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𝐫g Sparse vector over the discretized grid search  

�̂�g Estimated sparse vector using Lasso over the discretized grid search 

𝐒 Transmitted signals matrix 

𝐒SV Transmitted signals matrix (sparse) after applying SVD (sparse) 

𝐬SV Transmitted signal vector after applying SVD 

�̃�(𝑙2) 𝑙2-norm to find the sparse variable 

𝑠(𝑡) Transmitted signal 

𝜎𝑖
2 Signal power of the 𝑖𝑡ℎ source 

𝜎𝑛
2 Noise variance 

𝚺 Diagonal matrix contains the Eigen values of 𝐑𝐳𝐳
𝑠𝑠  after applying EVD 

𝓢 Ordered inter-element spacing vector of all subarrays  

𝒮𝑖 Inter-element spacing of the 𝑖𝑡ℎ subarray normalized by 𝑑 

𝓢(𝑙) Ordered inter-element spacing vector of all subarrays (2D case) 

𝒮𝑖
(𝑙)

 Inter-element spacing of the 𝑖𝑡ℎ subarray normalized by 𝑑 (2D case) 

𝑇 Number of samples or snapshots 

Δ𝜃 Absolute value of the difference between the DOAs for two sources 

𝜃𝑖 DOA of the 𝑖𝑡ℎ source  

𝜃𝑖
g
 Discretized DOA at the 𝑖𝑡ℎ grid point  
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Symbol Indication 

�̂� Estimated DOA 

𝜃3𝑑𝐵 3dB beamwidth 

𝜃6𝑑𝐵 6dB beamwidth 

𝐔𝑠 Signal subspace 

𝐮 An arbitrary vector belong to ℙ 

𝐕𝑛 Noise subspace 

𝐯 An arbitrary vector belong to ℙ 

𝑣Δ Number of unit spacings  

𝐰 Weight vector 

𝑤 Weight function 

𝐘 Received measurement matrix 

𝐘(𝑙) Received measurement matrix (2D case) 

𝐘SV Received measurement matrix after applying SVD 

𝐲SV(𝑘) Received measurement vector after applying SVD 

𝐲(𝑡) Received measurement vector 

𝐲(𝑙)(𝑡) Received measurement vector (2D case) 

𝑦𝑑(𝑡) Weighted received signal 

𝐳 A complex vector resulting from vectorizing the covariance matrix  

𝐳1 A vector extracted from 𝐳 based on the consecutive lags 

�̃� The real vector of 𝐳 which constructed as �̃� = [real(𝐳)𝑇 , imag(𝐳)𝑇]𝑇 
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LIST OF NOTATIONS AND OPERATIONS 

Notation Denote 

Lower-case Vectors  

Upper-case Matrices 

E(. ) Statistical expectation operator 

diag(𝑥) A diagonal matrix that uses the elements of x as its diagonal elements 

⨂ Kronecker product 

𝐼𝑁 Identity matrix of size 𝑁 ×𝑁 

(. )∗ Complex conjugation of a matrix or vector 

(. )𝑇 Transpose of a matrix or vector 

(. )𝐻 Conjugate transpose of a matrix or vector 

vec(. ) Vectorizing a matrix into a vector by column-wise 

‖. ‖2, |. |1 Euclidean 𝑙2 and 𝑙1 Norms 

|. | Cardinality operation 

ℤ+ Set of positive integers 

Re(. ) and Im(. ) Real and imaginary parts of complex element 

𝐶(𝑛, 𝑘) = (
𝑛

𝑘
) 

Combination of  

𝑃(𝑛, 𝑘) Permutations 

𝑛! Factorial operation: 𝑛(𝑛 − 1)(𝑛 − 2)……× 2 × 1 

∪ Union operation on sets 

∩ Intersection operation on sets 

⊆ A subset of or equal to 
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A set of antenna/sensor elements arranged in a certain geometry is called an antenna/sensor 

array. One application of antenna arrays is to estimate the direction of arrival (DOA) of 

signals emitted from certain sources. DOA estimation has many applications in beam 

steering to improve signal reception and interference suppression. Generally, the received 

signal is corrupted by different impairments as it propagates through the communication 

channel. These impairments include noise, multipath, narrowband/wideband interference, 

etc. Therefore, a robust technique is needed to estimate the DOA of the received signal. 

Multiple signal classification (MUSIC) and estimation of signal parameter via rotational 

invariance techniques (ESPRIT) are among the main used estimation techniques. 

Compressive sensing (CS) was also proposed for DOA estimation due to its ability to work 

with reduced data. In general, the number of sources to be estimated is small. Therefore, 

sparse reconstruction can be exploited to work with reduced data sets and hence shorter 

processing time.  

Hardware implementation of DOA techniques in handheld wireless devices has two main 

constraints. First, limited number of antennas and second, limited inter-element spacing. 
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DOA estimation with constrained arrays calls for extra processing and/or efficient array 

configurations. Very close antenna elements suffer from mutual coupling effect.  

The problem of DOA estimation with constrained number of elements and limited inter-

element spacing antenna arrays is examined. The main objective is to strike an optimal 

balance between complexity and accuracy. Different performance measures have been 

discussed and evaluated. A comparison between important DOA estimation algorithms is 

presented including: beamforming, Capon, MUSIC, and first-norm singular value 

decomposition (𝑙1-SVD). Experimental setups were also built using moving coprime arrays 

and based on software-defined radio (SDR) in realistic channel environments. The moving 

array uses only one antenna element which moves along the array axis to cover all pre-

specified locations. The complexity in terms of the number of antennas and receivers is 

reduced and the mutual coupling effect is eliminated. Prototyped antenna arrays were also 

evaluated experimentally to study the effect of antenna directionality on the accuracy of 

DOA estimation. Moreover, the radiation patterns of the designed arrays were extracted 

using high frequency structure simulator (HFSS) and were augmented in the sparse 

reconstruction framework. Based on the simulation and experimental evaluation, several 

requirements have been identified which calls for novel array configurations. Based on the 

moving coprime array, very narrow beamwidth is realized using Lasso algorithm compared 

with that based on a uniform linear array using MUSIC algorithm even if the number of 

elements is doubled. With the SDR platform using one source, we have proved that the 

beamwidth at the estimated angle using Lasso algorithm is significantly sharper than those 

produced by MUSIC and Capon. The results also show that the maximum errors in noise 

free environment for estimating a source among the assumed four sources with isotopic 
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and directive antennas are 0.5𝑜 and 2.5𝑜, respectively using the simulated coprime array 

with patch elements. For the prototyped antenna arrays, the coprime array with patch 

elements realizes the best performance. The 4-element uniform linear array with monopole 

elements has got the largest error that is around 15𝑜.  

This dissertation proposes a multi-level prime array (MLPA) configuration for sparse 

sampling that can further increase the degrees-of-freedom (DOFs). The proposed array 

uses multiple uniform linear subarrays where the number of sensors in the subarrays are 

pairwise coprime integers. The inter-element spacing between the sensors is formulated as 

a scaled multiple of half-wavelength where the subarrays share only their first element. For 

a given number of sensors, the proposed array has smaller aperture and achieves more 

unique and consecutive lags compared with coprime arrays. The proposed configuration 

has limited holes in the difference coarray. The analytical expressions of both the 

difference coarray and the aperture size are derived. Different MLPA configurations can 

be constructed for fixed number of antennas and the one that maximizes the DOFs is 

exploited. We have found that MLPAs can achieve higher DOFs compared with coprime 

arrays provided that the number of elements is large enough. Under equal aperture size and 

comparable DOFs with that of nested arrays, the proposed MLPA results in less mutual 

coupling effects. The number of consecutive lags is further increased by properly 

compressing the inter-element spacing of one subarray under a fixed number of antennas 

and without changing the aperture size. The resultant array, MLPA with compressed 

subarray (MLPAC), can have a hole-free difference coarray as in nested array case. Sparse 

reconstruction and MUSIC algorithms are utilized based on the difference coarray. The 

MLPAC can estimate larger number of sources using both MUSIC and sparse 
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reconstruction algorithms. At 0 dB signal-to-noise ratio (SNR) and ten antenna elements, 

the root mean square error (RMSE) based on an MLPAC with three subarrays is larger than 

that based on nested array by around 0.05𝑜 and 2𝑜 to 2.6𝑜 using CS and MUSIC 

algorithms, respectively.  

Finally, modified configuration with two parallel MLPAs is extended for two dimensions 

(2D-DOA) estimation. We have shown that the proposed configuration can realize the 

same performance as the 2D-nested array by increasing the SNR by only 1 dB.  

Simulation and experimental results confirm the derived conclusions and demonstrate the 

superiority of the proposed configurations in DOA estimation especially for constrained 

aperture size.  

 

 

  



xxix 

 

 ملخص الرسالة

 
 

 حمد يسلم العوشصالح أ :الاسم الكامل
 

 باستخدام مصفوفة الهوائي المقيدةالإشارة وصول زاوية تقدير  :عنوان الرسالة
 

 كهربائيةهندسة  التخصص:
 

 م2018 إبريل العلمية:تاريخ الدرجة 

وائي مستشعر. أحد تطبيقات مصفوفات الهتسمى مجموعة من عناصر الهوائي/المستشعر مرتبة في هندسة معينة صفيف الهوائي/ال

للإشارات المنبعثة من بعض المصادر. يتضمن تقييم زاوية الوصول العديد من التطبيقات  (DOA) هو تقدير اتجاه زاوية الوصول

مختلفة  لفي توجية الحزمة لتحسين استقبال الإشارات وإزالة التداخل. بشكل عام ، تتعطل الإشارة المستقبلة من خلال عدة عوام

أثناء انتشارها عبر قناة الاتصال. وتشمل هذه العيوب الضوضاء ، وتعدد مسارات انتشار الموجة ، وتداخل النطاق الضيق / 

النطاق العريض ، وما إلى ذلك. لذلك ، هناك حاجة إلى تقنية قوية لتقدير زاوية الوصول للإشارة المستقبلة. يعتبر تصنيف الإشارات 

من بين تقنيات التقدير الرئيسية  (ESPRIT) وتقدير معلمة الإشارة عبر تقنيات الثبات الدوراني (MUSIC) المتعددة

لتقدير زاوية الوصول بسبب قدرتها على العمل مع انخفاض  (CS) المستخدمة. كما تم اقتراح الاستشعار عن طريق الضغط

لذلك ، يمكن استغلال إعادة البناء المتفرقة للعمل مع مجموعات  البيانات. بشكل عام ، عدد المصادر التي سيتم تقديرها قليل جدا.

 .بيانات مخفضة وبالتالي وقت معالجة أقصر

تطبيق الأجهزة في تقنية تحديد زاوية الوصول في الأجهزة اللاسلكية المحمولة لديها اثنين من القيود الرئيسية. أولاً ، عدد محدود 

بين الهوائيات. يتطلب تقدير زاوية الوصول مع صفائف مقيدة معالجة إضافية و/أو تكوينات من الهوائيات والثاني ، تباعد محدود 

 .صفيف فعالة. عندما تكون عناصر الهوائي متقاربة جدا فانها تعاني من تأثير اقتران المتبادل

ف العناصر المحدودة. الهديتم فحص مشكلة تقدير زاوية الوصول مع عدد مقيَّد من العناصر ومصفوفات هوائيات التباعد بين 

الرئيسي هو تحقيق توازن مثالي بين التعقيد والدقة. وقد تم مناقشة وتقييم مقاييس الأداء المختلفة. يتم تقديم مقارنة بين خوارزميات 

يف ، تصن(Capon)  ، أدنى تباين استجابة التشوية (beamforming) تقدير زاوية الوصول الهامة بما في ذلك: تكوين الشعاع

كما تم بناء الاعدادات التجريبية  .(𝑙1-SVD) ، وتحلل القيمة المفردة من المستوى الأول (MUSIC)الإشارات المتعددة

أثناء وجود مصادر مختلفة  (SDR) المتحركة والاعتماد على الراديو المحدد بالبرمجيات  coprimeمصفوفات الباستخدام 
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ة في قناة الاتصال. تستخدم المجموعة المتحركة عنصر هوائي واحدًا يتحرك على طول كتعدد الانتشار التي تؤثر على الإشار

محور الصفيف لتغطية جميع المواقع المحددة مسبقاً. يتم تقليل التعقيد من حيث عدد الهوائيات وأجهزة الاستقبال ويتم التخلص من 

بشكل نمطي وتم فحصها بشكل تجريبي لدراسة تأثير  تأثير الاقتران المتبادل. كما تم صُممت مجموعات من صفيف الهوائي

اتجاهية الهوائي على دقة تقدير زاوية الوصول. وعلاوة على ذلك، تم استخراج أنماط الإشعاع من هذه المصفوفات المُصنعة 

لمحاكاة والتقييم وتجربتها في إطار إعادة الإعمار المتناثر. استنادًا إلى ا (HFSS) باستخدام هيكل محاكي الترددات العالية

المتحركة ، تم  coprimeبناءً على مجموعة  .التجريبي ، تم تحديد العديد من المتطلبات التي تستدعي تكوين صفيف جديد

مقارنة مع تلك القائمة على صفيف خطي منتظم باستخدام  Lassoالحصول على عرض حزمة ضيق جدًا باستخدام خوارزمية 

الراديو المحدد حتى إذا تضاعف عدد العناصر. باستخدام منصة  (MUSIC) ت المتعددةيعتبر تصنيف الإشاراخوارزمية 

أكثر  Lasso( وعند وجود مصدر واحد ، أثبتنا أن عرض الحزمة عند الزاوية المقدرة باستخدام خوارزمية SDR)  بالبرمجيات

صى للأخطاء في بيئة خالية من الضوضاء . تظهر النتائج أيضا أن الحد الأقCaponو  MUSICوضوحًا من تلك التي تنتجها 

 (directive)و هوائيات موجهة (isotropic)لتقدير مصدر واحد بين المصادر الأربعة المفترضة باستخدام هوائيات متماثلة 

فات . بالنسبة لمصفو (patch) المحاكاة مع عناصر التصحيح coprime، على التوالي باستخدام مصفوفة 2.5𝑜و  0.5𝑜 هي 

تحقق أفضل أداء. لقد حصلت المجموعة  (patch)مع عناصر التصحيح  coprimeالهوائي التي تم تصميمها ، فإن مصفوفة 

 .15𝑜على أكبر خطأ وهو تقريبا  (monopole)عناصر مع العناصر أحادية القطب  4الخطية المنتظمة المكونة من 

 

ن يزيد من درجة لأخذ العينات المتناثر الذي يمكن أ (MLPA) مستوياتتقترح هذه الأطروحة تشكيل صفيف هوائي متعدد ال

تستخدم الصفيف المقترح عدة مجموعات فرعية خطية موحدة حيث يكون عدد أجهزة الاستشعار . (DOFs)ر الحرية او التغيي

عرات عد بين عناصر المستشفي الطبقة الفرعية عبارة عن أعداد صحيحة أولية لايوجد بينها عوامل مشتركة. تمت صياغة التبا

كمضاعف لنصف طول الموجة حيث تتشارك المجموعات الفرعية العنصر الأول فقط. بالنسبة لعدد معين من أجهزة الاستشعار، 

فإن الصفيف المقترح يتطلب أبعاد ومساحة أصغر ويعطي مواقع فريدة مختلفة ومتوالية بدون انقطاع او ثغرات فيما بينها مقارنة 

التكوين المقترح يحتوي على ثغرات محدودة في فوراق مواقع عناصر  (coprime). ات المكونة من رقمين أوليينبالمصفوف

تمت صياغة التعبيرات الرياضية لفوراق مواقع عناصر مصفوفة الهوائي والابعاد  (difference coarray). مصفوفة الهوائي

المصفوفة التي   عدد ثابت من الهوائيات واستغلالمختلفة من أجل  MLPA المطلوبة لتشكيل المصفوفة. يمكن إنشاء تكوينات
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شريطة  coprimeمقارنة مع صفائف  DOFsيمكن تحقيق أعلى  MLPAsلقد وجدنا أن (DOFs).  زيد من درجة التغييرت

 (nestedتداخلةالمقارنة مع صفائف م DOFsأن يكون عدد العناصر كبير بما فيه الكفاية. تحت حجم الفتحة المتساوية وقيم 

(arrays ينتج عن ،MLPA .يتم زيادة عدد الفترات المتتالية عند اخذ الفوارق بين مواقع عناصر  المقترح تأثيرات اقتران أقل

الهوائي بشكل أكبر عن طريق ضغط التباعد بين العناصر لواحدة من المجموعات الفرعية بشكل صحيح مع عدم تغيير عدد 

الذي  (MLPAC) جم المصفوفة. الصفيف الناتج يسمى صفيف هوائي متعدد المستويات المضغوطالهوائيات وبدون تغيير ح

 (nestedة يمكن أن تكون الفوارق بين مواقع عناصره متوالية و خالية من أي ثغرات كما هو الحال في حالة المصفوفة المتداخل

(arrays  . الإشارات المتعددة استنادًا إلى الفوارق بين مواقع عناصر يتم استخدام خوارزميات إعادة البناء المتناثر و تصنيف

عندما تكون . نتيالزوايا باستخدام كلا الخوارزمي الهوائي. يمكن لـصفيف الهوائي المتعدد المستويات المضغوط تقدير عدد أكبر من

يكون جذر متوسط مربع الخطأ ديسيبل وعند استخدام عشرة عناصر من الهوائي،  0( تساوي SNRنسبة الإشارة إلى الضوضاء )

(RMSE)  الناتج عن استخدامMLPAC  0.05ذو الثلاثة مستويات أكبر من ذلك الناتج عند استخدام صفيف متداخل بحوالي𝑜 

 على التوالي.،(MUSIC)  تصنيف الإشارات المتعددةو (CS)  الضغطباستخدام خورزميات  2.6𝑜الى  2𝑜و 

فوفة هوائي أخرى بإستخدام وحدتي الهوائي المتعدد المستويات بشكل متوازيين لتقدير زاويتين للوصول وأخيرًا، تم اقتراح مص

(2D-DOA) . 2نفس الأداء مثل الصفيف المتداخل المقترحة يمكن أن تحقق مصفوفة الهوائيلقد أظهرنا أنD-nested) 

(array  ثنائي الأبعاد بزيادة النسبةSNR  فقط ديسيبل 1بمقدار. 

ؤكد نتائج المحاكاة والنتائج التجريبية الاستنتاجات المشتقة التي توصلنا لها وتظهر تفوق التكوينات المقترحة في تقدير زاوية ت

 الوصول خاصة بالنسبة بالنسبة للصفائف ذات الحجم المقيدّ.
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CHAPTER 1 INTRODUCTION 

1.1 Overview  

There are numerous methods for determining the location of a signal emitter using diverse 

types of direction finding (DF) techniques. One of the most widely used techniques is the 

direction of arrival (DOA) technique that estimates the angle from which the signal arrives. 

Another DF technique is the direction of departure (DOD) which is defined as the angle at 

which the signal is emitted from the transmitter. Two more techniques used for localization 

are: time of arrival (TOA) and time difference of arrival (TDOA), with the difference that 

TOA is defined as the time required for the transmitted signal to reach the receiver, whereas 

TDOA measures the difference of propagation delays to different receivers.  

An antenna array consists of a set of antennas or sensors that are arranged in a certain 

geometry such as linear, circular, coprime, nested, etc. The main objective of the antenna 

array in our context is to find the direction of the sources that emit their signals on the 

array. The accuracy of estimation depends on the measurements at the outputs of these 

antenna elements and the given array geometry as well as the characteristics of the 

propagation medium. 

Generally, the received signal is corrupted by different impairments as it propagates 

through the communication channel. These impairments include noise, multipath, 

narrowband/wideband interference, etc. Therefore, a robust technique is needed to estimate 

the DOA of the received signal. In practical mobile applications, DOA estimation is 
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restricted by the small size of the devices. Thus, the practical implementation of DOA 

algorithm in handheld wireless devices has two main limitations. First, limited number of 

antennas and second, limited inter-element spacing between these antennas.  

The remaining sections of this chapter are as follows. In Section 1.2, research contributions 

are listed. Section 7 is dedicated to motivate the research problem followed by specific 

problem statement in Section 1.4. The main objectives of this research are enumerated in 

Section 1.5. The outlines of the dissertation are presented in Section 1.6. 

1.2 Research Contributions 

In this dissertation, the following contributions have been achieved: 

1. We have studied the problem of DOA estimation in the presence of two main 

limitations namely, limited number of antenna elements and limited inter-element 

spacing via simulation.  

2. A moving coprime array configuration is proposed and implemented for DOA 

estimation under sparse reconstruction framework. The proposed array uses only 

one antenna element. The antenna moves along the array axis to cover certain 

locations specified by the conventional coprime array. The proposed system has 

reduced complexity and eliminates the mutual coupling effect.  

3. A software-defined radio (SDR) platform is implemented for sparse DOA 

estimation based on sparse array configurations. With an SDR, the system becomes 

flexible, simple, practical, reconfigurable, and can be experimentally-tested.  

4. We have evaluated sparse DOA estimation for directive coprime arrays. The 

complex radiation patterns are extracted using an electromagnetic simulator and 
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then incorporated in the DOA estimation. In addition, printed array configurations 

with monopole and patch elements are assessed and experimentally tested to study 

the impact of antenna directivity on the accuracy.  

5. A generalized multi-level prime array (MLPA) configuration is proposed for sparse 

sampling that can increase the degrees-of-freedom (DOFs). The proposed array 

uses multiple uniform linear subarrays where the number of sensors in the subarrays 

are pairwise coprime integers. For a given number of sensors, the proposed array 

has smaller aperture and achieves more unique and consecutive lags compared with 

coprime arrays. The proposed configuration has limited holes in the difference 

coarray. The analytical expressions of both the difference coarray and the aperture 

size are derived. 

6. We have proposed a sparse DOA estimation based on MLPA configuration. In 

MLPA, the number of consecutive lags can be increased by properly compressing 

the inter-element spacing of one subarray by integer multiple of half wavelength 

under a fixed number of antennas and without changing the aperture size. The 

resultant array, MLPA with compressed subarray (MLPAC), can have a hole-free 

difference coarray as in nested array case. Sparse reconstruction algorithm is 

utilized based on the difference coarray. The MLPAC can estimate larger number 

of sources using both multiple signal classification (MUSIC) and sparse 

reconstruction algorithms. 

7. We have extend MLPA configuration for two dimensions (2D) 2D-DOA 

estimation. The array has a closed form expression for the antenna locations and 
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few holes appear in the difference coarray. The difference coarray was improved 

using an optimized MLPACs instead of the MLPAs. 

1.3 Motivation 

DOA estimation has many applications in beam-steering for improving signal reception, 

interference suppression and target tracking. Basically, if a receiver knows the DOA of a 

certain transmitter, more energy can be collected by steering the array towards that specific 

angle. Similarly, the receiver can avoid reception from certain interference by directing its 

array away form that source. Consequently, this will enhance the signal-to-noise ratio 

(SNR) at the receiver side as well as reduce the bit error rate during the decoding process 

for any communication system.  

The problem of the DOA estimation becomes more challenging in case of practical 

circumstances. Employing more antennas for sure will enhance the receiver capability for 

DOA estimation. Moreover, the inter-element spacing between the antennas is restricted 

as well by the available physical size in mobile handsets. Definitely, the size of current 

mobile handsets affect both issues. Most of the previous works have tested the performance 

using simulations. Only few papers did experimental studies. In addition, very few 

publications considered the practical limitations in the design of their arrays.   

In general, the number of sources needed to be estimated is very few. In other words, the 

scene of interest in which we are searching in contains only limited number of sources. 

Therefore, compressive sensing (CS) and sparse representation can be formulated in order 

to work with reduced data sets. In addition, the processing time can be further decreased. 

Thus, complexity reduction is one of the most important issues in our study. 
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1.4 Problem Statement 

Future handsets are very light and have small size. With such restrictions, there will be a 

difficulty to design an efficient receiver with DOA capability. The reason is that we have 

to use only few receive antenna elements in addition to limited inter-element spacing in 

between. Hence the problem addressed by this dissertation can be stated as follows: 

Propose an array configuration and novel sparse DOA estimation technique, which works 

under limited number of elements and limited inter-element spacing. 

This dissertation aims to find a promising solution for DOA estimation in future handsets. 

As such, we discuss two practical issues; limited number of antennas and limited spacing 

in between. In addition, the performance is investigated for different number of antenna 

elements, using different performance criteria. Under a given dimension restriction, 

different inter-element spacing is examined to optimize the DOA estimation. To make the 

analysis more general, the ratio between the unit inter-element spacing and wavelength is 

considered. Extensive simulations are conducted to study and inspect the effect of this ratio 

on the system performance based on some performance.  

