calls for extra processing and/or efficient array

configurations. Very close antenna elements suffer from mutual coupling effect.

The problem of DOA estimation with constrained number of elements and limited inter-
element spacing antenna arrays is examined. The main objective is to strike an optimal
balance between complexity and accuracy. Different performance measures have been
discussed and evaluated. A comparison between important DOA estimation algorithms is
presented including: beamforming, Capon, MUSIC, and first-norm singular value
decomposition (1;-SVD). Experimental setups were also built using moving coprime arrays
and based on software-defined radio (SDR) in realistic channel environments. The moving
array uses only one antenna element which moves along the array axis to cover all pre-
specified locations. The complexity in terms of the number of antennas and receivers is
reduced and the mutual coupling effect is eliminated. Prototyped antenna arrays were also
evaluated experimentally to study the effect of antenna directionality on the accuracy of
DOA estimation. Moreover, the radiation patterns of the designed arrays were extracted
using high frequency structure simulator (HFSS) and were augmented in the sparse
reconstruction framework. Based on the simulation and experimental evaluation, several
requirements have been identified which calls for novel array configurations. Based on the
moving coprime array, very narrow beamwidth is realized using Lasso algorithm compared
with that based on a uniform linear array using MUSIC algorithm even if the number of
elements is doubled. With the SDR platform using one source, we have proved that the
beamwidth at the estimated angle using Lasso algorithm is significantly sharper than those
produced by MUSIC and Capon. The results also show that the maximum errors in noise

free environment for estimating a source among the assumed four sources with isotopic
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and directive antennas are 0.5° and 2.5, respectively using the simulated coprime array
with patch elements. For the prototyped antenna arrays, the coprime array with patch
elements realizes the best performance. The 4-element uniform linear array with monopole

clements has got the largest error that is around 15°.

This dissertation proposes a multi-level prime array (MLPA) configuration for sparse
sampling that can further increase the degrees-of-freedom (DOFs). The proposed array
uses multiple uniform linear subarrays where the number of sensors in the subarrays are
pairwise coprime integers. The inter-element spacing between the sensors is formulated as
a scaled multiple of half-wavelength where the subarrays share only their first element. For
a given number of sensors, the proposed array has smaller aperture and achieves more
unique and consecutive lags compared with coprime arrays. The proposed configuration
has limited holes in the difference coarray. The analytical expressions of both the
difference coarray and the aperture size are derived. Different MLPA configurations can
be constructed for fixed number of antennas and the one that maximizes the DOFs is
exploited. We have found that MLPAs can achieve higher DOFs compared with coprime
arrays provided that the number of elements is large enough. Under equal aperture size and
comparable DOFs with that of nested arrays, the proposed MLPA results in less mutual
coupling effects. The number of consecutive lags is further increased by properly
compressing the inter-element spacing of one subarray under a fixed number of antennas
and without changing the aperture size. The resultant array, MLPA with compressed
subarray (MLPAC), can have a hole-free difference coarray as in nested array case. Sparse
reconstruction and MUSIC algorithms are utilized based on the difference coarray. The

MLPAC can estimate larger number of sources using both MUSIC and sparse
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reconstruction algorithms. At 0 dB signal-to-noise ratio (SNR) and ten antenna elements,
the root mean square error (RMSE) based on an MLPAC with three subarrays is larger than
that based on nested array by around 0.05° and 2° to 2.6° using CS and MUSIC

algorithms, respectively.

Finally, modified configuration with two parallel MLPAs is extended for two dimensions
(2D-DOA) estimation. We have shown that the proposed configuration can realize the

same performance as the 2D-nested array by increasing the SNR by only 1 dB.

Simulation and experimental results confirm the derived conclusions and demonstrate the
superiority of the proposed configurations in DOA estimation especially for constrained

aperture size.
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CHAPTER 1 1.1 Overview

CHAPTER 1 INTRODUCTION

1.1 Overview

There are numerous methods for determining the location of a signal emitter using diverse
types of direction finding (DF) techniques. One of the most widely used techniques is the
direction of arrival (DOA) technique that estimates the angle from which the signal arrives.
Another DF technique is the direction of departure (DOD) which is defined as the angle at
which the signal is emitted from the transmitter. Two more techniques used for localization
are: time of arrival (TOA) and time difference of arrival (TDOA), with the difference that
TOA is defined as the time required for the transmitted signal to reach the receiver, whereas

TDOA measures the difference of propagation delays to different receivers.

An antenna array consists of a set of antennas or sensors that are arranged in a certain
geometry such as linear, circular, coprime, nested, etc. The main objective of the antenna
array in our context is to find the direction of the sources that emit their signals on the
array. The accuracy of estimation depends on the measurements at the outputs of these
antenna elements and the given array geometry as well as the characteristics of the

propagation medium.

Generally, the received signal is corrupted by different impairments as it propagates
through the communication channel. These impairments include noise, multipath,
narrowband/wideband interference, etc. Therefore, a robust technique is needed to estimate

the DOA of the received signal. In practical mobile applications, DOA estimation is
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restricted by the small size of the devices. Thus, the practical implementation of DOA
algorithm in handheld wireless devices has two main limitations. First, limited number of

antennas and second, limited inter-element spacing between these antennas.

The remaining sections of this chapter are as follows. In Section 1.2, research contributions
are listed. Section 7 is dedicated to motivate the research problem followed by specific
problem statement in Section 1.4. The main objectives of this research are enumerated in

Section 1.5. The outlines of the dissertation are presented in Section 1.6.

1.2 Research Contributions

In this dissertation, the following contributions have been achieved:

1. We have studied the problem of DOA estimation in the presence of two main
limitations namely, limited number of antenna elements and limited inter-element
spacing via simulation.

2. A moving coprime array configuration is proposed and implemented for DOA
estimation under sparse reconstruction framework. The proposed array uses only
one antenna element. The antenna moves along the array axis to cover certain
locations specified by the conventional coprime array. The proposed system has
reduced complexity and eliminates the mutual coupling effect.

3. A software-defined radio (SDR) platform is implemented for sparse DOA
estimation based on sparse array configurations. With an SDR, the system becomes
flexible, simple, practical, reconfigurable, and can be experimentally-tested.

4. We have evaluated sparse DOA estimation for directive coprime arrays. The

complex radiation patterns are extracted using an electromagnetic simulator and
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then incorporated in the DOA estimation. In addition, printed array configurations
with monopole and patch elements are assessed and experimentally tested to study
the impact of antenna directivity on the accuracy.

5. A generalized multi-level prime array (MLPA) configuration is proposed for sparse
sampling that can increase the degrees-of-freedom (DOFs). The proposed array
uses multiple uniform linear subarrays where the number of sensors in the subarrays
are pairwise coprime integers. For a given number of sensors, the proposed array
has smaller aperture and achieves more unique and consecutive lags compared with
coprime arrays. The proposed configuration has limited holes in the difference
coarray. The analytical expressions of both the difference coarray and the aperture
size are derived.

6. We have proposed a sparse DOA estimation based on MLPA configuration. In
MLPA, the number of consecutive lags can be increased by properly compressing
the inter-element spacing of one subarray by integer multiple of half wavelength
under a fixed number of antennas and without changing the aperture size. The
resultant array, MLPA with compressed subarray (MLPAC), can have a hole-free
difference coarray as in nested array case. Sparse reconstruction algorithm is
utilized based on the difference coarray. The MLPAC can estimate larger number
of sources using both multiple signal classification (MUSIC) and sparse
reconstruction algorithms.

7. We have extend MLPA configuration for two dimensions (2D) 2D-DOA

estimation. The array has a closed form expression for the antenna locations and
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few holes appear in the difference coarray. The difference coarray was improved

using an optimized MLPAC:s instead of the MLPAs.

1.3 Motivation

DOA estimation has many applications in beam-steering for improving signal reception,
interference suppression and target tracking. Basically, if a receiver knows the DOA of a
certain transmitter, more energy can be collected by steering the array towards that specific
angle. Similarly, the receiver can avoid reception from certain interference by directing its
array away form that source. Consequently, this will enhance the signal-to-noise ratio
(SNR) at the receiver side as well as reduce the bit error rate during the decoding process

for any communication system.

The problem of the DOA estimation becomes more challenging in case of practical
circumstances. Employing more antennas for sure will enhance the receiver capability for
DOA estimation. Moreover, the inter-element spacing between the antennas is restricted
as well by the available physical size in mobile handsets. Definitely, the size of current
mobile handsets affect both issues. Most of the previous works have tested the performance
using simulations. Only few papers did experimental studies. In addition, very few

publications considered the practical limitations in the design of their arrays.

In general, the number of sources needed to be estimated is very few. In other words, the
scene of interest in which we are searching in contains only limited number of sources.
Therefore, compressive sensing (CS) and sparse representation can be formulated in order
to work with reduced data sets. In addition, the processing time can be further decreased.

Thus, complexity reduction is one of the most important issues in our study.
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1.4 Problem Statement

Future handsets are very light and have small size. With such restrictions, there will be a
difficulty to design an efficient receiver with DOA capability. The reason is that we have
to use only few receive antenna elements in addition to limited inter-element spacing in

between. Hence the problem addressed by this dissertation can be stated as follows:

Propose an array configuration and novel sparse DOA estimation technique, which works

under limited number of elements and limited inter-element spacing.

This dissertation aims to find a promising solution for DOA estimation in future handsets.
As such, we discuss two practical issues; limited number of antennas and limited spacing
in between. In addition, the performance is investigated for different number of antenna
elements, using different performance criteria. Under a given dimension restriction,
different inter-element spacing is examined to optimize the DOA estimation. To make the
analysis more general, the ratio between the unit inter-element spacing and wavelength is
considered. Extensive simulations are conducted to study and inspect the effect of this ratio

on the system performance based on some performance.

Moreover, extensive analysis is performed to study the effect of other parameters in the
presence of both restrictions. In addition, extensive investigation is accomplished to
validate the effectiveness of the proposed configurations. This shall include the number of

sources to be estimated and the number of samples or snapshots, and others.
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1.5 Objectives

For successful consideration of the problem stated above, a full comparative understanding
of sparse DOA estimation algorithms is needed. We investigate the estimation problem
under practical limitations and compare the performance of candidate algorithms. Based
on this understanding, a novel antenna array is adopted and the signal processing part is

optimized. The main objectives of this research can be further detailed as follows:

1. Study the problem of DOA estimation based on reduced data sparse frame work.
2. Optimize the performance of different DOA estimation algorithms under two
practical limitations:
a. Limited number of antennas
b. Limited spacing
3. Evaluate the system performance under realistic channel environment.
4. Build a prototype array with antenna distribution optimized for sparse DOA
estimation.
5. Design a novel array configuration that requires small aperture size and can
improve the DOFs.
6. Design an array configuration with two-dimensional DOA capability using

coprime array extensions.

Objectives 1, 2, and 5 are accomplished using MATLAB®. Experimental setups augment
MATLAB® simulation to achieve objectives 3 and 4. To achieve objective 4, raw material

and resources were utilized.
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1.6 Thesis Organization

This dissertation consists of seven chapters. Each chapter in this dissertation presents the
details of the work done, including literature review, signal model, analysis towards certain
objectives. The rest of the dissertation is structured as follows. CHAPTER 1 discusses the
introduction and motivation for the dissertation with problem statement and the main
objectives. CHAPTER 2 presents a technical background and literature review for DOA
estimation algorithms. CHAPTER 3 provides a review on DOA estimation with focus on
practical limitations. Then, some preliminary results when there is a constrain on the
physical size of the handsets. Other review is also distributed within the related chapters.
In CHAPTER 4, the effect of different channel impairments on the performance of DOA
estimation is investigated based on experimental results. 0 proposes a novel array
configuration that generalizes the coprime array structure. In CHAPTER 6, the proposed
configuration in 0 is further optimized in order to increase the degrees-of-freedom (DOFs).
In addition, sparse DOA estimation based on the two novel configurations is
proposed. CHAPTER 7 proposes a new configuration for two dimensions DOA
estimation. CHAPTER 8 concludes the dissertation, summarize all results and findings of

all chapters, and gives recommendations for future work.
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CHAPTER 2 TECHNICAL BACKGROUND

Measuring or estimating the DOA is one of the most common approaches to find the
location of sources. This is useful in many applications ranging from wireless
communications, such as sonar, navigation, radar, radio astronomy [1], to localization of
illegal repeaters [2]. In these applications, the target to be located does not have to be an
active target, as it can be a passive target that reflects the signal produced by the DOA
estimation system. Some systems can estimate the location of a single target while others
can estimate more. Different configurations have been developed, and each has its own
advantages and disadvantages. For a given array, the received signals are processed to
estimate the DOA. Choosing a proper DOA estimation algorithm is crucial to get the best
result for the desired application. This chapter mainly reviews the most widely used DOA
estimation algorithms. Other reviews are distributed within the related chapters. Moreover,
we briefly discuss and review the basic ideas of these algorithms. In addition, the

performance measures used to assess the problem of DOA estimation are defined.

2.1 Introduction

The problem of DOA estimation has attracted many researchers due to its important
applications. Researchers have developed and proposed different algorithms for DOA
estimation. Beamforming, Capon, and subspace-based techniques are among the main used
DOA estimation techniques. Sparse reconstruction algorithms are also used since they can

work with reduced data sets.
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The rest of the chapter is organized as follows. Section 2.2 provides a review on the most
widely used DOA estimation algorithms. The system model is presented in Section 2.3.
Section 2.4 reviews some technical backgrounds. This includes source localization,
antennas, array configurations, DOA estimation algorithms, and some performance

metrics.

2.2 Algorithms for DOA Estimation: A Review

Wideband source localization using beamforming was considered in [3], [4], [5]. DOA
estimation using Capon algorithm was originally developed in [6]. Based on time reversal
for multiple-input-multiple-output (MIMO) radars, Capon algorithm or what is called

minimum variance distortionless response (MVDR) was introduced in [7].

A variety of multiple signal classification (MUSIC) algorithms have been widely studied
in MIMO radar systems for target localization [8], [9] as well as for source localization
[10]-{13]. The sources maybe located in the far-field or in the near-field. Sometimes both
far-field and near-field narrowband sources exist [11], [12], [14]. A second order statistics
based on MUSIC algorithm has been applied efficiently to estimate DOAs [12]. As an
extension to [12], the authors in [14] estimated the DOAs and the power of the far-field
sources first. Then these components are removed from the signal subspace. Finally, a near-
field reconstruction is employed. This approach is more efficient than [12] since it
enhances the reconstruction accuracy and realizes a significant classification of the signal
types. The proposed approaches in [12], [14], [15] are not complicated since they do not

need a multidimensional search or higher order statistics.
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The problem of DOA estimation has been resolved using estimation of signal parameter
via rotational invariance techniques (ESPRIT) algorithm [16]-[19]. MUSIC and ESPRIT
subspace-based algorithms were suggested to localize sources in [16]. The reconstruction
of the DOA was accomplished through two successive one-dimensional searches. Target
localization has been investigated based on ESPRIT algorithm in [17]-[19] and auto-
pairing of direction of departure (DOD) and DOA [18]. The authors in [17] modified the
ESPRIT algorithm to use the SVD instead of using the Eigen value decomposition (EVD)
to estimate the signal subspace. As a result, the performance was enhanced in the presence
of interference. Compared with ESPRIT algorithm, the error was reduced by around 1.2°

at SNR = 0 dB in the presence of two interfering signals [17].

Different approaches were developed for DOA estimation based on CS [20]—[24] since the
received signal from the unknown sources is sparse in some domains. DOA estimation
based on MUSIC and Capon always uses linear arrays sampled at Nyquist rate with inter-
element spacing less than or equal to half-wavelength. Both algorithms need a computation
of the covariance matrix. This is not the case using CS which can work at sub-Nyquist
sampling rates [20]. Statistical and probabilistic approaches known as Bayesian approaches
based on CS can be also applied for DOA estimation. They use the signal distribution to
tackle the DOA estimation problem. In [21], the authors used sparse Bayesian learning
when the number of the unknown sources is greater than the number of measurements.
Reference [22] estimated the DOA by solving a set of Basis Pursuit De-Noising (BPDN)
problems. In addition, grid position refinement was used to reduce the complexity of the
BPDN problem. In [24], antennas with known and different sparse array geometries were

used successfully for localization.
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Narrowband source localization in terms of DOA estimation using the first-norm singular
value decomposition ([;-SVD) algorithm was investigated in [25]-[27]. All [;-SVD
algorithms use CS first, so they can be considered also as CS based algorithms. In [25], [;-
SVD was proposed for multiple time or frequency samples such that sharp estimate and
super-resolution is achieved. The results show that only the [;-SVD algorithm can resolve
two uncorrelated sources separated by 5° at 0 dB SNR compared with beamforming,
Capon, and MUSIC algorithms [25]. The [;-SVD algorithm has also the ability to estimate
highly correlated sources which is not the case with beamforming, Capon, and MUSIC
algorithms. Reference [27] suggested a modified [;-SVD algorithm which can improve the
performance in the presence of an interference. The interference is filtered first and then
the DOA is recovered where the noise power is estimated and incorporated to solve an
optimization problem. Based on the a modified [;-SVD algorithm, the RMSE for

estimating a single source close to an interference was reduced by around 0.7° [27].

2.3 System Model

Assume K narrowband unknown active sources and located in the far-field transmit signals
sg(t) for k = 1,..,K with 6, as the DOA with respect to the array axis, see Figure 2-1. A
uniform linear array (ULA) is considered for the time being. The receiver has N
omnidirectional antennas located along the x-axis where d represents the inter-element
spacing between any two antennas. The received corrupted measurements, y(t) =
[v1(t), y2(t2), ..., yn (t7)]T where [.]T indicates the transpose operation, with additive

white Gaussian noise, n(t), at the array output can be expressed as:

11
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»i(?) a(2) (1) (D)

Figure 2-1: System model for source localization
y(®) = A(@)s(t) + n(t),t € {t1, t5,.., tr} 2-1)
where A(@) = [a(6,),..,a(0)] is the steering matrix with steering vector a(6;) =

j2md cos(6y) jemd(N-1) cos(8y) T
l,e 2 o, € 2 ] and A, T are the signal wavelength and the number of

samples or snapshots respectively. The unknown DOAs are represented by 0 =
[01,04, ..., 0k]T and s(t) = [s;(t),..,sk(t)]T is the transmitted narrowband signals from
the unknown sources. Given y(t) and the array geometry, we have to find 8, which is an

estimate of @ and the number of active sources, K.
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Letp = [p1, P2, -, Py]T denote the positions of the elements within the array. The position
of the n*" antenna element is located at p,, = nd withn =0,1,..,N —1and d < 1/2 to
avoid the grating lobe. The above model can be extended for two dimension DOA

estimation.

2.4 Technical Background

This research covers the intersection of three main topics which are MIMO systems, DOA
and CS as depicted in Figure 2-2. The following subsections provide the reader with the

needed background.

2.4.1 Source Localization through DOA

DOA estimation and localization involves two different tracks: active source localization
and passive source localization. This research focuses on active sources that emit power.
The sources maybe located in the far-field, near-field or mix of both fields. In this study,

the unknown sources are located in the far-field, thus DOA is assumed to be the same for

. 2D? . .
each source across the array. Sources at distance greater than - are considered to be in

the far-field [28] where D represents the aperture size of the array. Figure 2-3 shows a
verification of the different source’s fields. This is an example for illustrations in which
the corresponding DOA (in degrees) is plotted relative to each receive element in meter.
The sources are assumed at @ = [160,100,30]° with respect to the first antenna element
located at zero meter. The ranges in the three subplots are adjusted at random such that

different scenarios can be illustrated.
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Research focus

Figure 2-2: Main topics of the study
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Figure 2-3: DOA versus antenna locations
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For the near-field case the range of the active sources are assumed at [9,93,78] meter. The
variation across the array elements of the DOA is very evident, see Figure 2-3(a). For the
far-field, Figure 2-3(b) shows insignificant variations of the angles if the sources are
assumed at [1801,1830,1680] meter. The mix-field scenario is a combination of the two

cascs.

2.4.2 Antenna and Array Configurations

A set of antenna/sensor elements arranged in a certain geometry is called an antenna/sensor
array. There are many applications for antenna arrays, however DOA estimation is our
focus. This could be achieved by relying on: the array geometry, the characteristics of the

medium and the received measurements.

A. Antennas

Antennas are available in different types such as dipole, monopole, and patch like among
others. The pattern of an antenna is a plot of the received energy at different directions.
The pattern is not distributed uniformly in all directions, and thus antennas have different
degrees of directivity. This directivity affects the ability of the antenna in receiving the
incoming waves, and thus the performance varies with direction. In our work, we start by

assuming isotropic antenna. Later on, directive antenna shall be utilized.

B. Array Geometry

An antenna array at the transmitter or the receiver can be organized or designed in different
configurations. Many array configurations were investigated in the literature for DOA
estimation. These include ULA [29], nonuniform linear array [30], uniform circular array

(UCA) [31], uniform rectangular array (URA) [32], uniform rectangular frame array [32],
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coprime array [33], nested array [34], arbitrary arrays [35], random array [20], and others.

Each one of these arrays has its own advantages and limitations.

Antenna arrays can enhance the directivity, in return enhancing the SNR as well as
providing the system some control over the maximum radiation power. Thus the beam of
the array can be steered towards certain directions and thus enhance its DOA capability

[36].

2.4.3 Overview of Basic DOA Estimation Algorithms

Normally, the number of sources needed to be estimated is very few. In other words, the
scene of interest in which we are searching on contains only limited number of sources.
Therefore, CS and sparse representation can be formulated in order to work with reduced
data sets and thus decreased processing time. Therefore, complexity reduction is one of the
most important issues in our study. There are lots of DOA estimation algorithms in the
literature. This overview focuses on the most important and widely used ones, namely:
beamforming, Capon, MUSIC, and [;-SVD. All [;-SVD algorithms use CS first, so they

can be considered also as CS based algorithms.

A. Beamforming Algorithm

The idea here is to direct the array in a certain direction at a time and measure the output
power. Maximum output power will be received whenever the “steered” direction matches
with DOA of a signal. A weight vector w is used to linearly combine the received signal

by the sensors to form a single output, y,(t), as [28], [37]:

ya(t) = wly(t) (2-2)
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H

where [.]" represents the conjugate transpose (Hermitian) operation. Thus, the total

averaged output power, P(w), of an array over T samples can be written as [37]:

T T
1 1
P(W) = 2 Iya(t)P =5 ) why(edy" (t)"w = w'Ryw  (23)
n=1 i=1

1 . . . . . .
where Ry, = p T y(t)y*(t;) is the estimated covariance matrix of the received signal.

In beamforming algorithm, the weight vector is equal to the steering vector defined in the
system model, i.e. w = a(@) where 6 represents an arbitrary look angle (search angle). If
this angle coincides with an angle coming from any source, the spectrum will have a peak

at this angle. Essentially, the weight vector is normalized such as:

H
I O 24

Jafl(6)a(o)

Therefore, the output power as a function of the DOA becomes:

a"(6)Ryya(6)
af(0)a(o)

P(0) = (2-5)

The weight vector matches the angles of the incoming signal to produce a peak but

attenuate the output power for signals not coming from the angles of the incoming signals.

B. Capon Algorithm

When there is more than one signal present, the array output power contains signal
contributions from the desired and undesired angle(s). Capon algorithm overcomes this by

forming a beam in the look direction and simultaneously nulls in other directions to reject
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other signals. It minimizes the power in all directions and keeps it one in the look direction,

as [7], [28], [38], [39]:

min P(w) subject to wia(9) = 1 (2-6)

The weight vector is given by:

-1.H
we Ryya”(6) 2-7)
a’(6)Ryya(0)
The output power spectrum becomes:
P(0) = -
©) = FORTa0) (2-8)

Therefore, the K largest peaks of P(8) correspond to DOAs of the estimated sources. The

inversion of the estimated covariance matrix should exist.

C. MUSIC Algorithm

There are variety of MUSIC algorithms proposed in the literature. The original one relies
on the characteristics of the correlation matrix of the received signal, Ry,,. The eigenvectors
that span the space of Ry, can be divided into the signal subspace, a(8), and the noise

subspace, V,,, which are orthogonal. The steering vectors correspond to the signal subspace.
The signal/noise subspace is spanned by the eigenvectors that correspond to the

larger/smaller eigenvalues of the correlation matrix.

Following the derivation presented in the system model above, we can write the correlation

matrix of the received data [28], [37], [38] as follows:
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R,, = A()R.A"(6) + 61y (2-9)

where Ry, = E[s(t)s" (t)] is the covariance matrix of the transmitted signals, Iy and o2
are the identity matrix, and the noise variance, respectively. The eigenvector, q;, associated
with (N — K) smallest eigenvalues, related to the eigenvalue, A;, fulfils the following

relation:
(Ryy —Aily)q; =0,i=K+1,..,N (2-10)
This can be further expanded as in [28] because the two subspaces are orthogonal:

A"q; = 0,0r{a(6y), ...,a(0)} L {dxs1, -, An} (2-11)

The noise subspace is constructed by the eigenvectors associated with the smallest

eigenvalues, as:

V, = [dg+1) -» An] (2-12)

When the arbitrary angle equals the DOA of an incoming signal that is 8 = 6, for k =

1,2, ..., K, the steering vectors, a’ (), are orthogonal to the noise subspace, i.e.

a (9)V,VFa(6) = 0 (2-13)

Thus, the output power as a function of DOA can be expressed as [28], [37], [38]:

1

PO) = 7oV, viace)

(2-14)

Hence the K largest peaks of P(8) correspond to DOAs of the unknown sources.
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D. First-Norm (1;) Singular Value Decomposition (SVD) Algorithm

The [;-SVD algorithm is based on the SVD as well as CS. First, the data matrix is
decomposed into the signal and noise subspaces. Then, we preserve the signal subspace
and model the problem with lower dimensions through multiple-sample sparse estimation.
Since the received corrupted measurements depend on the actual locations which are not

known, it is a challenging task to estimate the DOA [25], [27].

To exploit the concept of sparsity and then apply CS to find 8, let {Hf, 95, e 91%9} be a set

that represents a sampling grid for all possible source locations where Hl-g is the i*" sampled
angle and Ny > K is the total number of the sampling grid. Therefore, the steering matrix
A= [a(gl), ...,a(éNg)] of size N X Ny is independent of the actual locations. We can

reformulate the problem and express it in a matrix format as [25]:

Y=AS+N (2-15)
where Y = [y(t,), ....,y(tr)] and N = [n(t;), ....,n(t;)] are matrices of size N X T. The
K transmitted signals are arranged to be the rows of the matrix S of size Ny X T. The n‘"
row equals s (t) if source k comes from 8, for k = 1,2,.., K and zeros otherwise. Thus
one can apply CS to find . Henceforth, the matrix S is sparse in the spatial domain because

it has only K nonzero rows. Therefore, once S is found, 0 correspond to the peaks in S [25],

[27].

Figure 2-4 illustrates the main steps to be accomplished in the [;-SVD algorithm. First, the
SVD is computed on Y and we keep a reduced dimension Ygy = UgLDy = YV,,Dg of size

N X K that contains most of the signal energy. The matrices U; and Vg represent the
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subspaces of the signal and noise, respectively. The matrix L contains the eigenvalues and
Dy = [Ix0'], where 0 is K X (T — K) matrix of zeros. Similar reduction in dimension is

done to get Sqy and Ngy from S and N, respectively [25].

oY= [y(tl), ....,Y(tT)]

+ Compute the SVD: Y = U,LVY

» Keep a reduced set of size N X K
* Yoy = YV, Dg = UgLDg, Sgy = SV, Dk, Ngy = NV, Dy
* Ysv = ASgy + Ngy

« Compute an I,-norm, §(2), of each row in Sgy

* Find the sparse vector that minimizes:
* § = min||Ysy — ASsyll? + ,1£,||§(lz>||1

» Find @ corresponding to the indices of the nonzeros in §

Figure 2-4: Main steps of /1-SVD algorithm
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The matrix Sgy is sparse in the spatial domain (column wise), hence the problem can be
expressed as multiple-sample sparse estimation, given by: ySV(k) = AsSV(k) +
nSV(k),k = 1,2,..,K where y5V(k),n%(k), and s°V (k) are the k*" columns of Yy, Ngy,
and Sgy, respectively. In matrix format, we can write the problem as: Ygy = ASgy + Ngy.

Finally, we can solve an optimization problem (step 4) based on the I,-norm, §(2) | of each

row in Sgy in order to find the sparse variable || §(t2) ||1 \/ P SV(k) . The later

is equivalent to the [;-norm of the computed [,-norm and 4, is the regularization parameter.
The term ||Ysy — Assv||]% = |lvec(Ysy — ASgy)|l3 is the Frobenius norm [25]. The

estimated DOA 8 corresponds to the indices of the nonzero entries of §.

2.4.4 Performance Metrics

There are many performance metrics that have been used to assess the DOA estimation
algorithms. The root mean square error (RMSE) is one of the very important measures. In
addition, the beamwidth, bias, probability of source resolvability, and the peak-to-ripple

ratio (PRR) [40], [41] have been also used in the literature.

A. Root Mean Squared Error (RMSE)

One of the most widely performance metrics used in the literature to assess the DOA

estimation is the RMSE. The RMSE of the estimated DOA is defined as [33]:

Zjey B (6 - 0)
IiterK

RMSE = (2-16)
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where 8;(j) is the estimate DOA of 6; at the j** Monte Carlo trial, j = 1,2,..., I;ze, With

I;ter being the number of Monte Carlo trails and K is the number of sources to be localized.

B. Beamwidth

The beamwidth is a good performance measure which reflects the resolution of the utilized
DOA estimation algorithm. Narrow beamwidth indicates a good resolution and vice-versa.