Moreover, extensive analysis is performed to study the effect of other parameters in the 

presence of both restrictions. In addition, extensive investigation is accomplished to 

validate the effectiveness of the proposed configurations. This shall include the number of 

sources to be estimated and the number of samples or snapshots, and others. 
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1.5 Objectives 

For successful consideration of the problem stated above, a full comparative understanding 

of sparse DOA estimation algorithms is needed. We investigate the estimation problem 

under practical limitations and compare the performance of candidate algorithms. Based 

on this understanding, a novel antenna array is adopted and the signal processing part is 

optimized. The main objectives of this research can be further detailed as follows: 

1. Study the problem of DOA estimation based on reduced data sparse frame work. 

2. Optimize the performance of different DOA estimation algorithms under two 

practical limitations: 

a. Limited number of antennas 

b. Limited spacing 

3. Evaluate the system performance under realistic channel environment. 

4. Build a prototype array with antenna distribution optimized for sparse DOA 

estimation. 

5. Design a novel array configuration that requires small aperture size and can 

improve the DOFs.  

6. Design an array configuration with two-dimensional DOA capability using 

coprime array extensions.   

Objectives 1, 2, and 5 are accomplished using MATLAB®. Experimental setups augment 

MATLAB® simulation to achieve objectives 3 and 4. To achieve objective 4, raw material 

and resources were utilized. 
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1.6 Thesis Organization 

This dissertation consists of seven chapters. Each chapter in this dissertation presents the 

details of the work done, including literature review, signal model, analysis towards certain 

objectives. The rest of the dissertation is structured as follows. CHAPTER 1 discusses the 

introduction and motivation for the dissertation with problem statement and the main 

objectives. CHAPTER 2 presents a technical background and literature review for DOA 

estimation algorithms. CHAPTER 3 provides a review on DOA estimation with focus on 

practical limitations. Then, some preliminary results when there is a constrain on the 

physical size of the handsets. Other review is also distributed within the related chapters. 

In CHAPTER 4, the effect of different channel impairments on the performance of DOA 

estimation is investigated based on experimental results. 0 proposes a novel array 

configuration that generalizes the coprime array structure. In CHAPTER 6, the proposed 

configuration in 0 is further optimized in order to increase the degrees-of-freedom (DOFs). 

In addition, sparse DOA estimation based on the two novel configurations is 

proposed. CHAPTER 7 proposes a new configuration for two dimensions DOA 

estimation. CHAPTER 8 concludes the dissertation, summarize all results and findings of 

all chapters, and gives recommendations for future work.  
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CHAPTER 2 TECHNICAL BACKGROUND  

Measuring or estimating the DOA is one of the most common approaches to find the 

location of sources. This is useful in many applications ranging from wireless 

communications, such as sonar, navigation, radar, radio astronomy [1], to localization of 

illegal repeaters [2]. In these applications, the target to be located does not have to be an 

active target, as it can be a passive target that reflects the signal produced by the DOA 

estimation system. Some systems can estimate the location of a single target while others 

can estimate more. Different configurations have been developed, and each has its own 

advantages and disadvantages. For a given array, the received signals are processed to 

estimate the DOA. Choosing a proper DOA estimation algorithm is crucial to get the best 

result for the desired application. This chapter mainly reviews the most widely used DOA 

estimation algorithms. Other reviews are distributed within the related chapters. Moreover, 

we briefly discuss and review the basic ideas of these algorithms. In addition, the 

performance measures used to assess the problem of DOA estimation are defined.  

2.1 Introduction  

The problem of DOA estimation has attracted many researchers due to its important 

applications. Researchers have developed and proposed different algorithms for DOA 

estimation. Beamforming, Capon, and subspace-based techniques are among the main used 

DOA estimation techniques. Sparse reconstruction algorithms are also used since they can 

work with reduced data sets. 
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The rest of the chapter is organized as follows. Section 2.2 provides a review on the most 

widely used DOA estimation algorithms. The system model is presented in Section 2.3. 

Section 2.4 reviews some technical backgrounds. This includes source localization, 

antennas, array configurations, DOA estimation algorithms, and some performance 

metrics. 

2.2 Algorithms for DOA Estimation: A Review  

Wideband source localization using beamforming was considered in [3], [4], [5]. DOA 

estimation using Capon algorithm was originally developed in [6]. Based on time reversal 

for multiple-input-multiple-output (MIMO) radars, Capon algorithm or what is called 

minimum variance distortionless response (MVDR) was introduced in [7].  

A variety of multiple signal classification (MUSIC) algorithms have been widely studied 

in MIMO radar systems for target localization [8], [9] as well as for source localization 

[10]–[13]. The sources maybe located in the far-field or in the near-field. Sometimes both 

far-field and near-field narrowband sources exist [11], [12], [14]. A second order statistics 

based on MUSIC algorithm has been applied efficiently to estimate DOAs [12]. As an 

extension to [12], the authors in [14] estimated the DOAs and the power of the far-field 

sources first. Then these components are removed from the signal subspace. Finally, a near-

field reconstruction is employed. This approach is more efficient than [12] since it 

enhances the reconstruction accuracy and realizes a significant classification of the signal 

types. The proposed approaches in [12], [14], [15] are not complicated since they do not 

need a multidimensional search or higher order statistics. 



CHAPTER 2   2.2 Algorithms for DOA Estimation: A Review 

 

10 

 

The problem of DOA estimation has been resolved using estimation of signal parameter 

via rotational invariance techniques (ESPRIT) algorithm [16]–[19]. MUSIC and ESPRIT 

subspace-based algorithms were suggested to localize sources in [16]. The reconstruction 

of the DOA was accomplished through two successive one-dimensional searches. Target 

localization has been investigated based on ESPRIT algorithm in [17]–[19] and auto-

pairing of direction of departure (DOD) and DOA [18]. The authors in [17] modified the 

ESPRIT algorithm to use the SVD instead of using the Eigen value decomposition (EVD) 

to estimate the signal subspace. As a result, the performance was enhanced in the presence 

of interference. Compared with ESPRIT algorithm, the error was reduced by around 1.2𝑜 

at SNR = 0 dB in the presence of two interfering signals [17].  

Different approaches were developed for DOA estimation based on CS [20]–[24] since the 

received signal from the unknown sources is sparse in some domains. DOA estimation 

based on MUSIC and Capon always uses linear arrays sampled at Nyquist rate with inter-

element spacing less than or equal to half-wavelength. Both algorithms need a computation 

of the covariance matrix. This is not the case using CS which can work at sub-Nyquist 

sampling rates [20]. Statistical and probabilistic approaches known as Bayesian approaches 

based on CS can be also applied for DOA estimation. They use the signal distribution to 

tackle the DOA estimation problem. In [21], the authors used sparse Bayesian learning 

when the number of the unknown sources is greater than the number of measurements. 

Reference [22] estimated the DOA by solving a set of Basis Pursuit De-Noising (BPDN) 

problems. In addition, grid position refinement was used to reduce the complexity of the 

BPDN problem. In [24], antennas with known and different sparse array geometries were 

used successfully for localization. 
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Narrowband source localization in terms of DOA estimation using the first-norm singular 

value decomposition (𝑙1-SVD) algorithm was investigated in [25]–[27]. All 𝑙1-SVD 

algorithms use CS first, so they can be considered also as CS based algorithms. In [25], 𝑙1-

SVD was proposed for multiple time or frequency samples such that sharp estimate and 

super-resolution is achieved. The results show that only the 𝑙1-SVD algorithm can resolve 

two uncorrelated sources separated by 5𝑜 at 0 dB SNR compared with beamforming, 

Capon, and MUSIC algorithms [25]. The 𝑙1-SVD algorithm has also the ability to estimate 

highly correlated sources which is not the case with beamforming, Capon, and MUSIC 

algorithms. Reference [27] suggested a modified 𝑙1-SVD algorithm which can improve the 

performance in the presence of an interference. The interference is filtered first and then 

the DOA is recovered where the noise power is estimated and incorporated to solve an 

optimization problem. Based on the a modified 𝑙1-SVD algorithm, the RMSE for 

estimating a single source close to an interference was reduced by around 0.7𝑜 [27].  

2.3 System Model 

Assume 𝐾 narrowband unknown active sources and located in the far-field transmit signals 

𝑠𝑘(𝑡) for 𝑘 = 1, . . , 𝐾 with 𝜃𝑘 as the DOA with respect to the array axis, see Figure 2-1. A 

uniform linear array (ULA) is considered for the time being. The receiver has 𝑁 

omnidirectional antennas located along the 𝑥-axis where 𝑑 represents the inter-element 

spacing between any two antennas. The received corrupted measurements, 𝐲(𝑡) =

[𝑦1(𝑡1), 𝑦2(𝑡2),… , 𝑦𝑁(𝑡𝑇)]
𝑇 where [. ]𝑇 indicates the transpose operation, with additive 

white Gaussian noise, 𝐧(𝑡), at the array output can be expressed as: 
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Figure 2-1: System model for source localization 

 𝐲(𝑡) = 𝐀(𝜽)𝐬(𝑡) + 𝐧(𝑡), 𝑡 ∈ {𝑡1, 𝑡2, . . , 𝑡𝑇} (2-1) 

where 𝐀(𝜽) = [𝐚(𝜃1), . . , 𝐚(𝜃𝐾)] is the steering matrix with steering vector 𝐚(𝜃𝑘) =

[1, 𝑒
𝑗2𝜋𝑑 cos(𝜃𝑘)

𝜆 , . . , 𝑒
𝑗2𝜋𝑑(𝑁−1) cos(𝜃𝑘)

𝜆 ]
𝑇

 and 𝜆, 𝑇 are the signal wavelength and the number of 

samples or snapshots respectively. The unknown DOAs are represented by 𝜽 =

[𝜃1, 𝜃1, … , 𝜃𝐾]
𝑇 and 𝐬(𝑡) = [𝑠1(𝑡), . . , 𝑠𝐾(𝑡)]

𝑇 is the transmitted narrowband signals from 

the unknown sources. Given 𝐲(𝑡) and the array geometry, we have to find �̂�, which is an 

estimate of 𝜽 and the number of active sources, 𝐾. 
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Let 𝐩 = [𝑝1, 𝑝2, … , 𝑝𝑁]
𝑇 denote the positions of the elements within the array. The position 

of the 𝑛𝑡ℎ antenna element is located at 𝑝𝑛 = 𝑛𝑑 with 𝑛 = 0,1, . . , 𝑁 − 1 and 𝑑 ≤ 𝜆/2 to 

avoid the grating lobe. The above model can be extended for two dimension DOA 

estimation. 

2.4 Technical Background  

This research covers the intersection of three main topics which are MIMO systems, DOA 

and CS as depicted in Figure 2-2. The following subsections provide the reader with the 

needed background. 

2.4.1 Source Localization through DOA 

DOA estimation and localization involves two different tracks: active source localization 

and passive source localization. This research focuses on active sources that emit power. 

The sources maybe located in the far-field, near-field or mix of both fields. In this study, 

the unknown sources are located in the far-field, thus DOA is assumed to be the same for 

each source across the array. Sources at distance greater than 
2𝐷2

𝜆
 are considered to be in 

the far-field [28] where 𝐷 represents the aperture size of the array. Figure 2-3 shows a 

verification of the different source’s fields. This is an example for illustrations in which 

the corresponding DOA (in degrees) is plotted relative to each receive element in meter. 

The sources are assumed at 𝜽 = [160,100,30]𝑜 with respect to the first antenna element 

located at zero meter. The ranges in the three subplots are adjusted at random such that 

different scenarios can be illustrated.  



CHAPTER 2        2.4 Technical Background 

 

14 

 

 

Figure 2-2: Main topics of the study 
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Figure 2-3: DOA versus antenna locations  
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For the near-field case the range of the active sources are assumed at [9,93,78] meter. The 

variation across the array elements of the DOA is very evident, see Figure 2-3(a). For the 

far-field, Figure 2-3(b) shows insignificant variations of the angles if the sources are 

assumed at [1801,1830,1680] meter. The mix-field scenario is a combination of the two 

cases. 

2.4.2 Antenna and Array Configurations 

A set of antenna/sensor elements arranged in a certain geometry is called an antenna/sensor 

array. There are many applications for antenna arrays, however DOA estimation is our 

focus. This could be achieved by relying on: the array geometry, the characteristics of the 

medium and the received measurements.  

A. Antennas  

Antennas are available in different types such as dipole, monopole, and patch like among 

others. The pattern of an antenna is a plot of the received energy at different directions. 

The pattern is not distributed uniformly in all directions, and thus antennas have different 

degrees of directivity. This directivity affects the ability of the antenna in receiving the 

incoming waves, and thus the performance varies with direction. In our work, we start by 

assuming isotropic antenna. Later on, directive antenna shall be utilized.  

B. Array Geometry  

An antenna array at the transmitter or the receiver can be organized or designed in different 

configurations. Many array configurations were investigated in the literature for DOA 

estimation. These include ULA [29], nonuniform linear array [30], uniform circular array 

(UCA) [31], uniform rectangular array (URA) [32], uniform rectangular frame array [32], 
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coprime array [33], nested array [34], arbitrary arrays [35], random array [20], and others. 

Each one of these arrays has its own advantages and limitations.  

Antenna arrays can enhance the directivity, in return enhancing the SNR as well as 

providing the system some control over the maximum radiation power. Thus the beam of 

the array can be steered towards certain directions and thus enhance its DOA capability 

[36].  

2.4.3 Overview of Basic DOA Estimation Algorithms 

Normally, the number of sources needed to be estimated is very few. In other words, the 

scene of interest in which we are searching on contains only limited number of sources. 

Therefore, CS and sparse representation can be formulated in order to work with reduced 

data sets and thus decreased processing time. Therefore, complexity reduction is one of the 

most important issues in our study. There are lots of DOA estimation algorithms in the 

literature. This overview focuses on the most important and widely used ones, namely: 

beamforming, Capon, MUSIC, and 𝑙1-SVD. All 𝑙1-SVD algorithms use CS first, so they 

can be considered also as CS based algorithms.  

A. Beamforming Algorithm 

The idea here is to direct the array in a certain direction at a time and measure the output 

power. Maximum output power will be received whenever the “steered” direction matches 

with DOA of a signal. A weight vector 𝐰 is used to linearly combine the received signal 

by the sensors to form a single output, 𝑦𝑑(𝑡), as [28], [37]: 

 𝑦𝑑(𝑡) = 𝐰
𝐻𝐲(𝑡) (2-2) 
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where [. ]𝐻 represents the conjugate transpose (Hermitian) operation. Thus, the total 

averaged output power, 𝑃(𝐰), of an array over 𝑇 samples can be written as [37]: 

 𝑃(𝐰) =
1

𝑇
∑|𝑦𝑑(𝑡𝑛)|

2 =
1

𝑇
∑𝐰𝐻𝐲(𝑡𝑖)𝐲

𝐻(𝑡𝑖)
𝐻𝐰 = 𝐰𝐻𝐑𝐲𝐲𝐰

𝑇

𝑖=1

𝑇

𝑛=1

 (2-3) 

where 𝐑𝐲𝐲 =
1

𝑇
∑ 𝐲(𝑡𝑖)𝐲

𝐻(𝑡𝑖)
𝑇
𝑖=1  is the estimated covariance matrix of the received signal. 

In beamforming algorithm, the weight vector is equal to the steering vector defined in the 

system model, i.e. 𝐰 = 𝐚(𝜃) where 𝜃 represents an arbitrary look angle (search angle). If 

this angle coincides with an angle coming from any source, the spectrum will have a peak 

at this angle. Essentially, the weight vector is normalized such as: 

 𝐰 =
𝐚𝐻(𝜃)

√𝐚𝐻(𝜃)𝐚(𝜃)
 (2-4) 

Therefore, the output power as a function of the DOA becomes: 

 𝑃(𝜃) =
𝐚𝐻(𝜃)𝐑𝐲𝐲𝐚(𝜃)

𝐚𝐻(𝜃)𝐚(𝜃)
 (2-5) 

The weight vector matches the angles of the incoming signal to produce a peak but 

attenuate the output power for signals not coming from the angles of the incoming signals. 

B. Capon Algorithm 

When there is more than one signal present, the array output power contains signal 

contributions from the desired and undesired angle(s). Capon algorithm overcomes this by 

forming a beam in the look direction and simultaneously nulls in other directions to reject 
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other signals. It minimizes the power in all directions and keeps it one in the look direction, 

as [7], [28], [38], [39]:  

 min𝑃(𝐰) subject to 𝐰𝐻𝐚(𝜃) = 1  (2-6) 

The weight vector is given by: 

 𝐰 =
𝐑𝐲𝐲
−1𝐚𝐻(𝜃)

𝐚𝐻(𝜃)𝐑𝐲𝐲−1𝐚(𝜃)
 (2-7) 

The output power spectrum becomes: 

 𝑃(𝜃) =
1

𝐚𝐻(𝜃)𝐑𝐲𝐲−1𝐚(𝜃)
 (2-8) 

Therefore, the 𝐾 largest peaks of 𝑃(𝜃) correspond to DOAs of the estimated sources. The 

inversion of the estimated covariance matrix should exist.  

C. MUSIC Algorithm 

There are variety of MUSIC algorithms proposed in the literature. The original one relies 

on the characteristics of the correlation matrix of the received signal, 𝐑yy. The eigenvectors 

that span the space of 𝐑yy can be divided into the signal subspace, 𝐚(𝜃), and the noise 

subspace, 𝐕𝑛, which are orthogonal. The steering vectors correspond to the signal subspace. 

The signal/noise subspace is spanned by the eigenvectors that correspond to the 

larger/smaller eigenvalues of the correlation matrix.  

Following the derivation presented in the system model above, we can write the correlation 

matrix of the received data [28], [37], [38] as follows: 
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 𝐑yy = 𝐀(𝜽)𝐑𝑠𝑠𝐀
𝐻(𝜽) + σ𝑛

2𝐈𝑁 (2-9) 

where 𝐑𝑠𝑠 = 𝐸[𝐬(𝑡)𝐬𝐻(𝑡)] is the covariance matrix of the transmitted signals, 𝐈𝑁 and σ𝑛
2  

are the identity matrix, and the noise variance, respectively. The eigenvector, 𝐪𝑖, associated 

with (𝑁 − 𝐾) smallest eigenvalues, related to the eigenvalue, 𝜆𝑖, fulfils the following 

relation: 

 (𝐑yy − 𝜆i𝐈𝑁)𝐪𝑖 = 0, 𝑖 = 𝐾 + 1,… ,𝑁  (2-10) 

This can be further expanded as in [28] because the two subspaces are orthogonal: 

 𝐀𝐻𝐪𝑖 = 0, or.{𝐚(𝜃1), … , 𝐚(𝜃𝐾)} ⊥ {𝐪𝐾+1, … , 𝐪𝑁} (2-11) 

The noise subspace is constructed by the eigenvectors associated with the smallest 

eigenvalues, as: 

 𝐕𝑛 = [𝐪𝐾+1, … , 𝐪𝑁]  (2-12) 

When the arbitrary angle equals the DOA of an incoming signal that is 𝜃 = 𝜃𝑘 for 𝑘 =

1,2, … , 𝐾, the steering vectors, 𝐚𝐻(𝜃), are orthogonal to the noise subspace, i.e. 

 𝐚𝐻(𝜃)𝐕𝑛𝐕𝑛
𝐻𝐚(𝜃) = 0 (2-13) 

Thus, the output power as a function of DOA can be expressed as [28], [37], [38]: 

 𝑃(𝜃) =
1

𝐚𝐻(𝜃)𝐕𝑛𝐕𝑛𝐻𝐚(𝜃)
 (2-14) 

Hence the 𝐾 largest peaks of 𝑃(𝜃) correspond to DOAs of the unknown sources.  
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D. First-Norm (l1) Singular Value Decomposition (SVD) Algorithm  

The 𝑙1-SVD algorithm is based on the SVD as well as CS. First, the data matrix is 

decomposed into the signal and noise subspaces. Then, we preserve the signal subspace 

and model the problem with lower dimensions through multiple-sample sparse estimation. 

Since the received corrupted measurements depend on the actual locations which are not 

known, it is a challenging task to estimate the DOA [25], [27].  

To exploit the concept of sparsity and then apply CS to find �̂�, let {𝜃1
g
, 𝜃2

g
, … , 𝜃𝑁𝜃

g
} be a set 

that represents a sampling grid for all possible source locations where 𝜃𝑖
g
 is the 𝑖𝑡ℎ sampled 

angle and 𝑁𝜃 ≫ 𝐾 is the total number of the sampling grid. Therefore, the steering matrix 

𝐀 = [𝐚(�̃�1), … , 𝐚(�̃�𝑁𝜃)] of size 𝑁 × 𝑁𝜃 is independent of the actual locations. We can 

reformulate the problem and express it in a matrix format as [25]: 

 𝐘 = 𝐀𝐒 + 𝐍 (2-15) 

where 𝐘 = [𝐲(𝑡1),… . , 𝐲(𝑡𝑇)] and 𝐍 = [𝐧(𝑡1),… . , 𝐧(𝑡𝑇)] are matrices of size 𝑁 × 𝑇. The 

𝐾 transmitted signals are arranged to be the rows of the matrix 𝐒 of size 𝑁𝜃 × 𝑇. The 𝑛𝑡ℎ 

row equals 𝑠𝑘(𝑡) if source 𝑘 comes from �̃�𝑛 for 𝑘 = 1,2, . . , 𝐾 and zeros otherwise. Thus 

one can apply CS to find �̂�. Henceforth, the matrix 𝐒 is sparse in the spatial domain because 

it has only 𝐾 nonzero rows. Therefore, once 𝐒 is found, �̂� correspond to the peaks in 𝐒 [25], 

[27]. 

Figure 2-4 illustrates the main steps to be accomplished in the 𝑙1-SVD algorithm. First, the 

SVD is computed on 𝐘 and we keep a reduced dimension 𝐘SV = 𝐔𝒔𝐋𝐃𝐾 = 𝐘𝐕𝑛𝐃𝐾 of size 

𝑁 × 𝐾 that contains most of the signal energy. The matrices 𝐔𝑠 and 𝐕𝑠 represent the 
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subspaces of the signal and noise, respectively. The matrix 𝐋 contains the eigenvalues and 

𝐃𝐾 = [𝐈𝐾𝟎
′], where 𝟎 is 𝐾 × (𝑇 − 𝐾) matrix of zeros. Similar reduction in dimension is 

done to get 𝐒SV and 𝐍SV from S and N, respectively [25].  

 

Figure 2-4: Main steps of l1-SVD algorithm 

  

Input

• 𝐘 = 𝐲 𝑡1 , … . , 𝐲 𝑡𝑇

Step1

• Compute the SVD: 𝐘 = 𝐔𝑠𝐋𝐕𝑛
𝐻

Step2

• Keep a reduced set of size 𝑁 × 𝐾
• 𝐘SV = 𝐘𝐕𝑛𝐃𝐾 = 𝐔𝑠𝐋𝐃𝐾, 𝐒SV = 𝐒𝐕𝑛𝐃𝐾, 𝐍SV = 𝐍𝐕𝑛𝐃𝐾
• 𝐘SV = 𝐀𝐒SV + 𝐍SV

Step3

• Compute an 𝑙2-norm, �̃�(𝑙2), of each row in 𝐒SV

Step4

• Find the sparse vector that minimizes:

• �̃� = min
�̃�

𝐘SV −𝐀𝐒SV 𝑓
2 + 𝜆𝑔 �̃� 𝑙2

1

Output

• Find �̂� corresponding to the indices of the nonzeros in �̃�
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The matrix 𝐒SV is sparse in the spatial domain (column wise), hence the problem can be 

expressed as multiple-sample sparse estimation, given by: 𝐲SV(𝑘) = 𝐀𝐬SV(𝑘) +

𝐧SV(𝑘), 𝑘 = 1,2, . . , 𝐾 where 𝐲SV(𝑘), 𝐧SV(𝑘), and 𝐬SV(𝑘) are the 𝑘𝑡ℎ columns of 𝐘SV, 𝐍SV, 

and 𝐒SV, respectively. In matrix format, we can write the problem as: 𝐘SV = 𝐀𝐒SV + 𝐍SV. 

Finally, we can solve an optimization problem (step 4) based on the 𝑙2-norm, �̃�(𝑙2) , of each 

row in 𝐒SV in order to find the sparse variable ‖�̃�(𝑙2)‖
1
= ∑ √∑ (𝑠𝑖

SV(𝑘))
2

𝐾
𝑘=1

𝑁𝜃
𝑖=1 . The later 

is equivalent to the 𝑙1-norm of the computed 𝑙2-norm and 𝜆𝑔 is the regularization parameter. 

The term ‖𝐘SV − 𝐀𝐒SV‖𝑓
2 = ‖vec(𝐘SV − 𝐀𝐒SV)‖2

2 is the Frobenius norm [25]. The 

estimated DOA �̂� corresponds to the indices of the nonzero entries of �̃�. 

2.4.4 Performance Metrics 

There are many performance metrics that have been used to assess the DOA estimation 

algorithms. The root mean square error (RMSE) is one of the very important measures. In 

addition, the beamwidth, bias, probability of source resolvability, and the peak-to-ripple 

ratio (PRR) [40], [41] have been also used in the literature.  

A. Root Mean Squared Error (RMSE) 

One of the most widely performance metrics used in the literature to assess the DOA 

estimation is the RMSE. The RMSE of the estimated DOA is defined as [33]:  

 RMSE = √
∑ ∑ (𝜃𝑖 − 𝜃𝑖(𝑗))

2
𝐾
𝑖=1

𝐼𝑖𝑡𝑒𝑟
𝑗=1

𝐼𝑖𝑡𝑒𝑟𝐾
 (2-16) 
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where 𝜃𝑖(𝑗) is the estimate DOA of 𝜃𝑖 at the 𝑗𝑡ℎ Monte Carlo trial, 𝑗 = 1,2, . . . , 𝐼𝑖𝑡𝑒𝑟 with 

𝐼𝑖𝑡𝑒𝑟 being the number of Monte Carlo trails and 𝐾 is the number of sources to be localized.  

B. Beamwidth  

The beamwidth is a good performance measure which reflects the resolution of the utilized 

DOA estimation algorithm. Narrow beamwidth indicates a good resolution and vice-versa. 

The 3dB beamwidth (𝜃3𝑑𝐵), and 6dB beamwidth (𝜃6𝑑𝐵) are used.  

C. Bias 

The bias can be defined as the difference between the actual location of a source and its 

estimated location [25], [42]. Reference [37] defines the bias as the absolute value of the 

difference between the actual and the estimated locations. In this research, we use the first 

definition when calculating the bias. The bias of the 𝑖𝑡ℎ source can be expressed as:  

 𝐵𝑖𝑎𝑠𝑖 =
1

𝐼𝑖𝑡𝑒𝑟
∑(𝜃𝑖 − 𝜃𝑖(𝑗))

𝐼𝑖𝑡𝑒𝑟

𝑗=1

 (2-17) 

D. Sources Resolvability  

The probability of source resolvability is calculated based on the following definition. Two 

sources are resolvable if the absolute value of the difference between the estimated and 

actual locations for each one is less than or equal to the absolute value of the difference 

between their actual locations divided by two [3], [43]. Mathematically, this can be 

expressed as: 

 |𝜃𝑖 − 𝜃𝑖| ≤
Δ𝜃

2
 (2-18) 
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where Δ𝜃 = |𝜃2 − 𝜃1| and 𝜃𝑖 and 𝜃𝑖 are the actual and the estimated DOAs of two sources 

for 𝑖 = 1,2, respectively. 

E. The Peak-to-Ripple Ratio (PRR) 

The peak-to-ripple ratio (PRR) is defined as the ratio between the square of the amplitude 

at the estimated DOA angle to the sum of the squares of all amplitudes at other angles in 

the spectrum [40], [41]:  

 PRR =
𝐴𝑗
2

∑ 𝐴𝑖
2𝑁𝜃

𝑖=1,𝑖≠𝑗

 (2-19) 

where 𝐴𝑗 is the amplitude at the DOA estimate at the source location for 𝑗 = 1, . . , 𝐾. 

2.5 Chapter Summary 

In this chapter, a literature review for the most widely used DOA algorithms was presented. 

Then the general model for DOA estimation was demonstrated with some technical 

backgrounds including array configurations, DOA algorithms, and the most important 

performance measures of DOA estimation.  
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CHAPTER 3 DOA ESTIMATION WITH PRACTICAL 

ANTENNA ARRAYS 

Future handsets are characterized by their small size which limit the number of antennas 

and the inter-element spacing in between. This chapter mainly focuses on DOA estimation 

based on CS algorithm with practical limitations. The main objective is to strike an optimal 

balance between complexity and accuracy. A comparison between important DOA 

estimation algorithms is presented including: beamforming, Capon, MUSIC, and 𝑙1-SVD.  

The practical implementation of DOA techniques in handheld wireless devices is limited 

by the number of antennas and the inter-element spacing between them. A robust DOA 

estimation technique is needed to overcome the different impairments in the 

communication channel. The following provides a review on DOA estimation with 

practical antenna arrays followed by some preliminary results in the presence of practical 

limitations to understand the topic.   

3.1 Practical Limitations  

The inter-element spacing between the antennas is restricted by the available physical size 

in mobile handsets. Very close antenna elements suffer from the mutual coupling effect. 

While, the grating lobe problem appears if the inter-element spacing between those 

elements increases beyond half-wavelength. Under the given dimension restriction, 

researchers examined different inter-element spacing to optimize the DOA estimation. The 

authors in [23] investigated different CS-based algorithms for source localization. The 
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minimum adjacent antenna separations was evaluated by exploiting the antenna size as a 

constraint. The authors in [44] suggested antenna spacing of 0.1𝜆 with 𝜆 being the signal 

wavelength. Although the estimation was significantly enhanced, impedance matching was 

suggested to avoid the degradation with such close spacing [44]. Other researchers 

examined different configurations for distributing the antennas within the array based on a 

restriction on the minimum distance between elements [45]. It has been shown that t the 

capability of the random array enhances if a constraint on the minimum separation between 

sensors is used [45]. 

The size of the handsets also put a limit on the number of antennas. Employing more 

antennas improves the system performance. Though, mutual coupling problems arise in 

dense arrays [46], [47]. More antennas also need large storage and increase the 

measurement and processing time. Considering the physical limitations in MIMO systems 

for small antennas is among several tasks of a sub-working group within the European 

Association of Antennas and Propagation (EurAAP) on “Small Antennas” [48]. Limited 

number of publications in DOA estimation problem considered the practical limitations 

which is the main scope of this dissertation. The authors in [49] used only two antennas for 

DOA estimation. The system utilized MUSIC algorithm and only one radio frequency (RF) 

was used to reduce the complexity. A switch was used to change from one element to the 

other and to take the measurement in a very precise operation. The error in [49] was around 

10𝑜 at 5 dB and 20 dB SNR for line-of-sight and non-line-of-sight conditions, respectively. 

In [50], preprocessing the received signal and performing data reduction was used to work 

with two receive antenna elements. The maximum likelihood estimator was approximated 

to generalized least squares estimator.  
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Developing a receiver with DOA estimation capability is restricted by the physical size of 

the handsets. Thus, we discuss two practical issues; limited number of antennas and limited 

inter-element spacing in between. Based on the literature review, very few publications 

considered the practical limitations in the design of their arrays. To the best of our 

knowledge, no one has used CS under such limitation to handle the problem of DOA 

estimation. The performance is investigated for different number of antenna elements, 

using different performance criteria. The number of antennas that we evaluate is two and 

four (2 and 4-element MIMO). The case of eight elements is also examined for comparison. 

Under a given dimension restriction, different antenna arrangements are examined to 

optimize the DOA estimation. To make the analysis more general, the ratio between the 

inter-element spacing and the wavelength is considered. Extensive simulations are 

conducted to study and inspect the effect of this ratio on the system performance. In 

addition, other parameters are also investigated like the RMSE, beamwidth, bias, and 

probability of source resolvability. It is shown that MUSIC and Capon methods performs 

well at high SNR when the sources are not highly correlated. Whereas, 𝑙1-SVD does not 

require high SNR and can detect strongly correlated sources. When considering two 

antennas with practical antenna spacing limitations, simulation shows that the RMSE of 

the estimated DOAs is the same for all algorithms in the presence of one unknown source. 

Simulation concludes that working with a ratio between the wavelength and the unit inter-

element spacing of 3 realizes the smallest RMSEs and beamwidth. The 𝑙1-SVD algorithm 

is recommended due to the narrow beamwidth and high resolution.
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3.2 Evaluation and Comparison 

In this section we present some results for DOA estimation using different algorithms and 

parameters. The effects of the most important parameters presented in the system model 

are investigated; including the number of the receive antenna elements, inter-element 

spacing, number of sources, number of samples and the source separation. The results are 

based on MATLAB® simulations. In the coming chapters, the results will be augmented 

by experimental data.  

The sources are assumed to be located in the far-field with discrete uniform DOA angle 

distribution, 𝜃𝑘~𝑈[0
o , 180o]. A ULA is considered with 𝑁 sensors spaced by 𝑑 = 𝜆/2 

and the number of samples is 𝑇 = 200 samples. The search grid is uniform with 1o step 

size and 𝑁𝜃 = 181. All these parameters are fixed unless stated otherwise. The two 

practical limitations are adjusted to be: 𝑁 = 2 and 𝑑 = λ/2. The solution of the sparse 

vector based 𝑙1-SVD algorithm was conducted using CVX toolbox [51] in MATLAB®. 

To remove the location dependence on the accuracy of the estimation, the actual angle for 

each source was randomly changed in every run. All performance measures are calculated 

based on 𝐼𝑖𝑡𝑒𝑟 = 500 independent runs and then averaged. 

It is worth to mention that the 𝑙1-SVD exploits the sparsity and the SVD in the estimation 

process. Thus, it works with further reduced data compared with other algorithms 

considered in this reserach. The processed data using 𝑙1-SVD algorithm is reduced from 

𝑁 × 𝑇 into 𝑁 × 𝐾. This huge amount of reduction is realized because 𝑇 ≫ 𝐾 with 𝑇 =

200 samples and 𝐾 = 1 or 2 sources.  
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3.2.1 Comparison for DOA Estimation Algorithms 

This subsection compares the previous algorithms discussed in Section 2.4.3 in terms of 

their ability to resolve closely spaced correlated or uncorrelated sources. The number of 

sources is 𝐾 = 2 and a total of 𝑁 = 8 isotropic antenna elements are assumed. The 

resolution of the aforementioned algorithms in terms of the beamwidth at the estimated 

locations is investigated.  

  

(a) Uncorrelated sources, SNR = 10 dB (b) Uncorrelated sources, SNR = 20 dB 

  

(c) Correlated sources, SNR = 10 dB (d) Correlated sources, SNR = 20 dB 

Figure 3-1: Spatial spectra for uncorrelated and correlated sources with DOAs of 63o, 73o and N = 8  
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Figure 3-1 shows the normalized power spectrum in dB versus the estimated DOA using 

beamforming, Capon, MUSIC and 𝑙1-SVD algorithms. The SNR is 10 and 20 dB in the 

upper, lower subplots, respectively. Two sources are assumed at 63 and 73 degree. The 

sources in Figure 3-1 (a) and (b) are uncorrelated while they are correlated in Figure 3-1 

(c) and (d). Apart from beamforming, all algorithms can resolve the two uncorrelated 

sources with SNR = 10 dB as Figure 3-1 (a) depicts. The ability of Capon and MUSIC 

algorithms to resolve the sources is enhanced when the SNR = 20 dB, see Figure 3-1 (b). 

The resolution of the 𝑙1-SVD algorithm is better than MUSIC algorithm, though MUSIC 

is better in terms of reducing the side lobs. Beamforming algorithm merges the two 

uncorrelated sources even at large SNR with larger side lobes compared to other 

algorithms. In case of correlated sources, only 𝑙1-SVD algorithm resolves the two sources 

with much smaller side lobes compared with others as Figure 3-1 (c) and (d) depict.  

The accurate estimation for the DOA is not the only way for assessment. The estimated 

locations exhibit different beamwidths (sharpness) which is referred to as resolution. 

Figure 3-1 indicates that the narrowest beamwidth at the estimated locations is achieved 

using 𝑙1-SVD algorithm at SNR = 10 dB. MUSIC and Capon algorithms have comparable 

beamwidth whereas a very wide beam was realized using the beamforming algorithm. 

Although the beamforming algorithm can estimate the DOA, the beamwidth at the 

estimated angle is very wide and consequently the resolution is very poor. Additionally, 

the side lobes have very high levels. MUSIC and Capon algorithms need to have a high 

SNR as well as the sources should not be highly correlated. Whereas, 𝑙1-SVD does not 

need high SNR and can detect a strongly correlated sources. Unlike 𝑙1-SVD, MUSIC and 

Capon algorithms require sufficient number of samples [25].  
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3.2.2 Results for Localizing a Single Source 

In this part, the objective is to estimate the DOA for a single source, i.e. 𝐾 = 1. Extensive 

simulations were conducted to evaluate the statistical measures.  

A. Impact of the Signal-to-Noise Ratio 

Herein, the impact of the SNR on the system performance is studied. We plot the RMSE 

versus the SNR for each algorithm under different number of receiver antenna elements as 

shown in Figure 3-2. The RMSE decrease as 𝑁 increases for all algorithms. Though, the 

RMSE is almost the same when the SNR greater than 20 dB. For fixed 𝑁, the RMSE is 

approximately the same for all algorithms since only a single source needs to be localized.  

 

Figure 3-2: RMSE versus SNR for different N and K = 1  
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B. Impact of the Inter-Element Spacing  

To study the impact of inter-element spacing, we investigate some cases which are 

involved in practical scenarios. To make the analysis general, the ratio between the element 

spacing and wavelength 
𝑑

𝜆
=

1

8
,
1

6
,
1

4
,
1

3
,
1

2
,
2

3
, 1,

4

3
 and 2 are considered. 

The RMSE for different values of 𝑁 are shown in Figure 3-3 as a function of 𝑑/𝜆 with 

SNR = 20 dB. In each subplot, all algorithms are compared for fixed 𝑁. If 𝑑/𝜆 > 1/2, 

there will be two solutions for the estimated direction which creates ambiguity. This is 

called spatial aliasing where in addition to the main lobe of the actual direction, other lobes 

appear in the estimated spectrum; grating lobe effect. There are some oscillations in the 

RMSE for 𝑑/𝜆 > 1/2 because the ambiguity increases. The peaks of the actual location 

and the ambiguities most probably have different magnitude. Therefore, if we pick an 

ambiguous peak, error will occur. As more antenna elements are employed, left to right 

subplots, the RMSE is reduced. The 𝑙1-SVD is the algorithm that is most affected by the 

increase in 𝑑/𝜆. Regardless of 𝑁, all algorithms achieve the minimum RMSE when 𝑑/𝜆 =

1/3. Consequently working at this ratio is preferred and recommended.  

The RMSE degrades dramatically when 𝑑/𝜆 is small using 𝑙1-SVD algorithm. This can be 

figured out as: almost all antennas have the same measurements since they are very close 

to each other. In addition, the dominant factor for this degradation, especially for 𝑁 = 8, 

is the data reduction from 𝑁 × 𝑇 to 𝑁 × 𝐾.  
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Figure 3-3: RMSE versus d/λ for N = 2, 4, 8, SNR = 20 dB, and K = 1 

Figure 3-4 depicts the 𝜃3𝑑𝐵 as function of 
𝑑

𝜆
 for different 𝑀, SNR =  20 dB and 𝐾 = 1. In 

beamforming and capon algorithms, different values of 𝑁 give significant performance 

differences. While MUSIC and 𝑙1-SVD algorithms are not very sensitive to changing 𝑁. 

Decreasing 
𝑑

𝜆
 results in wider 𝜃3𝑑𝐵 because of the field coupling effect in both beamforming 

and Capon algorithms. Although, decreasing 
𝑑

𝜆
 does not cause large degradation in the 

resolution. MUSIC and 𝑙1-SVD achieve beams less than 1o, and 0.2o, for 𝑁 = 4 and 8 

respectively. When 𝑑/𝜆 > 1/2, the ambiguity increases however the beams get narrower. 

The ambiguity problem is pronounced in terms of RMSE as in Figure 3-3. Multiple peaks 

appear in the power spectrum at different angles and we calculated only the 𝜃3𝑑𝐵 of the 

maximum peak. 
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Figure 3-4: 3dB beamwidth versus d/λ for different N, SNR = 20 dB, and K = 1  

C. Impact of the Number of Receive Antenna Elements 

The effect of 𝑀 versus the SNR based on the RMSE was investigated in Part A. Figure 3-5 

shows the 𝜃3𝑑𝐵 and 𝜃6𝑑𝐵 as function of SNR for different 𝑀. The 𝜃6𝑑𝐵 is presented for 

completeness and comparison purposes. At low SNR, beamforming and capon beams 

cover the entire range of 𝑁𝜃 i.e. 180o. There is no improvement in the beamforming 

performances as the SNR increases above 5 dB. While for Capon, the beams get narrower 

as SNR increases. MUSIC is much better than beamforming and Capon even at low SNR. 

Much narrower beams are achieved using 𝑙1-SVD except for 𝑁 = 2. At this limit of the 

receive antenna elements, the beams are around 55o, 30o at SNR =  −15 dB for the 𝜃3𝑑𝐵 

and 𝜃6𝑑𝐵, respectively.  
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Figure 3-5: 3dB and 6dB beamwidth versus SNR for different N, and K = 1  

For SNR above 5 dB, the difference between the 𝜃3𝑑𝐵 and 𝜃6𝑑𝐵 is more than 15o using 

beamforming with 𝑁 = 2, and it reduces from around 24o to almost 0o at SNR = 30 dB 

using Capon. On the other hand, these differences are further reduced as 𝑁 increases and 

they reach to approximately 0o using 𝑙1-SVD with 𝑀 = 8 at SNR =  −15 dB. 

D. Impact of the Number of Samples  

There are many algorithms which depend on the correlation matrix of the received signal. 

Since we do not have the statistics, the covariance matrix is estimated using 𝑇 samples. 

Therefore, the number of samples affects the performance. Figure 3-6 shows the RMSE 

for 𝑇 = 1, 20, 50, 100, 150 and 200 samples with SNR = 20 dB using different values of 

𝑁.  
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Figure 3-6: RMSE versus T for different N when SNR = 20 dB and K = 1 
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MUSIC and 𝑙1-SVD algorithms are affected more by increasing 𝑇. The smallest beams are 

attained with 𝑙1-SVD with only one sample and 𝑁 = 4, 8, therefore, this algorithm has 

super resolution (very narrow beamwidth). Nevertheless, in the limited case i.e. 𝑁 = 2, 

MUSIC algorithm has relatively lower 𝜃3𝑑𝐵 by around 1.5o compared with 𝑙1-SVD 

algorithm using one sample.  

 

Figure 3-7: 3dB beamwidth as function of T for different N when K = 1  
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3.2.3 Results for Localizing Multiple Sources 

The system performance in the presence of multiple sources for DOA estimation is 

considered in this part. Some simulation results are presented.  

A. Impact of the Signal-to-Noise Ratio 

From now on, we assume that we have two unknown source locations i.e. 𝐾 = 2. 

Figure 3-8 displays the RMSE versus SNR for different 𝑁. We can notice that the RMSE 

is very large with 𝑁 = 2 based on all algorithms and even with SNR = 40 dB. The RMSE 

using MUSIC algorithm when 𝑁 = 2 is larger than others because 𝐾 = 𝑁. The extracted 

noise subspace form the correlation matrix should have 𝐕𝑛 = [𝐪𝐾+1, … , 𝐪𝑁] as discussed 

in Section 2.4.3-C, though the size of the correlation matrix is 2 × 2. Consequently, the 

noise subspace becomes an empty matrix and degradation occurs. Therefore, two antenna 

elements are not enough to estimate the locations of two sources.  

Apart from beamforming algorithm, using more antenna elements improve the 

performance significantly. Increasing the SNR reduces the RMSE as well, though this 

improvement is negligible beyond SNR = 20 dB using 𝑙1-SVD algorithm. After this SNR, 

simulation proves that Capon and MUSIC algorithms realize quite better RMSE.  
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Figure 3-8: RMSE versus SNR for different N and K = 2 
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Figure 3-9: RMSE versus d/λ for two sources and different N 
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(a) θ = [60o, 80o]  

 

(b) θ = [60o, 100o]  

Figure 3-10: Probability of source resolvability versus T with SNR = 10 dB (dashed lines), SNR = 20 dB (solid lines) 

and N = 4, 8 

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Beamforming

T  (samples)P
ro

b
ab

il
it

y
 o

f 
so

u
rc

e 
re

so
lv

ab
il

it
y
 

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Capon

T  (samples)P
ro

b
ab

il
it

y
 o

f 
so

u
rc

e 
re

so
lv

ab
il

it
y
 

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

T  (samples)P
ro

b
ab

il
it

y
 o

f 
so

u
rc

e 
re

so
lv

ab
il

it
y
 

MUSIC

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

T  (samples)P
ro

b
ab

il
it

y
 o

f 
so

u
rc

e 
re

so
lv

ab
il

it
y
 

L
1
-SVD

 

 

N=4,SNR=10dB

N=4,SNR=20dB

N=8,SNR=10dB

N=8,SNR=20dB

0 50 100 150 200
0

0.5

1

Beamforming

T  (samples)P
ro

b
ab

il
it

y
 o

f 
so

u
rc

e 
re

so
lv

ab
il

it
y
 

0 50 100 150 200
0

0.5

1

Capon

T  (samples)P
ro

b
ab

il
it

y
 o

f 
so

u
rc

e 
re

so
lv

ab
il

it
y
 

0 50 100 150 200
0

0.5

1

T  (samples)P
ro

b
ab

il
it

y
 o

f 
so

u
rc

e 
re

so
lv

ab
il

it
y
 

MUSIC

0 50 100 150 200
0

0.5

1

T  (samples)P
ro

b
ab

il
it

y
 o

f 
so

u
rc

e 
re

so
lv

ab
il

it
y
 

L
1
-SVD

 

 

N=4,SNR=10dB

N=4,SNR=20dB

N=8,SNR=10dB

N=8,SNR=20dB



CHAPTER 3   3.2 Evaluation and Comparison 

 

42 

 

Generally speaking, the probability of detection enhances when the sources are separated 

by 40 degrees compared with that of 20 degrees. Apart from 𝑙1-SVD algorithm, using only 

two samples is not enough to achieve a good probability of detection. However, using 𝑙1-

SVD the probabilities with only two samples are much greater than all other algorithms, 

see Figure 3-10 (a) and (b). The probability of detection reaches around 0.958 as shown in 

Figure 3-10 (b) with 𝑁 =  8 and SNR = 10, 20 dB using 𝑙1-SVD. The same probability is 

achieved using 𝑁 = 4 and SNR = 20 dB. When the sources are separated by 20 degrees, 

the probabilities achieved with 𝑙1-SVD are quite smaller. Figure 3-10 (b) shows also that 

MUSIC, 𝑙1-SVD algorithms need 150, 50 samples to achieve around 100% probability of 

detection because MUSIC algorithm relies on the correlation matrix of the received data. 

Thus, increasing the number of samples leads to better estimate for the correlation matrix. 

Capon algorithm needs large SNR and large number of samples in order to resolve the two 

sources perfectly. Beamforming algorithm has the worst performance among all 

algorithms.   

D. Impact of the Separation between the Sources  

In this part, the first source is fixed at 42 degree while the second one is changing. The bias 

is analyzed as a function of the angular separation between the two sources. For the case 

when the SNR = 10 dB (solid lines), 20 dB (dotted lines) with 𝑁 = 8 shown in Figure 3-11, 

we observe some bias for low separations. Though this bias vanishes when the SNR = 10 

dB at around 16, 14 and 12 degrees for Capon, MUSIC and 𝑙1-SVD algorithms, 

respectively. On the other hand, the bias increases with separations using beamforming 

algorithm since it is search based algorithm and it has a very wide beamwidth. Apart from 

beamforming algorithm, when the SNR increases to 20 dB all biases decrease.   
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Figure 3-11: Bias in localizing two sources versus angular separation with SNR =10 dB (solid lines), 20 dB (dotted 

lines), N = 8, and K = 2  
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cannot resolve the two sources.  
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Figure 3-12: Probability of source resolvability versus SNR: upper subplots N = 4 (solid lines), N = 8 (dashed lines), 

and lower subplots: θ = [60o, 80o] (solid lines), θ = [60o, 100o] (dashed lines) 
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respectively. When 𝑁 = 8, the performances are almost the same for all algorithms as 

shown in the fourth subplot of Figure 3-12.  