The 3dB beamwidth (65,5), and 6dB beamwidth (6¢,5) are used.

C. Bias

The bias can be defined as the difference between the actual location of a source and its
estimated location [25], [42]. Reference [37] defines the bias as the absolute value of the
difference between the actual and the estimated locations. In this research, we use the first

definition when calculating the bias. The bias of the i*" source can be expressed as:

Liter

> (6:-0.00) (2-17)

D. Sources Resolvability

The probability of source resolvability is calculated based on the following definition. Two
sources are resolvable if the absolute value of the difference between the estimated and
actual locations for each one is less than or equal to the absolute value of the difference
between their actual locations divided by two [3], [43]. Mathematically, this can be

expressed as:

~ AG
6:- 0] <= (2-18)
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where AO = |0, — 6, and 6; and 8; are the actual and the estimated DOAs of two sources

for i = 1,2, respectively.

E. The Peak-to-Ripple Ratio (PRR)

The peak-to-ripple ratio (PRR) is defined as the ratio between the square of the amplitude
at the estimated DOA angle to the sum of the squares of all amplitudes at other angles in

the spectrum [40], [41]:

2

_ ]
PRR = ST (2-19)
i=1,i#j i

where A; is the amplitude at the DOA estimate at the source location for j = 1,.., K.

2.5 Chapter Summary

In this chapter, a literature review for the most widely used DOA algorithms was presented.
Then the general model for DOA estimation was demonstrated with some technical
backgrounds including array configurations, DOA algorithms, and the most important

performance measures of DOA estimation.
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CHAPTER 3 DOA ESTIMATION WITH PRACTICAL

ANTENNA ARRAYS

Future handsets are characterized by their small size which limit the number of antennas
and the inter-element spacing in between. This chapter mainly focuses on DOA estimation
based on CS algorithm with practical limitations. The main objective is to strike an optimal
balance between complexity and accuracy. A comparison between important DOA

estimation algorithms is presented including: beamforming, Capon, MUSIC, and [{-SVD.

The practical implementation of DOA techniques in handheld wireless devices is limited
by the number of antennas and the inter-element spacing between them. A robust DOA
estimation technique is needed to overcome the different impairments in the
communication channel. The following provides a review on DOA estimation with
practical antenna arrays followed by some preliminary results in the presence of practical

limitations to understand the topic.

3.1 Practical Limitations

The inter-element spacing between the antennas is restricted by the available physical size
in mobile handsets. Very close antenna elements suffer from the mutual coupling effect.
While, the grating lobe problem appears if the inter-element spacing between those
elements increases beyond half-wavelength. Under the given dimension restriction,
researchers examined different inter-element spacing to optimize the DOA estimation. The

authors in [23] investigated different CS-based algorithms for source localization. The
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minimum adjacent antenna separations was evaluated by exploiting the antenna size as a
constraint. The authors in [44] suggested antenna spacing of 0.14 with A being the signal
wavelength. Although the estimation was significantly enhanced, impedance matching was
suggested to avoid the degradation with such close spacing [44]. Other researchers
examined different configurations for distributing the antennas within the array based on a
restriction on the minimum distance between elements [45]. It has been shown that t the
capability of the random array enhances if a constraint on the minimum separation between

sensors is used [45].

The size of the handsets also put a limit on the number of antennas. Employing more
antennas improves the system performance. Though, mutual coupling problems arise in
dense arrays [46], [47]. More antennas also need large storage and increase the
measurement and processing time. Considering the physical limitations in MIMO systems
for small antennas is among several tasks of a sub-working group within the European
Association of Antennas and Propagation (EurAAP) on “Small Antennas” [48]. Limited
number of publications in DOA estimation problem considered the practical limitations
which is the main scope of this dissertation. The authors in [49] used only two antennas for
DOA estimation. The system utilized MUSIC algorithm and only one radio frequency (RF)
was used to reduce the complexity. A switch was used to change from one element to the
other and to take the measurement in a very precise operation. The error in [49] was around
109 at 5 dB and 20 dB SNR for line-of-sight and non-line-of-sight conditions, respectively.
In [50], preprocessing the received signal and performing data reduction was used to work
with two receive antenna elements. The maximum likelihood estimator was approximated

to generalized least squares estimator.
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Developing a receiver with DOA estimation capability is restricted by the physical size of
the handsets. Thus, we discuss two practical issues; limited number of antennas and limited
inter-element spacing in between. Based on the literature review, very few publications
considered the practical limitations in the design of their arrays. To the best of our
knowledge, no one has used CS under such limitation to handle the problem of DOA
estimation. The performance is investigated for different number of antenna elements,
using different performance criteria. The number of antennas that we evaluate is two and
four (2 and 4-element MIMO). The case of eight elements is also examined for comparison.
Under a given dimension restriction, different antenna arrangements are examined to
optimize the DOA estimation. To make the analysis more general, the ratio between the
inter-element spacing and the wavelength is considered. Extensive simulations are
conducted to study and inspect the effect of this ratio on the system performance. In
addition, other parameters are also investigated like the RMSE, beamwidth, bias, and
probability of source resolvability. It is shown that MUSIC and Capon methods performs
well at high SNR when the sources are not highly correlated. Whereas, [;-SVD does not
require high SNR and can detect strongly correlated sources. When considering two
antennas with practical antenna spacing limitations, simulation shows that the RMSE of
the estimated DOAs is the same for all algorithms in the presence of one unknown source.
Simulation concludes that working with a ratio between the wavelength and the unit inter-
element spacing of 3 realizes the smallest RMSEs and beamwidth. The [;-SVD algorithm

is recommended due to the narrow beamwidth and high resolution.
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3.2 Evaluation and Comparison

In this section we present some results for DOA estimation using different algorithms and
parameters. The effects of the most important parameters presented in the system model
are investigated; including the number of the receive antenna elements, inter-element
spacing, number of sources, number of samples and the source separation. The results are
based on MATLAB® simulations. In the coming chapters, the results will be augmented

by experimental data.

The sources are assumed to be located in the far-field with discrete uniform DOA angle
distribution, 8, ~U[0°,180°]. A ULA is considered with N sensors spaced by d = 1/2
and the number of samples is T = 200 samples. The search grid is uniform with 1° step
size and Ng = 181. All these parameters are fixed unless stated otherwise. The two
practical limitations are adjusted to be: N = 2 and d = A/2. The solution of the sparse
vector based [;-SVD algorithm was conducted using CVX toolbox [51] in MATLAB®.
To remove the location dependence on the accuracy of the estimation, the actual angle for
each source was randomly changed in every run. All performance measures are calculated

based on I;;,,, = 500 independent runs and then averaged.

It is worth to mention that the [;-SVD exploits the sparsity and the SVD in the estimation
process. Thus, it works with further reduced data compared with other algorithms
considered in this reserach. The processed data using [;-SVD algorithm is reduced from
N X T into N X K. This huge amount of reduction is realized because T > K with T =

200 samples and K = 1 or 2 sources.
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3.2.1 Comparison for DOA Estimation Algorithms

This subsection compares the previous algorithms discussed in Section 2.4.3 in terms of

their ability to resolve closely spaced correlated or uncorrelated sources. The number of

sources is K = 2 and a total of N = 8 isotropic antenna elements are assumed. The

resolution of the aforementioned algorithms in terms of the beamwidth at the estimated

locations is investigated.
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Figure 3-1 shows the normalized power spectrum in dB versus the estimated DOA using
beamforming, Capon, MUSIC and [;-SVD algorithms. The SNR is 10 and 20 dB in the
upper, lower subplots, respectively. Two sources are assumed at 63 and 73 degree. The
sources in Figure 3-1 (a) and (b) are uncorrelated while they are correlated in Figure 3-1
(c) and (d). Apart from beamforming, all algorithms can resolve the two uncorrelated
sources with SNR = 10 dB as Figure 3-1 (a) depicts. The ability of Capon and MUSIC
algorithms to resolve the sources is enhanced when the SNR = 20 dB, see Figure 3-1 (b).
The resolution of the [;-SVD algorithm is better than MUSIC algorithm, though MUSIC
is better in terms of reducing the side lobs. Beamforming algorithm merges the two
uncorrelated sources even at large SNR with larger side lobes compared to other
algorithms. In case of correlated sources, only [;-SVD algorithm resolves the two sources

with much smaller side lobes compared with others as Figure 3-1 (c¢) and (d) depict.

The accurate estimation for the DOA is not the only way for assessment. The estimated
locations exhibit different beamwidths (sharpness) which is referred to as resolution.
Figure 3-1 indicates that the narrowest beamwidth at the estimated locations is achieved
using [;-SVD algorithm at SNR = 10 dB. MUSIC and Capon algorithms have comparable
beamwidth whereas a very wide beam was realized using the beamforming algorithm.
Although the beamforming algorithm can estimate the DOA, the beamwidth at the
estimated angle is very wide and consequently the resolution is very poor. Additionally,
the side lobes have very high levels. MUSIC and Capon algorithms need to have a high
SNR as well as the sources should not be highly correlated. Whereas, [;-SVD does not
need high SNR and can detect a strongly correlated sources. Unlike [;-SVD, MUSIC and

Capon algorithms require sufficient number of samples [25].
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3.2.2 Results for Localizing a Single Source

In this part, the objective is to estimate the DOA for a single source, i.e. K = 1. Extensive

simulations were conducted to evaluate the statistical measures.

A. Impact of the Signal-to-Noise Ratio

Herein, the impact of the SNR on the system performance is studied. We plot the RMSE

versus the SNR for each algorithm under different number of receiver antenna elements as

shown in Figure 3-2. The RMSE decrease as N increases for all algorithms. Though, the

RMSE is almost the same when the SNR greater than 20 dB. For fixed N, the RMSE is

approximately the same for all algorithms since only a single source needs to be localized.
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Figure 3-2: RMSE versus SNR for different N and K =1
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B. Impact of the Inter-Element Spacing

To study the impact of inter-element spacing, we investigate some cases which are

involved in practical scenarios. To make the analysis general, the ratio between the element

. d 111112 4 )
spacing and wavelength 2501333 1, 3 and 2 are considered.

The RMSE for different values of N are shown in Figure 3-3 as a function of d/A with
SNR = 20 dB. In each subplot, all algorithms are compared for fixed N. If d/1 > 1/2,
there will be two solutions for the estimated direction which creates ambiguity. This is
called spatial aliasing where in addition to the main lobe of the actual direction, other lobes
appear in the estimated spectrum; grating lobe effect. There are some oscillations in the
RMSE for d/A1 > 1/2 because the ambiguity increases. The peaks of the actual location
and the ambiguities most probably have different magnitude. Therefore, if we pick an
ambiguous peak, error will occur. As more antenna elements are employed, left to right
subplots, the RMSE is reduced. The [;-SVD is the algorithm that is most affected by the
increase in d /A. Regardless of N, all algorithms achieve the minimum RMSE when d /1 =

1/3. Consequently working at this ratio is preferred and recommended.

The RMSE degrades dramatically when d /4 is small using [;-SVD algorithm. This can be
figured out as: almost all antennas have the same measurements since they are very close
to each other. In addition, the dominant factor for this degradation, especially for N = 8,

is the data reduction from N X T to N X K.
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Figure 3-3: RMSE versus d/A for N=2,4,8, SNR=20dB, and K= 1

Figure 3-4 depicts the 03,45 as function of % for different M, SNR = 20dBand K = 1. In

beamforming and capon algorithms, different values of N give significant performance

differences. While MUSIC and [;-SVD algorithms are not very sensitive to changing N.

Decreasing % results in wider 8545 because of the field coupling effect in both beamforming

and Capon algorithms. Although, decreasing % does not cause large degradation in the

resolution. MUSIC and [;-SVD achieve beams less than 1°, and 0.2°, for N = 4 and 8

respectively. When d /A > 1/2, the ambiguity increases however the beams get narrower.

The ambiguity problem is pronounced in terms of RMSE as in Figure 3-3. Multiple peaks

appear in the power spectrum at different angles and we calculated only the 85,45 of the

maximum peak.

33



CHAPTER 3 3.2 Evaluation and Comparison

Beamforming

Capon
200 ‘ ‘ 40 ] r
‘i ——pN=2 . ——nN=2
g 180 —B—nN=47 3 0 —B—N=4]
g —F—nN=8|| 2 —F— N=38
= 100 <)
3 3
< 50 &
. —=s
0 05 1 1.5 2
d/A
MUSIC
1.5 r r Q@
1 ——N-2 \‘
3 —8—nN=4]| g 3 —B— N=4]]
& \ —V— N=38 5y —V— N-=38
3 ““o 3 2
R s < 1 XL
0 v 0*
0

0 0.5 1 1.5 2
d/A

Figure 3-4: 3dB beamwidth versus d/A for different N, SNR = 20 dB, and K = 1

C. Impact of the Number of Receive Antenna Elements

The effect of M versus the SNR based on the RMSE was investigated in Part A. Figure 3-5
shows the 05,5 and B¢, as function of SNR for different M. The 8,45 1s presented for
completeness and comparison purposes. At low SNR, beamforming and capon beams
cover the entire range of Ny i.e. 180°. There is no improvement in the beamforming
performances as the SNR increases above 5 dB. While for Capon, the beams get narrower
as SNR increases. MUSIC is much better than beamforming and Capon even at low SNR.
Much narrower beams are achieved using [;-SVD except for N = 2. At this limit of the

receive antenna elements, the beams are around 55°, 30° at SNR = —15 dB for the 03,45

and B¢45, respectively.
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Figure 3-5: 3dB and 6dB beamwidth versus SNR for different N, and K =1

For SNR above 5 dB, the difference between the 6545 and G445 is more than 15° using
beamforming with N = 2, and it reduces from around 24° to almost 0° at SNR= 30 dB
using Capon. On the other hand, these differences are further reduced as N increases and

they reach to approximately 0° using [;-SVD with M = 8 at SNR = —15 dB.

D. Impact of the Number of Samples

There are many algorithms which depend on the correlation matrix of the received signal.
Since we do not have the statistics, the covariance matrix is estimated using T samples.
Therefore, the number of samples affects the performance. Figure 3-6 shows the RMSE
for T = 1,20,50,100,150 and 200 samples with SNR = 20 dB using different values of

N.

35



CHAPTER 3 3.2 Evaluation and Comparison

Beamforming Capon
15 r r 60c r r
> —— N=2 - K —— N=2
(0] (]
) ——n-8|| 2 i‘\ —— N-8
C 1
A 5 g 20
Z 2
0 - . § 0
0 50 100 150 200 0 50 100 150 200
T (samples) T (samples)
MUSIC ,-SVD
15 r r 15 r r
- —o—nN=2) 5 —6—nN=2
(] (]
S —V— N=38 z —V— N=8
C 1
2" 2 N
5 E . 'T L=
0 4 Y X 0 4 L
0 50 100 150 200 0 50 100 150 200
T (samples) T (samples)

Figure 3-6: RMSE versus 7 for different N when SNR =20 dB and K =1

Using one data sample yields comparable RMSE for beamforming, MUSIC and [;-SVD
algorithms for all N since we have only one source. Though, the RMSE based on Capon
algorithm is large compared with others using one sample. In general, increasing T reduces

the RMSE for all algorithms since a better estimation for the correlation matrix is achieved.

Figure 3-7 shows the 0545 as a function of T with SNR = 20 dB using different N. Using
one data sample yields very large beams for beamforming and Capon algorithms for all N.
However, this is not the case for MUSIC and [;-SVD algorithms with one sample. The
resolution using beamforming algorithm is low since the 65,5 is more than 20° for all T
and N. Simulation as well shows that the 85,5 is a weak or a negligible function of T based

on beamforming. The same observation is made for Capon algorithm for T > 20 samples.
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MUSIC and [;-SVD algorithms are affected more by increasing T. The smallest beams are
attained with [;-SVD with only one sample and N = 4, 8, therefore, this algorithm has
super resolution (very narrow beamwidth). Nevertheless, in the limited case i.e. N = 2,
MUSIC algorithm has relatively lower 63455 by around 1.5° compared with [;-SVD

algorithm using one sample.
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3.2.3 Results for Localizing Multiple Sources

The system performance in the presence of multiple sources for DOA estimation is

considered in this part. Some simulation results are presented.

A. Impact of the Signal-to-Noise Ratio

From now on, we assume that we have two unknown source locations i.e. K = 2.
Figure 3-8 displays the RMSE versus SNR for different N. We can notice that the RMSE
is very large with N = 2 based on all algorithms and even with SNR =40 dB. The RMSE
using MUSIC algorithm when N = 2 is larger than others because K = N. The extracted
noise subspace form the correlation matrix should have V,, = [qg41, .., qn] as discussed
in Section 2.4.3-C, though the size of the correlation matrix is 2 X 2. Consequently, the
noise subspace becomes an empty matrix and degradation occurs. Therefore, two antenna

elements are not enough to estimate the locations of two sources.

Apart from beamforming algorithm, using more antenna elements improve the
performance significantly. Increasing the SNR reduces the RMSE as well, though this
improvement is negligible beyond SNR = 20 dB using [;-SVD algorithm. After this SNR,

simulation proves that Capon and MUSIC algorithms realize quite better RMSE.
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Figure 3-8: RMSE versus SNR for different N and K =2

B. Impact of the Ratio between the Inter-Element Spacing and Wavelength

As we did in Figure 3-3 but here K =2, the RMSE is plotted versus %—

==,2.5,5,2, 1,7 and 2 with SNR =20 dB is plotted in Figure 3-9. The RMSE for

86 4 323

MUSIC and [;-SVD algorithms decreases as d/1 < 1/2 since the mutual effect reduces.
On the other hand, the RMSE increases when d /1 > 1/2 because the ambiguity increases
due to the grating lobes. The same observation was made as in Figure 3-3 regarding the
minimum RMSE at d /A = 1/3 but only for MUSIC and [;-SVD algorithms with N = 4, 8
and Capon algorithm only N = 8. The reason behind this is the presence of multiple
sources which is not the case in Figure 3-3. Although, the system performance has got
almost the same trend.
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Figure 3-9: RMSE versus d/A for two sources and different N

C. Impact of the Number of Samples

The effect of the number of samples can be evaluated using the probability of detection or

the probability of source resolvability. The two sources are adjusted to be located at 8 =

[60°,80°], 8 = [60°,100°] as shown in Figure 3-10 (a) and (b) respectively, using N =

4,8 and the SNR = 10, 20 dB. The probability of source resolvability is plotted against

T =2,20,50,100, 150 and 200 samples.
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Generally speaking, the probability of detection enhances when the sources are separated
by 40 degrees compared with that of 20 degrees. Apart from [;-SVD algorithm, using only
two samples is not enough to achieve a good probability of detection. However, using [;-
SVD the probabilities with only two samples are much greater than all other algorithms,
see Figure 3-10 (a) and (b). The probability of detection reaches around 0.958 as shown in
Figure 3-10 (b) with N = 8 and SNR = 10, 20 dB using [;-SVD. The same probability is
achieved using N = 4 and SNR = 20 dB. When the sources are separated by 20 degrees,
the probabilities achieved with [;-SVD are quite smaller. Figure 3-10 (b) shows also that
MUSIC, [;-SVD algorithms need 150, 50 samples to achieve around 100% probability of
detection because MUSIC algorithm relies on the correlation matrix of the received data.
Thus, increasing the number of samples leads to better estimate for the correlation matrix.
Capon algorithm needs large SNR and large number of samples in order to resolve the two
sources perfectly. Beamforming algorithm has the worst performance among all

algorithms.

D. Impact of the Separation between the Sources

In this part, the first source is fixed at 42 degree while the second one is changing. The bias
is analyzed as a function of the angular separation between the two sources. For the case
when the SNR = 10 dB (solid lines), 20 dB (dotted lines) with N = 8 shown in Figure 3-11,
we observe some bias for low separations. Though this bias vanishes when the SNR = 10
dB at around 16, 14 and 12 degrees for Capon, MUSIC and [;-SVD algorithms,
respectively. On the other hand, the bias increases with separations using beamforming
algorithm since it is search based algorithm and it has a very wide beamwidth. Apart from

beamforming algorithm, when the SNR increases to 20 dB all biases decrease.
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Figure 3-11: Bias in localizing two sources versus angular separation with SNR =10 dB (solid lines), 20 dB (dotted
lines), N=28, and K =2

The probability of source resolvability is another criterion used to assess the performance
of the DOA estimation. This metric gives an indication on how certain DOA algorithm is
capable to resolve two sources. The two sources in the first upper subplots of Figure 3-12
are adjusted to be located at @ = [60°,80°] and we compare N = 4 (solid lines) and N =
8 (dashed lines). All subplots have the same legend and markers. A probability of 1 is
achieved using [;-SVD at low SNR compared with other algorithms. In order to realize
probability of detection greater than 0.8, around 7.5 and 10 dB are required using MUSIC
and Capon algorithms, respectively, using eight receive antenna elements. Moreover, we
have almost the same trend using four receive antenna elements. Beamforming algorithm

cannot resolve the two sources.
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Figure 3-12: Probability of source resolvability versus SNR: upper subplots N =4 (solid lines), N = § (dashed lines),
and lower subplots: 8 =[60°, 80°] (solid lines), 6 = [60°, 100°] (dashed lines)

The two sources in the second upper subplots of Figure 3-12 are adjusted to be located at
0 = [60°,100°] and we compare N = 4 (solid lines) and N = 8 (dashed lines). Again
beamforming algorithm merges the two sources and cannot resolve them. Similarly, ;-
SVD is better than MUSIC and Capon algorithms. Comparing the two cases with N = 4
and N = 8, the differences between them are not as before (smaller) because the sources

now are separated by 40 degrees.

How much improvement one can achieve if the sources are separated by 20 or 40 degrees
for the same number of receive antenna elements? The lower subplots provide the answer
to this question. For N = 4 in the third subplot, sources separated by 20 degree (solid lines)
need around 5, 7.5 and 10 dB more compared with those separated by 40 degree (dashed

lines) in order to be fully resolved using [{-SVD, MUSIC and Capon algorithms,
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respectively. When N = 8, the performances are almost the same for all algorithms as

shown in the fourth subplot of Figure 3-12.

3.2.4 Source Location Dependency

The effect of the source location (DOA) on the performance measures is evaluated. In this
subsection, a single source is assumed to be located at all possible angles using ULA and
with SNR = 0 dB. The RMSE, PRR, and 3dB beamwidth are used to assess the
performance. All performance measures are plotted versus the number of antenna elements
in the x-axis and the DOA in the y-axis, respectively. Our range of interest is as before
[0°,180°]. We show only the results from [0°,90°] and the results of the remaining angles

are symmetric.

Figure 3-13 demonsetrates that almost all algorithms realize similar RMSE and behavior
where the RMSE increase as the source location moves toward zero degree and vice versa.

The RMSE also decreases as N increases.

The PRR is also used to assess the location dependency. As the PRR increases means that
the side lobes are so small compared with those at the estimated angles. Consequently,
better resolution is realized. The PRR with all algorithms enhances as the DOA moves to
the middle of the range of interest and as we increase the number of antenna elements as
Figure 3-14 depicts. The smallest PRR is realized with beamforming algorithm then that
with Capon algorithm. Since MUSIC algorithm assumes certain data model (orthogonality)
and according to (2-14), large spikes occurs at the candidate source locations compared
with the remaining angles in the estimated spectrum. This is why the PRR with MUSIC
algorithm is larger than others. Since the [;-SVD algorithm has high resolution, large PRR

1s achieved.
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Figure 3-13: RMSE in degree versus source location and the number of elements with SNR = 0 dB
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Figure 3-14: PRR versus source location and the number of elements with SNR =0 dB

The beamwidth is less affected by the location of the source as Figure 3-15 shows. Very
wide beamwidth is achieved with beamforming algorithm followed by Capon algorithm.

Super resolution and very narrow beamwidth is realized with [;-SVD algorithm.
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Figure 3-15: Beamwidth in degree versus source location and the number of elements with SNR =0 dB

3.2.5 Processing Time

Figure 3-16 demonstrates the processing time required for DOA estimation’s scenario
presented in Section 3.2.4 versus the number of antenna elements. The results were
averaged over 500 runs. The time was calculated using a “tic” and “toc” commands in

MATLAB, which installed on a PC with an Intel i5 processor running at 3.3 GHz.

MUSIC algorithm performs EVD to find the DOA and it requires the smallest processing
time as shown in Figure 3-16. Beamforming algorithm is the simplest computationally
algorithm among the remaining ones according to (2-3). Capon algorithm on the other hand
executes matrix inversion operation to find the DOA. Therefore, it requires larger

processing time compared with MUSIC and beamforming algorithms. Since the [;-SVD
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algorithm performs SVD first then solves an optimization problem to find the DOA, the
processing time for this algorithm is so larger than others. In addition, we use CVX toolbox
to conduct the [;-SVD algorithm in our simulation. This also adds extra processing time

since this toolbox is a general-purpose one designed to solve much wider variety of

problems.
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Figure 3-16: Average processing time versus the number of elements
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3.3 Chapter Summary

In this chapter, we presented a comparative study on sparse DOA estimation with practical
antenna arrays. Two practical issues were discussed namely: limited number of antenna
elements and limited inter-element spacing in between. Different performance measures
have been used in the evaluation process. This includes the RMSE, beamwidth, bias and
the sources resolvability. The N = 2 of a ULA case can represent a 2-element MIMO
antenna system in current wireless terminals. Other higher order cases such as N = 4, 8 of
the ULA can represent MIMO antennas on larger devices (tablets, laptops, etc.) or at access
points. We have discussed the basic ideas for different algorithms namely: beamforming,
Capon, MUSIC, [;,-SVD and compare their performances. Both Capon and MUSIC
algorithms depend on the correlation matrix. The former requires matrix inversion, since
the inversion of the correlation matrix appears in the denominator of the output power. On
the other hand, MUSIC algorithm depends on the orthogonality between the noise and the
signal subspaces where a prior knowledge of the number of sources to be localized is
needed. MUSIC algorithm offers an improved resolution capability (narrower peaks)
compared to beamforming and Capon. However, those two algorithms are more robust
than MUSIC as they do not assume any specific model for the data. All algorithms have
been examined for practical cases where we have limited number of antennas and limited
antenna spacing. It was shown that the RMSE for all algorithms is the same using only two
antenna elements with limited spacing in between. Working with d /A = 1/3 realizes the
smallest RMSE with SNR = 20 dB. Accordingly, working at this ratio is preferred and

recommended. The [;-SVD algorithm attains super-resolution since the beamwidth at the
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estimated angle is very narrow. It also utilizes both sparsity and SVD concepts. Thus, it

can work with a reduced data set and the processing time is reduced dramatically.

In addition to the physical size, other factors also deteriorate the performance of DOA
estimation including antenna directivity, antenna radiation pattern, multipath, noise,
interference, etc. In the following chapter, the performance of DOA estimation in realistic
channels is investigated based on experimental results. Moreover, the impact of antenna

directionality is considered as well.
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CHAPTER 4 EXPERIMENTAL DOA ESTIMATION USING

SPARSE ARRAYS IN REALISTIC CHANNELS

Many factors affect the performance of DOA estimation, including the physical size of the
handset, antenna type, noise, multipath, and interference. The performance is severely
affected in practical circumstances. Signal strength, received phase, false sources (due to

multipath), and the steering matrix are all affected in realistic environments.

Sparse arrays such as coprime arrays [52] can estimate the DOA of large number of sources
greater than the number of antennas. Coprime arrays are a good candidate when a half-
wavelength inter-element is infeasible due to the large antenna size and in the presence of
mutual coupling effect. Coprime arrays were proposed with ideal isotropic antennas. In

practice, antennas have different gain and phase which are function of the DOA.

In this chapter, the performance of coprime arrays is experimentally evaluated in realistic
channel environments. This chapter is divided into three main sections. Section 4.1
examines a moving coprime array for DOA estimation under sparse reconstruction
framework. Section 4.2 uses software-defined radio (SDR) to implement a DOA-
estimation system and tests its performance. In Section 4.3, the performance is evaluated
when the effect of antenna directivity and antenna radiation patterns are incorporated. The
constructed systems in Section 4.1 and Section 4.2 are tested successfully in the laboratory
with dense multipath environment. The results show that CS produces sharper beams

compared with other algorithms. We have also shown that the complexity and the mutual
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coupling effect are reduced using a moving coprime array. The impact of antenna
directivity is observed as well which we discuss in details in the third section. We have
found that the radiation pattern has a direct impact on the estimation accuracy. Due to the
radiation pattern, it is difficult to estimate any source of an angle outside the main beam of

the directional antenna even in noise free circumstances.

4.1 DOA Estimation with Moving Coprime Array Configuration

4.1.1 Introduction

In this section, a moving coprime array configuration is implemented for DOA estimation
under a sparse reconstruction framework. The examined array uses only one receive
antenna element. The antenna moves along the array axis to cover certain locations
specified by the conventional coprime array. A stepped frequency continuous wave
(SFCW) signal over ultra-wideband (UWB) is used. A microcontroller is used to control
the movement and the data acquisition from the vector network analyzer to the computer.
Two main advantages arise out of this approach. First, the complexity in terms of the total
number of antenna elements and receivers needed to implement the array is reduced.
Second, the mutual coupling effect is eliminated since only one antenna is present at a time.
On the other hand, there 1s a waiting time to collect the measurements. In addition, power
consumption and mechanical control issues have to be addressed. Experimental results in
real scenarios were conducted to validate the sparse configuration. It is shown that coprime
sampling is superior to uniform sampling with the same number of elements. The impact

of the antenna directivity is highlighted.
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Two ULAs with M; and M, antenna elements spaced by M, and M; units respectively are
used to construct the conventional coprime array where M; and M, are coprime integers
and the unit inter-element spacing is half-wavelength [52]. Coprime arrays has the ability
to resolve O(M;M,) sources using M; + M, — 1 elements [52], [53], [54], [55]. The

optimal coprime pair is the one that has values of M; and M, as close as possible [56], [57].