3.2.4 Source Location Dependency  

The effect of the source location (DOA) on the performance measures is evaluated. In this 

subsection, a single source is assumed to be located at all possible angles using ULA and 

with SNR = 0 dB. The RMSE, PRR, and 3dB beamwidth are used to assess the 

performance. All performance measures are plotted versus the number of antenna elements 

in the x-axis and the DOA in the y-axis, respectively. Our range of interest is as before 

[0𝑜 , 180𝑜]. We show only the results from [0o , 90o] and the results of the remaining angles 

are symmetric.  

Figure 3-13 demonsetrates that almost all algorithms realize similar RMSE and behavior 

where the RMSE increase as the source location moves toward zero degree and vice versa. 

The RMSE also decreases as 𝑁 increases.  

The PRR is also used to assess the location dependency. As the PRR increases means that 

the side lobes are so small compared with those at the estimated angles. Consequently, 

better resolution is realized. The PRR with all algorithms enhances as the DOA moves to 

the middle of the range of interest and as we increase the number of antenna elements as 

Figure 3-14 depicts. The smallest PRR is realized with beamforming algorithm then that 

with Capon algorithm. Since MUSIC algorithm assumes certain data model (orthogonality) 

and according to (2-14), large spikes occurs at the candidate source locations compared 

with the remaining angles in the estimated spectrum. This is why the PRR with MUSIC 

algorithm is larger than others. Since the 𝑙1-SVD algorithm has high resolution, large PRR 

is achieved.  
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Figure 3-13: RMSE in degree versus source location and the number of elements with SNR = 0 dB 
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Figure 3-14: PRR versus source location and the number of elements with SNR = 0 dB 
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Figure 3-15: Beamwidth in degree versus source location and the number of elements with SNR = 0 dB 
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algorithm performs SVD first then solves an optimization problem to find the DOA, the 

processing time for this algorithm is so larger than others. In addition, we use CVX toolbox 

to conduct the 𝑙1-SVD algorithm in our simulation. This also adds extra processing time 

since this toolbox is a general-purpose one designed to solve much wider variety of 

problems.  

 

Figure 3-16: Average processing time versus the number of elements 
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3.3 Chapter Summary 

In this chapter, we presented a comparative study on sparse DOA estimation with practical 

antenna arrays. Two practical issues were discussed namely: limited number of antenna 

elements and limited inter-element spacing in between. Different performance measures 

have been used in the evaluation process. This includes the RMSE, beamwidth, bias and 

the sources resolvability. The 𝑁 = 2 of a ULA case can represent a 2-element MIMO 

antenna system in current wireless terminals. Other higher order cases such as 𝑁 = 4, 8 of 

the ULA can represent MIMO antennas on larger devices (tablets, laptops, etc.) or at access 

points. We have discussed the basic ideas for different algorithms namely: beamforming, 

Capon, MUSIC, 𝑙1-SVD and compare their performances. Both Capon and MUSIC 

algorithms depend on the correlation matrix. The former requires matrix inversion, since 

the inversion of the correlation matrix appears in the denominator of the output power. On 

the other hand, MUSIC algorithm depends on the orthogonality between the noise and the 

signal subspaces where a prior knowledge of the number of sources to be localized is 

needed. MUSIC algorithm offers an improved resolution capability (narrower peaks) 

compared to beamforming and Capon. However, those two algorithms are more robust 

than MUSIC as they do not assume any specific model for the data. All algorithms have 

been examined for practical cases where we have limited number of antennas and limited 

antenna spacing. It was shown that the RMSE for all algorithms is the same using only two 

antenna elements with limited spacing in between. Working with 𝑑/𝜆 = 1/3 realizes the 

smallest RMSE with SNR =  20 dB. Accordingly, working at this ratio is preferred and 

recommended. The 𝑙1-SVD algorithm attains super-resolution since the beamwidth at the 
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estimated angle is very narrow. It also utilizes both sparsity and SVD concepts. Thus, it 

can work with a reduced data set and the processing time is reduced dramatically. 

In addition to the physical size, other factors also deteriorate the performance of DOA 

estimation including antenna directivity, antenna radiation pattern, multipath, noise, 

interference, etc. In the following chapter, the performance of DOA estimation in realistic 

channels is investigated based on experimental results. Moreover, the impact of antenna 

directionality is considered as well.   
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CHAPTER 4 EXPERIMENTAL DOA ESTIMATION USING 

SPARSE ARRAYS IN REALISTIC CHANNELS 

Many factors affect the performance of DOA estimation, including the physical size of the 

handset, antenna type, noise, multipath, and interference. The performance is severely 

affected in practical circumstances. Signal strength, received phase, false sources (due to 

multipath), and the steering matrix are all affected in realistic environments.   

Sparse arrays such as coprime arrays [52] can estimate the DOA of large number of sources 

greater than the number of antennas. Coprime arrays are a good candidate when a half-

wavelength inter-element is infeasible due to the large antenna size and in the presence of 

mutual coupling effect. Coprime arrays were proposed with ideal isotropic antennas. In 

practice, antennas have different gain and phase which are function of the DOA.  

In this chapter, the performance of coprime arrays is experimentally evaluated in realistic 

channel environments. This chapter is divided into three main sections. Section 4.1 

examines a moving coprime array for DOA estimation under sparse reconstruction 

framework. Section 4.2 uses software-defined radio (SDR) to implement a DOA-

estimation system and tests its performance. In Section 4.3, the performance is evaluated 

when the effect of antenna directivity and antenna radiation patterns are incorporated. The 

constructed systems in Section 4.1 and Section 4.2 are tested successfully in the laboratory 

with dense multipath environment. The results show that CS produces sharper beams 

compared with other algorithms. We have also shown that the complexity and the mutual 
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coupling effect are reduced using a moving coprime array. The impact of antenna 

directivity is observed as well which we discuss in details in the third section. We have 

found that the radiation pattern has a direct impact on the estimation accuracy. Due to the 

radiation pattern, it is difficult to estimate any source of an angle outside the main beam of 

the directional antenna even in noise free circumstances.  

4.1 DOA Estimation with Moving Coprime Array Configuration 

4.1.1 Introduction 

In this section, a moving coprime array configuration is implemented for DOA estimation 

under a sparse reconstruction framework. The examined array uses only one receive 

antenna element. The antenna moves along the array axis to cover certain locations 

specified by the conventional coprime array. A stepped frequency continuous wave 

(SFCW) signal over ultra-wideband (UWB) is used. A microcontroller is used to control 

the movement and the data acquisition from the vector network analyzer to the computer. 

Two main advantages arise out of this approach. First, the complexity in terms of the total 

number of antenna elements and receivers needed to implement the array is reduced. 

Second, the mutual coupling effect is eliminated since only one antenna is present at a time. 

On the other hand, there is a waiting time to collect the measurements. In addition, power 

consumption and mechanical control issues have to be addressed. Experimental results in 

real scenarios were conducted to validate the sparse configuration. It is shown that coprime 

sampling is superior to uniform sampling with the same number of elements. The impact 

of the antenna directivity is highlighted. 



CHAPTER 4  4.1 DOA Estimation with Moving Coprime Array Configuration 

 

54 

 

Two ULAs with 𝑀1 and 𝑀2 antenna elements spaced by 𝑀2 and 𝑀1 units respectively are 

used to construct the conventional coprime array where 𝑀1 and 𝑀2 are coprime integers 

and the unit inter-element spacing is half-wavelength [52]. Coprime arrays has the ability 

to resolve 𝒪(𝑀1𝑀2) sources using 𝑀1 +𝑀2 − 1 elements [52], [53], [54], [55]. The 

optimal coprime pair is the one that has values of 𝑀1 and 𝑀2 as close as possible [56], [57].  

A technique to increase the degrees-of-freedom (DOFs) was proposed based on a moving 

coprime array in [58]. Based on narrowband estimation scheme, the redundant lags in the 

difference coarray were considered to reduce the complexity for wideband DOA estimation 

[59]. The work presented some experimental results with 𝑀1 = 2,𝑀2 = 5 coprime 

microphone array system [59]. A frequency band of 5 𝑘𝐻𝑧 to 10 𝑘𝐻𝑧 giving a minimum 

wavelength of 𝜆𝑚𝑖𝑛 = 3.4 𝑐𝑚 was considered [59]. The performance was enhanced as the 

unit inter-element spacing increases beyond 𝜆𝑚𝑖𝑛/2 since the aperture size has enlarged. 

However, it was degraded when the unit inter-element spacing becomes greater than 

𝜆𝑚𝑎𝑥/2 due to the aliasing problems. The error was reduced from 0.1𝑜 with spacing of 

𝜆𝑚𝑖𝑛/2 to around 0.03𝑜 with 1.6𝜆𝑚𝑖𝑛/2 spacing at 0 dB SNR [59].  

Most of the previous works have examined the performance using simulations. Only few 

papers did experimental studies. Few researchers considered the case of a moving coprime 

array in DOA estimation as in [58] and in imaging such as these in [60], [61], [62]. To the 

best of the authors’ knowledge, no one has used a moving coprime array for DOA 

estimation under the sparse reconstruction framework. 

The suggested moving coprime array in this section is equivalent to the conventional 

coprime but one antenna element is active at a time. While the data acquisition time is 
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longer, the complexity is reduced and mutual coupling effects are eliminated. Experimental 

results using only a single snapshot were performed to evaluate the suggested 

configuration. Performance comparison of the proposed work against that of a ULA is 

considered with very limited number of antenna array elements. 

The rest of the section is organized as follows. The signal model is presented in 

Section 4.1.2 in which the coprime array and the utilized moving coprime array are 

discussed. The waiting time required by the suggested approach is discussed in 

Section 4.1.3. Experimental results are discussed in Section 4.1.4 and Section 4.1.5 

summarizes this section. 

4.1.2 Signal Model with Moving Coprime Array 

After recalling the structure of the coprime array, the suggested moving coprime array is 

presented followed by the far-field based DOA estimation model.  

A. Coprime Array 

Coprime arrays can be constructed using two linear subarrays. One subarray has 𝑀2 

elements spaced by 𝑀1 units and the other has 𝑀1 elements spaced by 𝑀2 units. The two 

numbers, 𝑀1 and 𝑀2, are selected to be coprime integers and 𝑀1 < 𝑀2. The unit inter-

element spacing is 𝑑 = 𝜆/2. The elements of this array [33], [52] are located at: 

 ℙ = {𝑀1𝑛𝑑|0 ≤ 𝑛 ≤ 𝑀2 − 1} ∪ {𝑀2𝑚𝑑|0 ≤ 𝑚 ≤ 𝑀1 − 1} (4-1) 

The two ULA subarrays share the first element, hence the total number of elements 

becomes 𝑁 = 𝑀1 +𝑀2 − 1. Moreover, the aperture size, 𝐷, of the array is 𝐷 =

(𝑀2 − 1)𝑀1𝑑. Coprime arrays can estimate large number of sources greater than the 

number of their antenna elements. Basically, the number of unique lags and the number of 
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consecutive lags in the difference coarray give an upper bound on the achievable DOFs 

[33]. The difference coarray can be obtained by taking all pairwise differences of the array 

physical element locations [34]. Since DOA estimation depends on the correlation of the 

received signal, the virtual element locations which appear in the difference coarray can be 

exploited instead of just the original element locations [52]. Figure 4-1 (a) shows an 

example of coprime array with 𝑀1 = 2 and 𝑀2 = 3. The array has a hole-free difference 

coarray as Figure 4-1 (b) illustrates. As a result, the virtual array is equivalent to a ULA 

that extends from [−4𝑑: 4𝑑]. More details about the difference coarray are presented in 

Section 5.3.  

B. Moving Coprime Array  

A moving coprime array is used to reduce the number of antennas and receivers. This can 

be achieved using a single antenna that moves and stops along the array axis to take the 

measurement at ℙ positions. Therefore, only one antenna element is active at one of the 𝑁 

positions. The accuracy of the antenna position is moved in a precise manner using a high 

resolution stepped motor and microcontroller. The microcontroller receives the instructions 

from a PC where a code is used to define ℙ according to the values of 𝑀1 and 𝑀2. More 

details are presented in Section 4.1.4. Once the moving antenna covers all locations, the 

data collected is organized in a column vector or a matrix in case of single or multiple 

snapshot(s), respectively.  
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(a) Coprime array with M1 = 2 and M2 = 3 

 

(b) Corresponding difference coarray 

Figure 4-1: Coprime array structure and the corresponding difference coarray 

C. Far-Field Based DOA Estimation for a Single Frequency via Sparse Representation 

The sources maybe located in the far-field, near-field or a mix of both fields. In the far-

field, all antenna elements have the same DOA for each source. Sources at distance greater 

than 
2𝐷2

𝜆
 where 𝜆 is the signal wavelength are considered to be in the far-field [28]. For the 

near-filed case, the range and angle variations across the array elements are very evident. 

In this work, the sources are assumed to be located in the far-field.  
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Assume that 𝐾 uncorrelated narrowband signals located in the far-field imping on a 

coprime array from angles 𝜽 = [𝜃1, 𝜃2, … , 𝜃𝐾]
𝑇 as Figure 4-2 depicts. The received signal 

at the output of the array over 𝑇 samples can be expressed as: 

 𝐲(𝑡) = 𝐀(𝜽)𝒔(𝑡) + 𝐧(𝑡), 𝑡 ∈ {𝑡1, 𝑡2, . . . , 𝑡𝑇} (4-2) 

where 𝒔(𝑡) is the transmitted signal of the 𝐾 sources, 𝐀(𝜽) is the steering matrix of size 

𝑁 × 𝐾 and 𝐧(𝑡) is the white Gaussian complex noise with zero-mean. The received 

discretized signal is 𝐲(𝑡) = [𝑦1(𝑡1), 𝑦2(𝑡2),… , 𝑦𝑁(𝑡𝑇)]
𝑇. Let 𝐩 = [𝑝1𝑑, 𝑝2𝑑,… , 𝑝𝑁𝑑]

𝑇 

denote the positions of the sensors, where 𝑝𝑖𝑑 ∈ ℙ, for 𝑖 = 1, … , 𝑁. For the given model, 

the steering vectors can be expressed as: 

1 2 43 N

θk

sk(t)

k
th

 source

 p1          p2                p3            p4                pN  

 

Figure 4-2: System model for DOA estimation  
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 𝐚(𝜃𝑖) = [exp(
𝑗2𝜋𝑝1𝑑 sin(𝜃𝑖)

𝜆
) ,… , exp (

𝑗2𝜋𝑝𝑁𝑑 sin(𝜃𝑖)

𝜆
)]

𝑇

 (4-3) 

The received signal can be written in a matrix format as: 

 𝐘 = 𝐀(𝜽)𝐒 + 𝐍 (4-4) 

where 𝐘 = [𝐲(𝑡1),… . , 𝐲(𝑡𝑇)], 𝐍 = [𝐧(𝑡1),… . , 𝐧(𝑡𝑇)] are matrices of size 𝑁 × 𝑇 and 𝐒 =

[𝒔1(𝑡), 𝒔2(𝑡), … , 𝒔𝐾(𝑡)]
𝑇 is a matrix of size 𝐾 × 𝑇. The covariance matrix of the received 

signal is given by: 

 𝐑𝐘𝐘 = 𝐸[𝐘𝐘𝐻] = 𝐀𝐑𝐒𝐒𝐀
𝐻 + 𝜎𝑛

2𝐈𝑁 (4-5) 

where 𝐑𝐒𝐒 = 𝐸[𝐒𝐒
𝐻] = 𝑑𝑖𝑎𝑔([𝜎1

2, 𝜎2
2, . . . , 𝜎𝐾

2]) represents the covariance matrix of the 

transmitted signal and 𝜎𝑘
2 is the signal power of the 𝑘𝑡ℎ source, 𝑘 = 1,2, … , 𝐾.  

Assume that the first element in 𝐩 is used as a reference, hence 𝑝1𝑑 = 0. The (𝑖, 𝑗)𝑡ℎ entry 

in the covariance matrix of the received signal 𝐑𝐘𝐘 with lag 𝑝𝑖𝑑 − 𝑝𝑗𝑑 produces virtual 

sensors of a difference coarray, ℂ𝑃, resulting from 0 ≤ (𝑖, 𝑗) ≤ 𝑁 = 𝑀1 +𝑀2 − 1, as in 

[33], [63]: 

 ℂ𝑃 = {𝐳|𝐳 = 𝐮 − 𝐯, 𝐮 and 𝐯 ∈  ℙ} (4-6) 

Coprime arrays can estimate large number of sources greater than the number of antenna 

elements used. The achieved DOFs of the array is determined by the number of unique lags 

and the number of consecutive lags generated from the difference coarray [33]. Coprime 

arrays can generate 𝑀1𝑀2 unique or distinct lags [33], [52], [63], [64]. 
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D. DOA Estimation Algorithms  

There are different DOA estimation algorithms. For example, MUSIC algorithm excels in 

performance if the sources to be estimated are uncorrelated. Prior processing, like spatial 

smoothing [34], can be applied to reduce the correlation. Sparse reconstruction via CS 

algorithm can be also applied for DOA estimation since the problem in hand is sparse in 

the spatial domain. The two algorithms realize different DOFs because sparse 

reconstruction’s algorithms exploit all unique lags whereas MUSIC algorithm exploit half 

of the number of consecutive lags in the difference coarray [33]. In the following, two 

DOA estimation approaches namely CS and MUSIC algorithms are adjusted in the context 

of MLPA. 

To perform DOA estimation, we rely on the difference coarray in order to increase the 

number of estimated sources as virtual antenna locations are used instead of the physical 

locations.  

1. Sparse reconstruction via CS 

Based on the presented DOA model, vectorizing the covariance matrix of the received 

signal yields a vector 𝐳 that amounts to the received data coming from an extended coarray 

aperture as [33], [63], [64]:   

 𝐳 = vec(𝐑𝐘𝐘) = �̃�𝐛 + 𝜎𝑛
2�̃�𝑁2 = 𝐁𝐫  (4-7) 

where �̃� = [�̃�(𝜃1), �̃�(𝜃2), . . . , �̃�(𝜃𝐾)], of size (𝑁2 × 𝐾), �̃�(𝜃𝐾) = 𝐚∗(𝜃𝐾)⨂𝐚(𝜃𝐾) with ⨂ 

denotes the Kronecker product, 𝐛 = [𝜎1
2, 𝜎2

2, . . . , 𝜎𝐾
2]𝑇, �̃� = vec(𝐈𝑁), 𝐁 = [�̃�, �̃�] and 𝐫 =

[𝐛𝑇 , 𝜎𝑛
2]𝑇. The operator (∗) denotes the complex conjugate without transpose. Since the 

virtual source signal model is a single snapshot of 𝐛, the rank of the noise free covariance 
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function 𝐑𝐳𝐳 is one. In this case, the sources become fully correlated. Consequently, 

subspace-based DOA estimation such as MUSIC algorithm cannot be used directly when 

more the one source are present in the scene [52].  

The formula above is equivalent to (4-2) but with larger measurement matrix, �̃�. This is 

why coprime arrays can estimate 𝒪(𝑀1𝑀2) sources using 𝑁 elements. The previous 

formula can be solved as an optimization problem 

 �̂� = min
𝐫
‖𝐫‖𝟎 subject to ‖𝐳 − 𝐁𝐫‖2 < 𝜖 (4-8) 

where 𝜖 is a user specified bound [33], [63], [64]. Sparse signal recovery using Lasso can 

be used to solve such problems based on the 𝑙1-norm. Let 𝐁g be constructed using steering 

vectors of all possible angles with grid search taken as: 𝜃1
g
, 𝜃2

g
, . . . , 𝜃𝑁𝜃

g
, where 𝑁𝜃 ≫ 𝐾 

represents the total number of grid search angles. The Lasso objective function can be 

expressed as [63]: 

 �̂�g = min
𝐫g

[
1

2
‖𝐳 − 𝐁g𝐫g‖2 + 𝜆𝑡‖𝐫

g‖1] (4-9) 

where 𝜆𝑡 is a regularization parameter. For complex data, the previous equation can be 

rewritten as [63]: 

 �̂�g = min
𝐫g

[
1

2
‖�̃� − �̃�g𝐫g‖

2
+ 𝜆𝑡‖𝐫

g‖1] (4-10) 

where �̃�g = [real(𝐁g)𝑇, imag(𝐁g)𝑇]𝑇 and �̃� = [real(𝐳)𝑇 , imag(𝐳)𝑇]𝑇. The locations of 

the nonzero indices within the sparse estimated vector, �̂�g, denote the estimated DOAs and 

their values give the corresponding signal power. In addition, the last entry represents the 

estimated noise variance.  
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2. MUSIC algorithm with spatial smoothing  

To apply spatial smoothing, the measurements that are based on the consecutive lags are 

extracted from 𝐳 and arranged in a new vector 𝐳1 where the redundant lags within the 

consecutive lags are averaged [33]. Since the coprime array has a symmetric difference 

coarray around the origin, the number of consecutive lags, 𝑙𝑐𝑔, is odd. The set of 

consecutive lags in the difference coarray is [−𝑙𝑥, 𝑙𝑥] where 𝑙𝑥 = (𝑙𝑐𝑔 − 1)/2. We can 

rewrite [34]: 

 𝐳1 = �̃�1𝐛 + 𝜎𝑛
2�̃�1 (4-11) 

where �̃�1 is a steering matrix of size 𝑙𝑐𝑔 × 𝐾 like that of a ULA with 𝑙𝑐𝑔 antenna elements 

located at {−𝑙𝑥𝑑: 𝑙𝑥𝑑} and �̃�1 is a vector of length 𝑙𝑐𝑔 × 1 with “1” at the (𝑙𝑥 + 1)
𝑡ℎ location 

and the remaining entries are zeros. This new virtual array is then divided into 𝑙𝑥 + 1 

subarrays, 𝐳1𝑖, 𝑖 = 1,2, … , 𝑙𝑥 + 1. The subarrays overlap and have elements at positions 

(−𝑖 + 1 + 𝑘)𝑑 for 𝑘 = 0,1, … , 𝑙𝑥. Each subarray, 𝐳1𝑖, has covariance matrix 𝐑𝐳1𝑖𝐳1𝑖 =

𝐳1𝑖𝐳1𝑖
𝐻 . By considering all subarrays, the averaged covariance matrix which has a full-rank 

is given as [34]: 

 𝐑𝐳𝐳
𝑠𝑠 =

1

𝑙𝑥 + 1
∑ 𝐑𝐳1𝑖𝐳1𝑖

𝑙𝑥+1

𝑖=1

 (4-12) 

Therefore, MUSIC algorithm can be implemented directly on the spatially smoothed 

matrix 𝐑𝐳𝐳
𝑠𝑠  and 𝑙𝑥 DOFs can be realized. After performing eigenvalue decomposition, the 

eigenvectors that span the space of 𝐑𝐳𝐳
𝑠𝑠  can be divided into signal subspace, 𝐔𝑠, and noise 

subspace, 𝐕𝑛, which are orthogonal. The signal subspace is spanned by eigenvectors that 

corresponds to the 𝐾 largest eigenvalues, while the noise subspace is spanned by the 
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eigenvectors that corresponds to the 𝑙𝑐𝑔 − 𝐾 smallest eigenvalues of 𝐑𝐳𝐳
𝑠𝑠 . We can perform 

eigenvalue decomposition on 𝐑𝐳𝐳
𝑠𝑠  as [28]:   

 𝐑𝐱𝐱
𝑠𝑠 = [𝐔𝑠 𝐕𝑛] 𝚺 [

𝐕𝑛
𝐻

𝐔𝑠
𝐻] (4-13) 

where 𝚺 is a diagonal matrix that contains the eigenvalues in descending order. Since the 

steering vectors of the sources span the signal subspace, this makes them orthogonal to the 

noise subspace as well, i.e. 𝐚𝐻(𝜃)𝐕𝑛𝐕𝑛
𝐻𝐚(𝜃) = 𝟎. Therefore, the estimated spectrum of 

MUSIC algorithm can be expressed as [28] :  

 𝑃MUSIC(𝜃) =
1

𝐚𝐻(𝜃)𝐕𝑛𝐕𝑛𝐻𝐚(𝜃)
 (4-14) 

where 𝜃 is an arbitrary scanning angle. The 𝐾 largest peaks of 𝑃MUSIC(𝜃) correspond to 

estimated DOAs of the unknown sources.  

4.1.3 Latency (Waiting Time) 

In a moving coprime array, offline processing is performed after collecting the data at all 

locations. Let 𝑡𝑐 be the waiting time required to collect the data at each location. For a 

given aperture size, 𝐷, the latency can be defined as the time required to move the antenna 

along the required aperture and collect the data at 𝑁 positions and is given as: 

 𝑡𝐷 =
𝐷

𝑣𝑠
+ 𝑁𝑡𝑐 (4-15) 

where 𝑣𝑠 is the speed of the moving antenna. We can rewrite the previous formula as:  

 𝑡𝐷 =
(𝑀2 − 1)𝑀1𝑑

𝑣𝑠
+ (𝑀1 +𝑀2 − 1)𝑡𝑐 (4-16) 
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In our experiments, we use 𝑡𝑐 = 8 to 10 𝑠𝑒𝑐 and 𝑣𝑠 can be calculated from the data sheet 

of the stepper motor and other related factors. For simplicity, we assume 𝑣𝑠 = 1 𝑚/𝑠, 𝑡𝑐 =

10 𝑠𝑒𝑐, and we use 𝑓 = 10 𝐺𝐻𝑧 which makes the unit inter-element spacing be 𝑑 = 𝜆/2 =

0.015 𝑚. The latency is plotted versus the total number of antenna elements in Figure 4-3 

for different coprime pair. We can conclude that the latency increases with 𝑁 and 𝐷 

according to (4-15).    

 

Figure 4-3: Latency versus the total number of antenna elements  
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4.1.4 Experimental Setup and Discussion of Results 

Experiments were carried out to in the Telecommunication Research Lab (TRL) at King 

Fahd University of Petroleum and Minerals (KFUPM). The setup, shown in Figure 4-4, 

consists of a calibrated vector network analyzer (VNA) Agilent N9918A, PC, 

microcontroller and two broadband horn antennas (Type JXTXLB-10180) in addition to 

some tools for distance and angle adjustments. One fixed horn antenna represents the active 

source to be localized and the other moving antenna is the receiving element in the coprime 

array. The high gain and directivity of the horn antennas are useful for reducing the 

multipath effect. A microcontroller is used to move the antenna along the array axis such 

that it covers the required positions specified by ℙ in (4-1). The source is located 5 𝑚 away 

from the array but at different angles and both antennas were at a height of 120 𝑐𝑚. The 

source is located in the far-field. One source is considered at a time and can be in one of 

three different locations (Tx1, Tx2 and Tx3). The horizontal distance shown in Figure 4-4 

f are 𝑥1 = 65 𝑐𝑚, 𝑥2 = 32.5 𝑐𝑚, and 𝑥3 = 195 𝑐𝑚. While the vertical distance between 

the array axis and the transmitter’s axis is 𝑦1 = 5 𝑚. The actual angles of Tx1, Tx2 and 

Tx3 are approximately 𝜽 = [−7.4, 3.7, 24.4] degrees respectively where antenna one is 

used as a reference, see Figure 4-4. Those angles demonstrate the dependence of the source 

location and the capability of the array to estimate the DOA. At each location, the 𝑆21 

parameters are recorded using the VNA. SFCW signal over ultra-wideband (UWB) from 

30 𝑘𝐻𝑧 to 10 𝐺𝐻𝑧 with a total of 1000 equally spaced frequencies. Lower frequency range 

than the supported by the horn antenna are used to check the accuracy if we operate the 

antenna out of band.  
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Figure 4-4: Moving coprime array and scene layout 

Figure 4-5 shows a photo of the measurement setup in the Lab. The closer antenna 

represents the transmitter or the source while the antenna of the moving coprime array is 

mounted on a sliding bar above two tripods. The number of elements in the moving coprime 

array is adjusted to 𝑁 = 4 with 𝑀1 = 2 and 𝑀2 = 3. The effect of increasing the number 

of elements to 𝑁 = 8 is also considered with 𝑀1 = 4 and 𝑀2 = 5. The unit spacing is 

adjusted to 𝑑 =
𝜆𝑚𝑖𝑛

2
= 0.015 𝑚. The minimum wavelength is used to find the unit inter-

element spacing because it will fulfil the condition of 𝑑 ≤ 𝜆/2 for all frequencies [59]. A 

comparison with a ULA using four antenna elements is considered. A search grid of 𝑁𝜃 =

721 incident angles is formed in the full angle range [−90𝑜 , 90𝑜] with grid interval of 

𝜃𝑖
g
= 0.25𝑜.  
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Figure 4-5: Measurements setup 

The normalized spectrum is plotted versus both the estimated angles and the operating 

frequency as shown in Figure 4-6 and Figure 4-7 for moving coprime array and ULA, 

respectively. The figures in the first, second, and third rows represent DOA estimation for 

Tx1, Tx2 and Tx3, respectively. Moving coprime arrays are used in Figure 4-6 (a) and (b) 

with 𝑁 = 4 and 𝑁 = 8 elements, respectively. Whereas, a ULA is use in Figure 4-7 (a) 

and (b) with 𝑁 = 4 and 𝑁 = 8 elements, respectively. MUSIC algorithm is used for DOA 

estimation for the ULA whereas Lasso is used when the moving coprime array is utilized. 

MUSIC algorithm can be also used for moving coprime arrays but a prior processing is 

needed [33].   

Figure 4-6 (a) illustrates the performance of a moving coprime array using 𝑁 = 4 elements 

with 𝑀1 = 2 and 𝑀2 = 3. Below 1 𝐺𝐻𝑧 and around 10 𝐺𝐻𝑧, there are ambiguities because 
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the antenna/system bandwidth does not support these frequencies. Another interesting 

observation is the presence of some interfering sources at frequency around 2 𝐺𝐻𝑧. 

The estimation performance in case of the ULA is worse compared with moving coprime 

array because of the large DOFs provided by the coprime array. It is evident from the third 

rows of the plots that the width of the estimated spectra around the true angle is large. Large 

degradation appears in the performance of Tx3 because of the high directionality of the 

utilized horn antennas hence some position within the array cannot see Tx3.  

The impact of increasing the number of antenna elements to 𝑁 = 8 where 𝑀1 = 4 and 

𝑀2 = 5 is shown in Figure 4-6 (b). In this scenario, the estimation is more robust as the 

normalized spectrum width around the true angles is very narrow and sharp. Furthermore, 

better estimation is realized for Tx3 because more locations were considered. In this case, 

adding more positions allows the array to receive some power from Tx3 and thus makes 

up for the high directionality of the antennas.  

The performance using moving coprime array with 𝑁 = 4 elements is better than that using 

a ULA with 𝑁 = 8 elements as Figure 4-6 (a) and Figure 4-7 (b) illustrate. This is due to 

the fact that the moving coprime array realizes a total of nine virtual lags as explained in 

Section 4.1.2-A.  
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(a) N = 4 (b) N = 8 

Figure 4-6: Normalized spectrum versus frequency and estimated DOA using Lasso algorithm for moving coprime 

array  
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(a) N = 4 (b) N = 8 

Figure 4-7: Normalized spectrum versus frequency and estimated DOA using MUSIC algorithm for a ULA 

4.1.5 Concluding Remarks  

In this section, a moving coprime array under sparse reconstruction has been constructed 

for DOA estimation. Based on the proposed configuration both complexity and mutual 
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coupling effect can be reduced. In addition, experimental results based on single snapshot 

were conducted to evaluate the advantage proposed array configuration over the ULA 

configuration. It is shown that the beamwidth is narrower for the case of coprime sampling. 

The impact of antenna directivity was observed which is an important topic for further 

future research. 

Due to the scanning delay and the off line data processing of the moving coprime array, 

more flexible system is suggested and tested in the next section  

4.2 Sparse DOA Estimation Based on Software-Defined Radio 

Platform 

In this section, sparse DOA estimation system is implemented on an SDR platform for a 

linear array. Three different DOA estimation algorithms are implemented. The 

performance of the implemented system is experimentally evaluated using two different 

array configurations.  

4.2.1 Introduction 

Using multiple antennas, the best DOA estimate can be found by comparing the signals 

from these antennas and their phase shifts. Optimizing the arrangements of these antennas 

can greatly increase the accuracy of the system and decrease the cost of a radio DF system. 

In this section, SDR platform is implemented for sparse DOA estimation based on sparse 

array configurations. The results show that it is practically possible to estimate the location 

of more sources without increasing the number of antennas using sparse arrays. 
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DOA estimation requires expensive hardware as well as capable processing units that can 

estimate the angle within the desired time. The use of SDR allows researchers to implement 

DOA estimation systems with relative ease. This is because such devices can be controlled 

using computers and the received signals can be easily analyzed. One type of these devices 

is the universal software radio peripheral designed by National Instruments (NI-USRP). 

This specific type of SDR can be controlled using laboratory virtual instrument engineering 

workbench (LabVIEW).  

The number of antenna elements in the array affects the resolution and accuracy of the 

estimation [65]. Furthermore, the shape and size of the antenna also affect the range of 

frequencies for proper DOA estimation [65]. The elements of the array can be placed 

linearly, rectangularly, or even in a circle [66]. Another factor needs to be taken into 

consideration is the inter-element spacing between elements, which can be uniform as in 

the ULA, or nonuniform as in the interesting sparse systems.  

Most of the researchers have used ULA based on SDR platform [1], [2] [67]. For instance, 

the authors in [2] used a ULA in which they placed four NI-USRPs to estimate the angle 

in order to locate illegal repeaters. It is also possible to implement an array with limited 

number of antennas. Such a system was presented in [1] and [67] where two NI-USRPs 

were utilized for estimating a single source where an error of around 3𝑜 was obtained. The 

purpose of using fewer antennas is reducing the cost of the system. In [67], three different 

environments were tested and the system was only capable of properly estimating angles 

greater than 30𝑜. In addition, the system estimated the real angle and its reflection. Such a 

system can estimate the location of one target at most. This is because a ULA of 𝑁 elements 

can only estimate 𝑁 − 1 sources. 
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Instead of using a ULA, some researchers used a sparse antenna array. In sparse arrays, the 

inter-element spacing is not uniform, and it can be represented as an arrangement of ULAs 

but with missing elements. One of these arrangements is shown in [53], where two ULAs 

were interleaved and used with the number of antennas in the two arrays being coprime 

integers. The system was able to estimate the correlations, signal spectra, and DOA at a 

significantly higher resolution compared with ULA. Another example is presented in [68], 

where a sparse array was used to construct a virtual ULA from the data collected but with 

fewer antennas. The number of estimated sources was more than the number of the array 

elements, which is a very important advantage of sparse arrays over ULAs. Despite the 

possibility of many array configurations [69], [70], most of the research in this area is done 

using a ULA with different number of antennas as can be seen in [71]–[78].  

One of the most commonly used algorithms in literature is MUSIC, which is an Eigen-

structure which assumes orthogonality between the noise and the signal subspaces [67]. 

The authors in [66] showed that the simulation done using MUSIC delivered improved 

performance because the noise was reduced significantly. While in [67], they showed that 

using MUSIC algorithm results in an efficient estimation. Because of all these advantages, 

MUSIC algorithm is widely used [1], [73], [74], [79]. Capon algorithm was compared with 

MUSIC algorithm in [67]. It has a good estimation capability though the estimated sources 

should be uncorrelated. Both Capon and MUSIC algorithms realized narrower beamwidth 

at the estimated angle compared with that using Bartlett algorithm. 

Some studies in literature relied on software simulations, some relied on hardware 

implementation, and other combined the two approaches. The authors in [66] used only 

simulations using MATLAB® and LabVIEW. On the other hand, the authors in [73] first 
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simulated the system and then implemented it on a Peripheral Component Interconnect 

(PCI) eXtensions for Instrumentation (PXI) platform designed by NI. The advantage of 

building the system after simulation is to make sure it can operate in imperfect situations 

where the presence of noise and multipath might affect the results. 

From the discussion above, it is clear that there is a need for a simple, practical, and 

experimentally-tested system. This part uses SDR to implement a DOA-estimation system 

and test its performance. In our research, we use several SDRs (NI-USRP-2950R), and a 

PXI platform to implement the system based on coprime array structure. The advantage of 

such array is that we can achieve results similar to those obtained from a ULA with more 

elements, which reduces the cost of the system. We use LabVIEW to control the USRPs, 

process the received signals, and perform DOA estimation via sparse reconstruction, 

MUSIC, and Capon algorithms. Finally, we compare the results we obtained with others 

based on ULAs. 

This section is organized as follows. Section 4.2.2 presents the considered model in which 

we discuss the main features of the SDR and LabVIEW software. Section 4.2.3 shows the 

experimental setup, while Section 4.2.4 discusses the results. Conclusion remarks for the 

second section are presented in Section 4.2.5. 

4.2.2 System Model  

We implement a general DOA estimation system based on SDR platform for a linear array. 

The system is validated using a ULA and sparse array (coprime array). Similar model to 

the one shown in Figure 4-1 (a) is considered. All receive antenna elements are active at 

the same time. Coprime array presented in Section 4.1.2-A is used in this part.  
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A. Software-Defined Radio  

A software-defined radio (SDR) is a system for radio communication in which components 

like mixers, amplifiers, and filters are implemented using software instead of hardware. 

There are different USRP modules of different specifications. The USRP-2950R delivers 

a unified hardware and software solution for fast prototyping high-performance wireless 

communication systems. With the flexible hardware architecture and the LabVIEW 

integrated design flow, researchers can prototype faster and significantly shorten time to 

results. You can model a wide range of advanced research applications that comprise 

MIMO, RF, compressive sampling, spectrum sensing, beamforming, and DF.  

The USRP-2950R has a frequency range of 50 𝑀𝐻𝑧 to 2.2 𝐺𝐻𝑧 with a maximum 

bandwidth up to 40 𝑀𝐻𝑧 and I/Q sampling rate up to 200 𝑀𝑆/𝑠𝑒𝑐 as shown in Table 4-1. 

The table contains information about the bandwidth, frequency range along with the 

number of available input/output channels. The USRP has two transmit ports and two 

receive ports as Figure 4-8 depicts. Therefore, we can have a 2x2 MIMO system within the 

USRP. The USRP-2950R has a GPS-disciplined oscillator (GPSDO), which permits us to 

lock the internal clocks to a GPS reference signal, synchronize using GPS timing 

information, and query GPS position information if needed.  

Table 4-1: NI-USRP 2950R specifications  

Bandwidth Frequency Range Maximum I/Q Rate Input/output Channels 

40 MHz or 120 MHz 50 MHz to 2.2 GHz 200 MS/sec Two 
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Figure 4-8: NI-USRP 2950R module 

B. LabVIEW Software 

A LabVIEW is a system design platform developed by NI. It comprises of a user interface 

part and a programming part. The user interface part works with a drag and drop palette of 

visualization blocks, such as buttons, input fields, knobs, graphs, numerical displays etc. 

The programming part is done graphically, similar to flowchart programming or block-

based programming, where individual functions is divided into blocks with dedicated input 

and outputs. LabVIEW has a big amount of signal generation, data acquisition, and analysis 

function libraries. It also has a text-based component for programming called MathScript 

which uses a syntax compatible with MATLAB®. If you run a LabVIEW application, the 

host PC will run the application in real-time, taking in and processing any requested 

measurements from external interfaces such as the USRP module.  

4.2.3 Experimental Setup 

We examined two array configurations. The first system uses a ULA with four antennas 

while the second system uses a sparse array. In the former, two SDRs (NI-USRP-2950R) 

are used to estimate the DOA. Two antennas are connected to each of these USRPs using 

their RX ports. A synchronization device, called the NI-OctoClock-G CDA-2990, is 
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connected to the USRPs, see Figure 4-9. To ensure synchronization of the frequencies of 

both USRPs, we connected their REF IN ports to the OctoClock. This is important to ensure 

that the differences in the phases of the received signals are caused only by the difference 

in their positions. The transmitted antenna is connected to another USRP using the Tx port, 

and is also connected to the Octoclock. The carrier frequency of the signal is set to 1.2 𝐺𝐻𝑧. 

We placed the receiving antennas with inter-element spacing equal to half the wavelength 

of the signal, which makes the space between two antennas 12.5 𝑐𝑚, to avoid spatial 

aliasing. The transmitter was at least 1.5 𝑚 away from the array in all different tested 

angles, to make sure that the signal is received as a plane wave, see Figure 4-10. The 

number of samples is 𝑇 = 16384 samples. Both the array and the transmitter were 1 𝑚 

above the ground. The experiments were conducted in the TRL at KFUPM. 

 

Figure 4-9: The whole system installed on a rack  

 

 

OctoClock → 

USRPs → 

, NI-PXI 

platform) 
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As shown in Figure 4-10, the array uses monopole antennas (Vert 400: 

144 𝑀𝐻𝑧, 400 𝑀𝐻𝑧, 1200 𝑀𝐻𝑧 tri band vertical antenna). The transmitter, on the other 

hand, is a broadband horn antenna (Type JXTXLB-10180 and bandwidth of 1 − 18 𝐺𝐻𝑧), 

which helps to direct the signal toward the receiving antennas and reduce the multipath 

effects. 

 

(a) ULA 

 

(b) Coprime array 

Figure 4-10: DOA estimation setup  

  

←, Source (Tx) 

𝜃 ≈ −34𝑜 

Source (Tx), → 

𝜃 ≈ 45𝑜 

(Rx) ULA → 

←, Coprime array 

(Rx)  
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The described system, including the receivers (Rx) and the transmitter (Tx), is controlled 

through a developed LabVIEW code. The first part of the code defines the transmitter. A 

single-tone signal can be used as the unmodulated message with 10 𝑘𝐻𝑧. The second part 

is for the receiving USRPs. Before running the code, we place the transmitter at a reference 

angle 0𝑜 and perform phase calibration. The corresponding received signals before and 

after phase calibration are shown in Figure 4-11. This is achieved by comparing the phases 

of the received signal by all antennas, and eliminating the differences in the phases. The 

first antenna, the one on the left, is considered as a reference as shown in Figure 4-1 . The 

received phases before and after calibration are shown in Figure 4-12. After phase 

calibration, the signals are passed through a filter and then they are fed into DOA estimation 

algorithms. To get smooth results, we plot the average of the last 20 estimated angles. The 

second experiment is performed using coprime array which has two subarrays with 𝑀1 =

2 and 𝑀2 = 3 as Figure 4-1 (a) depicts.  
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(a) Before phase calibration 

 

(b) After phase calibration 

Figure 4-11: The received signals before and after phase calibration 
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(a) Received phase 

 

(b) Calibrated phase 

Figure 4-12: The phase of the received signals when the transmitter at zero degree  

4.2.4 Results and Discussion 

First, we have tested the system capability to estimate different angles at different 

directions for both configurations. A single transmitter with a single tone at approximately 

−34𝑜 is assumed in the first scenario and the signal is received with a ULA of four 

elements. Figure 4-13 (a) and (b) show the normalized spectra of Capon and MUSIC 

algorithms, respectively.  
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Figure 4-13: The normalized spectrum using different algorithms 

The same transmitter is located then at approximately 45𝑜 from a coprime array in the 

second scenario where the normalized spectrum of Lasso algorithm is demonstrated in 

Figure 4-13 (c). The beamwidth at the estimated angle using Lasso algorithm is 

significantly sharper than those produced by MUSIC and Capon. However, all algorithm 

realize the same error. Although, Capon and MUSIC have similar estimated angles, 

MUSIC algorithm has better resolution, i.e. smaller beamwidth at the estimated angle. 

Second, we have tested more angles at diverse directions from the arrays. The results 

obtained from the ULA and the coprime array are presented in Figure 4-14 where we plot 

the estimated angles versus the actual angles for a single transmitter using MUSIC and 

Lasso algorithms. The error in the estimated angles becomes negligible as we get closer to 

0𝑜. Angles near +90𝑜 are not estimated accurately due to a strong multipath component, 
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though this is not the case at −90𝑜. Since the error is not oscillating, it can be calibrated 

easily as we have done at 0𝑜. The main cause of error is most probably related to the dense 

surrounding environment and the monopole antenna elements receive the received signal 

and the reflected ones from all directions. Strong multipath components were received in 

some cases due to the structure of the room, steel ceil, and other reflectors affected the 

system. The error is also due to the noise where the selected Tx’s position (far-field) is 

SNR dependent. The error at angles less than −50𝑜 (negative angles) is a bit large where 

the source is close to the reference antenna. In this case, the estimated angle is affected 

because the received signals at the output of the remaining three elements become very 

week compared with that of the reference antenna, especially for the coprime array. In 

addition, the source at these angles is close to the wall of the lab, which also affects the 

performance.  
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Figure 4-14: Estimated angles versus actual angles based on ULA and coprime array for a single transmitter 

4.2.5 Concluding Remarks  

In this section, we have implemented DOA estimation system based on SDR (NI-USRP-

2950R) platform for a linear array. The system was validated using a ULA and coprime 

array. The advantage of the system based on coprime array is the flexibility and the ability 

to locate more sources than possible using ULAs, and reducing mutual coupling of the 

receiving antennas. We took into account the issues of synchronizing the USRPs and 

calibrating the phases of the received signals. The implemented system was tested in a 

laboratory with dense multipath environment and the results with both configurations were 

compared. MUSIC, Capon, and Lasso algorithms have been successfully implemented for 

DOA estimation. The results show that CS produces sharper beams in the normalized 

spectrum than those produced by the other algorithms.  
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4.3 Prototyping Coprime Arrays with Directive Radiation Pattern  

This section proposes a sparse DOA estimation method for directive coprime arrays. The 

complex radiation patterns are extracted using an electromagnetic simulator and then 

incorporated in the DOA estimation. Three designed antenna arrays with monopole and 

patch elements are experimentally evaluated with the help of our SDR system implemented 

in Section 4.2. Three DOA algorithms are compared including Capon, MUSIC, and Lasso 

based on CS. It is shown that when the DOA increases in the elevation plane, the 

performance degrades faster when using real antenna elements with directive patterns. 

4.3.1 Introduction 

Recently, increasing the number of estimated sources in terms of DOA have received more 

attention. Sparse arrays can efficiently handle such situation including but not limited to 

nested arrays [34] and coprime arrays [52]. Coprime arrays for DOA estimation was 

proposed mainly for omnidirectional antenna. The array has antennas with a unit gain and 

fixed phase in all directions. In practical, antennas usually have different gain and different 

phase which is a function of the DOA.  

The effect of the antenna radiation pattern has been studied in [80]. The authors used 

different radiation pattern within a ULA in MIMO systems to alleviate the DOA 

uncertainty. Opposite radiation patterns were used namely broadside and monopole-like 

pattern. The performance was evaluated the in terms of the spectral efficiency. The DOA 

was assumed to be the angle between the transmitter and the receiver and no DOA 

estimation algorithms was utilized. 
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Antenna arrays with different polarization were proposed in [81], [82]. In [81], diverse 

polarization was considered in which maximum likelihood, adapted angular response, and 

MUSIC algorithms were adjusted to include the polarization effect. The steering vectors 

were adjusted to include the effect of the diverse polarization [82]. UCAs with ten [81] and 

eight [82] antenna elements were exploited to estimate up to two sources. The authors in 

[82] used linear frequency modulation signals with 50 𝑀𝐻𝑧 bandwidth at 𝑓𝑐 = 10 𝐺𝐻𝑧, 

and SNR = 20 dB. Whereas, the array in [81] has a diameter of 6.67𝜆 with 𝜆 being the 

wavelength of the signal.  

Mutual coupling compensation based on experimental results [83], [84] and simulated data 

[85] applied for DOA estimation was also proposed. The authors in [83] used 7-elements 

UCAs of radius 9 𝑐𝑚 and the operation frequency was 1.88 𝐺𝐻𝑧. While in [84], the authors 

used a 4-element ULA with monopole antennas spaced by 𝜆/4 and operated at 2.4 𝐺𝐻𝑧. 

A horn antenna that can work on range of 1.5 − 18 𝐺𝐻𝑧 was employed as a transmitter 

and the error in estimating the azimuth angle was 0.8𝑜 and 0.72𝑜 for the elevation angle. 

DOA estimation was achieved using MUSIC [83], [84], [85] and Bartlett algorithms [83].  

Antenna radiation pattern was exploited for DOA estimation by considering directive [86], 

[87], [88] and sectorized [89] antennas. Both simulated [86], [88] and experimental data 

[88], [87], [89] were evaluated. A 4-element UCA with a rectangular microstrip patch 

antenna at 1.0 𝐺𝐻𝑧 was designed and simulated using electromagnetics simulator [88]. A 

reconfigurable leaky-wave antennas [89] at 2.4 𝐺𝐻𝑧 ISM band were exploited [87], [89]. 

A ULA with 8-elements spaced by 0.2𝜆 was utilized in the presence of three sources [86]. 

The estimated angles were attained through MUSIC algorithm [86] and the three-stage 

simplified least squares [89]. A RMSE of around 2𝑜 was realized at 10 dB SNR [89]. It has 
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been shown that perfect DOA estimation is realized using directional antennas only if the 

direction of received signal is within the radiation pattern of main beam [86]. 