A technique to increase the degrees-of-freedom (DOFs) was proposed based on a moving
coprime array in [58]. Based on narrowband estimation scheme, the redundant lags in the
difference coarray were considered to reduce the complexity for wideband DOA estimation
[59]. The work presented some experimental results with M; = 2,M, =5 coprime
microphone array system [59]. A frequency band of 5 kHz to 10 kHz giving a minimum
wavelength of 4,,,;;, = 3.4 cm was considered [59]. The performance was enhanced as the
unit inter-element spacing increases beyond 4,,;,/2 since the aperture size has enlarged.
However, it was degraded when the unit inter-element spacing becomes greater than
Amax/2 due to the aliasing problems. The error was reduced from 0.1° with spacing of

Amin/2 to around 0.03° with 1.64,,;,,/2 spacing at 0 dB SNR [59].

Most of the previous works have examined the performance using simulations. Only few
papers did experimental studies. Few researchers considered the case of a moving coprime
array in DOA estimation as in [58] and in imaging such as these in [60], [61], [62]. To the
best of the authors’ knowledge, no one has used a moving coprime array for DOA

estimation under the sparse reconstruction framework.

The suggested moving coprime array in this section is equivalent to the conventional

coprime but one antenna element is active at a time. While the data acquisition time is
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longer, the complexity is reduced and mutual coupling effects are eliminated. Experimental
results using only a single snapshot were performed to evaluate the suggested
configuration. Performance comparison of the proposed work against that of a ULA is

considered with very limited number of antenna array elements.

The rest of the section is organized as follows. The signal model is presented in
Section 4.1.2 in which the coprime array and the utilized moving coprime array are
discussed. The waiting time required by the suggested approach is discussed in
Section 4.1.3. Experimental results are discussed in Section 4.1.4 and Section 4.1.5

summarizes this section.

4.1.2 Signal Model with Moving Coprime Array

After recalling the structure of the coprime array, the suggested moving coprime array is

presented followed by the far-field based DOA estimation model.

A. Coprime Array

Coprime arrays can be constructed using two linear subarrays. One subarray has M,
elements spaced by M; units and the other has M; elements spaced by M, units. The two
numbers, M; and M,, are selected to be coprime integers and M; < M,. The unit inter-

element spacing is d = A/2. The elements of this array [33], [52] are located at:

P={Mndl0<n<M,—1}u{M,md|0 <m <M, —1} (4-1)
The two ULA subarrays share the first element, hence the total number of elements
becomes N = M; + M, — 1. Moreover, the aperture size, D, of the array is D =
(M, — 1)M,d. Coprime arrays can estimate large number of sources greater than the
number of their antenna elements. Basically, the number of unique lags and the number of
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consecutive lags in the difference coarray give an upper bound on the achievable DOFs
[33]. The difference coarray can be obtained by taking all pairwise differences of the array
physical element locations [34]. Since DOA estimation depends on the correlation of the
received signal, the virtual element locations which appear in the difference coarray can be
exploited instead of just the original element locations [52]. Figure 4-1 (a) shows an
example of coprime array with M; = 2 and M, = 3. The array has a hole-free difference
coarray as Figure 4-1 (b) illustrates. As a result, the virtual array is equivalent to a ULA
that extends from [—4d: 4d]. More details about the difference coarray are presented in

Section 5.3.

B. Moving Coprime Array

A moving coprime array is used to reduce the number of antennas and receivers. This can
be achieved using a single antenna that moves and stops along the array axis to take the
measurement at [P positions. Therefore, only one antenna element is active at one of the N
positions. The accuracy of the antenna position is moved in a precise manner using a high
resolution stepped motor and microcontroller. The microcontroller receives the instructions
from a PC where a code is used to define [P according to the values of M; and M,. More
details are presented in Section 4.1.4. Once the moving antenna covers all locations, the
data collected is organized in a column vector or a matrix in case of single or multiple

snapshot(s), respectively.
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Figure 4-1: Coprime array structure and the corresponding difference coarray
C. Far-Field Based DOA Estimation for a Single Frequency via Sparse Representation
The sources maybe located in the far-field, near-field or a mix of both fields. In the far-

field, all antenna elements have the same DOA for each source. Sources at distance greater

than 20 where A is the signal wavelength are considered to be in the far-field [28]. For the

near-filed case, the range and angle variations across the array elements are very evident.

In this work, the sources are assumed to be located in the far-field.
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Assume that K uncorrelated narrowband signals located in the far-field imping on a
coprime array from angles @ = [0, 0,, ..., 0x]" as Figure 4-2 depicts. The received signal

at the output of the array over T samples can be expressed as:

y(t) = A(@)s(t) + n(t),t € {ty, ty,...,t7} (4-2)
where s(t) is the transmitted signal of the K sources, A(@) is the steering matrix of size
N X K and n(t) is the white Gaussian complex noise with zero-mean. The received
discretized signal is y(t) = [y, (t), y2(t2), .., yn(Er)]T. Let p = [p1d, p,d, ..., pyd]”
denote the positions of the sensors, where p;d € P, fori = 1, ..., N. For the given model,

the steering vectors can be expressed as:

Or

Figure 4-2: System model for DOA estimation
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T
2mp,d sin(6; 2pyd sin(6;
a(@l) — exp ] pl ( l) ) ___,exp ] pN ( l) (4_3)
A A
The received signal can be written in a matrix format as:
Y=A(6@)S+N (4-4)

where Y = [y(t;),....,y(t7)], N = [n(t;), ...., n(t;)] are matrices of size N X T and S =
[s1(2),s,(t), ..., sk (t)]T is a matrix of size K X T. The covariance matrix of the received

signal is given by:

Ryy = E[YY?] = ARgAY + 021y (4-5)
where Rgg = E[SSY] = diag([c?, 0%,...,0%]) represents the covariance matrix of the

transmitted signal and a,f is the signal power of the kt" source, k = 1,2, ..., K.

Assume that the first element in p is used as a reference, hence p;d = 0. The (i, )" entry
in the covariance matrix of the received signal Ryy with lag p;d — p;d produces virtual

sensors of a difference coarray, Cp, resulting from 0 < (i,j) < N =M; + M, — 1, as in
[33], [63]:

Cp={z|lz=u—-v,uandv € P} (4-6)
Coprime arrays can estimate large number of sources greater than the number of antenna
elements used. The achieved DOFs of the array is determined by the number of unique lags

and the number of consecutive lags generated from the difference coarray [33]. Coprime

arrays can generate M, M, unique or distinct lags [33], [52], [63], [64].
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D. DOA Estimation Algorithms

There are different DOA estimation algorithms. For example, MUSIC algorithm excels in
performance if the sources to be estimated are uncorrelated. Prior processing, like spatial
smoothing [34], can be applied to reduce the correlation. Sparse reconstruction via CS
algorithm can be also applied for DOA estimation since the problem in hand is sparse in
the spatial domain. The two algorithms realize different DOFs because sparse
reconstruction’s algorithms exploit all unique lags whereas MUSIC algorithm exploit half
of the number of consecutive lags in the difference coarray [33]. In the following, two
DOA estimation approaches namely CS and MUSIC algorithms are adjusted in the context

of MLPA.

To perform DOA estimation, we rely on the difference coarray in order to increase the
number of estimated sources as virtual antenna locations are used instead of the physical

locations.

1. Sparse reconstruction via CS
Based on the presented DOA model, vectorizing the covariance matrix of the received

signal yields a vector z that amounts to the received data coming from an extended coarray

aperture as [33], [63], [64]:

z = vec(Ryy) = Ab + 6212 = Br 4-7)
where A = [4(6,),4(0,),...,4(0x)], of size (N? x K), 4(6) = a*(0x)®a(fy) with ®
denotes the Kronecker product, b = [67,0%,...,02]7, T = vec(Iy), B=[A1] and r =
[bT,02]T. The operator (*) denotes the complex conjugate without transpose. Since the

virtual source signal model is a single snapshot of b, the rank of the noise free covariance
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function R,, is one. In this case, the sources become fully correlated. Consequently,
subspace-based DOA estimation such as MUSIC algorithm cannot be used directly when

more the one source are present in the scene [52].

The formula above is equivalent to (4-2) but with larger measurement matrix, A. This is
why coprime arrays can estimate O(M;M,) sources using N clements. The previous

formula can be solved as an optimization problem
f = min||r||, subjectto ||z — Br||, < € (4-8)
r

where € is a user specified bound [33], [63], [64]. Sparse signal recovery using Lasso can
be used to solve such problems based on the [;-norm. Let B8 be constructed using steering

vectors of all possible angles with grid search taken as: 08, ng, ce, 91%9, where Ng > K

represents the total number of grid search angles. The Lasso objective function can be
expressed as [63]:
. 1
P8 = min |5 ||z — BErE|l, + A, lIrs|l, (4-9)
r

where A, is a regularization parameter. For complex data, the previous equation can be

rewritten as [63]:

1 -
% = min |5 12— Bere]], + 2/rel, (4-10)

where B8 = [real(B8)7,imag(B8)7]” and Z = [real(z)”,imag(z)"]”. The locations of
the nonzero indices within the sparse estimated vector, £, denote the estimated DOAs and
their values give the corresponding signal power. In addition, the last entry represents the

estimated noise variance.
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2. MUSIC algorithm with spatial smoothing
To apply spatial smoothing, the measurements that are based on the consecutive lags are

extracted from z and arranged in a new vector z; where the redundant lags within the
consecutive lags are averaged [33]. Since the coprime array has a symmetric difference

coarray around the origin, the number of consecutive lags, l.4, is odd. The set of

consecutive lags in the difference coarray is [—I,, L] where [, = (lcg — 1) /2. We can

rewrite [34]:

z, = A;b + o1, 4-11)
where A, is a steering matrix of size lcg X K like that of a ULA with [, antenna elements
located at {—L,.d: [, d} and I, is a vector of length [, x 1 with “1” at the (I, + 1)*"* location
and the remaining entries are zeros. This new virtual array is then divided into [, + 1
subarrays, z,;, i = 1,2, ..., 1, + 1. The subarrays overlap and have elements at positions
(=i+1+k)d for k=0,1, .., L. Each subarray, z,;, has covariance matrix R, , . =
z,;2%. By considering all subarrays, the averaged covariance matrix which has a full-rank

is given as [34]:

1

Le+1
x i=1

Therefore, MUSIC algorithm can be implemented directly on the spatially smoothed

matrix R, and [, DOFs can be realized. After performing eigenvalue decomposition, the

eigenvectors that span the space of R3;, can be divided into signal subspace, Uy, and noise

subspace, V,,, which are orthogonal. The signal subspace is spanned by eigenvectors that

corresponds to the K largest eigenvalues, while the noise subspace is spanned by the
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eigenvectors that corresponds to the I.; — K smallest eigenvalues of R3;. We can perform

eigenvalue decomposition on R3; as [28]:

RS = [U; V,]Z Vi (4-13)
XX S n U?

where X is a diagonal matrix that contains the eigenvalues in descending order. Since the
steering vectors of the sources span the signal subspace, this makes them orthogonal to the
noise subspace as well, i.e. a’(8)V,VZa(8) = 0. Therefore, the estimated spectrum of

MUSIC algorithm can be expressed as [28] :

1
af'(0)V,VHa(0)

PMUSIC(B) = (4-14)

where 6 is an arbitrary scanning angle. The K largest peaks of Pyysic(6) correspond to

estimated DOAs of the unknown sources.

4.1.3 Latency (Waiting Time)

In a moving coprime array, offline processing is performed after collecting the data at all
locations. Let t. be the waiting time required to collect the data at each location. For a
given aperture size, D, the latency can be defined as the time required to move the antenna
along the required aperture and collect the data at N positions and is given as:
D
tp = —+ Nt (4-15)
vS

where v; 1s the speed of the moving antenna. We can rewrite the previous formula as:

M, — 1)M,d
tp = %+ (M, + M, — 1t, (4-16)

Vs
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In our experiments, we use t, = 8 to 10 sec and v, can be calculated from the data sheet
of the stepper motor and other related factors. For simplicity, we assume vy = 1 m/s, t, =
10 sec, and we use f = 10 GHz which makes the unit inter-element spacingbe d = 1/2 =
0.015 m. The latency is plotted versus the total number of antenna elements in Figure 4-3
for different coprime pair. We can conclude that the latency increases with N and D

according to (4-15).
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Figure 4-3: Latency versus the total number of antenna elements
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4.1.4 Experimental Setup and Discussion of Results

Experiments were carried out to in the Telecommunication Research Lab (TRL) at King
Fahd University of Petroleum and Minerals (KFUPM). The setup, shown in Figure 4-4,
consists of a calibrated vector network analyzer (VNA) Agilent N9918A, PC,
microcontroller and two broadband horn antennas (Type JXTXLB-10180) in addition to
some tools for distance and angle adjustments. One fixed horn antenna represents the active
source to be localized and the other moving antenna is the receiving element in the coprime
array. The high gain and directivity of the horn antennas are useful for reducing the
multipath effect. A microcontroller is used to move the antenna along the array axis such
that it covers the required positions specified by IP in (4-1). The source is located 5 m away
from the array but at different angles and both antennas were at a height of 120 cm. The
source is located in the far-field. One source is considered at a time and can be in one of
three different locations (Tx1, Tx2 and Tx3). The horizontal distance shown in Figure 4-4
fare x; = 65 cm, x, = 32.5 cm, and x3 = 195 cm. While the vertical distance between
the array axis and the transmitter’s axis is y; = 5 m. The actual angles of Tx1, Tx2 and
Tx3 are approximately 6 = [—7.4,3.7,24.4] degrees respectively where antenna one is
used as a reference, see Figure 4-4. Those angles demonstrate the dependence of the source
location and the capability of the array to estimate the DOA. At each location, the S,;
parameters are recorded using the VNA. SFCW signal over ultra-wideband (UWB) from
30 kHz to 10 GHz with a total of 1000 equally spaced frequencies. Lower frequency range
than the supported by the horn antenna are used to check the accuracy if we operate the

antenna out of band.
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Figure 4-4: Moving coprime array and scene layout

Figure 4-5 shows a photo of the measurement setup in the Lab. The closer antenna
represents the transmitter or the source while the antenna of the moving coprime array is
mounted on a sliding bar above two tripods. The number of elements in the moving coprime
array is adjusted to N = 4 with M; = 2 and M, = 3. The effect of increasing the number

of elements to N = 8 is also considered with M; = 4 and M, = 5. The unit spacing is
adjusted to d = Ame = 0.015 m. The minimum wavelength is used to find the unit inter-

element spacing because it will fulfil the condition of d < A/2 for all frequencies [59]. A
comparison with a ULA using four antenna elements is considered. A search grid of Ng =
721 incident angles is formed in the full angle range [—90°,90°] with grid interval of

6f = 0.25°.
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Figure 4-5: Measurements setup

The normalized spectrum is plotted versus both the estimated angles and the operating
frequency as shown in Figure 4-6 and Figure 4-7 for moving coprime array and ULA,
respectively. The figures in the first, second, and third rows represent DOA estimation for
Tx1, Tx2 and Tx3, respectively. Moving coprime arrays are used in Figure 4-6 (a) and (b)
with N = 4 and N = 8 elements, respectively. Whereas, a ULA is use in Figure 4-7 (a)
and (b) with N = 4 and N = 8 elements, respectively. MUSIC algorithm is used for DOA
estimation for the ULA whereas Lasso is used when the moving coprime array is utilized.
MUSIC algorithm can be also used for moving coprime arrays but a prior processing is

needed [33].

Figure 4-6 (a) illustrates the performance of a moving coprime array using N = 4 elements

with M; = 2 and M, = 3. Below 1 GHz and around 10 GHz, there are ambiguities because
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the antenna/system bandwidth does not support these frequencies. Another interesting

observation is the presence of some interfering sources at frequency around 2 GHz.

The estimation performance in case of the ULA is worse compared with moving coprime
array because of the large DOFs provided by the coprime array. It is evident from the third
rows of the plots that the width of the estimated spectra around the true angle is large. Large
degradation appears in the performance of Tx3 because of the high directionality of the

utilized horn antennas hence some position within the array cannot see Tx3.

The impact of increasing the number of antenna elements to N = 8 where M; = 4 and
M, =5 is shown in Figure 4-6 (b). In this scenario, the estimation is more robust as the
normalized spectrum width around the true angles is very narrow and sharp. Furthermore,
better estimation is realized for Tx3 because more locations were considered. In this case,
adding more positions allows the array to receive some power from Tx3 and thus makes

up for the high directionality of the antennas.

The performance using moving coprime array with N = 4 elements is better than that using
a ULA with N = 8 elements as Figure 4-6 (a) and Figure 4-7 (b) illustrate. This is due to
the fact that the moving coprime array realizes a total of nine virtual lags as explained in

Section 4.1.2-A.
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Figure 4-6: Normalized spectrum versus frequency and estimated DOA using Lasso algorithm for moving coprime
array
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Figure 4-7: Normalized spectrum versus frequency and estimated DOA using MUSIC algorithm for a ULA

4.1.5 Concluding Remarks

In this section, a moving coprime array under sparse reconstruction has been constructed

for DOA estimation. Based on the proposed configuration both complexity and mutual
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coupling effect can be reduced. In addition, experimental results based on single snapshot
were conducted to evaluate the advantage proposed array configuration over the ULA
configuration. It is shown that the beamwidth is narrower for the case of coprime sampling.
The impact of antenna directivity was observed which is an important topic for further

future research.

Due to the scanning delay and the off line data processing of the moving coprime array,

more flexible system is suggested and tested in the next section

4.2 Sparse DOA Estimation Based on Software-Defined Radio

Platform

In this section, sparse DOA estimation system is implemented on an SDR platform for a
linear array. Three different DOA estimation algorithms are implemented. The
performance of the implemented system is experimentally evaluated using two different

array configurations.

4.2.1 Introduction

Using multiple antennas, the best DOA estimate can be found by comparing the signals
from these antennas and their phase shifts. Optimizing the arrangements of these antennas
can greatly increase the accuracy of the system and decrease the cost of a radio DF system.
In this section, SDR platform is implemented for sparse DOA estimation based on sparse
array configurations. The results show that it is practically possible to estimate the location

of more sources without increasing the number of antennas using sparse arrays.
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DOA estimation requires expensive hardware as well as capable processing units that can
estimate the angle within the desired time. The use of SDR allows researchers to implement
DOA estimation systems with relative ease. This is because such devices can be controlled
using computers and the received signals can be easily analyzed. One type of these devices
is the universal software radio peripheral designed by National Instruments (NI-USRP).
This specific type of SDR can be controlled using laboratory virtual instrument engineering

workbench (LabVIEW).

The number of antenna elements in the array affects the resolution and accuracy of the
estimation [65]. Furthermore, the shape and size of the antenna also affect the range of
frequencies for proper DOA estimation [65]. The elements of the array can be placed
linearly, rectangularly, or even in a circle [66]. Another factor needs to be taken into
consideration is the inter-element spacing between elements, which can be uniform as in

the ULA, or nonuniform as in the interesting sparse systems.

Most of the researchers have used ULA based on SDR platform [1], [2] [67]. For instance,
the authors in [2] used a ULA in which they placed four NI-USRPs to estimate the angle
in order to locate illegal repeaters. It is also possible to implement an array with limited
number of antennas. Such a system was presented in [1] and [67] where two NI-USRPs
were utilized for estimating a single source where an error of around 3° was obtained. The
purpose of using fewer antennas is reducing the cost of the system. In [67], three different
environments were tested and the system was only capable of properly estimating angles
greater than 30°. In addition, the system estimated the real angle and its reflection. Such a
system can estimate the location of one target at most. This is because a ULA of N elements

can only estimate N — 1 sources.
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Instead of using a ULA, some researchers used a sparse antenna array. In sparse arrays, the
inter-element spacing is not uniform, and it can be represented as an arrangement of ULASs
but with missing elements. One of these arrangements is shown in [53], where two ULAs
were interleaved and used with the number of antennas in the two arrays being coprime
integers. The system was able to estimate the correlations, signal spectra, and DOA at a
significantly higher resolution compared with ULA. Another example is presented in [68],
where a sparse array was used to construct a virtual ULA from the data collected but with
fewer antennas. The number of estimated sources was more than the number of the array
elements, which is a very important advantage of sparse arrays over ULAs. Despite the
possibility of many array configurations [69], [70], most of the research in this area is done

using a ULA with different number of antennas as can be seen in [71]-[78].

One of the most commonly used algorithms in literature is MUSIC, which is an Eigen-
structure which assumes orthogonality between the noise and the signal subspaces [67].
The authors in [66] showed that the simulation done using MUSIC delivered improved
performance because the noise was reduced significantly. While in [67], they showed that
using MUSIC algorithm results in an efficient estimation. Because of all these advantages,
MUSIC algorithm is widely used [1], [73], [74], [79]. Capon algorithm was compared with
MUSIC algorithm in [67]. It has a good estimation capability though the estimated sources
should be uncorrelated. Both Capon and MUSIC algorithms realized narrower beamwidth

at the estimated angle compared with that using Bartlett algorithm.

Some studies in literature relied on software simulations, some relied on hardware
implementation, and other combined the two approaches. The authors in [66] used only

simulations using MATLAB® and LabVIEW. On the other hand, the authors in [73] first
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simulated the system and then implemented it on a Peripheral Component Interconnect
(PCI) eXtensions for Instrumentation (PXI) platform designed by NI. The advantage of
building the system after simulation is to make sure it can operate in imperfect situations

where the presence of noise and multipath might affect the results.

From the discussion above, it is clear that there is a need for a simple, practical, and
experimentally-tested system. This part uses SDR to implement a DOA-estimation system
and test its performance. In our research, we use several SDRs (NI-USRP-2950R), and a
PXI platform to implement the system based on coprime array structure. The advantage of
such array is that we can achieve results similar to those obtained from a ULA with more
elements, which reduces the cost of the system. We use LabVIEW to control the USRPs,
process the received signals, and perform DOA estimation via sparse reconstruction,
MUSIC, and Capon algorithms. Finally, we compare the results we obtained with others

based on ULAs.

This section is organized as follows. Section 4.2.2 presents the considered model in which
we discuss the main features of the SDR and LabVIEW software. Section 4.2.3 shows the
experimental setup, while Section 4.2.4 discusses the results. Conclusion remarks for the

second section are presented in Section 4.2.5.

4.2.2 System Model

We implement a general DOA estimation system based on SDR platform for a linear array.
The system is validated using a ULA and sparse array (coprime array). Similar model to
the one shown in Figure 4-1 (a) is considered. All receive antenna elements are active at

the same time. Coprime array presented in Section 4.1.2-A is used in this part.
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A. Software-Defined Radio

A software-defined radio (SDR) is a system for radio communication in which components
like mixers, amplifiers, and filters are implemented using software instead of hardware.
There are different USRP modules of different specifications. The USRP-2950R delivers
a unified hardware and software solution for fast prototyping high-performance wireless
communication systems. With the flexible hardware architecture and the LabVIEW
integrated design flow, researchers can prototype faster and significantly shorten time to
results. You can model a wide range of advanced research applications that comprise

MIMO, RF, compressive sampling, spectrum sensing, beamforming, and DF.

The USRP-2950R has a frequency range of 50 MHz to 2.2 GHz with a maximum
bandwidth up to 40 MHz and 1/Q sampling rate up to 200 MS/sec as shown in Table 4-1.
The table contains information about the bandwidth, frequency range along with the
number of available input/output channels. The USRP has two transmit ports and two
receive ports as Figure 4-8 depicts. Therefore, we can have a 2x2 MIMO system within the
USRP. The USRP-2950R has a GPS-disciplined oscillator (GPSDO), which permits us to
lock the internal clocks to a GPS reference signal, synchronize using GPS timing

information, and query GPS position information if needed.

Table 4-1: NI-USRP 2950R specifications

Bandwidth Frequency Range Maximum I/Q Rate Input/output Channels

40 MHz or 120 MHz 50 MHz to 2.2 GHz 200 MS/sec Two

75



CHAPTER 4 4.2 Sparse DOA Estimation Based on Software-Defined Radio Platform

Figure 4-8: NI-USRP 2950R module

B. LabVIEW Software

A LabVIEW is a system design platform developed by NI. It comprises of a user interface
part and a programming part. The user interface part works with a drag and drop palette of
visualization blocks, such as buttons, input fields, knobs, graphs, numerical displays etc.
The programming part is done graphically, similar to flowchart programming or block-
based programming, where individual functions is divided into blocks with dedicated input
and outputs. LabVIEW has a big amount of signal generation, data acquisition, and analysis
function libraries. It also has a text-based component for programming called MathScript
which uses a syntax compatible with MATLAB®. If you run a LabVIEW application, the
host PC will run the application in real-time, taking in and processing any requested

measurements from external interfaces such as the USRP module.

4.2.3 Experimental Setup

We examined two array configurations. The first system uses a ULA with four antennas
while the second system uses a sparse array. In the former, two SDRs (NI-USRP-2950R)
are used to estimate the DOA. Two antennas are connected to each of these USRPs using

their RX ports. A synchronization device, called the NI-OctoClock-G CDA-2990, is
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connected to the USRPs, see Figure 4-9. To ensure synchronization of the frequencies of
both USRPs, we connected their REF IN ports to the OctoClock. This is important to ensure
that the differences in the phases of the received signals are caused only by the difference
in their positions. The transmitted antenna is connected to another USRP using the Tx port,
and is also connected to the Octoclock. The carrier frequency of the signal is setto 1.2 GHz.
We placed the receiving antennas with inter-element spacing equal to half the wavelength
of the signal, which makes the space between two antennas 12.5 cm, to avoid spatial
aliasing. The transmitter was at least 1.5 m away from the array in all different tested
angles, to make sure that the signal is received as a plane wave, see Figure 4-10. The
number of samples is T = 16384 samples. Both the array and the transmitter were 1 m

above the ground. The experiments were conducted in the TRL at KFUPM.

mm e'sn 8

-%lﬁf o ﬁ - .u

(]
g
&
<

) _Ou '@iéi!?~_

r
1
1
1
[
r

1

1

1

1

1
1/
A
1

1

I

1

1

I

1

1

1

1

1
L

Figure 4-9: The whole system installed on a rack
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As shown in Figure 4-10, the array uses monopole antennas (Vert 400:
144 MHz,400 MHz, 1200 MHz tri band vertical antenna). The transmitter, on the other
hand, is a broadband horn antenna (Type JXTXLB-10180 and bandwidth of 1 — 18 GHz),
which helps to direct the signal toward the receiving antennas and reduce the multipath

effects.

(b) Coprime array

Figure 4-10: DOA estimation setup
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The described system, including the receivers (Rx) and the transmitter (Tx), is controlled
through a developed LabVIEW code. The first part of the code defines the transmitter. A
single-tone signal can be used as the unmodulated message with 10 kHz. The second part
is for the receiving USRPs. Before running the code, we place the transmitter at a reference
angle 0° and perform phase calibration. The corresponding received signals before and
after phase calibration are shown in Figure 4-11. This is achieved by comparing the phases
of the received signal by all antennas, and eliminating the differences in the phases. The
first antenna, the one on the left, is considered as a reference as shown in Figure 4-1 . The
received phases before and after calibration are shown in Figure 4-12. After phase
calibration, the signals are passed through a filter and then they are fed into DOA estimation
algorithms. To get smooth results, we plot the average of the last 20 estimated angles. The
second experiment is performed using coprime array which has two subarrays with M; =

2 and M, = 3 as Figure 4-1 (a) depicts.
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Figure 4-11: The received signals before and after phase calibration
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Figure 4-12: The phase of the received signals when the transmitter at zero degree
4.2.4 Results and Discussion
First, we have tested the system capability to estimate different angles at different
directions for both configurations. A single transmitter with a single tone at approximately
—34° is assumed in the first scenario and the signal is received with a ULA of four
elements. Figure 4-13 (a) and (b) show the normalized spectra of Capon and MUSIC

algorithms, respectively.
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Figure 4-13: The normalized spectrum using different algorithms

The same transmitter is located then at approximately 45° from a coprime array in the
second scenario where the normalized spectrum of Lasso algorithm is demonstrated in
Figure 4-13 (c). The beamwidth at the estimated angle using Lasso algorithm is
significantly sharper than those produced by MUSIC and Capon. However, all algorithm
realize the same error. Although, Capon and MUSIC have similar estimated angles,

MUSIC algorithm has better resolution, i.e. smaller beamwidth at the estimated angle.

Second, we have tested more angles at diverse directions from the arrays. The results
obtained from the ULA and the coprime array are presented in Figure 4-14 where we plot
the estimated angles versus the actual angles for a single transmitter using MUSIC and
Lasso algorithms. The error in the estimated angles becomes negligible as we get closer to

0°. Angles near +90° are not estimated accurately due to a strong multipath component,
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though this is not the case at —90°. Since the error is not oscillating, it can be calibrated
casily as we have done at 0°. The main cause of error is most probably related to the dense
surrounding environment and the monopole antenna elements receive the received signal
and the reflected ones from all directions. Strong multipath components were received in
some cases due to the structure of the room, steel ceil, and other reflectors affected the
system. The error is also due to the noise where the selected Tx’s position (far-field) is
SNR dependent. The error at angles less than —50° (negative angles) is a bit large where
the source is close to the reference antenna. In this case, the estimated angle is affected
because the received signals at the output of the remaining three elements become very
week compared with that of the reference antenna, especially for the coprime array. In
addition, the source at these angles is close to the wall of the lab, which also affects the

performance.