Experimental results for sparse DOA estimation with coprime arrays were developed in 

[59], [90]. The effect of radiation pattern is implicitly involved through the experiments. A 

total of eight receive antenna elements were employed in [59]. In addition, ten uncorrelated 

acoustic sources at 5 𝑘𝐻𝑧 to 10 𝑘𝐻𝑧 and 𝜆𝑚𝑖𝑛 = 3.4 𝑐𝑚 at speed of 340 𝑚/𝑠 were 

evaluated. Moving coprime array was proposed in [90]. In that approach, a single horn 

antenna was used as a transmitter. One horn antenna working as a receiver was moved to 

cover and implement coprime arrays of four and eight antennas. Moreover, a ULA with 

four elements was also implemented and examined. Thus, the mutual coupling effect and 

complexity were reduced. However, the signal processing unit (DOA estimation) has to 

wait for a certain delay which is proportional the number of antenna elements in coprime 

array.   

In this section, sparse DOA estimation with directive coprime arrays is proposed. Coprime 

array for DOA estimation was mainly proposed for omnidirectional antenna. This part 

extends the model for directive antennas. The radiation pattern for a coprime array is 

extracted using high frequency structure simulator (HFSS). Then, a coprime array with 

four number of antenna elements is exploited for DOA estimation under sparse 

reconstruction framework. In addition, printed array configurations with monopole and 

patch elements are evaluated and experimentally tested based on an SDR platform. The 

results show that the performance is affected by the radiation pattern even in noise free 

environment. In noisy environment, better performance is realized based on coprime array 
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compared with a ULA with eight antenna elements. The estimation of the latter is 

performed using Capon and MUSIC algorithms.  

The rest of the section is organized as follows. The system model is presented in 

Section 4.3.2 in which we incorporate the effect of the antenna radiation pattern. 

Section 4.3.3 presents the evaluated coprime array. In Section 4.3.4, the gain and phase 

response of the array in Section 4.3.4 are demonstrated. Section 4.3.5 presents simulation 

and results based on the simulated arrays with HFSS simulator and 4.3.6 presents 

experimental results based on the fabricated configurations. Finally, Section 4.3.7 

concludes the section.  

4.3.2 DOA Signal Model with Directive Antennas 

The model of DOA estimation using isotropic antenna elements is the same as the one 

presented in Section 4.1.2. In this section, antenna elements are not isotropic anymore.  

The gain of a directed antenna is a function of the angle of arrival. Let the possible angle 

of arrival be in the following range [𝜃𝑚𝑖𝑛: 𝜃𝑖
g
: 𝜃𝑚𝑎𝑥] where 𝜃𝑖

g
 represents the step in degree. 

Thus, the gain of an array with 𝑁 antennas can be formulated as:   

 𝐆(𝜽) = [

𝐠1(𝜽)

𝐠2(𝜽)
⋮

𝐠𝑁(𝜽)

] 
(4-17) 

where 𝐠𝑖(𝜽) is a row vector which denotes the complex gain of the ith antenna and can be 

written as:  

 𝐠𝑖(𝜽) = [𝑔𝜃𝑚𝑖𝑛(𝜃𝜃𝑚𝑖𝑛), … , 𝑔0(𝜃0), … , 𝑔𝜃𝑚𝑎𝑥(𝜃𝜃𝑚𝑎𝑥)] (4-18) 
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To include the radiation pattern, the columns of the steering matrix should be modified as: 

 𝐀𝑑(𝜽) = [
𝑔1(𝜃1)𝑒

𝑗2𝜋𝑝1𝑑 sin(𝜃1)
𝜆 ⋯ 𝑔1(𝜃𝐾)𝑒

𝑗2𝜋𝑝1𝑑 sin(𝜃𝐾)
𝜆

⋮ ⋱ ⋮

𝑔𝑁(𝜃1)𝑒
𝑗2𝜋𝑝𝑁𝑑 sin(𝜃1)

𝜆 ⋯ 𝑔𝑁(𝜃𝐾)𝑒
𝑗2𝜋𝑝𝑁𝑑 sin(𝜃𝐾)

𝜆

] 
(4-19) 

The received signal in (4-4) is modified according to the new steering matrix, 𝐀𝑑(𝜽), and 

finally DOA estimation is performed based on that.  

4.3.3 Array Configuration 

Structured sparse arrays such as coprime arrays were proposed as an alternative 

configuration for those implemented through computer search. Coprime arrays have a 

closed form expression for the array structure and the maximum number of sources that 

can be estimated. Those arrays are also attractive to reduce the mutual coupling effect since 

the antennas have large inter-element spacing in between. Working with antennas of large 

size greater than half-wavelength creates a difficulty in implementing a ULA.  

The prototype coprime array [52] constructed as in Section 4.1.2-A and shown in 

Figure 4-1 is considered. A total of 𝑁 = 4 elements is used where 𝑀1 = 2,𝑀1 = 3, and an 

aperture size of (𝑀2 − 1)𝑀1𝑑. The unit inter-element spacing is 𝑑 = 𝜆/2. The array has a 

hole-free difference coarray, [−4𝑑: 4𝑑].   

For comparison purpose, coprime array with four elements is compared with a ULA with 

equal number of elements (four). In addition, a ULA with five antenna elements is 

considered to compare against equal aperture size. 
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4.3.4 Gain and Phase Responses  

The gain of an isotropic antenna is distributed equally and uniformly in all directions 

(angles). Such antenna has also constant phase response. Directed antennas radiate their 

power in a certain direction and have small power or nulls in some cases in other directions.  

A. Simulated Arrays  

In this part, a coprime with four patch elements as shown in Figure 4-1 (a) is designed that 

is operating at 𝑓𝑐 = 5.7 𝐺𝐻𝑧 at the Antennas and Microwave Structure Design Laboratory 

(AMSDL)1 at KFUPM. Then the radiation patterns were extracted using HFSS simulator. 

Almost all antennas have similar gain response which is approximately constant between 

−10𝑜 to 10𝑜 as shown in Figure 4-15 (a).  

The gain is reduced as we go toward −90𝑜 or 90𝑜. On the other hand, the antennas exhibit 

constant phase response over a wider range around −50𝑜 to 50𝑜 as Figure 4-15 (b) 

demonstrates. We can also observe similar phase response for the two antennas located at 

the edges. Due to such responses, performance degradation is expected for different DOAs.   

  

                                                 
1 The design was done by Mr. Ahmed Oweis and supervised by Dr. Mohammad Sharawi 
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(a) Gain (b) Phase 

 

(c) Design 

Figure 4-15: Characteristics and layout of coprime array of patch elements  

B. Fabricated Arrays 

The array designed in Section 4.3.4-A cannot be experimentally tested with our system 

implemented in Section 4.2 because it requires a frequency larger than the capability of the 

NI-USRP-2950R. That USRP can handle up to 2.2 𝐺𝐻𝑧. For this reason, we reduced the 

frequency to 𝑓𝑐 = 2.1 𝐺𝐻𝑧. Again with the help of our colleges at AMSDL, three different 

configurations were designed that were a coprime array, a 4-element ULA, and a 5-element 

ULA. Monopole and Patch antenna elements were used to implement each array 

configuration. Therefore, we have a total of six different configurations. The radiation 
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pattern of all configurations were extracted using HFSS. All configurations were fabricated 

at Pioneer Company in Jeddah, Saudi Arabia.   

The two fabricated coprime arrays are illustrated in Figure 4-16 together with the 

corresponding gain and phase responses. The fabricated 4-elemenet and 5-element ULAs 

with monopole and patch elements are shown in Figure 4-17 and Figure 4-18, respectively.  
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 (a) Monopole (a) Patch 

Figure 4-16: Gain and phase responses for a printed coprime array with monopole and patch elements 
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 (a) 4-Element ULA (a) 5-Element ULA 

Figure 4-17: Gain and phase responses for printed ULAs of monopole elements  

High directional gains are realized using patch elements where almost all elements have 

similar response. In addition, the phase is almost constant within [−50𝑜 , 50𝑜]. On the other 

hand, the antenna elements have wider and oscillating gain responses using monopole 

elements for all configurations and the phase response is changing across the whole range. 
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 (a) 4-Element ULA (a) 5-Element ULA 

Figure 4-18: Gain and phase responses for printed ULAs of patch elements  

4.3.5 Simulation and Results Based on Simulated Arrays 

To evaluate the sparse DOA estimation with directive coprime arrays, the following 

parameters are considered. The configuration presented in Section 4.3.4-A is considered. 

Lasso algorithm is used to estimate the DOAs as in [33]. Four narrowband and uncorrelated 

sources, 𝐾 = 4, located in the far-field are assumed to impinge on a coprime array with 

four antenna elements where 𝑀1 = 3 and 𝑀2 = 2. A total of 𝑇 = 1000 samples are 
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collected and a total of 𝐼𝑖𝑡𝑒𝑟 = 1000 independent trials are used. The unit inter-element 

spacing is adjusted as 𝑑 = 𝜆/2 and the regularized parameter is 𝜆𝑡 = 0.85 as in [33]. The 

grid search is uniformly distributed from [−90: 𝜃𝑖
g
: 90] with grid search angle of 𝜃𝑖

g
=

0.25𝑜. All these parameters are fixed unless stated otherwise. We start by presenting 

examples to show the estimation capability of the utilized algorithms under different DOA 

range of arrivals. Then Monte Carlo simulations are illustrated.   

If we have a prior knowledge about the number of sources, the 𝐾 largest values in the 

estimated spectrum represent the estimated DOAs. A threshold can be applied to find the 

largest 𝐾 values and then the corresponding DOAs. However, large and very close values 

at a candidate DOA can cancel some desired angles that have small values. This happens 

when the algorithm has low resolution which results in a wide beamwidth at the estimated 

DOAs. As a result, the accuracy of the estimation is degraded if we rely on the threshold. 

For this reason, a grid refinement can be utilized to overcome this problem [25].  

In the normalized estimated spectrum, a window of an odd number of grid points, 𝛿, is 

used to refine the grid around each candidate DOA which correspond to (𝛿 − 1) × 𝜃𝑖
g
 

degree. First, we pick the largest value in the estimated spectrum and then force (𝛿 − 1) 

grid points around it to zero and form a new estimated spectrum. So only one estimated 

angle within a total of 𝛿 grid points centered at the largest value is assumed. The process 

is repeated until we cover all 𝐾 largest values. The grid refinement makes the estimated 

spectrum less noisy and sparser.  
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A. Radiation Pattern in Noise Free Environment   

Noise free scenario is used to show the effect of including the radiation pattern of the 

antennas on the performance. Three different ranges of arrivals are considered including: 

𝜃~𝑈[−40𝑜 , 40𝑜] = −40𝑜 , −13𝑜 , 13𝑜 , 40𝑜, 𝜃~𝑈[−50𝑜 , 50𝑜] = −50𝑜 , −17𝑜 , 17𝑜 , 50𝑜, 

and 𝜃~𝑈[−60𝑜 , 60𝑜] = −60𝑜 , −20𝑜 , 20𝑜 , 60𝑜. The normalized spectra versus the DOA 

is plotted in Figure 4-19 using Lasso algorithm [33]. The figures on the left represents the 

spectra of the isotropic antennas. While those on the right represents the spectra of the 

directed antennas. It is evident that perfect estimation is realized with isotropic antennas 

for all cases. On the other hand, not all sources have been resolved correctly with directed 

antennas due to the radiation pattern. The maximum errors in estimating a source among 

the assumed four sources with isotopic and directive antennas are 0.5𝑜 and 2.5𝑜, 

respectively.   

B. Grid Refinement  

The size of the window has an effect on the performance which we investigate in 

Figure 4-20 for 𝜃~𝑈[−40𝑜 , 40𝑜]. The evaluated window sizes are: 3, 5, 7, 9, and 11 grid 

points which correspond to 0.5𝑜 , 1𝑜 , 1.5𝑜 , 2𝑜 , and 2.5𝑜 respectively around the peak. The 

angles are estimated using Lasso algorithm [33]. The RMSE is reduced as we increase 𝛿 

at low SNR. This effect disappears at high SNR. For equal window size, the RMSE using 

the directed antennas is greater than that of the isotropic antennas as shown in lower and 

the upper subplots respectively. 
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Isotropic Antennas Directive Antennas 

  

(a) θ~U[-40o,40o] 

  

(b) θ~U[-50o,50o] 

  

(c) θ~U[-60o,60o] 

Figure 4-19: Normalized spectra using Lasso versus DOA in noise free environment for coprime array with 

isotropic and directive antennas 
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Figure 4-20: RMSE versus SNR when θ~[-40o, 40o] using Lasso algorithm for (a) isotropic and (b) directed antenna 

C. Signal to Noise Ratio and DOA Algorithms 

The RMSE versus SNR is plotted in Figure 4-21 for different algorithms when 𝛿 = 11 grid 

points. The sources are assumed to be uniformly distributed as 𝜃~𝑈[−40𝑜 , 40𝑜] (solid 

lines), 𝜃~𝑈[−50𝑜 , 50𝑜] (dashed lines), and 𝜃~𝑈[−60𝑜 , 60𝑜] (dotted lines). The results 

using the isotropic and the directed antennas are generated using Lasso algorithm for 

coprime array. A ULA with eight antennas is also included for comparison purpose in 

which MUSIC and Capon algorithms [28] are used in the estimation.  
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Figure 4-21: RMSE versus SNR for different source distributions (a) θ~[-40o, 40o] and (b) θ~[-50o, 50o] based on 

different algorithms with δ = 11  

As the separation between the four sources increases, the RMSE increases due to the effect 

of the radiation pattern and vice versa. The RMSE based on the isotropic antennas for a 

certain source distribution is smaller than that of the directed antennas for coprime arrays 

because of the radiation pattern. Coprime array performs better than the ULA at low SNR 
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The ULAs with the isotropic antennas have similar behavior using both MUSIC and Capon 

algorithms.   

D. Number of Samples  

The RMSE versus the number of samples is plotted in Figure 4-22. The four sources in 

Figure 4-22 (a) and (b) are equally spaced between [−40𝑜 , 40𝑜] and [−50𝑜 , 50𝑜], 

respectively. In each subplot, we are comparing the isotropic antennas versus the directive 

antennas with Lasso and MUSIC algorithm with SNR = 0 dB. It is evident that the RMSE 

decreases as the number of samples increases. The RMSE using Lasso is smaller than that 

with MUSIC algorithm because CS algorithm can exploit all unique lags in the difference 

coarray whereas MUSIC can use half of the number of consecutive lags. Due to the large 

variations in the gain and phase responses of the considered antennas, see Figure 4-15, the 

effect of the radiation pattern on the performance is more significant when the sources are 

between [−50𝑜 , 50𝑜] as illustrated in Figure 4-22 (b).  
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Figure 4-22: RMSE versus number of samples for different source arrivals based on different algorithms with δ = 11  

E. Unit Inter-Element Spacing  

In this part, we examine the effect of the unit inter-element spacing, 𝑑. The one suggested 

with the conventional coprime array, 𝑑 = 𝜆/2, is compared with 𝑑 = 2𝜆/5. The 

performance in Figure 4-23 (a) and (b) is achieved using MUSIC and Lasso algorithms, 

respectively. Reducing the unit inter-element spacing affects the radiation pattern of the 
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elements. This leads to higher mutual coupling and consequently the RMSE is increased 

as Figure 4-23 demonstrates.  

 

Figure 4-23: RMSE versus SNR when θ~[-50o, 50o] using (a) MUSIC and (b) Lasso algorithms with isotropic and 

directive antennas for different unit inter-element spacing, K = 4 sources, and δ = 11  
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4.3.6 Simulation and Results Based on Fabricated Arrays 

The configurations presented in Section 4.3.4-B are considered next. Simulation results for 

the fabricated arrays are presented taken into account the complex radiation pattern and 

then some experimental results are conducted to verify the effect of antenna directionality.  

A. Monopole versus Patch Elements Based on Simulated Data 

The main parameters are adjusted as in Section 4.3.5. The radiation pattern of all designs 

are extracted using HFSS. Then we incorporate their effect on the DOA estimation. In 

Figure 4-24, the RMSE versus the SNR based on the coprime array of isotropic, monopole, 

and patch elements are compared using Lasso and MUSIC algorithm. Within each subplot, 

the DOA is different that is the four sources are equally spaced within 𝜃~𝑈[−40𝑜 , 40𝑜], 

𝜃~𝑈[−50𝑜 , 50𝑜], and 𝜃~𝑈[−60𝑜 , 60𝑜]. The RMSE is improved as SNR increases and 

the performance using isotropic elements is better compared with directive elements due 

to the radiation pattern as Figure 4-24 (a)-(c) and (b)-(d) confirm. The RMSE with patch 

elements is smaller than that with monopole elements due to the directivity, see Figure 4-24 

(c) and (d). Since the phase response of the patch elements is almost constant from −50𝑜 

to 50𝑜, the accuracy degrades as the sources are located at angles beyond this range. 

Although, the sources are located within the range of the constant phase when 

𝜃~𝑈[−40𝑜 , 40𝑜], the algorithm gives larger RMSE because of the smaller separation in 

between. This is not the case of the monopole elements where the phase response is 

changing across the whole range. Therefore, larger RMSE is achieved when the separation 

between the sources increases due to the larger range of phase fluctuation.  
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Figure 4-24: RMSE versus SNR of coprime array of monopole and patch elements for different source distributions 

using Lasso and MUSIC algorithms with δ = 11  

B. Monopole versus Patch Elements Based on Experimental Data 

We also conduct some experiments to assess the estimation accuracy of the printed arrays 

presented in Section 4.3.4-B. The system implemented in Section 4.2.3 is used but at 𝑓𝑐 =

2.1 𝐺𝐻𝑧. The experiments to located a single source are repeated three times for all 

configurations and the remaining parameters are as in Section 4.2.3. We also do phase 

calibration every time we restart the system. All configurations are tested in the TRL at 

KFUPM. Figure 4-25 depicts the setup for 5-element ULA of patch antenna elements. 
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Figure 4-25: Experimental setup with 5-element ULA using patch antenna elements 

In Figure 4-26, we plot the estimated angle versus the actual angle in degree for all 

fabricated arrays using Lasso algorithm. The coprime array with patch elements realizes 

the best performance. The 4-element ULA with monopole elements has got the largest error 

since it has the smallest number of virtual lags that is [−3𝑑: 3𝑑]. The maximum error is 

around 15𝑜 at the left edge. In addition, the monopole elements receive the signal from all 

directions which is not the case with patch elements. Coprime array and 5-element ULA 

on the other hand have virtual lags [−4𝑑: 4𝑑] and both require equal aperture size. 

However, coprime array uses only four elements. There are many scatters in the Lab which 

are the main cause of error since they introduce strong multipath components. The error in 

the negative range is due to multipath and the received signal strength at a specific angle, 

which SNR is dependent. Moreover, the transmitter in this range is closer to the reference 

element and far from the remaining three elements. Consequently, the received signals at 

the output of the three elements are weaker which degrade the accuracy. In other words, 

the far-field assumption is not fulfilled.  
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Figure 4-26: Estimated DOA versus the actual angle using six different printed arrays with monopole and patch 

antenna elements 

4.3.7 Concluding Remarks  

In this section, sparse DOA estimation with directive coprime arrays is proposed. Six 

different designs were evaluated and experimentally tested. We have found that the 

radiation pattern has a direct impact on the estimation accuracy. For example, when the 

separation between the sources increases, the RMSE increases due to the effect of the 

radiation pattern and vice versa. Due to the radiation pattern, it is difficult to estimate any 

source of an angle outside the main beam of the directional antenna even in noise free 

circumstances. Since we have information about the radiation patterns of the antennas, can 

we do pattern compensation?. We shall answer this interesting question in our future 

research. 
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Based on our discussion in this chapter, the designers always have some limitations. 

Therefore, an array configuration that requires a small aperture size and at the same time it 

has an efficient DOA estimation capability is desired. In the next chapter, a novel array 

configuration that fulfills the aforementioned characteristics is proposed.  
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CHAPTER 5 GENERALIZED MULTI-LEVEL PRIME 

ARRAYS FOR SPARSE SAMPLING  

Sensor array configurations such as coprime and nested arrays have attracted many 

researchers because they increase the DOFs. For example, in DOA estimation, the number 

of sources that can be estimated is greater than the total number of sensors. This chapter 

proposes a multi-level prime array (MLPA) configuration for sparse sampling that can 

further increase the DOFs. The proposed array uses multiple uniform linear subarrays 

where the number of sensors in the subarrays are pairwise coprime integers. The inter-

element spacing between the sensors is formulated as a scaled multiple of half-wavelength 

where the subarrays share only their first element. For a fixed number of sensors, multiple 

MLPA configurations can be constructed by controlling the number of sensors in the 

subarrays or by adjusting the inter-element spacing. For a given number of sensors, the 

proposed array has smaller aperture and achieves more unique and consecutive lags 

compared with coprime arrays. The proposed configuration has limited holes in the 

difference coarray. The analytical expressions of both the difference coarray and the 

aperture size are derived. Simulation results confirm the advantage of the proposed 

configurations compared to the two level coprime arrays. 

5.1 Introduction 

A sensor array consists of a set of sensors that are arranged in a certain geometry. Sensor 

arrays have been considered in spatial domain for range and angle estimation. Sensor arrays 
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have many civilian and military applications in radar and wireless communications such as 

beam steering, target tracking, interference suppression, and DOA estimation [28], [38], 

[39].  

With 𝑁 uniformly distributed sensors, 𝑁 − 1 sources can be estimated using subspace-

based techniques such as MUSIC and ESPRIT [16]. The problem of estimating more 

sources than the number of sensors has attracted many researchers. This problem can be 

handled using configurations that exploit the difference coarray which is the set of pairwise 

differences of the array physical sensor locations. Basically, the achieved DOFs, which is 

a measure of the maximum number of sources that can be estimated, is determined by the 

number of unique lags and the number of consecutive lags of the difference coarray, and 

the aperture size of the array [33]. Array configurations such as the minimum redundancy 

arrays [91], minimum hole arrays [92], nested arrays [34], and coprime arrays [52] provide 

a solution to estimate more sources than the number of sensors. 

Minimum redundancy arrays (MRAs) [91] form a class of non-uniform arrays which have 

the longest difference co-arrays. However, the sensor locations and DOFs of such arrays 

cannot be computed in a closed form for any arbitrary number of sensors and they are found 

through computer search. The authors in [93] combined several MRA subarrays in a 

structured form called nested MRA (NMRA). The new array achieves hole-free difference 

coarray where the sensor locations and the achievable DOFs can be found in a closed form 

provided that the parameters of those MRA subarrays are known. However, it requires 

large aperture size. 
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Nested array are usually constructed using two collinearly ULAs. The resultant array has 

a hole-free difference coarray. Those arrays achieve 𝒪(𝑁2) DOFs using 𝑁 sensors [34]. 

However, the inter-element spacing is very small and consequently the sensors suffer from 

mutual coupling effect [34]. Nested arrays were extended to multi-level nested arrays in 

[34]. Fourth-level nested array that has 𝒪(𝑁4) DOFs using 𝑁 sensors was proposed in [94]. 

The authors in [95], [96], [97] modified the structure of the nested array and proposed a 

super nested array. The array has the same features as the conventional nested array but 

with reduced mutual coupling.  

On the other hand, coprime arrays are constructed using two ULAs having 𝑀1 sensors in 

the first subarray and 𝑀2 sensors in the second one where 𝑀1 and 𝑀2 are coprime integers 

[52], [98], [99]. The inter-element spacing of the first and second subarrays is 𝑀2, and 𝑀1 

units, respectively where the unit inter-element spacing is half-wavelength. This spacing 

reduces mutual coupling between the elements. Coprime arrays have a DOFs 𝒪(𝑀1𝑀2) 

using 𝑀1 +𝑀2 − 1 sensors [33]. The achieved DOFs can be increased by doubling the 

number of sensors in the subarray that has smaller number of elements [63], compressing 

the inter-element spacing of one subarray [33] and/or introducing a displacement between 

the two subarrays [64]. Other operations were also conducted on coprime arrays to increase 

the DOFs [100], [101]. In [102], both the difference and the sum coarray were exploited to 

increase the DOFs. While in [56], [57], a method to minimize and select the required 

number of sensors for coprime arrays was proposed. It has been shown that the optimal 

coprime pair is the one that has values of 𝑀1 and 𝑀2 as close to each other as possible. The 

DOFs can also be enhanced by interpolating the holes that appear in the difference coarray 

using a tractable convex framework [103].  
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A configuration based on three subarrays was presented in [104], [105], [106]. The authors 

in [104] proposed an array configuration that uses a ULA in addition to the conventional 

coprime array with no overlap in between. The array was optimized by adjusting the sensor 

locations of the additional ULA. The array achieved larger number of consecutive lags 

compared with two-level, four-level nested arrays and coprime arrays. However, the 

aperture size of the array is large [104]. Three subarrays with coprime inter-element 

spacing was used in [105], [106]. The used subarrays share more than one sensor and no 

structured way was presented to determine the sensor locations.  

This chapter proposes a generalized multi-level prime array (MLPA) configuration that 

utilizes multiple uniform linear subarrays or levels where the number of sensors in the 

subarrays is pairwise coprime integers. The word “level” refers to “the number of 

subarrays” and we use both interchangeably. The inter-element spacing between the 

sensors in each subarray equals to the number of the sensors of another subarray scaled by 

half-wavelength such that the subarrays share only their first sensor. The inter-element 

spacing and sensor selection are very important and have a direct impact on the achievable 

DOFs since they determine the entries of the difference coarray. Based on the achievable 

DOFs, this chapter presents a procedure to select the configuration that maximizes the 

number of unique lags. For a given number of sensors, the proposed array requires a small 

aperture size and achieves more unique and consecutive lags compared with coprime 

arrays. This is attractive in antenna designs and array implementations where we have 

constrains in the physical size. In addition, the proposed configuration has limited holes in 

the difference coarray which is similar to the advantage provided by nested arrays. The 

analytical expression of the difference coarray and aperture size are derived. We also 
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consider some special configurations when the number of sensors in the subarrays satisfies 

certain relations. Coprime arrays represent a special case of the proposed array. It is worth 

to mention that recently, the authors in [107] extended the work in [33] for multi-level 

coprime arrays. The DOFs was enhanced by dividing the difference coarray into several 

multi-resolution coarrays that are uniformly spaced by a unit or multiple units of half-

wavelength. Their proposed array requires very large aperture size. Moreover, the authors 

did not develop a structured way to divide the difference coarray. Our approach is very 

different in the sense that we generalized the prime array concept itself to multi-levels.  

When deciding on the array configuration, there are different criteria to consider: the 

number of unique lags, number of consecutive lags, and aperture size. While providing the 

maximum number of unique lags and consecutive lags, nested arrays require larger aperture 

size and the minimal spacing between the sensors could result in mutual coupling. While 

coprime arrays are inferior when it comes to number of unique and consecutive lags, they 

minimize the mutual coupling effects. The proposed MLPA is a generalization to the 

concept which allows for more control on the design of the array and the expected 

performance characteristics. The proposed configurations archives large number of 

consecutive lags and unique lags close to the one provided by nested arrays while requiring 

a relatively small aperture size.  

The rest of the chapter is organized as follows. The system model and the proposed 

configuration are presented in Section 5.2 where we derive the analytical expressions for 

the sensor locations and the aperture size. Section 5.3 presents the difference coarray 

prospective of the proposed array. MLPA design alternatives are discussed in Section 5.4. 

The optimum MLPA configurations are discussed in Section 5.5. An upper bound for the 
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achievable DOFs of certain MLPA level is derived in Section 5.6. Results and analysis are 

discussed in Section 5.7, and finally Section 5.8 concludes the chapter. 

5.2 System Model  

In this section, the generalized multi-level prime array is explained in first. Then some of 

the special cases are discussed.  

5.2.1 Multi-Level Prime Array (MLPA)  

The objective is to find a structured way to determine the sensors’ locations such that the 

DOFs is increased. The sensors should be located within an array that is made of several 

ULAs and has smaller aperture size compared with coprime arrays. To achieve this, the 

proposed generalized multi-level prime array (MLPA) configuration utilizes multiple 

uniform linear subarrays or levels located along the same axis where the number of sensors 

in the subarrays is pairwise coprime integers. Those subarrays share only their first sensor. 

According to the number of subarrays, different array configurations can be constructed 

for the same number of sensors and coprime arrays are the two-level special case.  

Let 𝐦 = [𝑀1, 𝑀2, … ,𝑀𝑁𝑝] be a vector of 𝑁𝑝 pairwise coprime integers with 𝑀𝑖 represents 

the number of sensors in the 𝑖𝑡ℎ subarray, 𝑀𝑖 > 𝑀𝑗 , ∀ 𝑖 > 𝑗, and  𝑁𝑝 representing the 

number of subarrays or the array level. The sensors of the proposed array, shown in 

Figure 5-1, are located at: 

 ℙ =⋃{𝑘𝑖𝒮𝑖𝑑

𝑁𝑝

𝑖=1

|0 ≤ 𝑘𝑖 ≤ 𝑀𝑖 − 1, 𝒮𝑖 ≠ 𝑀𝑖} (5-1) 
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where 𝑑 = 𝜆/2 is the unit inter-element spacing and 𝒮𝑖𝑑 denotes the inter-element spacing 

of the considered subarray. The ordered inter-element spacing for the subarrays, 𝓢, is 

defined as: 𝓢 = {𝒮𝑑|𝒮 ∈ 𝐦}. To keep the coprimality relation, the entries within the vector 

𝓢 are ordered such that 𝒮𝑖 ≠ 𝑀𝑖, ∀𝑖 = 1,2, … , 𝑁𝑝. There are multiple options for the 

selection of 𝒮𝑖 for a given subarray as discussed in Section 5.4. As in conventional coprime 

arrays [52], the 𝑖𝑡ℎ subarray is not allowed to be spaced by 𝒮𝑖𝑑 = 𝑀𝑖𝑑. Moreover, to make 

sure that the subarrays share only the first sensor, 𝑘𝑖𝒮𝑖 must equal to 𝑘𝑗𝒮𝑗  only when 𝑘𝑖 =

𝑘𝑗 = 0, ∀𝑖, 𝑗 ∈ {1,2, … , 𝑁𝑝} and 𝑖 ≠ 𝑗. Since there are 𝑁𝑝 − 1 shared sensors, the total 

number of physical sensors used in the MLPA is given as: 

 𝑁 =∑𝑀𝑖

𝑁𝑝

𝑖=1

− (𝑁𝑝 − 1) (5-2) 

The number of possibilities for adjusting the inter-element spacing between the sensors is 

proportional to the total number of sensors and the number of subarrays (levels). In addition 

to the previous condition, the last two subarrays should be spaced by 𝑀𝑁𝑝𝑑 and/or 𝑀𝑁𝑝−1𝑑 

respectively as discussed in details in Section 5.4.2. Consequently, the aperture size, 𝐷, of 

the resultant array configurations can be found by maximizing (5-1). For moderate number 

of levels, the maximum will be dominated by the maximum of either 𝑘𝑖 or 𝒮𝑖 , ∀ 𝑖 ∈

{𝑁𝑝, 𝑁𝑝 − 1}. The aperture size can be expressed as:  

𝐷 = max (𝒮𝑁𝑝−1 (𝑀𝑁𝑝−1 − 1)𝑑, 𝒮𝑁𝑝(𝑀𝑁𝑝 − 1)𝑑) (5-3) 
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Figure 5-1: The MLPA configuration 

5.2.2 Special Cases of MLPA Configurations 

In the following subsections, we present the coprime arrays [52] and the three level prime 

arrays in [108] as special cases of the proposed MLPA configuration.  

A. Coprime Arrays:  

A coprime array represents a special case of the proposed MLPA with only two subarrays 

(𝑁𝑝 = 2), thus there is a unique choice for adjusting the inter-element spacing. In this case, 

one subarray has 𝑀1 sensors spaced by 𝑀2𝑑 and the other has 𝑀2 sensors spaced by 𝑀1𝑑. 

The locations of the sensors of this array given by (5-1) reduce to [52]: 

ℙ = {𝑀2𝑘1𝑑|0 ≤ 𝑘1 ≤ 𝑀1 − 1} ∪ {𝑀1𝑘2𝑑|0 ≤ 𝑘2 ≤ 𝑀2 − 1} (5-4) 

Figure 5-2 (ii) depicts an example of coprime array with 𝐦 = [5,6]. The two subarrays in 

this case share the first sensor, hence the total number of sensors is 𝑁 = 10 as predicted 

by (5-2). For the case of coprime, the aperture size in (5-3) reduces to 𝑀1(𝑀2 − 1)𝑑, which 

is 25𝑑 for the given example.  
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Figure 5-2: MLPAs with N = 10 sensors  

B. Three-Level Prime Array (3LPA) and Pythagorean Array:  

When 𝑁𝑝 = 3, the array utilizes three subarrays. The resultant array is referred to as a 

three-level prime array (3LPA) [108] and (5-1) for sensor locations results in: 

ℙ = {𝑘1𝑀𝑗𝑑|, 𝑗 ≠ 1} ∪ {𝑘2𝑀𝑗𝑑|, 𝑗 ≠ 2} ∪ {𝑘3𝑀𝑗𝑑|, 𝑗 ≠ 3} (5-5) 

In 3LPA, the sensors within the first subarray can be spaced by either 𝑀3𝑑 or 𝑀2𝑑. Based 

on this choice, the inter-element spacing of the remaining two subarrays is adjusted. Thus, 

there are two possibilities for the ordered inter-element spacing; 𝓢 = [𝑀3, 𝑀1, 𝑀2]𝑑 or 𝓢 =

[𝑀2, 𝑀3, 𝑀1]𝑑. Figure 5-2 (iii) and (iv) demonstrate an example of the 3LPA 

configurations with 𝐦 = [2,3,7]. Two different configurations are possible. The first 

configuration has ordered inter-element spacing 𝓢 = [7,2,3]𝑑, see Figure 5-2 (iii). While, 
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the second configuration has ordered inter-element spacing 𝓢 = [3,7,2]𝑑 as illustrated in 

Figure 5-2 (iv). In this case, the 3LPA configurations have a total of 𝑁 = ∑ 𝑀𝑖𝑖 − 2 = 10 

sensors [108]. The aperture size of the first and the second configurations is: 𝐷 =

𝑀2(𝑀3 − 1)𝑑 = 18𝑑 and 𝐷 = 𝑀3(𝑀2 − 1)𝑑 = 14𝑑, respectively. 

One way to reduce the aperture size of the 3LPA without dramatically sacrificing the 

number of lags is to select the three pairwise coprime numbers as a primitive Pythagorean 

triple (PPT). Pythagorean triple (PT) is any set of three numbers (𝑎, 𝑏, 𝑐) that satisfies the 

Pythagorean theorem, 𝑐2 = 𝑎2 + 𝑏2. A PPT set is a PT set in which the greatest common 

divisor (GCD) of 𝑎, 𝑏 and 𝑐 is one. When the number of sensors in the subarrays is a PPT, 

a special case of the 3LPA can be constructed which we refer to as Pythagorean array (PA) 

[108]. There are many techniques used to build PPT sets. One of these techniques is based 

on Barning-Hall tree in which a set of PPT can be generated through specific generator 

matrices [109]. 

Similar to the 3LPA configuration, PA uses three uniform linear subarrays. The inter-

element spacing among the subarrays is adjusted as in the 3LPA configuration. PA 

configuration with the minimum number of sensors can be constructed with 𝐦 = [3,4,5] 

which yields 𝑁 = 10 sensors. The two possible ordered inter-element spacing are 𝓢 =

[5,3,4]𝑑 and 𝓢 = [4,5,3]𝑑 as Figure 5-2 (v) and (vi) illustrate. The corresponding aperture 

sizes according to (5-3) are 𝐷 = 16𝑑 and 𝐷 = 15𝑑 which is smaller than that of the 3LPA. 

The achievable DOFs of the array is expected to decrease compared with the 3LPA 

configurations [108]. Other PA configurations require large number of sensors. For 

example, PA with 𝑁 = 28 and 𝑁 = 38 sensors can be constructed using 𝐦 = [5,12,13] 

and 𝐦 = [15,8,17] respectively. 
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5.3 The Difference Coarray Prospective in MLPA  

In DOA applications, the number of sources that can be estimated is related to the DOFs 

which is proportional to the number of unique lags and number of consecutive lags in the 

difference coarray. We can estimate more than the total number of sensors if the difference 

coarray is exploited. In this section, we derive the analytical expression for the difference 

coarray (coarray equivalence) of the proposed configurations.   

Recall that the sensors of the proposed array are located as in (5-1). The difference coarray 

is defined as the set of pairwise differences of the array physical sensor locations which 

produces virtual sensors [33], [101] located at: 

 ℂ𝑃 = {𝐳|𝐳 = 𝐮 − 𝐯, 𝐮 and 𝐯 ∈  ℙ} (5-6) 

Applications that depend on the correlation such as DOA estimation can make use of all 

possible DOFs in the difference coarray and therefore increase the number of estimated 

sources. The maximum achieved DOFs is determined by the number of unique lags 

(distinct entries in the set ℂ𝑃) of the difference coarray that appear in the following set, 𝕃𝑃, 

which is expressed as [33]: 

 𝕃𝑃 = {𝑙𝑃|𝑙𝑃𝑑 ∈ ℂ𝑃} (5-7) 

The lags in the difference coarray consist of the self-differences, 𝕃𝑠 , and cross-differences, 

𝕃𝑐, and can be written as:  

 𝕃𝑃 = 𝕃𝑠 ∪ 𝕃𝑐 (5-8) 
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Figure 5-3: Difference coarray of the 3LPA configuration using m = [2,3,7] and 𝓢 =[M2, M3, M1]d 

The self-differences of the proposed array can be expressed as: 

 𝕃𝑠 = {±𝑙𝑠|𝑙𝑠𝑑 ∈ ℙ} (5-9) 

Let’s decompose ℙ into {ℙ1, ℙ2, … , ℙ𝑁𝑝} = (⋃ ℙ𝑖
𝑁𝑝
𝑖=1

), where the ℙ𝑖
𝑡ℎ subset denotes the 

sensor locations in the 𝑖𝑡ℎ subarray. The cross-differences can be obtained by considering 

two subarrays at a time, finding the element wise subtraction among the two subarrays, and 

taking the union of all. Thus, the cross-differences of the proposed array can now be 

expressed as:

𝕃𝑐 =⋃⋃{𝑙𝑐|𝑙𝑐𝑑 ∈ (ℙ𝑖(𝑖1) − ℙ𝑗(𝑗1))}

𝑁𝑝

𝑗=1

𝑖≠𝑗

𝑁𝑝

𝑖=1

,  (5-10) 
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∀ 1 ≤ 𝑖1 ≤ 𝑀𝑖, 1 ≤ 𝑗1 ≤ 𝑀𝑗 

where ℙ𝑖(𝑖1) denotes the 𝑖1
𝑡ℎ entry in the 𝑖𝑡ℎ subset. The mirrored positions of the self-

differences and the mirrored positions of the cross-differences are already included in the 

previous formulas. Instead of compressing the spacing between the sensors in one subarray 

and/or introducing a displacement between the two subarrays [33], higher level (𝑁𝑝  > 2) 

MLPA utilizes multiple subarrays in order to increase the DOFs. Thus, the number of 

unique lags and the number of consecutive lags are larger than that of coprime arrays.  

Let’s consider the 3LPA shown in Figure 5-2 (iv) for demonstrations. The corresponding 

self-differences and cross-differences of the array are plotted in Figure 5-3. The lags 

denoted by 𝑙𝑐 are calculated based on (5-10) ∀𝑗 > 𝑖. Figure 5-3 illustrates that all self-

differences are included in the cross-differences, 𝕃𝑠 ⊆ 𝕃𝑐, which is equivalent to finding 

the cross-difference of each sensor location with the zero location. Moreover, there are 

some redundant lags because of the overlap between 𝑙𝑐 and −𝑙𝑐 which reduces the DOFs 

of the array. There are two virtual lags missing ‘holes’ in the difference coarray which 

makes the number of consecutive lags less than the number of unique lags.  

5.4 MLPA Design Alternatives  

This section provides guidelines to construct the proposed MLPA. Specifying the number 

of sensors and the inter-element spacing determines the aperture size, the number of unique 

lags, and the number of consecutive lags. Sparse reconstruction algorithms can exploit all 

unique lags in the difference coarray whereas subspace-based algorithms such as MUSIC 

algorithm requires consecutive lags [33]. Thus, if the number of consecutive lags is smaller 

than the number of unique lags, sparse reconstruction algorithms will realize larger DOFs 
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compared with subspace-based algorithms. Two-stage constrained search is used to select 

the optimum array configuration among all possible MLPA configurations by evaluating 

their difference coarrays and selecting the one with maximum number of unique lags. For 

a fixed total number of sensors, we exhaust all possibilities to decide on the number of 

sensors and number of subarrays. A second constrained search is executed to optimize the 

inter-element spacing and select the best configuration. 

5.4.1 Selecting the Number of Sensors  

For a specified 𝑁 and 𝑁𝑝, there are usually several ways to select the number of sensors in 

each subarray and the inter-element spacing. Let 𝐌 be a matrix defined as: 𝐌 =

[𝐦1;𝐦2; … ;𝐦𝑁𝑠] that contains 𝑁𝑠 rows of all possible pairwise coprime vectors. For a 

given row, 𝐦𝑛𝑠, several MLPA configurations of different features can be constructed by 

adjusting the inter-element spacing. Figure 5-4 (a) depicts the number of pairwise coprime 

vectors, 𝑁𝑠, as a function of the total number of sensors, 𝑁, for different number of 

subarrays, 𝑁𝑝. A value of zero indicates that it is impossible to construct the array because 

there are no 𝑁𝑝 pairwise coprime integers satisfy (5-2). In general, the value of 𝑁𝑠 increases 

exponentially with 𝑁 but with oscillation. Figure 5-4 (a) demonstrates that the minimum 

number of sensors for 𝑁𝑝 = 2,3,4,5 and 6 is 4, 8,14, 24 and 36 sensors respectively. The 

corresponding configurations are referred to as coprime array, 3LPA, 4LPA, 5LPA, and 

6LPA.  

To build an MLPA of 𝑁𝑝 subarrays and 𝑁 sensors, we have to find all possible pairwise 

coprime vectors needed to construct 𝐌. Then, we build the array using 𝐦𝑖 , ∀𝑖 = 1,2, … ,𝑁𝑠 

where all ordered inter-element spacing are examined according to Section 5.2.1. After 
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that, the difference coarrays of all MLPA configurations are generated. Finally, the 

configuration that maximizes the number of unique lags is selected.  

Let 𝑙𝑢𝑔 and 𝑙𝑐𝑔 represent the number of unique lags and the number of consecutive lags, 

respectively. To maximize the number of unique lags for a fixed 𝑁, we do exhaustive 

search over 𝑁𝑝 and 𝐌 as: 

 max
𝑁𝑝,𝐦𝑛𝑠

𝑙𝑢𝑔 (5-11) 

Subject to the following constraints: 

1) 𝑁 = ∑ 𝑀𝑖
𝑁𝑝
𝑖=1

− (𝑁𝑝 − 1), 𝑁𝑝 ≥ 2 

2) min(𝐦𝑛𝑠) > 1 and 𝐦𝑛𝑠 ∈ 𝐌, 𝑛𝑠 = 1,2, … ,𝑁𝑠 

The first constraint implies that the subarrays share only the first sensor as in (5-2) and a 

minimum of two subarrays is required to exclude the ULA case. The second constraint 

requires at least two sensors within each subarray to exclude the nested array scenarios. If 

a subarray has only one sensor, then it will be the one shared with other subarrays and 

effectively we have 𝑁𝑝 − 1 subarrays. Furthermore, the proposed configuration becomes 

a ULA in case of two subarrays.  

Table 5-1 summarizes how to build the matrix 𝐌. A counter, 𝑛𝑠, is initialized to count all 

possible number of pairwise coprime vectors. Based on (5-2), a matrix 𝐀𝑎 is constructed 

in Step 1 from the range 2: (𝑁 − 𝑁𝑝 + 1) where each row consists of 𝑁𝑝 pairwise coprime 

integers. Step 3 checks if the sum of the 𝑖𝑡ℎ row in 𝐀𝑎 equals 𝑁 + 𝑁𝑝 − 1, then the 𝑖𝑡ℎ row 

contains one of the valid pairwise coprime vectors, 𝐦𝑛𝑠. The procedure is then repeated 

for the (𝑖 + 1)𝑡ℎ row of 𝐀𝑎.  
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Table 5-1: Main steps to select the number of sensors in each subarray 

Step Operation 

Input 𝑁𝑝 and 𝑁 

Initialization 𝑛𝑠 = 0 

1 Construct the matrix 𝐀𝑎 with rows having 𝑁𝑝 pairwise coprime 

integers, i.e. the GCD of each row is one.  

All entries must be selected from the range 2: (𝑁 − 𝑁𝑝 + 1) 

2 𝑖 = 1 

3 If ∑𝐀𝑎(𝑖, : ) = 𝑁 + 𝑁𝑝 − 1 

   𝑛𝑠 = 𝑛𝑠 + 1 

   𝐌(𝑛𝑠, : ) = 𝐀𝑎(𝑖, : ) 
End if 

4 𝑖 = 𝑖 + 1 

If 𝑖 ≤   # of rows(𝐀𝑎) , Go to Step 3 

Output 𝐌,𝑁𝑠 = # of rows(𝐌)  

5.4.2 The Ordered Inter-Element Spacing  

Following Section 5.2.1, a necessary condition to make sure that the subarrays only share 

the first sensor is to select the inter-element spacing for the last two subarrays as 𝑀𝑁𝑝𝑑 

and/or 𝑀𝑁𝑝−1𝑑 respectively. Though, this condition is not sufficient since some of those 

cases result in 𝑘𝑖𝒮𝑖 = 𝑘𝑗𝒮𝑗  for a specified 𝑘𝑖 ≠ 0 and 𝑘𝑗 ≠ 0. This condition directly fits in 

case of coprime arrays because there is only one option for the number of possible inter-

element spacings, 𝐶𝑐𝑜 = 1. The last two subarrays of coprime array, 3LPA, 4LPA, and 

5LPA configurations result respectively in the following possible inter-element spacing:  

 𝐶3LPA = 1 × (
|𝑀3𝑑|

1
)(
|𝑀1𝑑|

1
) + 1 × (

|𝑀1𝑑|

1
)(
|𝑀2𝑑|

1
) (5-12) 

𝐶4LPA = 1 × (
|𝑀4𝑑|

1
)(
|{𝑀1, 𝑀2}𝑑|

1
) + 1 × (

|{𝑀1, 𝑀2, 𝑀4}𝑑|

1
)(
|𝑀3𝑑|

1
) (5-13) 
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𝐶5LPA = 3 × (
|𝑀5𝑑|

1
)(
|{𝑀1, 𝑀2, 𝑀3}𝑑|

1
) + 3 × (

|{𝑀1, 𝑀2, 𝑀3, 𝑀5}𝑑|

1
) (
|𝑀4𝑑|

1
) 

  (5-14) 

where the first and the second combinations in each term indicate the number of possible 

inter-element spacings for the (𝑁𝑝 − 1)
𝑡ℎ

 and the 𝑁𝑝
𝑡ℎ subarrays respectively and |. | 

denotes the cardinality. The constant numbers represent the number of possible inter-

element spacings of the remaining subarrays. Following (5-12), the inter-element spacing 

for the first subarray is one, so 𝐶3LPA = 2. The first and the second subarrays in the 4LPA 

are left with only one possibility for the spacing based on (5-13). However, when the 

ordered inter-element spacing is 𝓢 = [𝑀2, 𝑀3, 𝑀4, 𝑀1]𝑑, the subarrays share more than one 

sensor. Therefore, the number of possible inter-element spacings reduces to 𝐶4LPA = 4. In 

case of 5LPA, there are always three ways to select the inter-element spacing for the first 

three subarrays except two ways when the last two subarrays are spaced by 𝑀5𝑑 and 𝑀4𝑑 

respectively. Thus, we end up with 3 × 1 × 3 + (3 × 4 × 1 − 1) = 20 possible inter-

element spacing. However, 11 cases result in overlapped sensors which we should exclude 

and the number of possible inter-element spacings reduces to 𝐶5LPA = 9. This includes 

three ordered inter-element spacing of the form 𝓢 = [𝑋, 𝑋, 𝑋,𝑀1, 𝑀4]𝑑, two of the form 

𝓢 = [𝑋, 𝑋, 𝑋,𝑀2, 𝑀4]𝑑, three of the form 𝓢 = [𝑋, 𝑋, 𝑋,𝑀5, 𝑀1]𝑑, and three of the form 

𝓢 = [𝑋, 𝑋, 𝑋,𝑀5, 𝑀2]𝑑 where 𝑋 denotes one of the possible 𝑀𝑖. As Np increases, the 

number of possible inter-element spacings increases and any unwanted cases have to be 

excluded.  
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Table 5-2 illustrates the main steps used to construct the best MLPA for a specific 𝑁 and 

𝑁𝑝. One row, 𝐦𝑛𝑠, is considered at a time from 𝐌 and initializes a counter 𝑐 to count the 

number of possible inter-element spacings. In Step 1, a matrix 𝐀𝑠 is formed where the rows 

are made of all possible permutations of 𝐦𝑛𝑠 excluding any permutation with the 𝑖𝑡ℎ 

column equals 𝑀𝑖 because the 𝑖𝑡ℎ subarray cannot be spaced by 𝑀𝑖. In addition, any 

permutation that do not contains 𝑀𝑁𝑝 and/or 𝑀𝑁𝑝−1 in the (𝑁𝑝 − 1)
𝑡ℎ

 and 𝑁𝑝
𝑡ℎ columns 

(last two columns) respectively are excluded. The rows of As represent all candidate 

ordered inter-element spacing normalized by half-wavelength. In Step 4, the sensor 

locations in each subarray are calculated and combined by taking the union of all subarrays. 