83



CHAPTER 4 4.2 Sparse DOA Estimation Based on Software-Defined Radio Platform

5 5 5 5 5 r F r
90 | —— ULA with MUSIC /‘
751 Actual Angle

—+— Coprime array with Lasso va

. e \

Estimated Angle (degree)
o

w X Y

.

90 -
[

90 -75 60 45 -30 15 0 15 30 45 60 75 90
Actual Angle (degree)

Figure 4-14: Estimated angles versus actual angles based on ULA and coprime array for a single transmitter

4.2.5 Concluding Remarks
In this section, we have implemented DOA estimation system based on SDR (NI-USRP-

2950R) platform for a linear array. The system was validated using a ULA and coprime
array. The advantage of the system based on coprime array is the flexibility and the ability
to locate more sources than possible using ULAs, and reducing mutual coupling of the
receiving antennas. We took into account the issues of synchronizing the USRPs and
calibrating the phases of the received signals. The implemented system was tested in a
laboratory with dense multipath environment and the results with both configurations were
compared. MUSIC, Capon, and Lasso algorithms have been successfully implemented for
DOA estimation. The results show that CS produces sharper beams in the normalized

spectrum than those produced by the other algorithms.
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4.3 Prototyping Coprime Arrays with Directive Radiation Pattern

This section proposes a sparse DOA estimation method for directive coprime arrays. The
complex radiation patterns are extracted using an electromagnetic simulator and then
incorporated in the DOA estimation. Three designed antenna arrays with monopole and
patch elements are experimentally evaluated with the help of our SDR system implemented
in Section 4.2. Three DOA algorithms are compared including Capon, MUSIC, and Lasso
based on CS. It is shown that when the DOA increases in the elevation plane, the

performance degrades faster when using real antenna elements with directive patterns.

4.3.1 Introduction

Recently, increasing the number of estimated sources in terms of DOA have received more
attention. Sparse arrays can efficiently handle such situation including but not limited to
nested arrays [34] and coprime arrays [52]. Coprime arrays for DOA estimation was
proposed mainly for omnidirectional antenna. The array has antennas with a unit gain and
fixed phase in all directions. In practical, antennas usually have different gain and different

phase which is a function of the DOA.

The effect of the antenna radiation pattern has been studied in [80]. The authors used
different radiation pattern within a ULA in MIMO systems to alleviate the DOA
uncertainty. Opposite radiation patterns were used namely broadside and monopole-like
pattern. The performance was evaluated the in terms of the spectral efficiency. The DOA
was assumed to be the angle between the transmitter and the receiver and no DOA

estimation algorithms was utilized.
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Antenna arrays with different polarization were proposed in [81], [82]. In [81], diverse
polarization was considered in which maximum likelihood, adapted angular response, and
MUSIC algorithms were adjusted to include the polarization effect. The steering vectors
were adjusted to include the effect of the diverse polarization [82]. UCAs with ten [81] and
eight [82] antenna elements were exploited to estimate up to two sources. The authors in
[82] used linear frequency modulation signals with 50 MHz bandwidth at f, = 10 GHz,
and SNR = 20 dB. Whereas, the array in [81] has a diameter of 6.671 with A being the

wavelength of the signal.

Mutual coupling compensation based on experimental results [83], [84] and simulated data
[85] applied for DOA estimation was also proposed. The authors in [83] used 7-elements
UCAs of radius 9 cm and the operation frequency was 1.88 GHz. While in [84], the authors
used a 4-element ULA with monopole antennas spaced by A/4 and operated at 2.4 GHz.
A horn antenna that can work on range of 1.5 — 18 GHz was employed as a transmitter
and the error in estimating the azimuth angle was 0.8° and 0.72° for the elevation angle.

DOA estimation was achieved using MUSIC [83], [84], [85] and Bartlett algorithms [83].

Antenna radiation pattern was exploited for DOA estimation by considering directive [86],
[87], [88] and sectorized [89] antennas. Both simulated [86], [88] and experimental data
[88], [87], [89] were evaluated. A 4-element UCA with a rectangular microstrip patch
antenna at 1.0 GHz was designed and simulated using electromagnetics simulator [88]. A
reconfigurable leaky-wave antennas [89] at 2.4 GHz ISM band were exploited [87], [89].
A ULA with 8-elements spaced by 0.24 was utilized in the presence of three sources [86].
The estimated angles were attained through MUSIC algorithm [86] and the three-stage

simplified least squares [89]. A RMSE of around 2° was realized at 10 dB SNR [89]. It has
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been shown that perfect DOA estimation is realized using directional antennas only if the

direction of received signal is within the radiation pattern of main beam [86].

Experimental results for sparse DOA estimation with coprime arrays were developed in
[59], [90]. The effect of radiation pattern is implicitly involved through the experiments. A
total of eight receive antenna elements were employed in [59]. In addition, ten uncorrelated
acoustic sources at 5kHz to 10 kHz and A,,;, = 3.4 cm at speed of 340 m/s were
evaluated. Moving coprime array was proposed in [90]. In that approach, a single horn
antenna was used as a transmitter. One horn antenna working as a receiver was moved to
cover and implement coprime arrays of four and eight antennas. Moreover, a ULA with
four elements was also implemented and examined. Thus, the mutual coupling effect and
complexity were reduced. However, the signal processing unit (DOA estimation) has to
wait for a certain delay which is proportional the number of antenna elements in coprime

array.

In this section, sparse DOA estimation with directive coprime arrays is proposed. Coprime
array for DOA estimation was mainly proposed for omnidirectional antenna. This part
extends the model for directive antennas. The radiation pattern for a coprime array is
extracted using high frequency structure simulator (HFSS). Then, a coprime array with
four number of antenna elements is exploited for DOA estimation under sparse
reconstruction framework. In addition, printed array configurations with monopole and
patch elements are evaluated and experimentally tested based on an SDR platform. The
results show that the performance is affected by the radiation pattern even in noise free

environment. In noisy environment, better performance is realized based on coprime array
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compared with a ULA with eight antenna elements. The estimation of the latter is

performed using Capon and MUSIC algorithms.

The rest of the section is organized as follows. The system model is presented in
Section 4.3.2 in which we incorporate the effect of the antenna radiation pattern.
Section 4.3.3 presents the evaluated coprime array. In Section 4.3.4, the gain and phase
response of the array in Section 4.3.4 are demonstrated. Section 4.3.5 presents simulation
and results based on the simulated arrays with HFSS simulator and 4.3.6 presents
experimental results based on the fabricated configurations. Finally, Section 4.3.7

concludes the section.

4.3.2 DOA Signal Model with Directive Antennas

The model of DOA estimation using isotropic antenna elements is the same as the one

presented in Section 4.1.2. In this section, antenna elements are not isotropic anymore.

The gain of a directed antenna is a function of the angle of arrival. Let the possible angle
of arrival be in the following range [Hmin: 68: Hmax] where Hl.g represents the step in degree.

l

Thus, the gain of an array with N antennas can be formulated as:

g1(0)
\ (4-17)

G(6) = ng?")
gN.(e)

where g;(0) is a row vector which denotes the complex gain of the ith antenna and can be

written as:

gl(e) = [gemin(eemin)’ e gO(HO)' ] gemax (eemax)] (4_18)
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To include the radiation pattern, the columns of the steering matrix should be modified as:

j2mp,d sin(64) j2mp,dsin(0k)
g1(61)e 4 < g1(0k)e 7
A;(0) = : :
‘ j2npnd sin(6y) j2npnd sin(6x) (4-19)
gn(61)e 4 -~ gn(fge

The received signal in (4-4) is modified according to the new steering matrix, A,(@), and

finally DOA estimation is performed based on that.

4.3.3 Array Configuration

Structured sparse arrays such as coprime arrays were proposed as an alternative
configuration for those implemented through computer search. Coprime arrays have a
closed form expression for the array structure and the maximum number of sources that
can be estimated. Those arrays are also attractive to reduce the mutual coupling effect since
the antennas have large inter-element spacing in between. Working with antennas of large

size greater than half-wavelength creates a difficulty in implementing a ULA.

The prototype coprime array [52] constructed as in Section 4.1.2-A and shown in
Figure 4-1 is considered. A total of N = 4 elements is used where M; = 2, M; = 3, and an
aperture size of (M, — 1)M;d. The unit inter-element spacing is d = A/2. The array has a

hole-free difference coarray, [—4d: 4d].

For comparison purpose, coprime array with four elements is compared with a ULA with
equal number of elements (four). In addition, a ULA with five antenna elements is

considered to compare against equal aperture size.
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4.3.4 Gain and Phase Responses

The gain of an isotropic antenna is distributed equally and uniformly in all directions
(angles). Such antenna has also constant phase response. Directed antennas radiate their

power in a certain direction and have small power or nulls in some cases in other directions.

A. Simulated Arrays

In this part, a coprime with four patch elements as shown in Figure 4-1 (a) is designed that
is operating at f, = 5.7 GHz at the Antennas and Microwave Structure Design Laboratory
(AMSDL)! at KFUPM. Then the radiation patterns were extracted using HFSS simulator.
Almost all antennas have similar gain response which is approximately constant between

—10° to 10° as shown in Figure 4-15 (a).

The gain is reduced as we go toward —90° or 90°. On the other hand, the antennas exhibit
constant phase response over a wider range around —50° to 50° as Figure 4-15 (b)
demonstrates. We can also observe similar phase response for the two antennas located at

the edges. Due to such responses, performance degradation is expected for different DOAs.

! The design was done by Mr. Ahmed Oweis and supervised by Dr. Mohammad Sharawi
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Figure 4-15: Characteristics and layout of coprime array of patch elements

B. Fabricated Arrays

The array designed in Section 4.3.4-A cannot be experimentally tested with our system
implemented in Section 4.2 because it requires a frequency larger than the capability of the
NI-USRP-2950R. That USRP can handle up to 2.2 GHz. For this reason, we reduced the
frequency to f, = 2.1 GHz. Again with the help of our colleges at AMSDL, three different
configurations were designed that were a coprime array, a 4-element ULA, and a 5-element
ULA. Monopole and Patch antenna elements were used to implement each array

configuration. Therefore, we have a total of six different configurations. The radiation
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pattern of all configurations were extracted using HFSS. All configurations were fabricated

at Pioneer Company in Jeddah, Saudi Arabia.

The two fabricated coprime arrays are illustrated in Figure 4-16 together with the
corresponding gain and phase responses. The fabricated 4-elemenet and 5-element ULAs

with monopole and patch elements are shown in Figure 4-17 and Figure 4-18, respectively.
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Figure 4-16: Gain and phase responses for a printed coprime array with monopole and patch elements
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Figure 4-17: Gain and phase responses for printed ULAs of monopole elements

High directional gains are realized using patch elements where almost all elements have
similar response. In addition, the phase is almost constant within [-50°, 50°]. On the other
hand, the antenna elements have wider and oscillating gain responses using monopole

elements for all configurations and the phase response is changing across the whole range.
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Figure 4-18: Gain and phase responses for printed ULAs of patch elements

4.3.5 Simulation and Results Based on Simulated Arrays

To evaluate the sparse DOA estimation with directive coprime arrays, the following
parameters are considered. The configuration presented in Section 4.3.4-A is considered.
Lasso algorithm is used to estimate the DOAs as in [33]. Four narrowband and uncorrelated
sources, K = 4, located in the far-field are assumed to impinge on a coprime array with

four antenna elements where M; = 3 and M, = 2. A total of T = 1000 samples are
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collected and a total of ;. = 1000 independent trials are used. The unit inter-element
spacing is adjusted as d = A1/2 and the regularized parameter is A; = 0.85 as in [33]. The
grid search is uniformly distributed from [—90: Hig: 90] with grid search angle of Hig =
0.25°. All these parameters are fixed unless stated otherwise. We start by presenting
examples to show the estimation capability of the utilized algorithms under different DOA

range of arrivals. Then Monte Carlo simulations are illustrated.

If we have a prior knowledge about the number of sources, the K largest values in the
estimated spectrum represent the estimated DOAs. A threshold can be applied to find the
largest K values and then the corresponding DOAs. However, large and very close values
at a candidate DOA can cancel some desired angles that have small values. This happens
when the algorithm has low resolution which results in a wide beamwidth at the estimated
DOAs. As a result, the accuracy of the estimation is degraded if we rely on the threshold.

For this reason, a grid refinement can be utilized to overcome this problem [25].

In the normalized estimated spectrum, a window of an odd number of grid points, &, is
used to refine the grid around each candidate DOA which correspond to (§ — 1) X Hig
degree. First, we pick the largest value in the estimated spectrum and then force (6 — 1)
grid points around it to zero and form a new estimated spectrum. So only one estimated
angle within a total of § grid points centered at the largest value is assumed. The process
is repeated until we cover all K largest values. The grid refinement makes the estimated

spectrum less noisy and sparser.
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A. Radiation Pattern in Noise Free Environment

Noise free scenario is used to show the effect of including the radiation pattern of the
antennas on the performance. Three different ranges of arrivals are considered including:
0~U[—40°,40°] = —40°,—13°,13°,40°, 6~U[-50°50°] = -50°,—-17°,17°,50°,
and 6~U[—-60°,60°] = —60°, —20°,20°,60°. The normalized spectra versus the DOA
is plotted in Figure 4-19 using Lasso algorithm [33]. The figures on the left represents the
spectra of the isotropic antennas. While those on the right represents the spectra of the
directed antennas. It is evident that perfect estimation is realized with isotropic antennas
for all cases. On the other hand, not all sources have been resolved correctly with directed
antennas due to the radiation pattern. The maximum errors in estimating a source among
the assumed four sources with isotopic and directive antennas are 0.5° and 2.5°,

respectively.

B. Grid Refinement

The size of the window has an effect on the performance which we investigate in
Figure 4-20 for 6~U[—40°,40°]. The evaluated window sizes are: 3, 5,7, 9, and 11 grid
points which correspond to 0.5°,1°,1.5%,2°, and 2.5° respectively around the peak. The
angles are estimated using Lasso algorithm [33]. The RMSE is reduced as we increase §
at low SNR. This effect disappears at high SNR. For equal window size, the RMSE using
the directed antennas is greater than that of the isotropic antennas as shown in lower and

the upper subplots respectively.
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Figure 4-19: Normalized spectra using Lasso versus DOA in noise free environment for coprime array with

isotropic and directive antennas
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Figure 4-20: RMSE versus SNR when 8~[-40°, 40°] using Lasso algorithm for (a) isotropic and (b) directed antenna
C. Signal to Noise Ratio and DOA Algorithms

The RMSE versus SNR is plotted in Figure 4-21 for different algorithms when § = 11 grid
points. The sources are assumed to be uniformly distributed as 6~U[—40°,40°] (solid
lines), 6~U[—50°,50°] (dashed lines), and 6~U[—60°, 60°] (dotted lines). The results
using the isotropic and the directed antennas are generated using Lasso algorithm for
coprime array. A ULA with eight antennas is also included for comparison purpose in

which MUSIC and Capon algorithms [28] are used in the estimation.
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Figure 4-21: RMSE versus SNR for different source distributions (a) 6~[-40°, 40°] and (b) 6~[-50°, 50°] based on
different algorithms with 6 = 11

As the separation between the four sources increases, the RMSE increases due to the effect
of the radiation pattern and vice versa. The RMSE based on the isotropic antennas for a
certain source distribution is smaller than that of the directed antennas for coprime arrays

because of the radiation pattern. Coprime array performs better than the ULA at low SNR
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The ULAs with the isotropic antennas have similar behavior using both MUSIC and Capon

algorithms.

D. Number of Samples

The RMSE versus the number of samples is plotted in Figure 4-22. The four sources in
Figure 4-22 (a) and (b) are equally spaced between [—40°,40°] and [—50°,50°],
respectively. In each subplot, we are comparing the isotropic antennas versus the directive
antennas with Lasso and MUSIC algorithm with SNR = 0 dB. It is evident that the RMSE
decreases as the number of samples increases. The RMSE using Lasso is smaller than that
with MUSIC algorithm because CS algorithm can exploit all unique lags in the difference
coarray whereas MUSIC can use half of the number of consecutive lags. Due to the large
variations in the gain and phase responses of the considered antennas, see Figure 4-15, the
effect of the radiation pattern on the performance is more significant when the sources are

between [—50°,50°] as illustrated in Figure 4-22 (b).
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Figure 4-22: RMSE versus number of samples for different source arrivals based on different algorithms with 6 =11
E. Unit Inter-Element Spacing
In this part, we examine the effect of the unit inter-element spacing, d. The one suggested
with the conventional coprime array, d = A/2, is compared with d = 24/5. The
performance in Figure 4-23 (a) and (b) is achieved using MUSIC and Lasso algorithms,
respectively. Reducing the unit inter-element spacing affects the radiation pattern of the
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elements. This leads to higher mutual coupling and consequently the RMSE is increased

as Figure 4-23

demonstrates.
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Figure 4-23: RMSE versus SNR when 8~[-50°, 50°] using (a) MUSIC and (b) Lasso algorithms with isotropic and

directive antennas for different unit inter-element spacing, K = 4 sources, and 6 = 11
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4.3.6 Simulation and Results Based on Fabricated Arrays

The configurations presented in Section 4.3.4-B are considered next. Simulation results for
the fabricated arrays are presented taken into account the complex radiation pattern and

then some experimental results are conducted to verify the effect of antenna directionality.

A. Monopole versus Patch Elements Based on Simulated Data

The main parameters are adjusted as in Section 4.3.5. The radiation pattern of all designs
are extracted using HFSS. Then we incorporate their effect on the DOA estimation. In
Figure 4-24, the RMSE versus the SNR based on the coprime array of isotropic, monopole,
and patch elements are compared using Lasso and MUSIC algorithm. Within each subplot,
the DOA is different that is the four sources are equally spaced within 6~U[—40°,40°],
0~U[—-50°,50°], and 6~U[—60°,60°]. The RMSE is improved as SNR increases and
the performance using isotropic elements is better compared with directive elements due
to the radiation pattern as Figure 4-24 (a)-(c) and (b)-(d) confirm. The RMSE with patch
elements is smaller than that with monopole elements due to the directivity, see Figure 4-24
(¢) and (d). Since the phase response of the patch elements is almost constant from —50°
to 509, the accuracy degrades as the sources are located at angles beyond this range.
Although, the sources are located within the range of the constant phase when
0~U[—40°,40°], the algorithm gives larger RMSE because of the smaller separation in
between. This is not the case of the monopole elements where the phase response is
changing across the whole range. Therefore, larger RMSE is achieved when the separation

between the sources increases due to the larger range of phase fluctuation.
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Figure 4-24: RMSE versus SNR of coprime array of monopole and patch elements for different source distributions
using Lasso and MUSIC algorithms with 6 =11

B. Monopole versus Patch Elements Based on Experimental Data

We also conduct some experiments to assess the estimation accuracy of the printed arrays
presented in Section 4.3.4-B. The system implemented in Section 4.2.3 is used but at f, =
2.1 GHz. The experiments to located a single source are repeated three times for all
configurations and the remaining parameters are as in Section 4.2.3. We also do phase
calibration every time we restart the system. All configurations are tested in the TRL at

KFUPM. Figure 4-25 depicts the setup for 5-element ULA of patch antenna elements.
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Figure 4-25: Experimental setup with 5-element ULA using patch antenna elements

In Figure 4-26, we plot the estimated angle versus the actual angle in degree for all
fabricated arrays using Lasso algorithm. The coprime array with patch elements realizes
the best performance. The 4-element ULA with monopole elements has got the largest error
since it has the smallest number of virtual lags that is [—3d: 3d]. The maximum error is
around 15° at the left edge. In addition, the monopole elements receive the signal from all
directions which is not the case with patch elements. Coprime array and 5-element ULA
on the other hand have virtual lags [—4d:4d] and both require equal aperture size.
However, coprime array uses only four elements. There are many scatters in the Lab which
are the main cause of error since they introduce strong multipath components. The error in
the negative range is due to multipath and the received signal strength at a specific angle,
which SNR is dependent. Moreover, the transmitter in this range is closer to the reference
element and far from the remaining three elements. Consequently, the received signals at
the output of the three elements are weaker which degrade the accuracy. In other words,

the far-field assumption is not fulfilled.
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Figure 4-26: Estimated DOA versus the actual angle using six different printed arrays with monopole and patch
antenna elements

4.3.7 Concluding Remarks

In this section, sparse DOA estimation with directive coprime arrays is proposed. Six
different designs were evaluated and experimentally tested. We have found that the
radiation pattern has a direct impact on the estimation accuracy. For example, when the
separation between the sources increases, the RMSE increases due to the effect of the
radiation pattern and vice versa. Due to the radiation pattern, it is difficult to estimate any
source of an angle outside the main beam of the directional antenna even in noise free
circumstances. Since we have information about the radiation patterns of the antennas, can
we do pattern compensation?. We shall answer this interesting question in our future

research.
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Based on our discussion in this chapter, the designers always have some limitations.
Therefore, an array configuration that requires a small aperture size and at the same time it
has an efficient DOA estimation capability is desired. In the next chapter, a novel array

configuration that fulfills the aforementioned characteristics is proposed.
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CHAPTER 5 GENERALIZED MULTI-LEVEL PRIME

ARRAYS FOR SPARSE SAMPLING

Sensor array configurations such as coprime and nested arrays have attracted many
researchers because they increase the DOFs. For example, in DOA estimation, the number
of sources that can be estimated is greater than the total number of sensors. This chapter
proposes a multi-level prime array (MLPA) configuration for sparse sampling that can
further increase the DOFs. The proposed array uses multiple uniform linear subarrays
where the number of sensors in the subarrays are pairwise coprime integers. The inter-
element spacing between the sensors is formulated as a scaled multiple of half-wavelength
where the subarrays share only their first element. For a fixed number of sensors, multiple
MLPA configurations can be constructed by controlling the number of sensors in the
subarrays or by adjusting the inter-element spacing. For a given number of sensors, the
proposed array has smaller aperture and achieves more unique and consecutive lags
compared with coprime arrays. The proposed configuration has limited holes in the
difference coarray. The analytical expressions of both the difference coarray and the
aperture size are derived. Simulation results confirm the advantage of the proposed

configurations compared to the two level coprime arrays.

5.1 Introduction

A sensor array consists of a set of sensors that are arranged in a certain geometry. Sensor

arrays have been considered in spatial domain for range and angle estimation. Sensor arrays
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have many civilian and military applications in radar and wireless communications such as
beam steering, target tracking, interference suppression, and DOA estimation [28], [38],

[39].

With N uniformly distributed sensors, N — 1 sources can be estimated using subspace-
based techniques such as MUSIC and ESPRIT [16]. The problem of estimating more
sources than the number of sensors has attracted many researchers. This problem can be
handled using configurations that exploit the difference coarray which is the set of pairwise
differences of the array physical sensor locations. Basically, the achieved DOFs, which is
a measure of the maximum number of sources that can be estimated, is determined by the
number of unique lags and the number of consecutive lags of the difference coarray, and
the aperture size of the array [33]. Array configurations such as the minimum redundancy
arrays [91], minimum hole arrays [92], nested arrays [34], and coprime arrays [52] provide

a solution to estimate more sources than the number of sensors.

Minimum redundancy arrays (MRAs) [91] form a class of non-uniform arrays which have
the longest difference co-arrays. However, the sensor locations and DOFs of such arrays
cannot be computed in a closed form for any arbitrary number of sensors and they are found
through computer search. The authors in [93] combined several MRA subarrays in a
structured form called nested MRA (NMRA). The new array achieves hole-free difference
coarray where the sensor locations and the achievable DOFs can be found in a closed form
provided that the parameters of those MRA subarrays are known. However, it requires

large aperture size.
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Nested array are usually constructed using two collinearly ULAs. The resultant array has
a hole-free difference coarray. Those arrays achieve O (N?) DOFs using N sensors [34].
However, the inter-element spacing is very small and consequently the sensors suffer from
mutual coupling effect [34]. Nested arrays were extended to multi-level nested arrays in
[34]. Fourth-level nested array that has O(N*) DOFs using N sensors was proposed in [94].
The authors in [95], [96], [97] modified the structure of the nested array and proposed a
super nested array. The array has the same features as the conventional nested array but

with reduced mutual coupling.

On the other hand, coprime arrays are constructed using two ULAs having M, sensors in
the first subarray and M, sensors in the second one where M; and M, are coprime integers
[52], [98], [99]. The inter-element spacing of the first and second subarrays is M,, and M;
units, respectively where the unit inter-element spacing is half-wavelength. This spacing
reduces mutual coupling between the elements. Coprime arrays have a DOFs O(M;M,)
using M; + M, — 1 sensors [33]. The achieved DOFs can be increased by doubling the
number of sensors in the subarray that has smaller number of elements [63], compressing
the inter-element spacing of one subarray [33] and/or introducing a displacement between
the two subarrays [64]. Other operations were also conducted on coprime arrays to increase
the DOFs [100], [101]. In [102], both the difference and the sum coarray were exploited to
increase the DOFs. While in [56], [57], a method to minimize and select the required
number of sensors for coprime arrays was proposed. It has been shown that the optimal
coprime pair is the one that has values of M; and M, as close to each other as possible. The
DOFs can also be enhanced by interpolating the holes that appear in the difference coarray

using a tractable convex framework [103].
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A configuration based on three subarrays was presented in [104], [105], [106]. The authors
in [104] proposed an array configuration that uses a ULA in addition to the conventional
coprime array with no overlap in between. The array was optimized by adjusting the sensor
locations of the additional ULA. The array achieved larger number of consecutive lags
compared with two-level, four-level nested arrays and coprime arrays. However, the
aperture size of the array is large [104]. Three subarrays with coprime inter-element
spacing was used in [105], [106]. The used subarrays share more than one sensor and no

structured way was presented to determine the sensor locations.

This chapter proposes a generalized multi-level prime array (MLPA) configuration that
utilizes multiple uniform linear subarrays or levels where the number of sensors in the
subarrays is pairwise coprime integers. The word “level” refers to “the number of
subarrays” and we use both interchangeably. The inter-element spacing between the
sensors in each subarray equals to the number of the sensors of another subarray scaled by
half-wavelength such that the subarrays share only their first sensor. The inter-element
spacing and sensor selection are very important and have a direct impact on the achievable
DOF:s since they determine the entries of the difference coarray. Based on the achievable
DOFs, this chapter presents a procedure to select the configuration that maximizes the
number of unique lags. For a given number of sensors, the proposed array requires a small
aperture size and achieves more unique and consecutive lags compared with coprime
arrays. This is attractive in antenna designs and array implementations where we have
constrains in the physical size. In addition, the proposed configuration has limited holes in
the difference coarray which is similar to the advantage provided by nested arrays. The

analytical expression of the difference coarray and aperture size are derived. We also
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consider some special configurations when the number of sensors in the subarrays satisfies
certain relations. Coprime arrays represent a special case of the proposed array. It is worth
to mention that recently, the authors in [107] extended the work in [33] for multi-level
coprime arrays. The DOFs was enhanced by dividing the difference coarray into several
multi-resolution coarrays that are uniformly spaced by a unit or multiple units of half-
wavelength. Their proposed array requires very large aperture size. Moreover, the authors
did not develop a structured way to divide the difference coarray. Our approach is very

different in the sense that we generalized the prime array concept itself to multi-levels.

When deciding on the array configuration, there are different criteria to consider: the
number of unique lags, number of consecutive lags, and aperture size. While providing the
maximum number of unique lags and consecutive lags, nested arrays require larger aperture
size and the minimal spacing between the sensors could result in mutual coupling. While
coprime arrays are inferior when it comes to number of unique and consecutive lags, they
minimize the mutual coupling effects. The proposed MLPA is a generalization to the
concept which allows for more control on the design of the array and the expected
performance characteristics. The proposed configurations archives large number of
consecutive lags and unique lags close to the one provided by nested arrays while requiring

a relatively small aperture size.

The rest of the chapter is organized as follows. The system model and the proposed
configuration are presented in Section 5.2 where we derive the analytical expressions for
the sensor locations and the aperture size. Section 5.3 presents the difference coarray
prospective of the proposed array. MLPA design alternatives are discussed in Section 5.4.

The optimum MLPA configurations are discussed in Section 5.5. An upper bound for the
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achievable DOFs of certain MLPA level is derived in Section 5.6. Results and analysis are

discussed in Section 5.7, and finally Section 5.8 concludes the chapter.

5.2 System Model

In this section, the generalized multi-level prime array is explained in first. Then some of

the special cases are discussed.

5.2.1 Multi-Level Prime Array (MLPA)

The objective is to find a structured way to determine the sensors’ locations such that the
DOFs is increased. The sensors should be located within an array that is made of several
ULAs and has smaller aperture size compared with coprime arrays. To achieve this, the
proposed generalized multi-level prime array (MLPA) configuration utilizes multiple
uniform linear subarrays or levels located along the same axis where the number of sensors
in the subarrays is pairwise coprime integers. Those subarrays share only their first sensor.
According to the number of subarrays, different array configurations can be constructed

for the same number of sensors and coprime arrays are the two-level special case.

Letm = [Ml, M,, .., M Np] be a vector of N, pairwise coprime integers with M; represents

the number of sensors in the i*" subarray, M; > M;,Vi>j, and N, representing the

number of subarrays or the array level. The sensors of the proposed array, shown in

Figure 5-1, are located at:

Np

P = U{kisid 0<k; <M, — 1,8, # M} (5-1)

=1
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where d = A/2 is the unit inter-element spacing and S;d denotes the inter-element spacing
of the considered subarray. The ordered inter-element spacing for the subarrays, §, is
defined as: § = {§d|S € m}. To keep the coprimality relation, the entries within the vector
§ are ordered such that §; # M;, Vi = 1,2, ...,N,. There are multiple options for the
selection of §; for a given subarray as discussed in Section 5.4. As in conventional coprime
arrays [52], the i*" subarray is not allowed to be spaced by S;d = M;d. Moreover, to make

sure that the subarrays share only the first sensor, k;§; must equal to k;S; only when k; =
ki =0, Vvije {1,2, ...,Np} and i # j. Since there are N, — 1 shared sensors, the total

number of physical sensors used in the MLPA is given as:

Np
N = ; M;— (N, - 1) (5-2)

The number of possibilities for adjusting the inter-element spacing between the sensors is
proportional to the total number of sensors and the number of subarrays (levels). In addition

to the previous condition, the last two subarrays should be spaced by M di and/or M Np_ d

respectively as discussed in details in Section 5.4.2. Consequently, the aperture size, D, of
the resultant array configurations can be found by maximizing (5-1). For moderate number
of levels, the maximum will be dominated by the maximum of either k; or §;,Vi €

{N

s N — 1}. The aperture size can be expressed as:

D = max (Sy,—1 (My,—1 — 1) d, Sy, (My, - 1)d) (5-3)
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Figure 5-1: The MLPA configuration

5.2.2 Special Cases of MLPA Configurations

In the following subsections, we present the coprime arrays [52] and the three level prime

arrays in [108] as special cases of the proposed MLPA configuration.

A. Coprime Arrays:

A coprime array represents a special case of the proposed MLPA with only two subarrays
(N, = 2), thus there is a unique choice for adjusting the inter-element spacing. In this case,
one subarray has M, sensors spaced by M,d and the other has M, sensors spaced by M;d.

The locations of the sensors of this array given by (5-1) reduce to [52]:

P = {M,k,d|0 < k; <M; —1}U{M k,d|0 <k, <M, —1} (5-4)
Figure 5-2 (ii) depicts an example of coprime array with m = [5,6]. The two subarrays in
this case share the first sensor, hence the total number of sensors is N = 10 as predicted
by (5-2). For the case of coprime, the aperture size in (5-3) reduces to M; (M, — 1)d, which

is 25d for the given example.

115



CHAPTER 5 5.2 System Model

V'  Subarray 1 A Subarray 2 < Subarray 3

A A A A A
(i.1) Nested array
vvVvyvV VVYV v v v
(1.2) 2nd-order Super nested array
vvVvyv VV v VvV V v
(1.3) 3rd-order Super nested array
XX VA\v 4 Ay A v A vA

(i) Coprime array

g AdA Qv 4 4 4 d

(ii)) 3LPA, first configuration

¥ AW dA4 4 4 A

(iv) 3LPA, second configuration

X ANXvA dAavy <

(v) PA, first configuration

g IvAad WA 4 A

(vi) PA, second configuration

r r r r r r r
0 5 10 15 20 25 30
Sensor locations (d units)

Figure 5-2: MLPAs with N = 10 sensors

B. Three-Level Prime Array (3LPA) and Pythagorean Array:

When N, = 3, the array utilizes three subarrays. The resultant array is referred to as a

three-level prime array (3LPA) [108] and (5-1) for sensor locations results in:

P = {k,M;d|,j # 1} U {k,M;d|,j # 2} U {ksM;d|,j + 3} (5-5)
In 3LPA, the sensors within the first subarray can be spaced by either M3;d or M,d. Based
on this choice, the inter-element spacing of the remaining two subarrays is adjusted. Thus,
there are two possibilities for the ordered inter-element spacing; § = [M3, My, M,]d or § =
[M,, M3, M,]d. Figure 5-2 (iii) and (iv) demonstrate an example of the 3LPA
configurations with m = [2,3,7]. Two different configurations are possible. The first

configuration has ordered inter-element spacing § = [7,2,3]d, see Figure 5-2 (iii). While,
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the second configuration has ordered inter-element spacing § = [3,7,2]d as illustrated in
Figure 5-2 (iv). In this case, the 3LPA configurations have a total of N = ); M; — 2 = 10
sensors [108]. The aperture size of the first and the second configurations is: D =

M,(M; — 1)d = 18d and D = M5(M, — 1)d = 14d, respectively.

One way to reduce the aperture size of the 3LPA without dramatically sacrificing the
number of lags is to select the three pairwise coprime numbers as a primitive Pythagorean
triple (PPT). Pythagorean triple (PT) is any set of three numbers (a, b, ¢) that satisfies the
Pythagorean theorem, c? = a? + b2. A PPT set is a PT set in which the greatest common
divisor (GCD) of a, b and c is one. When the number of sensors in the subarrays is a PPT,
a special case of the 3LPA can be constructed which we refer to as Pythagorean array (PA)
[108]. There are many techniques used to build PPT sets. One of these techniques is based
on Barning-Hall tree in which a set of PPT can be generated through specific generator

matrices [109].

Similar to the 3LPA configuration, PA uses three uniform linear subarrays. The inter-
element spacing among the subarrays is adjusted as in the 3LPA configuration. PA
configuration with the minimum number of sensors can be constructed with m = [3,4,5]
which yields N = 10 sensors. The two possible ordered inter-element spacing are § =
[5,3,4]d and § = [4,5,3]d as Figure 5-2 (v) and (vi) illustrate. The corresponding aperture
sizes according to (5-3) are D = 16d and D = 15d which is smaller than that of the 3LPA.
The achievable DOFs of the array is expected to decrease compared with the 3LPA
configurations [108]. Other PA configurations require large number of sensors. For
example, PA with N = 28 and N = 38 sensors can be constructed using m = [5,12,13]

and m = [15,8,17] respectively.
117



CHAPTER 5 5.3 The Difference Coarray Prospective in MLPA

5.3 The Difference Coarray Prospective in MLPA

In DOA applications, the number of sources that can be estimated is related to the DOFs
which is proportional to the number of unique lags and number of consecutive lags in the
difference coarray. We can estimate more than the total number of sensors if the difference
coarray is exploited. In this section, we derive the analytical expression for the difference

coarray (coarray equivalence) of the proposed configurations.

Recall that the sensors of the proposed array are located as in (5-1). The difference coarray
is defined as the set of pairwise differences of the array physical sensor locations which

produces virtual sensors [33], [101] located at:

Cpr={z|z=u—v,uandv € P} (5-6)
Applications that depend on the correlation such as DOA estimation can make use of all
possible DOFs in the difference coarray and therefore increase the number of estimated
sources. The maximum achieved DOFs is determined by the number of unique lags
(distinct entries in the set Cp) of the difference coarray that appear in the following set, Lp,

which is expressed as [33]:

Lp = {lp|lpd € Cp} (5-7)
The lags in the difference coarray consist of the self-differences, Ly , and cross-differences,

L., and can be written as:

Lp = Ly UL, (5-8)
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Figure 5-3: Difference coarray of the 3LPA configuration using m =[2,3,7] and § =[M>, M5, Mi1]d

The self-differences of the proposed array can be expressed as:
L, = {tLlL,d € P) (5-9)

Let’s decompose P into {]P’l, P, ..., ]P’Np} = (U?’zp1 IP’i), where the IP’fh subset denotes the

sensor locations in the i*" subarray. The cross-differences can be obtained by considering
two subarrays at a time, finding the element wise subtraction among the two subarrays, and
taking the union of all. Thus, the cross-differences of the proposed array can now be

expressed as:

p

]LC=UU{IC

Ld e () - 2,())} (5-10)
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V1<i, SM,1<j, <M

where IP;(i;) denotes the it" entry in the i*" subset. The mirrored positions of the self-
differences and the mirrored positions of the cross-differences are already included in the
previous formulas. Instead of compressing the spacing between the sensors in one subarray
and/or introducing a displacement between the two subarrays [33], higher level (N, > 2)
MLPA utilizes multiple subarrays in order to increase the DOFs. Thus, the number of

unique lags and the number of consecutive lags are larger than that of coprime arrays.

Let’s consider the 3LPA shown in Figure 5-2 (iv) for demonstrations. The corresponding
self-differences and cross-differences of the array are plotted in Figure 5-3. The lags
denoted by [, are calculated based on (5-10) Vj > i. Figure 5-3 illustrates that all self-
differences are included in the cross-differences, L; € L., which is equivalent to finding
the cross-difference of each sensor location with the zero location. Moreover, there are
some redundant lags because of the overlap between [. and —[. which reduces the DOFs
of the array. There are two virtual lags missing ‘holes’ in the difference coarray which

makes the number of consecutive lags less than the number of unique lags.

5.4 MLPA Design Alternatives

This section provides guidelines to construct the proposed MLPA. Specifying the number
of sensors and the inter-element spacing determines the aperture size, the number of unique
lags, and the number of consecutive lags. Sparse reconstruction algorithms can exploit all
unique lags in the difference coarray whereas subspace-based algorithms such as MUSIC
algorithm requires consecutive lags [33]. Thus, if the number of consecutive lags is smaller

than the number of unique lags, sparse reconstruction algorithms will realize larger DOFs
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compared with subspace-based algorithms. Two-stage constrained search is used to select
the optimum array configuration among all possible MLPA configurations by evaluating
their difference coarrays and selecting the one with maximum number of unique lags. For
a fixed total number of sensors, we exhaust all possibilities to decide on the number of
sensors and number of subarrays. A second constrained search is executed to optimize the

inter-element spacing and select the best configuration.

5.4.1 Selecting the Number of Sensors

For a specified N and N,,, there are usually several ways to select the number of sensors in
each subarray and the inter-element spacing. Let M be a matrix defined as: M =
[m1 ;My; ... mNS] that contains N rows of all possible pairwise coprime vectors. For a
given row, m,,_, several MLPA configurations of different features can be constructed by
adjusting the inter-element spacing. Figure 5-4 (a) depicts the number of pairwise coprime
vectors, N, as a function of the total number of sensors, N, for different number of
subarrays, Nj,. A value of zero indicates that it is impossible to construct the array because
there are no N,, pairwise coprime integers satisfy (5-2). In general, the value of Ny increases
exponentially with N but with oscillation. Figure 5-4 (a) demonstrates that the minimum
number of sensors for N,, = 2,3,4,5 and 6 is 4, 8,14, 24 and 36 sensors respectively. The
corresponding configurations are referred to as coprime array, 3LPA, 4LPA, SLPA, and

6LPA.

To build an MLPA of N,, subarrays and N sensors, we have to find all possible pairwise
coprime vectors needed to construct M. Then, we build the array using m;, Vi = 1,2, ..., N

where all ordered inter-element spacing are examined according to Section 5.2.1. After

121



CHAPTER 5 5.4 MLPA Design Alternatives

that, the difference coarrays of all MLPA configurations are generated. Finally, the

configuration that maximizes the number of unique lags is selected.

Let 4 and .4 represent the number of unique lags and the number of consecutive lags,
respectively. To maximize the number of unique lags for a fixed N, we do exhaustive

search over Ny, and M as:

max [, (5-11)

Np,mns

Subject to the following constraints:
1) N=Y" M —(N,—1),N, >2
2) min(m, ) >1landm, € M,n;=12,.., N

The first constraint implies that the subarrays share only the first sensor as in (5-2) and a
minimum of two subarrays is required to exclude the ULA case. The second constraint
requires at least two sensors within each subarray to exclude the nested array scenarios. If
a subarray has only one sensor, then it will be the one shared with other subarrays and
effectively we have N, — 1 subarrays. Furthermore, the proposed configuration becomes

a ULA in case of two subarrays.

Table 5-1 summarizes how to build the matrix M. A counter, ng, is initialized to count all

possible number of pairwise coprime vectors. Based on (5-2), a matrix A, is constructed
in Step 1 from the range 2: (N — N, + 1) where each row consists of N, pairwise coprime
integers. Step 3 checks if the sum of the i*" row in A, equals N + N, — 1, then the it" row
contains one of the valid pairwise coprime vectors, m,,_. The procedure is then repeated

for the (i + 1)*" row of A,.
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Table 5-1: Main steps to select the number of sensors in each subarray

Step Operation
Input N, and N
Initialization ng =20
1 Construct the matrix A, with rows having N, pairwise coprime

integers, i.e. the GCD of each row is one.
All entries must be selected from the range 2: (N — N, + 1)

2 i=1
3 IfZAa(i,:)=N+Np—1
ng=ns+1
M(ng,:) =A,(0,:)
End if
4 i=i+1
Ifi < #ofrows(A,), Goto Step 3
Output M, N; = # of rows(M)

5.4.2 The Ordered Inter-Element Spacing

Following Section 5.2.1, a necessary condition to make sure that the subarrays only share

the first sensor is to select the inter-element spacing for the last two subarrays as Mdi
and/or M N,,—1d respectively. Though, this condition is not sufficient since some of those
cases result in k;8; = k;8; for a specified k; # 0 and k; # 0. This condition directly fits in
case of coprime arrays because there is only one option for the number of possible inter-

element spacings, C., = 1. The last two subarrays of coprime array, 3LPA, 4LPA, and

SLPA configurations result respectively in the following possible inter-element spacing:

Msd|\ (IMyd My dl\ (IMzd
CgLPA=1x<| ) l)(' ) |>+1><<| . l)(' : l) (5-12)

IM4.dI) <I{M1,Mz}dl) (I{Ml,Mz,M4}dI> (IMng
+1X

1 1 1 1 ) -13)

Carpa =1 X(
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Msd My, My, M3}d My, My, M3, Ms}d M,d
CSLPA:3X<| : |><|{ M ) |>+3X<|{ Mo o ) |><| : |>

(5-14)

where the first and the second combinations in each term indicate the number of possible

inter-element spacings for the (Np — 1)th and the N;h subarrays respectively and |. |
denotes the cardinality. The constant numbers represent the number of possible inter-
element spacings of the remaining subarrays. Following (5-12), the inter-element spacing
for the first subarray is one, so C3 pp = 2. The first and the second subarrays in the 4LPA
are left with only one possibility for the spacing based on (5-13). However, when the
ordered inter-element spacing is § = [M,, M5, M,, M, |d, the subarrays share more than one
sensor. Therefore, the number of possible inter-element spacings reduces to Cy;pp = 4. In
case of SLPA, there are always three ways to select the inter-element spacing for the first
three subarrays except two ways when the last two subarrays are spaced by Msd and M,d
respectively. Thus, we end up with 3 X1 X3+ (3x4Xx1—1) =20 possible inter-
element spacing. However, 11 cases result in overlapped sensors which we should exclude
and the number of possible inter-element spacings reduces to Cs;pap = 9. This includes
three ordered inter-element spacing of the form § = [X, X, X, M;, M,]d, two of the form
S =[X,X X, M,,M,]d, three of the form § = [X, X, X, Mg, M,]d, and three of the form
S =[X,X,X,Ms, M,]d where X denotes one of the possible M;. As Np increases, the
number of possible inter-element spacings increases and any unwanted cases have to be

excluded.
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Table 5-2 illustrates the main steps used to construct the best MLPA for a specific N and
N,. One row, m,,_, is considered at a time from M and initializes a counter ¢ to count the
number of possible inter-element spacings. In Step 1, a matrix Ag is formed where the rows
are made of all possible permutations of m,,_ excluding any permutation with the ith

column equals M; because the i*" subarray cannot be spaced by M;. In addition, any

permutation that do not contains M, N, and/or M Np—1 in the (Np - 1)th and N,ﬁh columns
(last two columns) respectively are excluded. The rows of As represent all candidate
ordered inter-element spacing normalized by half-wavelength. In Step 4, the sensor
locations in each subarray are calculated and combined by taking the union of all subarrays.
In Step 5, if the subarrays share only their first sensor at the zero location, the inter-element
spacing is valid so |P| = N where |P| is the cardinality of PP. Otherwise, (5-2) is not
satisfied and therefore this inter-element spacing is not valid. For any valid configuration,
the features of the resultant array are calculated. Once all rows of A are considered, then
we take the next m,_and the process is repeated. The best MLPA configuration that
maximizes the number of unique lags and its features as well as the number of possible

inter-element spacings, Cy1.pa, are obtained at the output.

The number of MLPA configurations for a specific N and N,, can be calculated as: N, =
N;Cyipa Where N represents all possible vectors of pairwise coprime integers calculated
in Table 5-1 and Cypa denotes all possible inter-element spacing calculated in Table 5-2.
Among all valid configurations, the configuration that maximizes the number of unique

lags is preferred. The value of Ny depends on both N and N, whereas Cypa is only a

function of N, as Figure 5-4 (a) and (b) depict respectively.
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Table 5-2: Main steps to decide on the inter-element spacing and select the best MLPA configuration

Step Operation
Input NandM = [m;;my; ...;my |
1 ng=1,c=0
2 Construct A with rows of all possible permutations of m,,_excluding

any permutation with the i*"* column entry equals M; and any

permutation does not contains M Ny and/or M Np—1 in the last two columns
t=1
4 j=1
While j < N,
P; = Ag(t,j) X kjd where 0 < k; < M; — 1
j=j+1
End while

w

Lp = Ls UL
Lug(C: ng) = |Lp|
L.4(c,ng) = Iz (count the maximum number of consecutive lags in
Lp)
[P)total(c: N, : ) =P
End if
6 t=t+1
Ift < rows(A) Go to Step 4
7 ng=ns+1
If ng < Ny Go to Step 2
Output [c?,n?] = argmax(Lug)
c,ng
P = ]P)total (CO’ ng, :)
lug = Lug(cofng)
Cyvipa = # ofrows(Lug)
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Figure 5-4: MLPA characteristics: (a) Number of pairwise coprime integer vectors versus N, (b) Number of inter-
element spacing versus N,

The number of possible inter-element spacings, Cypa, 18 1, 2, 4, 9, and 19 for coprime
array, 3LPA (N, =3), 4LPA (N, =4), SLPA (N, =5), and 6LPA (N, =6)
respectively. Coprime arrays has C., = 1 because there are only two subarrays and only

one choice for the inter-element spacing. Henceforth the number of configurations are
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N. = N;. As an example for N = 10 or 12 sensors, the 3LPA has N, =2 X2 =4

configurations as in [108].

5.5 The Optimum MLPA Configurations

In the context of DOA estimation, large DOFs using MUSIC algorithm can be realized by
maximizing the number of consecutive lags in the difference coarray. While, larger DOFs
using CS techniques can be realized by exploiting all unique lags. There has been some
work to find the optimal coprime array configuration [56], [57] which is a special case of
the MLPA with just two subarrays. Our aim is to find the optimal configuration for the

generalized MLPA.

Given an MLPA with N elements and N,, subarrays the optimum MLPA can be achieved
by either maximizing the number of unique lags or maximizing the number of consecutive

lags, which can be formulated as:

(m,S) « argmax{l,,(m,$)} (5-15)
Mi€Z+

(m, ) « argmax{l.,(m,S)} (5-16)
MiEZ+

subject to: N = Zlivfl M; — (N, — 1)

where Z7 is the set of positive integers. It’s worth to mention that, maximizing the number
of consecutive lags is equivalent to minimizing the number of holes in the difference

coarray.
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When the solution of (5-15) and/or (5-16) is not unique, other factors like aperture size and
reduced mutual coupling can be considered [96]. The mutual coupling is related to v,
which is defined as the number of inter-element spacings, that equals to a unit spacing
[110]. The array gets sparser as the value of v, decreases. If multiple solutions result in the

same v,, then the configuration that minimizes aperture size, D, is recommended.

5.6 An Upper Bound of the Achievable DOFs of the 3LPA

This section derives an upper bound for the achievable DOFs realized by the 3LPA
configurations [108]. The derived bounds are compared against the achieved DOFs and
verified with simulation. Table 5-3 illustrates the 3LPA Config.A and 3LPA Config.B
characteristics including: antenna locations, the ordered inter-element spacing, and
aperture size. Since M, < M3, the 3LPA Config.B always has larger aperture size, i.e.

Dy > D, for any m.

Let’s take each two subarrays alone and rewrite (5-10) as:

]Lcij = {lcllc € (pm - pn)r pmd € P;,p,d € ]P)j}' (5-17)
vi,je{1,23},i<jl1<mn<N

Thus the cross-differences can be expressed as a union of three subsets based on (5-17) as:

L, =L, UL, UL, (5-18)
The mirrored positions can be calculated when i > j:
L; =L;, UL, UL, (5-19)
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Table 5-3: 3LPA Config.A and Config.B characteristics

3LPA Config. A Config.B
P kM, U k,M5 U ks M, kM3 VU k,M; U ks M,
3 [M, M3, M4]d [M3, My, M]d
D M;(M, —1)d M,(M; — 1)d

where ILEU. = ILCU, Vi > j. Therefore, (5-8) can be re-written as:

Lp = L, UL; (5-20)

The achievable DOFs is determined by the total number of unique lags, np, in Lp which
equals to the number of unique integers in L. and number of unique integers in L; minus

the overlapped or the common ones in between. Mathematically, we can write:

DOFs = |Lp| = |L¢| + [Lc | = [Le N Le |
(5-21)
=2|L,,,| + 2|L

| + 2|L,,| = L. N L]

C12 €13 €23
where |. | denotes the cardinality operation. The last term accounts for the repeated lags
between L. and L. . This term can be separated into two parts. The first part includes the

intersection between a subset and its mirrored position as:

L,,NL;, [=1
L,={L,NL;, =2 (5-22)
L., NL;, !=3

C23 €23’

While the other includes the intersection between two different subsets as:
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(Le, NLe, =—(L;,NL;,), =4
Le, NL., =—(L;,NnLg,), I=5
L= Le,, N ]LiB =—(Lz, N 11.523 , =6 5:23)
Le, NLz, = —(L,,NL,), =7
L., NnLg, =—(L,,NL;,), =8
\L,, NL;, = —(L,,NLg,), [=9

So, if we can find six of them, we just take their negatives to find all the twelve subsets.

Let . and n; represent the number of unique lags in L. and L respectively, we can rewrite

(5-21) as:

3 6
DOFs =np =ne+1; = ) m—2 ) m (5-24)
=1 =1

where 1); represents the number of unique integers in IL; subset, n; = |I;| for [ = 1,2, ...,9.

Our objective is to find a closed form expression for each term in (5-24). The following

lemma is used to find mathematical expressions for the first two terms.

L and L

Lemma 1: Let 145,73, and 7,5 be the number of unique lags in L., L. ,, Cra

respectively. In addition, the number of unique lags in the corresponding mirrored positions

L-

C12?

Le, ., Le,, are ni3, M3, and 133 respectively. Both H‘ci,- and IL;U. have the same number

of unique lags due to the coprimality between M, M,, and M5, Vi,j = 1,2,3 and i < j. The

number of unique integers in L, ,, L, ., and L, are as follows, respectively:

C13°

Nij = Mij = M;Mj, (5-25)
Vi, je{123}i<j

This lemma is used to express the first two terms in (5-24) in a closed form.
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Proof Lemma 1: We prove the previous lemma by contradiction. We only show how we

derive 14, = |]L | and the same steps can be followed for others. Both of the 3LPA

C12
configurations have the same results. The 3LPA Config.A is assumed and used in this
proof. We start from (5-17) and based on Table 5-3, we have P; = k; M, and P, = k,M;
where the indices 0 < k; < M; —1and 0 < k, < M, — 1. Using contradiction, let [}, =
k"M, — k3*M3 and ¢, = k'M, — k3 M3 be two arbitrary lags in L. ,. The variables

k™ kX, k7', and k¥ are integer indices defined as: 0 < k", ki <M; —1 and 0 <

gn,kgSMz_l.Hadlm

— Jn
Clz_l

¢.,» we would have:

k' — k3 M,

K T 526
K — kT M, (5-26)

Since k" — kI < M5, (5-26) cannot be hold due to the coprimality of M, and M. Thus,

lm

¢, and I[7 cannot be equal and consequently, there are |k;||k;| = M; M, unique integers

inL

C12°
Therefore, the number of unique integers in L, and LL; are given respectively as:

Ne = N1z + N1z + N3 = MMy + My M3 + M, M, (5.27)
Ne =M1z + N1z + N33 = MM, + MyM3 + M, M5

The third term in (5-24) can be obtained by finding the subsets L; for i = 1,2,3 and then

find their cardinalities. The 3LPA configurations will have different sets since it’s a

function of the differences between element locations within two subarrays.

The objective of the next two subsections is to find the third term in (5-24) based on the
3LPA Config.A and 3LPA Config.B. Specifically, we derive an upper bound of the DOFs

for each configuration.
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5.6.1 An Upper Bound of DOFs for the 3LPA Config. A
The 3LPA Config.A can be constructed with S, = [M,, M3, M, |d, and the elements within

the array are located at:.

]PA = {]P)l V) ]P)Z V) ]P)g}d (5'28)

where P, = k;M,, P, = k,M;, and P; = k;M;. The overlapped integers between the

subset ]Lcij and corresponding mirrored positions IL;U can be calculated from the cardinality

of their intersection.

The following lemma is used to find a mathematical expression for the third term in (5-24)

for the 3LPA Config.A.
Lemma 2: The following facts hold for the 3LPA Config.A based on (5-22) regarding L;:

L=

C12’

L. ., Le

€13’

1. There are 2(M;M, + M;M5 + M,M3) unique lags in L L.,., and
LLc,, including the overlapped lags

2. The subset L. , overlaps with IL; , only at the zero position, i.e. 7; = 1

3. The number of overlapped lags between L, and Lg,, isn, = (M; — 1M, + 1) +1

4. The number of overlapped lags between L.,, and L, isn; = (M; + 1)(M5 — 1) + 1

C12’ €13’ €23’

Proof Lemma 2: The above relations can be verified as follows. We start by finding the

set L; and then its cardinality n,. Given two arbitrary lags ([} = k"M, — k3*M5 and

C12

ln

C12

and L.

C12

= kM3 — kM, in the subsets L respectively where 0 < k7%, kI < M; —

C12

land 0 < k)Y, k} <M, — 1. Had [[* =1}

C12 C12

been held, we would have (ki* + kT')M, =
(kJ* + k3 )M;. 1t is evident that they overlap at O position when k7" = ki* = kJ' = kI =
0. To find the overlapped lags when kJ* + kJ # 0, we have to find the solution for the

following:
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ki'+ ki Ms

R, 29

Since we have pairwise coprime integers, the above formula is valid if and only if:

k;{n + k]"jl == M3,
(5-30)

As0 < ki <M; —1and 0 <k} < M, — 1, the requirement is equivalent to:

My — (M; — 1) < k™ < M,
(5-31)
1<k < M,,

Since 0 < kT < M; —1land 0 < kJ' < M, — 1, we end up with:

max(M; — (M; — 1),0) < k" < min(M3, M; — 1),
(5-32)
max(1,0) < k7' < min(M,, M, — 1),

As M3 > M, > M,, the terms M3 — (M, — 1) is always greater than zero, so we can

rewrite:

M3_(M1_1)Sk1nSM1_1,
(5-33)
1<k*<M,—1

Again M3 — (M; — 1) is always greater than M; — 1. Therefore, LL. , and LL;, , overlap only

at zero position, so 7, = 1.

The same procedures can be followed to find the set L, and its cardinality n,. Given two

arbitrary lags [¢", = kT"M, — k3'M; and [{ , = k3 M; — ki'M, in the subsets L. , and L,

C13

respectively where 0 < ki, kT < M; — 1and 0 < k%%, k¥ < M; — 1. Had [}, = I been

C13 C13

held, we would have (ki* + k[)M, = (k¥* + k})M,. 1t is clear that they overlap at 0
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m

position when ki* = k' = kI* = kI = 0. To find the overlapped lags when k3* + k% #

0, we have to find the solution for the following:

KK My

= 34
K+ kD M, (5-39)

Since we have pairwise coprime integers, the above formula is valid if and only if:

k;{n + kn = Ml’
(5-35)
ké’n + le = M2
Since 0 < kT < M; — 1 and 0 < k¥ < M; — 1, the requirement is equivalent to:
1<k <M,
(5-36)
M, — (Ms—1) < k' < M,
Since 0 < k" < M; —1and 0 < kJ* < M3 — 1, we end up with:
1< k™ < min(My, M, — 1),
(5-37)

max(M, — (M3 —1),0) < k3* < min(M,, M3 — 1),

Based on our assumption, M, — (M3 — 1) < 0 and M, < M3 — 1, so we can rewrite:

1<klM<M, -1,
(5-38)
0< k<M,

Therefore, in addition to the overlap at the zero position, there are M; — 1 and M, + 1

integers in the range of ki" and k%', respectively. Consequently, n, = (M; — 1)(M, +

1)+ 1.

To find n; = |Ls|, let’s assume [}, = kJ*M; — k3*M; and [

C23 C23

= kiM; — k3 M5 be two
arbitrary lags in the subsets L., and L, , respectively where 0 < k3", k3 < M, — 1 and

0 <k k}<Ms—1. Had I

_n
Czs_l

C23

been held, we would have (kJ*+ k})M; =
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(kS + k3 )M;. 1t is obvious that they overlap at 0 position when k7' = k}} = kI = k} =
0. To find the overlapped lags when k3* + k} # 0, we have to find the solution for the

following:

K+ kR M,

Yo TR 5-39
kP +k}  M; (5-59)

Since we have pairwise coprime integers, the above relation is valid if and only if:

kgn + k? = Mll
(5-40)
k;n + le == M3

Since 0 < k7 < M, —1and 0 < k¥ < M; — 1, the requirement is equivalent to:

Ml_(Mz_l)SkEnSMl,
(5-41)
1<k <M,

Meanwhile 0 < kJ* < M, — 1 and 0 < kJ* < M5 — 1, we end up with:

0<kI*<M,,
(5-42)
1<kl<M;—1

As a result, in addition to the overlap at the zero position, there are M; + 1 and M3 — 1

integers in the range of kJ* and k3", respectively. Thus, n3 = (M; + 1)(M5; — 1) + 1.

We have not derived yet the last term of (5-24). It is complicated to find all subsets in
(5-23) since there are three indices, k4, k,, and k3. There are six subsets in (5-23) and the
mirrored position which we ignore since our objective is to derive an upper bound of the
achieved DOFs. Therefore, the upper bound of the achievable DOFs for the 3LPA

Config.A can be expressed as:
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3
DOFs < 27, — Z m
= (5-43)

= M1M2 + M1M3 + 2M2M3 - M3 + MZ - 1
where n = 1, Ny, = (Ml - 1)(M2 + 1) + 1, and N3 = (Ml + 1)(M3 - 1) + 1.

5.6.2 An Upper Bound of DOFs for the 3LPA Config.B
The 3LPA Config.B uses an ordered inter-element spacing vector of S5 = [M3, M, M,]d.

This array has elements located at:

]P)B - {k1M3 V) kle V) k3M2}d (5-44)

We can proceed as we did in Section 5.6.1 but with P; = k;M;, P, = k,M;, and P =

k3 M2 .
Lemma 3: The following facts hold for the 3LPA Config.B based on (5-22) regarding L;:

Lc ., Le ., Le

C13’

1. There are 2(M{M, + M{M5 + M,M3) unique lags in L L.,., and

LLc,, including the overlapped lags

2. The subset L., overlaps with L;, at n; = max(2M, — M; —1,0) (M; —1) +1
position

3. The number of overlapped lags between L. , and L,
1,0) (M; — 1) + 1

4. The number of overlapped lags between L.,, and L, isn; = (M; — 1)(M; + 1) + 1

C12’ €12’ €13’ C23’

is 1, = max(2M; — M, —

The aforementioned relations can be proved by following the same steps as in

Section 5.6.1.
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Therefore, the upper bound of the achievable DOFs for the 3LPA Config.B can be

expressed as:

3
DOFs < 27, — Z il (5-45)
=1

= 2{M,M; + MyM3} + M\;M, — My + My —a(M; — 1) — b(M5 — 1) — 2

where a = max(2M, — M5 — 1,0) and b = max(2M,; — M, — 1,0).

5.7 Results and Analysis

This section presents some results to verify the correctness of the derived expressions and
effectiveness of the proposed configurations. First, we investigate the proposed
configurations using the minimum possible number of sensors. Then array configurations
with three and four subarrays are presented and compared based on the difference coarray.
The number of lags and the required aperture size as a function of the total number of
sensors are evaluated for different MLPA levels. The number of unit inter-element spacings
are then evaluated as a function of the total number of sensors. Finally, the upper bounds
of the achievable DOFs of the 3LPA configurations derived in Section 5.6 are compared

against the maximum DOFs.

5.7.1 MLPAs with Minimum Number of Sensors

This subsection investigates the effectiveness of the proposed configurations using the
minimum number of sensors (the extreme cases). The purpose of this investigation is to

explore how the proposed configurations perform at such extremes.

Table 5-4 illustrates the minimum number of sensors needed to construct the proposed
MLPA configuration with 2, 3, 4, 5, and 6 levels. Based on Figure 5-4 (a), the minimum

138



CHAPTER 5 5.7 Results and Analysis

number of sensors for N, = 2,3,4,5 and 6 is 4 (coprime array), 8 (3LPA), 14 (4LPA), 24
(5LPA), and 36 (6LPA) sensors respectively. For each case the minimum, the maximum,
the mean, and the variance of the number of unique lags, the number of consecutive lags,
and the aperture size are calculated. Moreover, each MLPA configuration is compared with

coprime array for a fixed N.

The results in the table are generated by considering all possible N, configurations. For the
considered configurations, the proposed arrays always achieve larger number of

consecutive lags, [.,, compared with coprime arrays whereas the number of unique lags,

cg-

L4, 1s less. Therefore, only very few holes appear in the difference coarray of the proposed

ug»
configurations which is not the case in coprime arrays. Additionally, the proposed
configurations always require smaller aperture size, D, compared with coprime arrays.
Coprime arrays always achieve a fixed number of consecutive lags [52] for a fixed N, this

is why the variance of [, is zero. The numbers in the table were calculated based on the

derived equations and were verified by actual simulation of the listed scenarios.

5.7.2 Array Configurations

In this subsection, we present some examples for MLPA with three and four subarrays and
compare them with coprime array in [52], nested array in [34], and super nested arrays in
[97]. For a given N, coprime arrays are constructed such that they achieve the largest 1,4
where the two entries of m should be as close as possible [56], [57]. In addition, nested
arrays and super nested arrays are constructed as in [34], [97] such that they can achieve

the maximum DOFs where difference coarray has no holes, l,,; = I.4.
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Table 5-4: MLPA configurations using the minimum possible number of sensors

Minimum Maximum Mean Variance N
Parameters Coprime array configuration
lug 9 9 9 0 4
leg 9 9 9 0
D (d units) 4 4 4 0
Parameters 3LPA configuration
lug 19 23 21 8 8
leg 17 21 19 8
D (d units) 10 12 11 2
Parameters Coprime array configuration
lug 21 27 24 18 8
leg 17 17 17 0
D (d units) 12 16 14 8
Parameters 4LPA configuration
lug 53 59 57.5 9 14
leg 39 57 52.5 81
D (d units) 28 30 29.5 1
Parameters Coprime array configuration
lug 39 69 55 228 14
leg 29 29 29 0
D (d units) 24 49 37.667 160.33
Parameters SLPA configuration
lug 121 139 133.44 41.778 24
leg 97 137 121 206
D (d units) 66 70 68.667 4
Parameters Coprime array configuration
lug 69 179 137 1590 24
leg 49 49 49 0
D (d units) 44 144 107.11 1333.6
Parameters 6LPA configuration
lug 245 263 254.16 31.251 36
leg 169 261 204.47 989.26
D (d units) 130 132 131.37 0.91228
Parameters Coprime array configuration
lug 105 377 281 7854 36
leg 73 73 73 0
D (d units) 68 324 236 7012.5

The considered, nested array, 2nd, and 3rd order super nested arrays can have equal
aperture size if N; = N /2 is an odd number [97]. Apart from the 2nd order, when N is an
even number, the 3rd order super nested array cannot be constructed with N; = N, [97].
As a result, the two numbers have to be different and we end up with an array of a quite

smaller aperture size and smaller number of lags compared with nested arrays. In some
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cases, holes might appear in the corresponding difference coarray [97]. In this chapter, the
2nd and 3rd order super nested arrays are constructed such that they realize equal aperture

size.

A. MLPA with Three Subarrays:

The 3LPA and PA configurations with m; = [2,3,7], m, = [3,4,5] respectively are
compared versus coprime arrays [52] using m = [5,6] and nested arrays [34] for N = 10
sensors. The array structures for those configurations are as shown in Figure 5-2 and the
corresponding difference coarrays are plotted in Figure 5-5. The proposed configurations
are compared in terms of the aperture size, number of unique lags, and number of

consecutive lags as Table 5-5 summarizes.

The physical aperture is a function of the inter-element spacing and can be either 18d or
14d in 3LPA whereas PA has aperture size equals 16d or 15d, see Figure 5-2. On the
other hand, coprime array has larger aperture sizes by at least 7d and consequently the
number of unique lags is larger and equals 39 lags. In addition, 21 lags out of them are
consecutive so there are 18 holes. However, the number of consecutive lags of the proposed
configurations are larger with only 2 and 4 holes in each configuration for any inter-

element spacing as Figure 5-5 illustrates.
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® Lags

x
)
&

(i.1) Nested array

(1.2) 2nd-order Super nested array

(1.3) 3rd-order Super nested array
00X 909 X 9000 S00000000000000000000. 900990090
(ii) Coprime array
0. 900000000000000000000000000000000. 0
(i) 3LPA, first configuration

0:0000000000000000000000000. &
(iv) 3LPA, second configuration

0. 000000000000000000000000000. 0
(v) PA, first configuration

0 9000000000000000000000000. 0
(vi) PA, second configuration
r r r r r r r

-30 -20 -10 0 10 20 30
The locations of the virtual lags (d units)

Figure 5-5: The difference coarray of 3LPA configurations and PA configurations

Table 5-5: Comparison between array’s characteristics for N =10

Configuration m S D lug leg
Nested array as in Ref. [34]
2" order Super nested Ni=N>=5 . 29d 59 -29:29=59
3" order Super nested as in Ref. [97]
Coprime array m=[5,6] [6,5]d 25d 39 -10:10=21
_ [7,2,3]1d 184 35 -16:16=33
SLPA mi=[2,3,7] [3,7.2]d 14d 27 -12:12=25
[5,3,4]d 16d 29 -13:13=27
PA =[3.4
m=3,4,5] [4,5,3]d 15d 27 -12:12=25

For larger number of sensors N = 12, four 3LPA configurations can be constructed using
m; = [3,4,7] and m, = [2,5,7]. Figure 5-6 (a) demonstrates those configurations
compared with coprime array using m = [6,7] where the corresponding difference
coarrays are as depicted in Figure 5-6 (b). Different aperture sizes are required, which

controlled by the ordered inter-element spacing, . The 3LPA configurations using the
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second vector realize larger aperture size. Therefore, the number of unique lags and the
number of consecutive lags in Figure 5-6 (b) is larger and reaches up to 57 and 53 lags
respectively as Table 5-6 summarizes. Additionally, we can achieve the same number of
unique lags as in coprime array even with smaller aperture size and the number of
consecutive lags is almost doubled. The 3LPA can even achieve more lags by changing the

ordered inter-element spacing to § = [7,2,5]d and even with smaller aperture size of 6d.

In Table 5-5 and Table 5-6, nested arrays and super nested arrays require the largest
aperture size among all considered configurations, and achieve hole-free difference
coarrays as demonstrated in Figure 5-5 and Figure 5-6 (b). Large number of elements in
nested arrays are spaced by a unit inter-element spacing which increases the mutual
coupling effect. This is not the case in super nested arrays [97]. In addition, higher order
super nested arrays can overcome this problem more but may have smaller aperture size
and consequently fewer lags [97]. Increasing the number of sensors to N = 12 makes N; =
N/2 to be an even number. Therefore, the 3rd order super nested array cannot be

constructed with N; = N, = 6 in order to get equal aperture size, 41d as shown in

Table 5-6.
Table 5-6: 3LPA characteristics for N = 12
Configuration m ) D lug leg
Nested array Ni1=N,=6 as in Ref. [34] 41d 83 -41:41=83

2™ order Super nested

T order Suer nesed Ni=7, No=5 as in Ref. [97] 394 79 -39:39=79
Coprime array m=[6,7] [7,6]1d 36d 53 -12:12=25
_ [7.3.4]d 2d 43 -18:1837

\Lpa m;=[3,4,7] [4.7.3]d 21d 37 -15:15=31
2.5 [5.7.2]d 28d 53 24:24=49

2=12,5, [7.2.5d 30d 57 -26:26=53
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{ V'  Subarray 1 A Subarray 2 < Subarray 3
VWA A A A A A
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g VAR 44X 4 A
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(vi) 3LPA, fourth configuration

=

[ [ r [ [ r

0 5 10 15 20 25 30 35 40
Sensor locations (d units)

(a) 3LPA configurations

® Lags
% Holes

(i.1) Nested array

(1.2) 2nd-order Super nested array

(1.3) 3rd-order Super nested array

000 XX 900X 9000, SOCT TNSST )
(i) Coprime array

0xx90. OOXX®
(iii) 3LPA, first configuration
0xx90; 290
(iv) 3LPA, second configuration

oX®. (OX®
(v) 3LPA, third configuration
OX®: {OX®
(vi) 3LPA, fourth configuration
r r r r r r r r r
-40 -30 -20 -10 0 10 20 30 40
The locations of the virtual lags (d units)
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Figure 5-6: 3LPAs with N = 12 sensors (ii)-(iii) using m1 = [3,4,7] and (iv)-(v) using mz = [2,5,7]
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B. MLPA with Four Subarrays:

A 4LPA with a total of N = 16 sensors is considered using m = [3,4,5,7] and compared
with coprime array using m = [8,9]. Four 4LPA configurations can be constructed by
selecting the ordered inter-element spacing among the subarrays. Figure 5-7 shows the
array structures and the corresponding difference coarrays respectively. Three
configurations have different ordered inter-element spacing and sensor locations. The three
configurations result in equal aperture size but may have different difference coarray. The
number of unique lags and number of consecutive lags are summarized in Table 5-7. The
difference coarray of the first configuration has only two holes. While the fourth 4LPA
configuration with smaller aperture results in less number of unique lags and consecutive
lags, see Figure 5-7 (b). Compared with coprime array in [52], the best scenario has got 28

less unique lags, 24 more consecutive lags, and needed a smaller aperture size by 34d.

The considered and studied case implies that the difference between the number of unique
lags and the number of consecutive lags is quite small compared with the 3LPA
configurations. However, the array becomes less sparse where the sensors become close to
each other. Consequently, the mutual coupling effect increases. The number of antenna
elements spaced by a unit inter-element spacing in the considered case is comparable with
that of nested array as shown in Figure 5-7 (a). This number can be further reduced using
the 2nd and 3rd order super nested arrays. Those configurations also have hole-free
difference coarrays as Figure 5-7 (b) depicts. The aperture size of higher order super nested

arrays is smaller than that of nested arrays.
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Table 5-7: 4LPA characteristics for N = 16

Configuration m ) D

ug

leg

Nested array N1=N>=8 as in Ref. [34] 71d

143

-71:71=143

2" order Super nested I .
3" order Super nested Ni=9, No=7 as in Ref. [97] 69d

139

-69:69=139

Coprime array m=[8,9] [9,8]d 64d

87

-16:16=33

43,7,51d
7,3.4,51d
4,7.3,51d
5,3,7,41d 28d

[
ALPA m=[3,4,5.7] % 30d
[

59
57
53

-28:28=57
-27:27=55
-25:25=51

T V'  Subarray 1 A Subarray 2 4 Subarray 3 >

Subarray 4

RRRRRIRKZA A A A A A

(i.1) Nested array

\NAAA A AAAAANS v v v v
(1.2) 2nd-order Super nested array

VVVVVYV V VV V A\ v vv
(1.3) 3rd-order Super nested array

e d Vav4 Ay Av A v A vA vA

(ii) Coprime array

> D> KW DD

(iii) 4LPA, first configuration

B Ap>dAWM] > D D

(iv) 4LPA, second configuration

DD

(v) 4LPA, third configuration
& AP DAD> M D
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r r r r r r r
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Figure 5-7: 4LPAs with N = 16 sensors using m = [3,4,5,7]
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C. The Optimal Number of Sensors within the Subarrays and the Optimal Ordered Inter-

element Spacing:

As in coprime arrays and nested arrays, in this part we want to find a relation between the
entries of m that leads to a better MLPA configuration and find the optimal ordered inter-
element spacing. To achieve this purpose, 3LPA and 4LPA are considered with large
number of sensors such that M has multiple rows. Table 5-8 shows a comparison between
different 3LPA and 4LPA configurations with N = 20 sensors where we only consider the
configuration with the largest 5. The 3LPA and 4LPA configurations with m; achieves
the largest l,,; and [, among the same level and need aperture size of 90d and 70d
respectively. Generally speaking, the 3LPA needs larger aperture size compared with the
4LPA. It can be concluded from this example that going to higher level at equal aperture
size leads to higher DOFs. It can be concluded that, as the entries in of m get closer, the
aperture size becomes smaller and consequently the values of l,,; and [, are decreased
and vice-versa. The best ordered inter-element spacing is the one that leads to the least
number of overlapped lags between the cross-differences and the mirrored positions and
produces the largest aperture size. Based on (5-3), the aperture size can take only one of
two values. Since the number of ordered inter-element spacing for the 3LPA is C31pa = 2,
the optimal inter-element spacing is the one that maximizes the aperture size whichis § =
[M3, M;,M,]d where Table 5-8 confirms this. An extensive simulations have been
conducted and verified that a 4LPA achieves its maximum number of unique lags when
the ordered inter-element spacing is either § =[M,, M, M;,M5]ld or § =
[M,, My, M,, M;]d. However, other ordered inter-element spacing gives also the same

DOFs as Table 5-8 depicts.
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Table 5-8: 3LPA versus 4LPA characteristics for N = 20

Configuration m S S D lug leg
m; = [2,9,11] [11,2,9]d 90d 173 165
m, = [2,7,13] [13,2,7]d 84d 163 147
m; = [3,8,11] [11,3,8]d 80d 147 133
m, = [3,5,14] [14,3,5]d 654 123 115
3LPA m; = [4,7,11] [M3, My, M,]d [11,4,7]d 70d 123 105
mg = [4,5,13] [13,4,5]d 60d 109 97
m; = [5,8,9] [9,5,8]d 64d 107 83
mg = [5,6,11] [11,5,6]d 60d 101 81
mg = [2,3,17] [17,2,3]d 48d 95 93
m, = [2,3,7,11] [M,, My, My, M3]d [311,2,7]d  70d 137 129
_ [My, My, My, M5]d [3,13,2,5]d
m, = [2,3,5,13] (M, M, M, M,]d [13,2.3.5]d 60d 119 117
[M,, My, My, M5]d [9,2,5,7]d
ALPA m; = [2,5,7,9] [M,, My, My, M3]d [5,9,2,7]d 56d 109 105
[M,, My, My, M3]d [5,2,9,7]d
m, = [3,5,7,8] [M,, My, M, M3]d [5,3,8,7]d 49d 97 93
[M,, My, My, M5]d [11,3,4,5]
m; = [3,4,5,11] [M,, My, My, M5]d [4,11,3,5]d 50d 95 85
[M,, My, M, M3]d [4,3,11,5]d

5.7.3 The Number of Lags versus the Number of Sensors

In Figure 5-8 (a) and (b) we generalize the result and plot the maximum number of unique
lags, the maximum number of consecutive lags, and the maximum aperture size
respectively as a function of N for coprime array, 3LPA, 4LPA, SLPA, and 6LPA. For a
certain N, it is sometimes impossible to build an MLPA because there are no pairwise
coprime integers that satisfies (5-2). Similar curves in Figure 5-8 (a) indicate that only few
holes appear in the difference coarray. The number of consecutive lags converges to the
number of unique lags for the proposed MLPAs which is not the case for coprime array.
The proposed array configurations always achieve more unique lags and consecutive lags
as the number of subarrays decreases form N, = 6 to N, = 3 and vice-versa. The 3LPA
and 4LPA almost realize more [, compared with coprime array for all N. The 3LPA
attains the maximum possible l,,; and 6LPA achieves the minimum possible [,,; compared

with others.
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Figure 5-8 (b) demonstrates that as the array level decreases, the aperture size increases
and vice-versa. The proposed configurations always have large number of consecutive lags
compared with coprime arrays, see Figure 5-8 (a). The worst case (6LPA) achieves large
lcg which is more than four and half times of that realized by coprime array and even with
smaller aperture. For comparison purpose, nested arrays are also included which have a
hole-free difference coarray, i.e. [, 4 = l.4 as Figure 5-8 (a) depicts. Nested arrays followed
by coprime arrays need the largest aperture size among all configurations when N is fixed
as Figure 5-8 (b) reveals. Nested array achieves 104 unique lags and 122 consecutive lags

more compared with 3LPA configuration for N = 42 sensors.

For equal aperture size, we can use Figure 5-8 (b) to determine the number of sensors and
then use Figure 5-8 (a) to find the associated number of unique lags and number of
consecutive lags. For example, when D = 132d, an MLPA with 3 levels requires 24
sensors to achieve 255 unique lags and 245 consecutive lags. On the other hand and for
the same D, coprime arrays with 23 sensors realize 165 unique lags and only 47
consecutive lags. While nested arrays require 22 sensors and generate 263 unique and 263
consecutive lags. MLPA attains comparable DOFs of that of nested arrays with similar

equal aperture size while reducing the mutual coupling effect.
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Figure 5-8: MLPA features including 3LPA, 4LPA, SLPA, and 6LPA versus the number of sensors
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5.7.4 Optimum Arrays

The optimum MLPA configurations are constructed for N, = 3,4,5, and 6. The required
inter-element spacing of the subarrays is plotted versus the total number of elements, N, in
Figure 5-9, Figure 5-10, Figure 5-11, and Figure 5-12. There are a total of 2N,, traces in
each figure. Half of the traces maximizes the number of unique lags and the other half
maximizes the number of consecutive lags. There are cases where (5-2) cannot be satisfied,
like the cases of N = 11 for 3LPA and N = 15 for 4LPA. This explains the missing values
in Figure 5-9 and Figure 5-10. For the same reason, there is a minimum number of elements
after which MLPA configuration can be constructed namely N = 8, and 14 elements for

3LPA and 4LPA, respectively.

As demonstrated in Figure 5-9, except for the case with N = 23 elements, a unique
configuration jointly realizes the maximum [, 4 and [.4. This demonstrated by overlapping
markers. The second subarray is always spaced by 2d or 3d. As a result, the first subarray
consists of two or three elements (M; = 2 or 3). The first subarray always has the
maximum inter-element spacing of Mzd. Consequently, the best ordered inter-element
spacing is Sz pa = [M3, My, M,]d. For the special case of N =23, § =[11,59]d
maximizes the unique lags, while the number of consecutive lags is maximized when § =

[17,3,5]d.

In most of the 4LPA, the joint optimization of unique and consecutive lags results in a
unique design as depicted by the overlapping markers in Figure 5-10. There are four cases
with multiple solutions highlighted in the figure with arrows. Table 5-9 summarizes the
design alternatives for 4LPA. The case of N = 14 or 18 elements has three design

alternatives which jointly optimize the number of unique and consecutive lags as Table 5-9
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illustrates. For N = 23 elements, there are three design options to maximize the number of
consecutive lags. The best option is when § = [5,3,11,7]d which also maximizes [,,,. Joint
optimization cannot be achieved for N = 31 elements. As the optimal ordered inter-
element spacing for I, is § = [5,19,3,7]d which is not the same as the two design

alternatives illustrated in Table 5-9 that maximizes l,,.

In general, the second and the third subarrays have the maximum and the minimum inter-
element spacing respectively in most of the considered scenarios. Therefore, the best

ordered inter-element spacing is 84;.pa = [My, My, My, M5]d.
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Figure 5-9: The optimal inter-element spacing versus N for 3LPA
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Figure 5-10: The optimal inter-element spacing versus N for 4LPA

Table 5-9: Design alternatives for 4LPA

w\ S, S, S5

Sy Lags
7 2 3 5
14 3 7 2 5
3 2 7 5 Lugs L
11 2 3 5 9
18 3 11 2 5
3 2 11 5
11 3 5 7
23 5 11 3 7 leg
5 3 11 7
7 13 3 11
31 7 3 13 11 bug

In SLPA, the number of design alternatives increases compared with 4LPA. Figure 5-11
specifies that § = [5,2,17,3,13]d maximizes [,,, while the number of consecutive lags is

maximized when § = [5,2,19,3,11]d when N = 36 elements. In Table 5-10, we present
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only the design alternatives that maximize either [,,4 or l4. For N = 30 and 44 elements,
one of those alternatives also jointly maximizes the number of consecutive lags as
Figure 5-11 and Table 5-10 confirm. Joint optimization cannot be achieved for N = 32

and 41 elements.

Others jointly maximize both lags are not included in the table because of the space. For
example, the case of N = 28 elements has six design alternatives which jointly maximize
both lags. In addition, two design alternatives at N = 26,35 elements and three design
alternatives when N = 24 elements are jointly improve both lags. In Figure 5-11 and
Table 5-10, most of the investigated scenarios have ordered inter-element spacing of

Ssrpa = [Ms»Mp Ms»Mz,Mﬂd or Ssppp = [M3,M1,M2,M5,M4]d.
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Figure 5-11: The optimal inter-element spacing versus N for SLPA
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Table 5-10: Design alternatives for SLPA
S
x S S, S3 Sy Ss Lags
5 2 3 11 7
24 3 5 2 11 7
3 11 2 5 7
3 5 2 13 7
26 3 13 2 5 7
13 3 4 5 7 lugs leg
5 3 13 4 7
5 3 4 13 7
28 4 5 3 13 7
4 13 3 5 7
4 3 13 5 7
5 2 13 3 11
30 5 2 3 13 11 bug
3 7 2 13 11 I
39 4 5 3 13 11 “g
3 5 2 19 7 I
3 19 2 5 7 ¢
7 3 5 13 11
33 5 7 3 13 11 bug» leg
7 3 5 17 13 I
5 7 3 17 13 “g
41 19 3 5 7 11
7 3 19 5 11 leg
5 19 3 7 11
7 2 19 3 17
44 5 3 19 4 17 bug

Larger MLPA levels require large number of elements, 36 in case of 6LPA. The 6LPA

with N =42 elements attains its maximum [,, with §=1[7,2,3,517,13]d, see

Figure 5-12. On the other hand, it has got two ordered inter-element spacings that maximize

lc4 as Table 5-11 depicts namely: §; = [7,2,3,5,19,11]d and §, = [5,2,7,3,19,11]d based

on different m.

Table 5-11: Design alternatives for 6LPA

R S, S, Ss S, Ss Se Lags
7 2 3 5 13 11
36 3 7 2 5 13 11 bug» Leg
7 3 4 5 13 11
5 3 7 4 13 11
38 4 7 3 5 13 11 bug» Leg
4 3 7 5 13 11
7 2 3 5 19 11
42 5 2 7 3 19 11 leg
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Figure 5-12: The optimal inter-element spacing versus N for 6LPA

5.7.5 Number of Unit Spacings

In Figure 5-13, the number of unit spacings, v,, for the 3LPA and 4LPA configurations is
plotted as a function of the total number of elements. Nested arrays, super nested arrays,
and coprime arrays are included for comparison. The value of v, is either 3 or 4 for the
3LPA regardless of the total number of elements. For the special case of N = 23 elements,
the configurations that maximizes the number of unique lags has v, = 4, while the other
that maximizes the number of consecutive lags has v, = 3. In 4LPA, v, is oscillating
between 5 and 9. There are some design alternatives that result in equal vy when N = 18

and 23 elements. While, others generate different v, values asin N = 14 and 31 elements.
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Figure 5-13: Number of unit spacings versus the total number of elements

In comparison, coprime arrays have two pairs of elements spaced by half wavelength, so
vp = 2. The value of v, increases with the number of elements N in nested arrays [96],
[97]. On the other hand, there is a maximum of two unit spacings for super nested arrays.
The later was mainly proposed to mitigate the mutual coupling effect in nested arrays. The
value of v, in 3LPA is not very far from that of coprime array. In addition, the 3LPA has

fewer holes and it requires smaller aperture size [111].

5.7.6 Upper Bound of the DOFs of 3LPA

The derived bounds according to Section 5.6 are plotted in Figure 5-14 versus the total
number of antenna elements, N. To evaluate the derived upper bounds, the maximum

number of unique lags (DOFs) achieved by each configuration is also included. In each
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point of our simulation, we fist find all possible m vectors and then we adjust the ordered
inter-element spacing either §4 or §. Based on m and each inter-element spacing vector,
we might end up with several configurations where we finally pick the one that maximizes
the number of unique lags. The corresponding m vector is used to find the upper bound in

(5-43) and (5-45).

When N = 10 as an example, we can construct the arrays with m; = [2,3,7] or m, =
[3,4,5]. Based on §4 = [M;, M3, M, |d with m;, and with m,, we can have up to 27 unique
lags. Thus, the one that maximizes the bound is selected. For the 3LPA Config.A and based
on my, we have n; =1, n, =5, n; = 19, and DOFs < 57. Whereas with m,, n; = 1,
n, = 11,13 = 17, and DOFs < 65. Consequently, the second vector is selected to find the

upper bound.

While 8§z = [M3,M;,M;]d with m; and with m, produce 35 and 29 unique lags,
respectively. Thus, we pick m; and apply (5-45) to find the upper bound of the 3LPA
Config.B which makes n; =1, n, =1, n3 = 7, and DOFs < 73. Similar strategies are

used and followed for any value of N.

Figure 5-14 confirms that the DOFs realizes with 8§y is larger than that of §4 because the
former has larger aperture size. The derived bounds for both configurations are valid.
Moreover, the bound of the 3LPA Config.B is a little bit tighter than that of the 3LPA

Config.A for the same reason.
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Figure 5-14: The upper bounds of the achievable DOFs for 3LPA Config.A and Config.B

5.8 Chapter Summary

In this chapter, new array configurations that can be used for sparse DOA estimation are
proposed. The proposed MLPA uses multiple uniform linear subarrays where the number
of sensors is pairwise coprime integers. The inter-element spacing between the sensors in
each subarray equals to the number of the sensors of another subarray scaled by half-
wavelength such that the subarrays share only their first sensor. It has been shown that
there are more than one way to select the number of sensors in the subarrays and the ordered
inter-element spacing, which result in different configurations of different features. The
inter-element spacing and sensor selection are very important and have a direct impact on

the achievable DOFs since they determine the entries of the difference coarray. Procedures
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used for selecting the number of sensors and determining the number of ordered inter-
element spacing as well as finding the best MLPA configuration are presented. The
difference coarray of the proposed MLPA and its aperture have been derived. The
performance of the proposed configurations was evaluated based on their difference
coarray, DOFs, aperture size, number of unique lags, and number of consecutive lags. We
have found that the proposed arrays need small aperture size and can achieve large DOFs.
This is attractive in antenna designs and array implementations. The proposed
configuration also has limited holes in the difference coarray which is similar to the
advantage provided by nested arrays. The proposed array configurations tend to have more
unique lags and more consecutive lags as the number of subarrays decreases and vice-
versa. We have found that MLPAs can achieve higher DOFs compared with coprime arrays
provided N is large enough through all N, levels. Under equal aperture size and comparable
DOFs with that of nested arrays, the proposed MLPA results in less mutual coupling effects

when considered.

We have also found that there is a unique solution which jointly maximizes the number of
unique lags and the number of consecutive lags which makes the optimum MLPA
configuration unique. The number of design alternatives increases as the level of the array
increases. In this case, multiple solutions realize the maximum number of lags and other
factors like reduced mutual coupling can be used to make the final selection. In addition,
we have derived an upper bound of the DOFs achieved by the 3LPA configurations.
Simulation results are conducted to verify the derived bounds. Those bounds are also

compared with the maximum achievable DOFs by each configuration.
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CHAPTER 6 SPARSE DOA ESTIMATION BASED ON

MULTI-LEVEL PRIME ARRAY WITH COMPRESSION

Multi-level prime array (MLPA) uses multiple uniform linear subarrays where the number
of elements in the subarrays are pairwise coprime integers. The MLPA requires smaller
aperture size which is important in mobile applications. Different MLPA configurations
can be constructed for a given number of antennas and the one that maximizes the DOFs
is exploited. These configurations have a difference coarray with large number of
consecutive lags and few holes. The number of consecutive lags can be increased by
properly compressing the inter-element spacing of one subarray under a fixed number of
antennas and without changing the aperture size. This chapter proposes a new compressed
MLPA configuration and demonstrates its superior performance in sparse DOA estimation.
The resultant array, MLPA with compressed subarray (MLPAC), can have a hole-free
difference coarray as in nested array case. Sparse reconstruction algorithm is utilized based
on the difference coarray. MLPAC can estimate larger number of sources using both
MUSIC and sparse reconstruction algorithms. Simulation results confirm the achievable

DOFs and the advantage of the proposed configuration in DOA estimation.

6.1 Introduction

Antenna arrays have many applications including improved signal reception, interference

mitigation, and direction-of-arrival (DOA) estimation [28], [38], [39]. The accuracy of
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DOA estimation depends on the signal characteristics at the array outputs, the array

geometry, and the characteristics of the propagation medium?.

Recent works have been directed towards increasing the number of estimated sources or
the DOFs to be greater than the number of elements. Array configurations that rely on the
difference coarray including minimum redundancy arrays [91], minimum hole arrays [92],
coprime arrays [52], and nested arrays [34] can achieve that. The achievable DOFs is

determined by the properties of the difference coarray [33].

Minimum redundancy arrays (MRAs) [91] and minimum hole arrays [92] are nonuniform
linear arrays generated respectively by maximizing the number of consecutive lags and
minimizing the number of holes in the resulting difference coarray for a given number of

antennas.

Coprime arrays has the ability to resolve O(M;M,) sources using M; + M, — 1 elements
[52], [53], [54], [55]. The optimal coprime pair is the one that has values of M; and M, as
close as possible [56], [57]. To enhance the DOFs, doubling the number of elements of one
subarray was suggested in [63]. A coprime array with compressed inter-element spacing
and with displaced subarrays was proposed in [33]. With compression, the inter-element
spacing for one subarray is reduced while with displacement, a proper shift is introduced
between the two subarrays. Though, the mutual coupling effect and the aperture size are
increased because of the compression and the displacement, respectively. Instead of

processing the entire coprime array, the complexity of the estimation process can be

2 There is an overlap in the review of this chapter and that of chapter 5. Readers who are familiar with that can skip to Section 6.2.
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reduced by processing each subarray alone and then combine the results to reduce the

ambiguities [112], [113], [114].

Nested arrays are constructed using collinearly dense and sparse uniform linear subarrays
having M; and M, antenna elements respectively [34]. The antennas in the dense array are
spaced by a unit inter-element spacing. The antennas in the sparse subarray are spaced by
(M, + 1) units and the unit inter-element spacing is half-wavelength. Nested arrays always
have a hole-free difference coarray. Although the array suffers from the mutual coupling
effect, nested arrays can resolve O(N?) sources using N = M; + M, antennas [34], [115],
[116], [54], [117], [118]. The DOFs can be enhanced by increasing the separation between
the dense and the sparse subarrays [119]. Nested arrays have larger DOFs compared with
coprime arrays because the difference coarray for coprime arrays has some redundant lags
[52]. The redundant entries can be exploited to reduce complexity of the estimation

problem [120].

Array configurations using three linear subarrays were considered to improve the DOFs
[104], [105], [106], [108], [121]. A Coprime array collinear with a ULA was suggested in
[104]. The number of consecutive lags can be increased by properly selecting the location
of the appended ULA, though large aperture size is required. In [105] and [106], three
overlapped ULAs with coprime inter-element spacing was proposed. Compressed nested
array was proposed in [121] by appending another similar sparse subarray to the other side
of the dense subarray. This array improves the DOFs but at the expense of increased

number of antennas and aperture size.
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Generalizing the above to multi-level configurations which have more than three subarrays
has received more attention recently. The coprime array in [33] was extended to multi-
level coprime array [107]. Nested arrays was extended to multi-level in [34]. Fourth-level
nested array, which can resolve O(N*) sources [94], was developed for narrowband [122]
and wideband [123] DOA estimation. Super nested array [96], [95] which is a recent
developed configuration of nested arrays was extended to multi-level in [97], [124]. To
gain more from such generalization, the fourth order difference coarray statistics was
exploited to increase the DOFs based on coprime arrays [104], [125] and nested arrays

[121], [94], [126].

In addition to the spatial domain, the concept of sparsity was also implemented in the
frequency domain for DOA estimation in radar applications [115], [127], [29], [101], [ 128],
[129], [130]. Array configuration with two coprime frequencies was exploited in [127],
[29]. The two subarrays used equal number of antennas, N, and the spacing was adjusted
as an integer multiple of half-wavelength at both frequencies. The scheme in [127], [29]
was extended to multiple coprime frequencies [101] where Q = 2 signals are transmitted.
The achievable DOFs was derived for two frequencies case [127], [101] and improved by
properly selecting the coprime pairs and the number of antennas. The achievable DOFs
was upper bounded and proportional to O(N2Q?) in case of multiple coprime frequencies
[101]. Multi-frequency operation was also utilized to fill the missing lags in the difference
coarray and consequently the DOFs was enhanced [131]. Though, this approach needs the
sources to have large bandwidth to cover the exploited frequencies. The DOFs was
enhanced by interpolating the holes that appear in the difference coarray [103], [132],

[133], [134] and by exploiting the difference coarray and the sum coarray [102], [115].
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Based on the above literature review, there is room to improve the performance of DOA
estimation without increasing the aperture size which is very important in hand-held and
mobile devices. In this chapter, sparse DOA estimation based on MLPAs is demonstrated.
MLPA uses multiple uniform subarrays “or levels” where the number of antenna elements
of the subarrays are pairwise coprime integers [111]. By selecting the number of antennas
of the subarrays and controlling the inter-element spacing, various MLPAs of different
features can be constructed. The configuration that realizes the maximum number of unique
lags is recommended because the DOFs is upper bounded by the number of lags [33]. For
DOA estimation, sparse reconstruction algorithms exploit all unique lags in the difference
coarray whereas subspace-based algorithms such as MUSIC algorithm requires
consecutive lags [33]. The MLPA configuration [111] is further optimized in order to
increase the DOFs by compressing the inter-element spacing of one subarray but without
changing the number of antennas nor the aperture size. A proper selected compression
factor and a specific subarray can maximize the number of lags and results in a hole-free
difference coarray. We demonstrate that large number of sources can be detected based on
MLPA configurations using sparse reconstruction and MUSIC algorithms. The newly
proposed compressed MLPA configuration can resolve larger number of sources compared

with MLPA due to the increased number of lags.

The rest of the chapter is organized as follows. The system model is presented in
Section 6.2 in which MLPA configuration is introduced followed by the model for DOA
estimation. In Section 6.3, the compressed version of MLPA configuration is proposed.

Simulation and results are presented in Section 6.4, and Section 6.5 concludes the chapter.
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6.2 System Model

In this section, the generalized MLPA [111] that includes coprime [53] and Pythagorean
[108] arrays as special cases is introduced briefly. Then the model for DOA estimation is

presented.

6.2.1 Multi-Level Prime Array (MLPA)

An array configuration that combines multiple uniform linear subarrays located along the
x-axis is referred to as “MLPA” [111]. An MLPA with N,, subarrays or a level has M;
antenna elements within the i*" subarray where the number of elements in the subarrays
are pairwise coprime integers. The elements of the i‘" subarray are located at: P; = k;S;d
where 0 < k; < M; — 1 and §;d is the inter-element spacing which equals to multiple units

of half-wavelength. The inter-eclement spacing of all N, subarrays can be ordered and

combined in a vector of unique entries, § = [Sl, Sy, s S Np] d. More details are presented

in Section 5.2.1.

When the number of subarrays is N, = 2,3, or 4, we refer to the array as coprime array,
3LPA, or 4LPA respectively. For a given number of antenna elements, N, and MLPA level,
Ny, there could be multiple m vectors that satisfy (5-2) and multiple ordered inter-element
spacing for each m. Thus, several MLPA configurations can be constructed. The
generalized MLPA covers special cases like the Pythagorean array (PA) [108] which is a
special case of the 3LPA when the entries of m are also primitive Pythagorean triple, M7 +

M2 = M%. In case of two subarrays (N, = 2), it becomes a coprime array [52].
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Table 6-1: The ordered inter-element spacing for different MLPA levels
Configurations Coprime Array 3LPA 4LPA SLPA

Levels (N,,) 2 3 4 5
m [My, M,] [My, My, Ms] [My, My, M3, M,] [My, My, M3, My, Ms]
S, [M,, M,]d [My, M3, M]d  [My, My, My, M3]d  [Ms, My, M3, M3, M,]d
S, (M3, My, My]d  [My, My, My, Ms]d  [My, My, M3, Ms, M5]d
%ﬁ S3 [M3, My, My, M3]d  [M3, My, M5, M, M,]d
£ s My, My, My, Myl [M, My, My, My, M,]d
E s [My, My, My, Ms, M3]d
=B ¢ [My, M, My, Ms, M, 1d
E s [My, Ms, My, M3, M,]d
Sg [My, My, Ms, M5, M,]d
S [My, My, My, M5, M3]d

Table 6-1 lists the ordered inter-element spacing for different MLPA levels. Higher MLPA

levels can be also constructed for large N. For a given m, there exists one coprime array,

two 3LPAs, four 4LPAs, and nine SLPAs. For example, a 3LPA with N = 12 can be

constructed using either m; = [3,4,7] or m, = [2,5,7]. Based on each vector, two

different 3LPAs can be constructed by setting the ordered inter-element spacing as §; =

[Mz, M3, Ml]d or 82 = [M3, Ml, Mz]d, see Table 6-1.

6.2.2 DOA Signal Model

Assume that there are K uncorrelated narrowband signals impinging on an array with N

elements from DOAs 0 = [0,,0,, ...,0x]", see Figure 4-2. The received signal, y(t) =

[v1 (), ¥, (1), ..., yn (£)]7, at the array output over T samples can be expressed as:

y(t) = A(6)s(t) +n(t)

(6-1)
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t €{ty,ty, ..., tr}

where s(t) = [s1(t),s,(t), ..., sk (t)]T is the transmitted signal vector of size K X 1,
A(0) = [a(6;) a(f;) - a(bk)]is the steering matrix of size N X K, and n(t) is the
white Gaussian complex noise vector of size N X 1 whose elements are assumed to be
independent and identically distributed (i.i.d.) with zero-mean and variance 2. Let p;d €
PP represents the position of the i" antenna element along the array axis with p; = 0 as a

reference. When all sources are located in the far-field, the steering vector can be expressed

as [33]:

a(9;) = [1,exp(j2rp,d sin(6;) /1), ...,exp(j2npyd sin(6;) /A)]T  (6-2)
The received signal can be written in a matrix format as:
Y=A(O)S+N (6-3)

where Y = [y(¢t,), ..., y(tr)], N = [n(t;), ..., n(ty)] are matrices of size N X T and S =
[s(ty),s(ty),...,s(t;)]T is a matrix of size K X T. When the noise is assumed to be

uncorrelated with all sources the covariance matrix of the received signal is given by:
Ryy = E[YY"] = ARgAY + 021y (6-4)

where Rgg = E[SS?] = diag([oZ,0%,...,0%]) represents the covariance matrix of the
transmitted signal where (.) is the conjugate transpose and o/ is the signal power of the

ith

i**source, i = 1,2,..., K. Given the received data Y and the array geometry, our objective

is to estimate the DOAs, 8. The matrix Ryy can be estimated as:
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RN T
Ryy =7 ) y(t)y"(t) = ZYY (6-5)

=1
6.3 Multi-Level Prime Array With Compressed Subarray (MLPAC)

The advantage of MLPA configuration can be demonstrated through its difference coarray.
Consider an MLPA configuration with N antenna elements. The pairwise differences of

the array can be expressed as:

D = {p; — pjlpid, pjd € P} (6-6)

The difference coarray, D,,, is defined as the set of distinct or unique integers in the set .
Applications that rely on the correlation depend on all distinct virtual lags given by the
difference coarray. The achievable DOFs which is a measure of the maximum number of
sources that can be estimated in DOA applications is related to the number of unique lags
in D,,. The weight function, w(lp), where [, € D, is defined as the number of occurrences

of every lag in D.

The array structure and the corresponding weight function for the 3LPA with N = 16, m =
[4,5,9], and §, = [9,4,5]d are plotted in Figure 6-1 (a). The symmetric difference coarray

has 69 unique lags, 4, and 57 consecutive lags, [.4. There are few missing lags (holes) in

ug’
addition to some redundant lags as demonstrated by the weight function. There is room to

improve the weight distribution to realize larger DOFs which motivates us to modify the

MLPA.
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The DOFs of the MLPA can be enhanced by compressing the inter-element spacing while
maintaining the number of antennas and aperture size fixed. Therefore, the subarray that
affects the number of antennas or the aperture size as in (5-3) should not be compressed. If
the i*" entry in m can be factored into two integers ¢ and M;, that is M; = cM;, then the
inter-element spacing of the subarray spaced by M;d can be compressed by a factor, c.
When M; is a prime number, the only nontrivial compression factor is ¢ = M;. Since m

contains pairwise coprime integers, M; is also coprime with all remaining entries.

For a given MLPA, our objective is to find the proper subarray to be compressed and the
value of the compression factor that increases the number of consecutive lags which is a

function of m and 8. The optimization operation can be expressed as:

M;,c) = argmaxil.,(m, S
(M;, ¢) Mgcew{cg( )} (6-7)

subject to:

My,  Sy,-1 (MNp_1 - 1) < S, (MND - 1)

M; # .
MNp_l, otherwise

Vi€e{12,..,Ny,}

Np
N=ZMi—(Np—1)
i=1

where Z* is the set of positive integers. The first constraint avoids compressing the
subarray that determines the aperture size. The second constraint ensures that the number
of elements are the same for both MLPA and its compressed version. The optimized
compressed subarray results in larger number of consecutive and unique lags. It may also
result in hole-free difference coarray.
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The resultant array is referred to as MLPA with compressed subarray (MLPAC). The
ordered inter-element spacing of the proposed MLPAC is the same as the corresponding
MLPA except that the inter-element spacing of the compressed subarray becomes S;d/c.
Therefore, the location of the antenna elements of the ith compressed subarray, IP;, is given
by:

M;—-1

Pi = {kSL/C d I’Sl * Ml} (6'8)

For notation purposes, we start with the number of levels, N,,, then “LPA” and in case of
compression, we append the letter “C” indicating compression and two additional digits
indicating the compressed subarray number and the compression factor “N,LPACic”. As
an example, consider the 3LPA configuration with m = [4,5,9] and ordered inter-element
spacing 8, = [9,4,5]d shown in Figure 6-1: (a). According to (5-3), the required aperture
size is determined by the third subarray, D = max(4(5—1)d,5(9 —1)d) = 40d.
Therefore, the third subarray cannot be compressed while maintaining equal aperture size.
There is a possibility to compress the first or the second subarrays. If the first subarray is
compressed, the ordered inter-element spacing becomes §, = [9/c, 4,5]d with ¢ = 3 or
¢ = 9. The corresponding arrays are referred to as 3LPACI13 and 3LPACI19, respectively.
The arrays structure and the corresponding weight functions are illustrated in Figure 6-1
(b) and (c). In the second alternative compression, the ordered inter-element spacing can
be 8, = [9,4/c,5]d with ¢ = 2 or ¢ = 4 which corresponds to 3LPAC22 and 3LPAC24,

respectively.
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Figure 6-1: The 3LPA and 3LPAC configurations and the corresponding weight

Although 3LPA has large number of consecutive lags, twelve missig lags appear in the
corresponding weight function, see Figure 6-1 (a). Through compression, the weight
function has been redistributed and some of the redundant lags were moved to the missing
lags as shown in Figure 6-1 (b) and (c). The 3LPAC19 and 3LPAC24 achieve hole-free
difference coarrays where all lags are unique and consecutive. The price paid for this

improvement is the reduction in the inter-element spacing of the compressed subarray.

In Table 6-2, Table 6-3, and Table 6-4 the 3LPA, 3LPAC, 4LPA, and 4LPAC
configurations are compared in terms of the aperture size, number of unique lags, and
number of consecutive lags. The conventional coprime arrays [33], [56], [57] and nested

arrays [34] that achieve the maximum DOFs are also included. A total of N = 10 antenna
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elements are used to construct 3LPA and PA configurations. All 3LPA and PA
configurations in Table 6-2 have larger number of consecutive lags and requires smaller
aperture size compared with coprime array and nested array at the expense of reduced

number of unique lags.

In Table 6-3, we increase the number of antennas to N = 12 elements. As the aperture size
of the 3LPA increases, the number of unique lags and the number of consecutive lags
increase. We can achieve larger number of unique lags with smaller aperture size compared
with that of coprime array and the number of consecutive lags is almost doubled. There are
some 3LPAC and PA with compressed subarray (PAC) configurations which achieve hole-

free difference coarrays.

With N = 14, four 4LPA configurations can be constructed by selecting the ordered inter-
element spacing as shown in Table 6-4. Although three 4LPA configurations have different
inter-element spacing and antenna locations, they result in equivalent difference coarrays
where D = 30d, l,,; = 59, and l.; = 57. Few holes appear in the difference coarray which
can be removed through compression. The number of consecutive lags can be improved
using different compression factors. As a result, 4LPAC configurations with hole free
difference coarrays are realized. Note that, the number of unique lags in all considered

cases of Table 6-2, Table 6-3, and Table 6-4 are increased as well.
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Table 6-2: Comparison between array’s characteristics for N =10
Configuration m Cg:;,l:;«i;s;d S D luyg  leg
Nested array as in Ref. [34] NA asinRef. [34] 29d 59 59
Coprime array m = [5,6] NA [6,5]d 25d 39 21
3LPA NA [7,2,3]d 35 33
3LPAC17 Config. A 1 7 [1,2,3]d 18d 37 37
3LPAC22 m; = [2,3,7] 2 2 [7,1,3]d
3LPA NA 3,7,2]d 27 25
3LPAC Config B 1 3 %1,7,2}01 Hd Hg 99
PA NA [5,3,4]d 29 27
PACI15 Config. A 1 5 [1,3,4]d 16d 33 33
PAC23 2 3 [5,1,4]d
PA m, = [3,4,5] NA [4,5,3]d 27 25
PACI2 Config.B 1 2 [2,5,3]d 15d 29 27
PAC14 1 4 [1,5,3]d 31 31
Table 6-3: 3LPA and 3LPAC characteristics for N =12
Configuration m Cgll:;)l;l;is:;d S D lyg g
Nested array as in Ref. [34] NA asin Ref. [34] 41d 83 83
Coprime array m = [6,7] NA [7,6]d 36d 53 25
3LPA NA [7,3,4]d 43 37
3LPAC17  Config. A 1 [1,3,4]d 24d 49 49
3LPAC23 2 [7,1,4]d
3LPA m, = [3,47] NA [4,7,3]d 37 31
3LPAC12  Config.B 1 [2,7,3]d 21d 41 39
3LPACI14 1 [1,7,3]d 43 43
3LPA NA [7,2,5]d 57 53
3LPAC17  Config.C 1 [1,2,5]d 30d 59 53
3LPAC22 m, = [2,5,7] 2 [7,1,5]d 61 61
3LPA Config.D NA [5,7,2]d 28d 53 49
Table 6-4: 4LPA and 4LPAC characteristics for N = 14
Configuration m Cg::ll)l:;i?;d ) D L, L,
Nested array as in Ref. [34] NA asin Ref. [34] 71d 143 143
Coprime array m = [7,8] NA [8,71d 49d 69 29
4LPA NA [7,2,3,5]d 59 57
apaciy  ConfigA 1 [1,2,3,5]d 61 61
4LPA Config.B NA [3,7,2,5]d 30d 59 57
4LPA NA [3,2,7,5]d 59 57
apacyy ConfieC m=[2357] 2 [3,1,7,5]d 61 61
4LPA NA [5,2,7,3]d 53 39
4LPACI15 Config.D 1 [1,2,7,3]d 28d 55 45
4LPAC22 2 [5,1,7,3]d 55 47
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6.4 Simulation and Results

This section verifies the effectiveness of the proposed configuration in DOA estimation.
Narrowband and uncorrelated sources located in the far-field are assumed. The sources are
uniformly distributed between —60° and 60° and their number is greater than the number
of antenna elements, K > N. Isotropic antenna elements are assumed in all simulations.
For comparison with Ref. [33], the grid search is uniform with a step size of 0.25° within
[—90°,90°], number of samples is T = 1000, and the unit inter-element spacing is set to
d = A/2. All these parameters are fixed unless stated otherwise. Both MUSIC [33], [34]
and CS algorithms are used for DOA estimation. CS based on Yalll [135] is used due to
its fast computation compared with Lasso which implemented on CVX toolbox. The
maximum number of correctly estimated sources using the generalized MLPA and
MLPAC is evaluated with numerical examples. The performance of the proposed

configurations is further evaluated based on Monte Carol simulations.

6.4.1 Impact of Compression on the DOFs

In this subsection, the results are examined in terms of the maximum number of sources
that can be estimated using MLPA and MLPAC configurations. A total of T = 1000 noise

free samples are used.

Figure 6-2 shows the spatial spectra estimated using MUSIC (upper subplots) and CS
(lower subplots) algorithms for the PA (column 1), PACIS5 (column 2), and PAC23
(column 3) Config.A with N = 10 elements when K = 16 sources. In all figures, the
estimated spatial spectra are plotted versus the DOA in degrees where the actual DOAs are

indicated by dotted vertical lines.
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Figure 6-2: Spatial spectra estimated using MUSIC (upper subplots) and CS (lower subplots) algorithms for PA
(column 2), PAC15 (column 2), and PAC23 (column 3) Config.A using N =10 and with K =16

Based on Table 6-2, configurations with DOFs larger than 16 can estimate all sources. For
MUSIC algorithm, only half the number of consecutive lags can be exploited. In case of
CS algorithm, higher number of sources can be estimated because all unique lags are
utilized. Therefore, for the same configuration, the performance using CS algorithm is
better than that with MUSIC algorithm (row 1 and row 2). On the other hand, the
performance is improved after compression (coulmn 2 and 3) compared with that of PA
(coulmn 1). Consequently, PAC configurations can resolve all the 16 sources correctly,

while PA cannot due to its samll DOFs as shown in Figure 6-2.

6.4.2 Statistical Error Analysis

The effectiveness of the proposed configurations is further verified through Monte Carol
simulations. A grid refinement is applied to find the RMSE as defined in Section 4.3.5.
According to our assumption that the sources are uniformly distributed between —60° and

60°, any two adjacent sources are separated by:
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120
Ap = —— 6-9
0= %1 (6-9)

This makes any two adjacent sources spaced by lAg / Higj grid points where |. | denotes the
floor operation. In our simulation, we use ;. = 5000 independent trials. The RMSE is

evaluated as a function of the SNR, number of samples, T, and grid refinement, 6.

A. RMSE versus SNR

Array configurations are compared with respect to the SNR using MUSIC and CS
algorithms with a grid refinement of § = 3 grid points. The results are presented in
Figure 6-3 where we divide the figure into four subplots (a)-(d). The performance of the
selected MLPA configuration and its compressed versions are plotted in the same subplot.
The performance of each array configuration and its compressed versions is plotted in the
same subplot using MUSIC and CS algorithms, respectively. In addition, coprime array
and nested array are included and plotted for comparison purposes in subplot (b) and (d),
respectively. In the following figures, similar colors and similar markers within a subplot
or a figure denote the same array configuration where the dotted and solid lines represent

the performance using MUSIC and CS algorithms, respectively.

The RMSE of the configurations presented in Table 6-2 is plotted versus the SNR in
Figure 6-3 using MUSIC and CS algorithms for K = 12 sources. In this case, all sources
are located on the grid search. Based on Figure 6-3, it is evident that the performance
improves as the SNR increases for all cases using both algorithms. Smaller RMSE was
realized using CS algorithm (solid lines) as Figure 6-3 shows compared with that using
MUSIC algorithm (dotted lines) based all configurations Since MUSIC algorithm utilizes

only half the number of consecutive lags cand CS algorithm uses all unique lags. The
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performance of the 3LPA in Figure 6-3 (a) is better than that of PA configurations
presented in Figure 6-3 (c¢) and (d) since it has got more unique lags. Nested array achieves
the best performance because it achieves the largest number of lags. Coprime array has the
worst RMSE using MUSIC algorithm due to the low number of consecutive lags, see
Figure 6-3 (b). Though, nested and coprime arrays require larger aperture size as

demonstrated in Table 6-2 and Table 6-3.

With compression, the RMSE for all corresponding configurations have been improved as
demonstrated in Figure 6-3. The difference between the RMSE of a 3LPA and that of its
compressed versions is a function of the difference in the number of lags. For example, this
difference is only two lags for the 3LPA Config.A and its compressed versions, see
Table 6-2. Although the performance has enhanced, the RMSE of all configurations are
comparable as shown in Figure 6-3 (a). While, it is four lags for the PA Config.A and its
compressed versions which leads to evident improvement in the performance. After
applying compression for the PA Config.A, the RMSE was reduce by around 3.63° and
3.92° using CS at SNR = -3 dB based on the PAC15 and PAC23, respectively. On the
other hand, the RMSE was decreased by around 9° at SNR = 6 dB using MUSIC algorithm
based on both the PAC15 and PAC23. Both 3LPAC17 and 3LPAC22 Config.A realize
similar RMSE which is the minimum RMSE among all proposed configurations as shown
in Figure 6-3 (a) since they have got the largest number lags. To realize a RMSE of 1° with
CS algorithm, MUSIC algorithm requires more than 6 dB SNR based on the compressed
versions of the 3LPA Config.A. due to the lack of lags. The large errors floor in Figure 6-3
(b) and (d) are due to the lack of lags in the corresponding configurations. At 0 dB SNR,

the RMSE based on the 3LPAC17 and 3LPAC22 Config.A is larger than that based on
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nested array by around 0.05° using CS algorithm. On the other hand, it is around 2° and
2.6° larger based on the 3LPAC22 and 3LPACI17 Config.A respectively using MUSIC

algorithm. Though, the proposed configurations require smaller aperture size by 11d.

Similarly, the RMSE of the 3LPA configurations presented in Table 6-3 is plotted versus
the SNR in Figure 6-4 for K = 15 sources using MUSIC and CS algorithms. In this case,
we have off-grid sources. The compressed versions in Figure 6-4 (a) have equal number of
lags and attain similar RMSE at around SNR = 2 dB. Although, comprssing the inter-
element spacing led to higher number of consective lags, the improvement in the RMSE is
not significant of the 3LPA Config.C and its comprssed versions due to the small difference
in the number of consecutive lags. This is not the case with the remaing configurations.
Generally speacking, the results match what we have summarized in Table 6-3. Using CS
algorithm, the improvement in the RMSE of the compressed versions of the 3LPA
Config.A is very clear as Figure 6-4 (a) demonstrates. Those configurations have got six
unique lags more compared with the corresponding 3LPA configuration. The performances
of the compressed versions in Figure 6-4 (c) are affected differently. A reduction in the
RMSE can be related to the enhancement in the number of unique lags, while degradation
in the RMSE is as a result of wrong estimation for some lags and the corresponding
measurement. The large error floor in Figure 6-4 (b) is due to the lack of lags in the

corresponding configurations.
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Figure 6-3: RMSE versus SNR for (a)-(b) 3LPA and 3LPAC (c)-(d) PA and PAC with K = 12 sources, and N = 10.
MUSIC (dotted lines) and CS (solid lines)
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Figure 6-4: RMSE as a function of the SNR for 3LPA and 3LPAC with K = 15 sources and N = 12 elements. MUSIC
(dotted lines) and CS (solid lines)

B. RMSE versus Number of Samples

The RMSE versus number of samples of the 3LPA Config.A and its compressed versions
presented in Table 6-2 is plotted in Figure 6-5 using MUSIC and CS algorithms. The same
number of sources is assumed, K = 12, with § = 3 grid points, and SNR = 0 dB. It is
apparent the performance is enhanced with increase of the number of samples. As the
number of samples increases, better estimation for the covariance matrix of the received
signal is achieved and consequently, the RMSE is reduced. The performance using CS

algorithm is better than that with MUSIC algorithm since all unique lags can be exploited.
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Figure 6-5: RMSE versus number of samples for the 3LPA Config.A and its compressed versions with K = 12 sources,
SNR =0 dB, and N = 10 elements. MUSIC (dotted lines) and CS (solid lines)

C. RMSE versus Number of Grid Points

Finally, the RMSE using MUSIC and CS algorithms is plotted in Figure 6-6 as a function
of §. A total of K = 12 sources is assumed with T = 1000 samples, and SNR = 0 dB. The
3LPA Config.A and its compressed versions arrays with N = 10 elements are constructed
as in Table 6-2. Six values of the window size are assumed that is § = 0,3,5,7,9, and 11
grid points where the first value indicates no grid refinement. Those are equivalnet to
0,0.5,1,1.5,2, and 2.5 degree, respectively. Large RMSE is achieved without using grid
refinement. Refine the grid search improves the RMSE for all configurations. Increasing &
above certain value does not enhance the perfoamnce (array dependent) which means that

the estimation is perfect and consequently error floor appears.
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Figure 6-6: RMSE versus different window size for the 3LPA Config.A and its compressed versions with K =12
sources, SNR = 0 dB, and N = 10 elements. MUSIC (dotted lines) and CS (solid lines)

6.5 Chapter Summary

In this chapter, MLPA is proposed for sparse DOA estimation. The MLPA configuration
uses multiple uniform linear subarrays where the number of elements is pairwise coprime
integers. The array has closed form expressions for the antenna locations and the
corresponding aperture size. There are more than one way to select the number of elements
in the subarrays and to select the spacing in between which result in different
configurations of different features. Although few missing lags or holes appear in the
difference coarray, large DOFs can be achieved. Motivated by this, this chapter proposed
a compressed version of the MLPA by compressing the inter-element spacing of one

subarray under fixed number of antenna elements and fixed aperture size. The resultant
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MLPAC can realize a hole-free difference coarray by properly selecting the compression
factor and the intended subarray. MLPA and MLPAC configurations require smaller
aperture size compared with nested and coprime arrays. MLPAC can estimate larger
number of sources compared with MLPA using both MUSIC and sparse reconstruction
algorithms. The effectiveness of the proposed configuration has been investigated through
simulation for DOA estimation. We have shown that the RMSE of the PA Config.A can
be reduced by around 3.63° and 3.92° using CS at SNR = -3 dB based on the PAC15 and
PAC23, respectively. Additionally, the RMSE was decreased by around 9° at SNR = 6 dB

using MUSIC algorithm based on the PAC15 and PAC23.
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CHAPTER 7 DOA ESTIMATION WITH TWO

DIMENSIONAL MLPA ARRAY CONFIGURATION

A multi-level prime array (MLPA) uses multiple uniform linear subarrays along one axis
where the number of elements within the subarrays are pairwise coprime integers. This
chapter proposes two-dimensional direction of arrival (2D-DOA) estimation using parallel
MLPAs. In this approach, we use two MLPA configurations located on the x-y plane with
half-wavelength spacing in between. The array has a closed form expression for the
antenna locations. The corresponding difference coarray has large number of consecutive
lags and few holes. A hole-free difference coarray can be realized if compressed MLPAs
(MLPAC) are used. Simulation results verify the effectiveness of the proposed array with

examples for 2D-DOA estimation.

7.1 Introduction

Recently, the problem of the two-dimensional direction-of-arrival (2D-DOA) estimation
has attracted many researchers. Increasing the degrees-of-freedom (DOFs) was one of the
main objectives. Researchers have developed different configurations and diverse
algorithms to solve the estimation problem. This includes two parallel subarrays [136]—
[139], L-shape [140], [141], cross-shape coprime arrays [142], coprime planar arrays
[143]-[146] L-shape nested arrays [147], [148], planar nested arrays [149]-[152], two

parallel subarrays based nested structure [153], hourglass configurations and others [154].
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Sparse reconstruction [136]-[139], [141], [143], [153], [155], [156], and 2D MUSIC

algorithm [140], [144], [146], [149], [152] were among the most widely used algorithms.

Two parallel uniform linear subarrays were used to implement a 2D-coprime array [136]—
[139]. The two subarrays are spaced by half-wavelength and the number of elements in the
second subarray was doubled [138], [139]. The elevation angle was estimated using Lasso
[139], SPGLI [136], and complex multitask Bayesian compressive sensing [138] and then
the result was combined through a least square process to estimate the azimuth angle [138],
[139]. At SNR = 0 dB, the RMSEs of the elevation and azimuth angles of two sources were

around 0.07° and 19, respectively [139].

Coprime arrays implemented in multiple axes were proposed [140]-[142]. Two coprime
arrays were combined to perform an L-shape array [140], [141]. A 2D-DOA with MUSIC
algorithm was exploited with phase ambiguity elimination in [140]. On the other hand, 1D
search grid based on a sparse reconstruction was performed in [141]. A cross shape array
that includes two symmetric coprime arrays in each axis was proposed in [142]. Based on
the fourth-order-cumulant, the improved subspace algorithm was used where there is no
issue of angle ambiguity but the complexity increases. The RMSEs at 0 dB SNR of two
sources [140], [142] and three sources [141] were around 0.08?,1.5°, and 0.3° using

nineteen [140], seventeen [141], and thirty [142] antenna elements, respectively.

Planar coprime arrays was proposed in [143]-[146] for 2D-DOA estimation. In [143],
aperture extension was realized by relying on the sum-difference coarray. Moreover, sparse
representation was used based on multiple 1D search grids. A 2D MUSIC algorithm was

utilized in [144] where the complexity was reduced through 1D partial search grid. The
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authors in [145] generalized the work in [146] which is based on 2D MUSIC algorithm and
phase ambiguity elimination. At SNR = 0 dB, the RMSEs of two sources were around 0.3°
and 0.03° using twenty four [143] and seventy three [146] antenna elements, respectively.
Moreover, the RMSEs for the elevation and the azimuth angles of two sources were around
0.059 and 0.09° respectively at 0 dB SNR and using forty antenna elements [144]. On the
other hand, a RMSE of around 0.03° and 0.04° was obtained for estimating the elevation
and the azimuth angles respectively of two sources at SNR = 0 dB and using eighty eight

antenna elements [145].

A 2D-DOA estimation was performed using L-shape nested arrays [147], [ 148] and planar
nested arrays [149]-[152]. The angles were estimated and paired automatically by signal
subspace joint diagonalization algorithm [147], a 2D MUSIC algorithm with spatial
smoothing [152], and with augmented matrix approach [149]. The authors in [148]
proposed an algorithm based on the minimum-norm and the least square techniques which
does not require either the number of sources or pair matching, no need to find the
corresponding azimuth angle for each elevation angle. The authors in [152] constructed a
covariance-like matrix of much larger size based on the virtual difference coarray. So, large
number of sources can be estimated greater than the number of antenna elements. Two
parallel subarrays, coprime array with compressed inter-element spacing (CACIS)-like
nested array, were used with the weighted [;-norm algorithm [153]. At SNR = 0 dB, the
RMSE of both angles of three source was around 3° using seven antenna elements [147].
The RMSE:s of the azimuth and elevation angles of two sources were around 0.1° and 2°
respectively using nine antenna elements [153]. Whereas in [148], both angles realize

almost equal RMSEs that is 0.05° using eleven antenna elements. The authors in [152]
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were able to estimate thirty six sources using twenty two elements with RMSEs of around

0.7° and 0.6° for the azimuth and elevation angles, respectively.

A hole-free difference coarray was realized with nested planar arrays and few holes appear
in coprime planar arrays [149]. Large number of elements with nested planar array are
spaced by half-wavelength which leads to significant mutual coupling. The authors in [157]
proposed several generalized planar arrays. Those arrays have closed form expressions for
antenna locations and have hole-free difference coarrays. Moreover, the mutual coupling
effect was reduced in [154] and further mitigated in [157]. A 2D unitary ESPRIT algorithm

was exploited for 2D-DOA estimation [157].

An MLPA uses multiple uniform linear subarrays [111]. The number of elements in the
subarrays are pairwise coprime integers and the subarrays share the first element. The array
was proposed as an extension of coprime array in 1D-plane. In this chapter, we combine
two parallel MLPAs to perform a 2D-MLPA as a generalization of multiple subarrays
along two parallel axes. This configuration can estimate the elevation and the azimuth
angles in the x-y plane. The difference coarray of the proposed 2D-MLPA is investigated.
Few holes appear in the difference coarray, which motivates us to further enhance the 2D-
MLPA. A 2D-MLPA with compressed subarray (2D-MLPAC) is also proposed by
compressing the inter-element spacing of a specific subarray without changing the number
of elements and the aperture size. The 2D-MLPAC realizes a hole-free difference coarray.
Sparse 2D-DOA estimation is used to find the angles, which paired automatically.
Simulation results are presented to further verify the proposed 2D configuration. We have

shown that the array can estimate two angles of sources larger than the number of its
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antenna elements. The advantage of the proposed configuration is that it includes coprime

arrays as special case.

The rest of the chapter is organized as follows. The system model is presented in
Section 7.2 where the proposed array is presented. In Section 7.3, we present a sparse signal
recovery for 2D-DOA estimation. Simulation and results are discussed in Section 7.4, and

finally Section 7.5 concludes the chapter.

7.2 System Model

In this section, the proposed array is introduced. Then the considered model for 2D-DOA

estimation is presented.

7.2.1 Proposed Array
In this subsection, the MLPA proposed in 0 is extended into 2D in the x-y plane. Consider

two vectors m®) = [Mfl), Mz(l), s MIEIZ()D of length ng” where Mi(l) < Mj(l), Vj>iand!l =
p

1,2. The entries within each vector are selected to be pairwise coprime integers. As a
special case, the value of [ = 0 represents the 1D MLPA presented in 0. Let us assume that
we have two parallel MLPAs separated by a distance d as Figure 7-1 depicts. The elements
of the first MLPA are located along the y-axis. While the elements of the second MLPA
are located along x = d where d = 1/2 with A being the signal wavelength. The first and
the second MLPAs have Nzgl) uniform linear subarrays “levels”, for [ = 1,2, respectively.

The subscript “.(V” is used to distinguish between the two parallel MLPAs where [ = 1

refers to the MLPA along the y-axis and [ = 2 is for that along x = d.
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The it" subarray has Mi(l) elements spaced by multiple units of half-wavelength, Si(l)d,
where Si(l) em® fori=12,.., Nrgl). Consequently, the elements of the i*" subarray are
located at: Pgl) = kicS‘i(l)d where 0 < k; < Mi(l) — 1. The inter-element spacing of all Nél)
subarrays can be ordered and combined in a vector of unique entries, S® =

s® sV, ""Szf/l()l) d. The vector §® comprises all entries in m® scaled by d but with
p
different order such that Si(l) * Mi(l) for [ = 1,2, respectively.

The two MLPAs can have similar structure or might be different. Taking all subarrays into

consideration, the first and second MLPA have elements located respectively at [111]:

o
Np

PO = | J{us®dio <iei < MO - 1,50 = m?} (7-1)

i=1

The first and the second MLPA has a total of [111]:

A ’S‘. S0)
‘.Z"
O
< MLPA-1
3 Ny
> y
3 Nx
< MLPA-2

Figure 7-1: Parallel MLPA configurations for 2D-DOA estimation
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(O]
Np

NO =3 MO - (N - 1) (7-2)

=1

antenna elements for [ = 1 and [ = 2, respectively. The required aperture sizes by the two

MLPAs are given as [111]:

_ 0 o O (1 ®
D(l) = max <5Nz(jl)—1 (MNp—l - 1) 'SNP (MNZ()Z) - 1)) (7'3)

Combining these two MLPAs yields a two dimensional MLPA (2D-MLPA) where the

locations of its elements are given by taking the union of (7-1) forl = 1 and [ = 2 as:

P,p = PO y P@ (7-4)
There are no shared antenna element between the two MLPAs. Consequently, the number

of antenna elements of the 2D-MLPA is:
N=N® +N® =N, + N, (7-5)
where N = N, and N® = N,.

7.2.2 2D-DOA Estimation

Consider K uncorrelated narrowband sources located in the far-field impinging on the 2D-
MLPA from directions (ay, Bx), k = 1,2, ..., K where a;, is the angle between the line that
connects the k" source to the origin and the y-axis, while By is the angle between the line

that connects the k" source to the origin and the x-axis as shown in Figure 7-1.

T T
Letp, = [pil)d,pgl)d, e pl(\,ly)d] andp, = [pfz)d,péz)d, e pl(vi)d] be two vectors that

represent the antenna locations of the two MLPAs where pi(l)d € PO forl = 1,2.
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The steering vectors of the MLPA located on the y-axis (I = 1) and x = d axis (Il = 2)

can be expressed as [137], [138], [158]:

3D (g)elmeosB) | =1
) _ ja%(aye )
a . =
(C(L) {ﬁ(l) (ai)' [ =2 (7-6)
T
a®(a;) = exp(jmps” cos(ay)), ..., exp (jmp iy cos(ay) )| (7-7)

The received signal vector at time instant t along each axis can be written as [137], [138],

[158]:
yO () = AW As(t) + n® (1) (7-8)
y @) = A@s(t) + n@ (1) (7-9)

where nV(¢t) and n®(t) are zero mean white complex Gaussian noise vectors that are
independent from each other and independent from the signal. The two modified steering
matrices are given as: A® = [aO(a;) aW(a,) - aW(ay)] for [ =1,2 and the

matrix Ag is given as [137], [138], [158]:

Ay = diag([e/m 05D, ., eimcos(Bi)]) (7-10)

which is a diagonal matrix of size K X K. In matrix format, the received signal over T

samples can be rewritten as:

YW = AWALS + NW (7-11)

Y® = A@s + N® (7-12)
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where YU = [y (&), ..., yP ()], N® = [n@(¢y), ..., n (¢7)] are matrices of size
N, X T, Y® = [y@(t), ..., yP ()], N® = [n@(¢ty),....,n@(¢t;)] are matrices of
size N, X T, and S = [s(t;),s(ty),...,s(tr)]" is a matrix of size K X T. When the noise
along the two axes are independent and uncorrelated with the signals, the cross correlation

matrix of the received signals is given by [137], [138], [158]:

Hl ~ e\ H
Ryayw = E[YOYDT| = AORGAIA®D (7-13)

where Rgg = E[SS?] = diag([c?, 02,...,02]) represents the covariance matrix of the

transmitted signal and al-z is the signal power of the it" source, i = 1,2,...,K. Given the

received data YV, Y| and the array geometry, our objective is to come up with @ and 8
estimate. In practice, the statistics are not available and we rely on the sample average of
the covariance matrix as:

T

1 H 1 H
Ryoyw =7 » y@ ey (¢) = ZyOy® (7-14)

=1
7.3 2D-DOA Estimation via Sparse Representation

For a 2D array specified by P,p, its difference coarray, D,p, is defined as the differences

between all sensor locations:

Dyp = {Pm — Pulm,n =1,2,..,N} (7-15)

where p,, and p,, are vectors and p,,d, p,d € P,p. It is always desired to maximize the
number of lags and minimize the holes in the difference coarray. The proposed

configuration is compared with others in Section 7.4 based on their difference coarrays.
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Column-wise vectorization of the cross correlation matrix produces a vector z of length

Ny N,, X 1 as follows:
Z= VeC(RY(z)Y(1)) = Ab (7-16)

where A = [d(a;),4(ay),...,a(ayk)] is an extended steering matrix of size NyN, X K,
a(ay) =A@ ()@ (¢,) with @ denotes the Kronecker product, b =
[oZe=imeos(B) gZe=imcos(Ba) gle=im COS(ﬁK)]T, and the operator (*) denotes the
complex conjugate. The signal model in (7-16) is a single snapshot of b [34], so the rank
of R,; is one. Thus, the sources become fully correlated and consequently, subspace-based
DOA estimation algorithm cannot be used directly [52]. To solve this, spatial smoothing
can be performed before [34]. Spatial smoothing can be exploited if we have an array
configuration that has consecutive lags [34]. Since the MLPA can achieve large number of

consecutive lags, MUSIC algorithm can be applied for DOA estimation.

Sparse reconstruction algorithms can also be utilized for DOA estimation. The problem in

(7-16) can be formulated to be a sparse one as:

z = vec(Ryyw ) = A,r (7-17)
g 8

ir ¢ . . . . . g
where A, is a new steering matrix constructed using all possible angles of a7, a3, ..., ay

where N, > K. The variable r is a sparse vector with only K nonzero entries. Sparse signal

recovery using Lasso can be used to solve such problem based on the /;-norm as [33]:

1 ~
ré = argrr;ign [E ||z—Ang||2 +/1t||rg||1] (7-18)
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where A, is a regularization parameter. The positions of the nonzero entries of £8 represents
o and their values indicates the corresponding signals’ power. Based on (7-16), the least

square solution can be applied to estimate b as [137], [138], [158]:
b=(A"A) A’z (7-19)

where A = [A(@;),a(ay),...,a(A@g)]. An estimate of 8 can be realized through [136],

[137]:

—jncos(,[?k) = arg(Bk) (7-20)
7.4 Simulation and Results

To validate the 2D-DOA estimation using parallel MLPAs, the following parameters are
selected. Uncorrelated narrowband sources located in the far-field are assumed. The total
number of samples is T = 1000 samples. For comparison with [33], the grid search is
uniform with a step size a:ig = 0.259 within [0°,180°] which is the range of both angles.
Additionally, the regularization parameter is A, = 0.85 and the minimum inter-element
spacing is set to d = A1/2. All these parameters are fixed unless stated otherwise. CS based
on Yalll [135] algorithms is used for DOA estimation. The difference coarray is used to
assess the performance. Then the maximum number of correctly estimated sources using
the 2D-MLPA and MLPAC is evaluated with numerical examples. The performance of the

proposed configuration is further evaluated based on Monte Carol simulations.

195



CHAPTER 7 7.4 Simulation and Results

7.4.1 Difference Coarray in 2D
A total of N = 24 elements is assumed. The 2D-3LPA is constructed with m® = [2,5,7]

and SO = [7,2,5]d. Whereas, the 2D-3LPAC22 is constructed with m® = [2,5,7] and
S§® =[7,1,5]d. The proposed configurations are compared with previous work which
utilize two subarrays Ref. [136], [137], and those suggest to double the number of elements
within one subarray Ref. [138], [139]. An array constructed according to Ref. [136], [137]
with a coprime pair of [11,13] and with a coprime pair of [7,10] according to Ref. [138],
[139] are considered. The corresponding difference coarrays are shown in Figure 7-2 (a)

and (b), respectively.

The 2D-3LPA and 2D-3LPAC22 require very small aperture size as illustrated in
Figure 7-2 (c) and (e), respectively. The 2D-3LPAC22 realizes a hole-free difference
coarray, while few holes appear using 2D-3LPA as shown in Figure 7-2 (f) and (d),
respectively. On the other hand, all configurations based on Ref. [136], [137], and Ref.
[138], [139] require much larger aperture size and there are a lot of holes in the
corresponding difference coarray as shown in Figure 7-2 (b) and (d). The number of unique
lags with Ref. [136], [137] and Ref. [138], [139], is 331 and 325, respectively. While, the
2D-3LPA attains 171 unique lags and the 2D-3LPAC22 manages 183 unique lags which
are all consecutive. Thus, we reduce the required aperture which is the main scope of this

dissertation at the expense of the number of lags.

196



CHAPTER 7 7.4 Simulation and Results

: - : ¥ : 3 r : : : 3 : 3 r
s 3 . .
N H .
100} : ! , 100}~ . -
~ s ~ .
2 . 2 .
s . s . .
3 s 3 H
» 50F . 1 » 50F . A
(=) . j=) L[]
8 H 8 H
5 s 5 H
£ ° £ §
S ok - 4 S ok . 4
2 . 2 H
s s s ;
? e ?
c H c ]
2 50~ s 1 2 50~ . 1
© © ‘
Q . Q .
s 8 H
@ L4 [} .
2 2
~ oo} : , ~ oo} . ,
' H ] .
. H (] .
r * r | ] r . r r * r * r r r
2 1.5 -1 0.5 0 05 1 1.5 2 2 1.5 -1 0.5 0 05 1 1.5 2
The locations of the virtual lags (d units ) The locations of the virtual lags (d units )
(a) The difference coarray of Ref. [136], [137] (b) The difference coarray of Ref. [138], [139]
30 : - : - : . r
[ O Antenna Locations (3LPA-1) O Antenna Locations (3LPA-2) [ . . .
30fF [ [5] ] ~ 2k J
2
€
5
251 o o » s
~ o 10f B
2 &
T 20f o o B E
k) E
~ > or -
c °
S 15f o o B £
g 5
. 2
g 10 o o » g or ]
2
3 8
[}
5r i £ 20F B
o o
or : Q : B ‘ ] 20 . H : H . H :
-1 0.5 0 0.5 1 15 2 2 -1.5 -1 05 0 0.5 1 1.5 2
sensor location (d units ) The locations of the virtual lags (d units )
(c) 2D-3LPA (d) corresponding difference coarray
30F . : . . =
[ O  Antenna Locations (3LPAC-1) O  Antenna Locations (3LPAC-2) [
30f ' [ ' [] i B -
2 20F —
E
25} o o B s
~ 2 10f ,
° &
T 20 o o , E
S b
. s o 1
S 151 o o . £
8 k]
< g -of- .
S 10f o o » =
2
3 ) o 3
[
il 8 ﬁ 1 =T 1
of ; § ; E : i 30+ ; : : : E
-1 0.5 0 0.5 1 15 2 2 1.5 -1 0.5 0 0.5 1 1.5 2
sensor location (d units ) The locations of the virtual lags (d units )
(e) 2D-3LPAC22 (f) corresponding difference coarray

Figure 7-2: The difference coarray of (a) Ref. [138], [139], (b) Ref. [140], [141], (c)-(d) 2D-3LPA and its difference
coarray (e)-(f) 2D-3LPAC22 and its difference coarray
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7.4.2 Impact of Compression in 2D
A total of K =26 uniformly distributed sources between (a,f) = (20°,20°) and

(160°,160°) is assumed. The 2D-3LPA and 2D-3LPAC22 presented in Section 7.4.1 with
N = 24 elements, SNR =0 dB, and T = 1000 samples are used. Figure 7-3 shows the 2D-
DOA estimation using 2D-3LPA and 2D-3LPAC22. The latter configuration has larger
number of lags, consequently most of the 26 sources are estimated correctly compared with
those using 2D-3LPA. A 2D-coprime array is also simulated which realizes up to 159
unique lags. Consequently, it is performance is the worst among the three configurations.
There is a big error in detecting two and one sources with the 2D-coprime array and 2D-

3LPA, respectively.
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Figure 7-3: 2D-DOA estimation based on 2D-3LPA and 2D-3LPAC22 using CS with K = 26 sources in noise free and
N =24 elements
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7.4.3 Statistical Error Analysis
The RMSE of the estimated DOA is defined as [143]:

liter K

1 . N Y

where &;(j) and f3;(j) are the estimates of a; and f3;, respectively, at the j* Monte Carlo
trial, j = 1,2,..., lj;er. In our simulation, a total of [, = 5000 independent trials are
used. A total of K = 16 uniformly distributed sources between (a, 8) = (20°,20°) and

(160°,160°) with T = 1000 samples and § = 3 grid points are assumed.

The RMSE in degree versus the SNR using CS is plotted in Figure 7-4 for the 2D-3LPA
and 2D-3LPAC22 presented in Section 7.4.1 with N = 24 elements. It is evident that the
RMSE is decreased with SNR for all configurations. The RMSE of the 2D-3LPAC22 is
almost similar to that of the 2D-3LPA. A 2D-coprime array has the largest RMSE due to
the lack of lags and it requires 36d X d aperture size. On the other hand, 2D-nested array
has better performance since it has got around 249 lags. Though, most its elements are
spaced by half-wavelength and it requires aperture size of 41d X d. This is not the case for
the 2D-3LPA and its compressed version which need only 30d X d. are used. At SNR =0
dB, around 2° RMSE is realized using the 2D-nested array. The 2D-3LPA and 2D-
3LPAC22 both require a 1 dB SNR while the 2D-coprime array needs 8 dB SNR to achieve

the same error.
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Figure 7-4: RMSE versus SNR based on 2D-3LPA and 2D-3LPAC22 using CS with K= 16, =3, and N=24

7.5 Chapter Summary

In this chapter, two new array configurations were proposed by combining two parallel
MLPAs or MLPACs. The 2D-MLPA and 2D-MLPAC can estimate two angles in the x-y
plane. The arrays have closed form expression for antenna locations and aperture size. The
2D-MLPA requires small aperture and has large number of lags with only few holes in the
difference coarray. On the other hand, the 2D-MLPAC achieves a hole-free difference
coarray. The effectiveness and validity of the proposed work was evaluated based on the
difference coarray and further verified with numerical examples for 2D-DOA estimation.
Simulations show that the proposed configuration can realize the same performance as the
2D-nested array by increasing the SNR by only 1 dB.
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CHAPTER 8 CONCLUSIONS AND FUTURE WORK

This dissertation focused on the problem of sparse DOA estimation with constrained
antenna arrays. The main constrains are: limited number of receive antenna elements and
limited inter-element spacing between these antennas which appear due to the available
physical size in mobile handsets. For a given aperture size, fitting more elements can
improve the DOA estimation, though mutual coupling effect will increase. On the other
hand, large inter-element spacing degrades the accuracy due to the limited number of
elements and may lead to grating lobe problem if the inter-element spacing goes beyond

half-wavelength.

This dissertation comprises eight chapters where the main findings are summarize in the

next section followed by recommendations and suggestions for future work.

8.1 Summary of Findings

CHAPTER 1 gave an introduction about the dissertation and summarized the main

contributions. CHAPTER 2 provided the technical background and literature review.

In CHAPTER 3, we presented a comparative study on sparse DOA estimation with
practical antenna arrays. The two elements arrays can support systems in a typical mobile
phone or small wireless terminals. Other higher order arrays such as N = 4, or 8 elements
can fit on larger devices (tablets, laptops, etc.) or access points. We have presented
simulation results and compared the performance of beamforming, Capon, MUSIC, and
[;-SVD algorithms in terms of the RMSE, beamwidth, bias, PRR, and the sources

resolvability in the presence of such constrains. The [;-SVD algorithm realizes super-
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resolution because the beamwidth at the DOA is very sharp. In addition, this algorithm
exploits sparsity/SVD concepts and the processing time is reduced dramatically due to data

reduction.

In CHAPTER 4, experimental setups for DOA estimation using sparse arrays in realistic
channels were implemented and evaluated. Three main sections were included in this
chapter. The first section suggested a moving coprime array under sparse reconstruction
framework for DOA estimation. With this approach, both complexity and mutual coupling
effect can be reduced. Experimental results using on single snapshot were conducted to
evaluate the advantage of the moving coprime array. In the second section, an SDR (NI-
USRP-2950R) platform system for a general 1D array configuration was implemented in
order to provide more flexibility to the main parameters. We took into account the issues
of synchronizing the USRPs and calibrating the phases of the received signals. The
implemented setups in the first and second sections were tested in a laboratory with dense
multipath environment. To the best of our knowledge, the performance of sparse arrays
was not demonstrated experimentally in realistic environments. The third section
incorporated the radiation pattern of the antennas in DOA estimation. Specifically, sparse
DOA estimation with directive coprime arrays was proposed. We have quantified the
impact of the radiation pattern on the DOA estimation accuracy. It is difficult to estimate
any source of at angles outside the main beam of the directional antenna even in noise free

circumstances.

0 proposed a new array configuration that can be used for sparse DOA estimation. The
proposed MLPA uses multiple uniform linear subarrays where the number of sensors is

pairwise coprime integers. There are more than one way to select the number of sensors in
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the subarrays and the ordered inter-element spacing which have a direct impact on the
achievable DOFs. Two different optimization criteria were used to design the optimum
MLPA configuration. In most of the cases, there is a unique solution which jointly
maximizes the number of unique lags and the number of consecutive lags which makes the
optimum MLPA configuration unique. The number of design alternatives increases as the
level of the array increases in this case, other factors like reduced mutual coupling can be
used to make the final selection. We also derived an upper bound on the DOFs achieved

by the 3LPA configurations and compared them with the maximum achievable DOFs.

A compressed version of the multi-level prime array (MLPAC) was proposed
in CHAPTER 6. This configuration is constructed by compressing the inter-element
spacing of one subarray under fixed number of antenna elements and fixed aperture size.
MLPAC can realize a hole-free difference coarray by properly selecting the compression
factor and the intended subarray. MLPA and MLPAC configurations require smaller
aperture size compared with nested and coprime arrays. This is attractive in antenna design
and array implementation. MLPAC can estimate larger number of sources compared with

MLPA using both MUSIC and sparse reconstruction algorithms.

In CHAPTER 7, sparse 2D-DOA estimation based on two parallel MLPA configurations
was proposed. The array has a closed form expression for the antenna locations and limited
number of holes appears in the corresponding difference coarray. A hole-free difference

coarray can be realized if the MLPAs are replaced by optimized MLPAC:s.
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8.2 Suggestions for Future Work

The work in this dissertation considers sparse DOA estimation with constrained antenna
arrays. There are still some open problems whose solutions could add advantages in the

field of DOA estimation. We may summarize them in the following points:

e Evaluate the performance in the presence of antenna location perturbations

e Use practical antennas and practical radiation patterns to evaluate the performance
of DOA estimation

e Develop an improved DOA estimation technique, which equalizes/compensates for
the effect of the radiation pattern to improve the estimation accuracy. This requires
knowledge about the complex radiation pattern of all antennas to account for the
magnitude and phase variations at different angels.

e Derive a closed form expression for the achievable DOFs of the proposed MLPA
and MLPAC for any number of subarrays

e Since the difference coarray of the MLPA is not a ULA (few holes), a great
advantage will be achieved if higher order statistics are considered instead of the
second order. In future, we shall consider MLPA and MLPAC with higher order
statistics.

e Experimentally evaluate the performance for multiple sources, which we have
already started. Since MLPAs, MLPACs, and other sparse arrays can estimate large
number of sources greater than the number of elements, the advantage of these

configurations will be more evident at their extremes. Thus, it will be interesting to
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evaluate the performance and increase the capability of the SDR system in the
presence of larger number of transmitters and/or receivers.

e Extend the work on 2D-DOA estimation for multiple scenarios and different
constrains. There is room for experimental implementation and then validate the

fabricated arrays with the developed SDR system.
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