In Step 5, if the subarrays share only their first sensor at the zero location, the inter-element 

spacing is valid so |ℙ| = 𝑁 where |ℙ| is the cardinality of ℙ. Otherwise, (5-2) is not 

satisfied and therefore this inter-element spacing is not valid. For any valid configuration, 

the features of the resultant array are calculated. Once all rows of 𝐀𝑠 are considered, then 

we take the next 𝐦𝑛𝑠 and the process is repeated. The best MLPA configuration that 

maximizes the number of unique lags and its features as well as the number of possible 

inter-element spacings, 𝐶MLPA, are obtained at the output.  

The number of MLPA configurations for a specific 𝑁 and 𝑁𝑝 can be calculated as: 𝑁𝑐 =

𝑁𝑠𝐶MLPA where 𝑁𝑠 represents all possible vectors of pairwise coprime integers calculated 

in Table 5-1 and 𝐶MLPA denotes all possible inter-element spacing calculated in Table 5-2. 

Among all valid configurations, the configuration that maximizes the number of unique 

lags is preferred. The value of 𝑁𝑠 depends on both 𝑁 and 𝑁𝑝 whereas 𝐶MLPA is only a 

function of 𝑁𝑝 as Figure 5-4 (a) and (b) depict respectively.   
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Table 5-2: Main steps to decide on the inter-element spacing and select the best MLPA configuration 

Step Operation 

Input 𝑁 and 𝐌 = [𝐦1;𝐦2; … ;𝐦𝑁𝑠] 

1 𝑛𝑠 = 1, 𝑐 = 0 

2 Construct 𝐀𝑠 with rows of all possible permutations of 𝐦𝑛𝑠 excluding 

any permutation with the 𝑖𝑡ℎ column entry equals 𝑀𝑖 and any 

permutation does not contains 𝑀𝑁𝑝 and/or 𝑀𝑁𝑝−1 in the last two columns 

3 𝑡 = 1 

4 𝑗 = 1 

While 𝑗 ≤ 𝑁𝑝 

    ℙ𝑗 = 𝐀𝑠(𝑡, 𝑗) × 𝑘𝑗𝑑 where 0 ≤ 𝑘𝑗 ≤ 𝑀𝑗 − 1 

    𝑗 = 𝑗 + 1 

End while 

ℙ =⋃ℙ𝑘

𝑁𝑝

𝑘=1

 

5 If |ℙ| = 𝑁 

    𝑐 = 𝑐 + 1 

    𝕃𝑃 = 𝕃𝑠 ∪ 𝕃𝑐;  
    𝐋𝑢𝑔(𝑐, 𝑛𝑠) = |𝕃𝑃|  

    𝐋𝑐𝑔(𝑐, 𝑛𝑠) = 𝑙𝑐𝑔 (count the maximum number of consecutive lags in 

𝕃𝑃) 

    ℙtotal(𝑐, 𝑛s, : ) = ℙ 

End if  

6 𝑡 = 𝑡 + 1 

If 𝑡 ≤  rows(𝐀𝑠)  Go to Step 4 

7 𝑛𝑠 = 𝑛𝑠 + 1 

If 𝑛𝑠 ≤ 𝑁𝑠  Go to Step 2 

Output [𝑐𝑜 , 𝑛𝑠
𝑜] = argmax

𝑐,𝑛𝑠

(𝐋𝑢𝑔) 

ℙ = ℙtotal(𝑐
𝑜 , 𝑛𝑠

o, : ) 
𝑙𝑢𝑔 = 𝐋𝑢𝑔(𝑐

𝑜, 𝑛𝑠
𝑜) 

𝐶MLPA = # of rows(𝐋𝑢𝑔)  
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Figure 5-4: MLPA characteristics: (a) Number of pairwise coprime integer vectors versus N, (b) Number of inter-

element spacing versus Np

The number of possible inter-element spacings, 𝐶MLPA, is 1, 2, 4, 9, and 19 for coprime 

array, 3LPA (𝑁𝑝 = 3), 4LPA (𝑁𝑝 = 4), 5LPA (𝑁𝑝 = 5), and 6LPA (𝑁𝑝 = 6) 

respectively. Coprime arrays has 𝐶𝑐𝑜 = 1 because there are only two subarrays and only 

one choice for the inter-element spacing. Henceforth the number of configurations are 
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𝑁𝑐 = 𝑁𝑠. As an example for 𝑁 = 10 or 12 sensors, the 3LPA has 𝑁𝑐 = 2 × 2 = 4 

configurations as in [108]. 

5.5 The Optimum MLPA Configurations  

In the context of DOA estimation, large DOFs using MUSIC algorithm can be realized by 

maximizing the number of consecutive lags in the difference coarray. While, larger DOFs 

using CS techniques can be realized by exploiting all unique lags. There has been some 

work to find the optimal coprime array configuration [56], [57] which is a special case of 

the MLPA with just two subarrays. Our aim is to find the optimal configuration for the 

generalized MLPA.   

Given an MLPA with 𝑁 elements and 𝑁𝑝 subarrays the optimum MLPA can be achieved 

by either maximizing the number of unique lags or maximizing the number of consecutive 

lags, which can be formulated as:  

 (𝐦, 𝓢) ← argmax
𝑀𝑖∈ℤ

+
{𝑙𝑢𝑔(𝐦, 𝓢)} (5-15) 

 (𝐦, 𝓢) ← argmax
𝑀𝑖∈ℤ

+
{𝑙𝑐𝑔(𝐦, 𝓢)} (5-16) 

 subject to: 𝑁 = ∑ 𝑀𝑖
𝑁𝑝
𝑖=1

− (𝑁𝑝 − 1)  

where ℤ+ is the set of positive integers. It’s worth to mention that, maximizing the number 

of consecutive lags is equivalent to minimizing the number of holes in the difference 

coarray.  
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When the solution of (5-15) and/or (5-16) is not unique, other factors like aperture size and 

reduced mutual coupling can be considered [96]. The mutual coupling is related to 𝑣Δ 

which is defined as the number of inter-element spacings, that equals to a unit spacing 

[110]. The array gets sparser as the value of 𝑣Δ decreases. If multiple solutions result in the 

same 𝑣Δ, then the configuration that minimizes aperture size, 𝐷, is recommended.  

5.6 An Upper Bound of the Achievable DOFs of the 3LPA  

This section derives an upper bound for the achievable DOFs realized by the 3LPA 

configurations [108]. The derived bounds are compared against the achieved DOFs and 

verified with simulation. Table 5-3 illustrates the 3LPA Config.A and 3LPA Config.B 

characteristics including: antenna locations, the ordered inter-element spacing, and 

aperture size. Since 𝑀2 < 𝑀3, the 3LPA Config.B always has larger aperture size, i.e. 

𝐷𝐵 > 𝐷𝐴 for any 𝐦.  

Let’s take each two subarrays alone and rewrite (5-10) as: 

 𝕃𝑐𝑖𝑗 = {𝑙𝑐|𝑙𝑐 ∈ (𝑝𝑚 − 𝑝𝑛), 𝑝𝑚𝑑 ∈ ℙ𝑖 , 𝑝𝑛𝑑 ∈ ℙ𝑗}, 
(5-17) 

 ∀ 𝑖, 𝑗 ∈ {1,2,3}, 𝑖 < 𝑗, 1 ≤ 𝑚, 𝑛 ≤ 𝑁 

Thus the cross-differences can be expressed as a union of three subsets based on (5-17) as: 

 𝕃𝑐 = 𝕃𝑐12 ∪ 𝕃𝑐13 ∪ 𝕃𝑐23 (5-18) 

The mirrored positions can be calculated when 𝑖 > 𝑗: 

 𝕃𝑐
− = 𝕃𝑐12

− ∪ 𝕃𝑐13
− ∪ 𝕃𝑐23

−  (5-19) 
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Table 5-3: 3LPA Config.A and Config.B characteristics  

3LPA Config.A Config.B 

ℙ 𝑘1𝑀2 ∪ 𝑘2𝑀3 ∪ 𝑘3𝑀1 𝑘1𝑀3 ∪ 𝑘2𝑀1 ∪ 𝑘3𝑀2 

𝓢 [𝑀2, 𝑀3, 𝑀1]𝑑 [𝑀3, 𝑀1, 𝑀2]𝑑 

𝐷 𝑀3(𝑀2 − 1)𝑑 𝑀2(𝑀3 − 1)𝑑 

where 𝕃𝑐𝑖𝑗
− = 𝕃𝑐𝑖𝑗 , ∀𝑖 > 𝑗. Therefore, (5-8) can be re-written as: 

 𝕃𝑃 = 𝕃𝑐 ∪ 𝕃𝑐
− (5-20) 

The achievable DOFs is determined by the total number of unique lags, 𝜂𝑃, in 𝕃𝑃 which 

equals to the number of unique integers in 𝕃𝑐 and number of unique integers in 𝕃𝑐
− minus 

the overlapped or the common ones in between. Mathematically, we can write: 

 DOFs = |𝕃𝑃| = |𝕃𝑐| + |𝕃𝑐
−| − |𝕃𝑐 ∩ 𝕃𝑐

−| 
(5-21) 

 = 2|𝕃𝑐12| + 2|𝕃𝑐13| + 2|𝕃𝑐23| − |𝕃𝑐 ∩ 𝕃𝑐
−| 

where |. | denotes the cardinality operation. The last term accounts for the repeated lags 

between 𝕃𝑐 and 𝕃𝑐
−. This term can be separated into two parts. The first part includes the 

intersection between a subset and its mirrored position as: 

 𝕃𝑙 = {

𝕃𝑐12 ∩ 𝕃𝑐12
− , 𝑙 = 1

𝕃𝑐13 ∩ 𝕃𝑐13
− , 𝑙 = 2

𝕃𝑐23 ∩ 𝕃𝑐23
− , 𝑙 = 3

 (5-22) 

While the other includes the intersection between two different subsets as:  
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 𝕃𝑙 =

{
 
 
 

 
 
 
𝕃𝑐12 ∩ 𝕃𝑐13 = −(𝕃𝑐12

− ∩ 𝕃𝑐13
− ), 𝑙 = 4

𝕃𝑐12 ∩ 𝕃𝑐23 = −(𝕃𝑐12
− ∩ 𝕃𝑐23

− ), 𝑙 = 5

𝕃𝑐13 ∩ 𝕃𝑐23 = −(𝕃𝑐13
− ∩ 𝕃𝑐23

− ), 𝑙 = 6

𝕃𝑐12 ∩ 𝕃𝑐13
− = −(𝕃𝑐12 ∩ 𝕃𝑐13

− ), 𝑙 = 7

𝕃𝑐12 ∩ 𝕃𝑐23
− = −(𝕃𝑐12 ∩ 𝕃𝑐23

− ), 𝑙 = 8

𝕃𝑐13 ∩ 𝕃𝑐23
− = −(𝕃𝑐13 ∩ 𝕃𝑐23

− ), 𝑙 = 9

 (5-23) 

So, if we can find six of them, we just take their negatives to find all the twelve subsets. 

Let 𝜂𝑐 and 𝜂𝑐
− represent the number of unique lags in 𝕃𝑐 and 𝕃𝑐

− respectively, we can rewrite 

(5-21) as: 

 DOFs = 𝜂𝑃 = 𝜂𝑐 + 𝜂𝑐
− −∑𝜂𝑙

3

𝑙=1

− 2∑𝜂𝑙

6

𝑙=1

 (5-24) 

where 𝜂𝑙 represents the number of unique integers in 𝕃𝑙 subset, 𝜂𝑙 = |𝕃𝑙| for 𝑙 = 1,2, … ,9.  

Our objective is to find a closed form expression for each term in (5-24). The following 

lemma is used to find mathematical expressions for the first two terms.  

Lemma 1: Let 𝜂12, 𝜂13, and 𝜂23 be the number of unique lags in 𝕃𝑐12 , 𝕃𝑐13 , and 𝕃𝑐23 

respectively. In addition, the number of unique lags in the corresponding mirrored positions 

𝕃𝑐12
− , 𝕃𝑐13

− , 𝕃𝑐23
−  are 𝜂12

− , 𝜂13
− , and 𝜂23

−  respectively. Both 𝕃𝑐𝑖𝑗  and 𝕃𝑐𝑖𝑗
−  have the same number 

of unique lags due to the coprimality between 𝑀1, 𝑀2, and 𝑀3, ∀𝑖, 𝑗 = 1,2,3 and 𝑖 < 𝑗. The 

number of unique integers in 𝕃𝑐12 , 𝕃𝑐13, and 𝕃𝑐23 are as follows, respectively: 

 
𝜂𝑖𝑗 = 𝜂𝑖𝑗

− = 𝑀𝑖𝑀𝑗 , 

∀ 𝑖, 𝑗 ∈ {1,2,3}, 𝑖 < 𝑗 

(5-25) 

This lemma is used to express the first two terms in (5-24) in a closed form. 
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Proof Lemma 1: We prove the previous lemma by contradiction. We only show how we 

derive 𝜂12 = |𝕃𝑐12| and the same steps can be followed for others. Both of the 3LPA 

configurations have the same results. The 3LPA Config.A is assumed and used in this 

proof. We start from (5-17) and based on Table 5-3, we have ℙ1 = 𝑘1𝑀2 and ℙ2 = 𝑘2𝑀3 

where the indices 0 ≤ 𝑘1 ≤ 𝑀1 − 1 and 0 ≤ 𝑘2 ≤ 𝑀2 − 1. Using contradiction, let 𝑙𝑐12
𝑚 =

𝑘1
𝑚𝑀2 − 𝑘2

𝑚𝑀3 and 𝑙𝑐12
𝑛 = 𝑘1

𝑛𝑀2 − 𝑘2
𝑛𝑀3 be two arbitrary lags in 𝕃𝑐12. The variables 

𝑘1
𝑚, 𝑘2

𝑚, 𝑘1
𝑛, and 𝑘2

𝑛 are integer indices defined as: 0 ≤ 𝑘1
𝑚, 𝑘1

1 ≤ 𝑀1 − 1 and 0 ≤

𝑘2
𝑚, 𝑘2

𝑛 ≤ 𝑀2 − 1. Had 𝑙𝑐12
𝑚 = 𝑙𝑐12

𝑛 , we would have: 

 
𝑘2
𝑚 − 𝑘2

𝑛

𝑘1
𝑚 − 𝑘1

𝑛 =
𝑀2

𝑀3
 (5-26) 

Since 𝑘1
𝑚 − 𝑘1

𝑛 < 𝑀3, (5-26) cannot be hold due to the coprimality of 𝑀2 and 𝑀3. Thus, 

𝑙𝑐12
𝑚  and 𝑙𝑐12

𝑛 cannot be equal and consequently, there are |𝑘1||𝑘2| = 𝑀1𝑀2 unique integers 

in 𝕃𝑐12. 

Therefore, the number of unique integers in 𝕃𝑐 and 𝕃𝑐
− are given respectively as: 

 
𝜂𝑐 = 𝜂12 + 𝜂13 + 𝜂23 = 𝑀1𝑀2 +𝑀1𝑀3 +𝑀2𝑀3 

𝜂𝑐
− = 𝜂12

− + 𝜂13
− + 𝜂23

− = 𝑀1𝑀2 +𝑀1𝑀3 +𝑀2𝑀3 
(5-27) 

The third term in (5-24) can be obtained by finding the subsets 𝕃𝑙 for 𝑖 = 1,2,3 and then 

find their cardinalities. The 3LPA configurations will have different sets since it’s a 

function of the differences between element locations within two subarrays.  

The objective of the next two subsections is to find the third term in (5-24) based on the 

3LPA Config.A and 3LPA Config.B. Specifically, we derive an upper bound of the DOFs 

for each configuration.   
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5.6.1 An Upper Bound of DOFs for the 3LPA Config.A 

The 3LPA Config.A can be constructed with 𝓢𝐴 = [𝑀2, 𝑀3, 𝑀1]𝑑, and the elements within 

the array are located at:.  

 ℙ𝐴 = {ℙ1 ∪ ℙ2 ∪ ℙ3}𝑑 (5-28) 

where ℙ1 = 𝑘1𝑀2, ℙ2 = 𝑘2𝑀3, and ℙ3 = 𝑘3𝑀1. The overlapped integers between the 

subset 𝕃𝑐𝑖𝑗  and corresponding mirrored positions 𝕃𝑐𝑖𝑗
−  can be calculated from the cardinality 

of their intersection.  

The following lemma is used to find a mathematical expression for the third term in (5-24) 

for the 3LPA Config.A.   

Lemma 2: The following facts hold for the 3LPA Config.A based on (5-22) regarding 𝕃𝑙: 

1. There are 2(𝑀1𝑀2 +𝑀1𝑀3 +𝑀2𝑀3) unique lags in 𝕃𝑐12 , 𝕃𝑐12
− , 𝕃𝑐13 , 𝕃𝑐13

− , 𝕃𝑐23 , and 

𝕃𝑐23
−  including the overlapped lags 

2. The subset 𝕃𝑐12 overlaps with 𝕃𝑐12
−  only at the zero position, i.e. 𝜂1 = 1 

3. The number of overlapped lags between 𝕃𝑐13 and 𝕃𝑐13
−  is 𝜂2 = (𝑀1 − 1)(𝑀2 + 1) + 1 

4. The number of overlapped lags between 𝕃𝑐23 and 𝕃𝑐23
−  is 𝜂3 = (𝑀1 + 1)(𝑀3 − 1) + 1 

Proof Lemma 2: The above relations can be verified as follows. We start by finding the 

set 𝕃1 and then its cardinality 𝜂1. Given two arbitrary lags 𝑙𝑐12
𝑚 = 𝑘1

𝑚𝑀2 − 𝑘2
𝑚𝑀3 and 

𝑙𝑐12
𝑛 = 𝑘2

𝑛𝑀3 − 𝑘1
𝑛𝑀2 in the subsets 𝕃𝑐12 and 𝕃𝑐12

−  respectively where 0 ≤ 𝑘1
𝑚, 𝑘1

𝑛 ≤ 𝑀1 −

1 and 0 ≤ 𝑘2
𝑚, 𝑘2

𝑛 ≤ 𝑀2 − 1. Had 𝑙𝑐12
𝑚 = 𝑙𝑐12

𝑛  been held, we would have (𝑘1
𝑚 + 𝑘1

𝑛)𝑀2 =

(𝑘2
𝑚 + 𝑘2

𝑛)𝑀3. It is evident that they overlap at 0 position when 𝑘1
𝑚 = 𝑘1

𝑛 = 𝑘2
𝑚 = 𝑘2

𝑛 =

0. To find the overlapped lags when 𝑘2
𝑚 + 𝑘2

𝑛 ≠ 0, we have to find the solution for the 

following: 
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𝑘1
𝑚 + 𝑘1

𝑛

𝑘2
𝑚 + 𝑘2

𝑛 =
𝑀3

𝑀2
 (5-29) 

Since we have pairwise coprime integers, the above formula is valid if and only if: 

 
𝑘1
𝑚 + 𝑘1

𝑛 = 𝑀3, 

𝑘2
𝑚 + 𝑘2

𝑛 = 𝑀2 
(5-30) 

As 0 ≤ 𝑘1
𝑛 ≤ 𝑀1 − 1 and 0 ≤ 𝑘2

𝑛 ≤ 𝑀2 − 1, the requirement is equivalent to: 

 
𝑀3 − (𝑀1 − 1) ≤ 𝑘1

𝑚 ≤ 𝑀3, 

1 ≤ 𝑘2
𝑚 ≤ 𝑀2, 

(5-31) 

Since 0 ≤ 𝑘1
𝑚 ≤ 𝑀1 − 1 and 0 ≤ 𝑘2

𝑚 ≤ 𝑀2 − 1, we end up with: 

max(𝑀3 − (𝑀1 − 1), 0) ≤ 𝑘1
𝑚 ≤ min(𝑀3, 𝑀1 − 1), 

max(1,0) ≤ 𝑘2
𝑚 ≤ min(𝑀2, 𝑀2 − 1), 

(5-32) 

As 𝑀3 > 𝑀2 > 𝑀1, the terms 𝑀3 − (𝑀1 − 1) is always greater than zero, so we can 

rewrite: 

 
𝑀3 − (𝑀1 − 1) ≤ 𝑘1

𝑚 ≤ 𝑀1 − 1, 

1 ≤ 𝑘2
𝑚 ≤ 𝑀2 − 1 

(5-33) 

Again 𝑀3 − (𝑀1 − 1) is always greater than 𝑀1 − 1. Therefore, 𝕃𝑐12 and 𝕃𝑐12
−  overlap only 

at zero position, so 𝜂1 = 1. 

The same procedures can be followed to find the set 𝕃2 and its cardinality 𝜂2. Given two 

arbitrary lags 𝑙𝑐13
𝑚 = 𝑘1

𝑚𝑀2 − 𝑘3
𝑚𝑀1 and 𝑙𝑐13

𝑛 = 𝑘3
𝑛𝑀1 − 𝑘1

𝑛𝑀2 in the subsets 𝕃𝑐13 and 𝕃𝑐13
−  

respectively where 0 ≤ 𝑘1
𝑚, 𝑘1

𝑛 ≤ 𝑀1 − 1 and 0 ≤ 𝑘3
𝑚, 𝑘3

𝑛 ≤ 𝑀3 − 1. Had 𝑙𝑐13
𝑚 = 𝑙𝑐13

𝑛  been 

held, we would have (𝑘1
𝑚 + 𝑘1

𝑛)𝑀2 = (𝑘3
𝑚 + 𝑘3

𝑛)𝑀1. It is clear that they overlap at 0 
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position when 𝑘1
𝑚 = 𝑘1

𝑛 = 𝑘3
𝑚 = 𝑘3

𝑛 = 0. To find the overlapped lags when 𝑘3
𝑚 + 𝑘3

𝑛 ≠

0, we have to find the solution for the following: 

 
𝑘1
𝑚 + 𝑘1

𝑛

𝑘3
𝑚 + 𝑘3

𝑛 =
𝑀1
𝑀2

 (5-34) 

Since we have pairwise coprime integers, the above formula is valid if and only if: 

 
𝑘1
𝑚 + 𝑘1

𝑛 = 𝑀1, 

𝑘3
𝑚 + 𝑘3

𝑛 = 𝑀2 
(5-35) 

Since 0 ≤ 𝑘1
𝑛 ≤ 𝑀1 − 1 and 0 ≤ 𝑘3

𝑛 ≤ 𝑀3 − 1, the requirement is equivalent to: 

 
1 ≤ 𝑘1

𝑚 ≤ 𝑀1, 

𝑀2 − (𝑀3 − 1) ≤ 𝑘3
𝑚 ≤ 𝑀2 

(5-36) 

Since 0 ≤ 𝑘1
𝑚 ≤ 𝑀1 − 1 and 0 ≤ 𝑘3

𝑚 ≤ 𝑀3 − 1, we end up with: 

 
1 ≤ 𝑘1

𝑚 ≤ min(𝑀1, 𝑀1 − 1), 

max(𝑀2 − (𝑀3 − 1), 0) ≤ 𝑘3
𝑚 ≤ min(𝑀2, 𝑀3 − 1), 

(5-37) 

Based on our assumption, 𝑀2 − (𝑀3 − 1) ≤ 0 and 𝑀2 ≤ 𝑀3 − 1, so we can rewrite: 

 
1 ≤ 𝑘1

𝑚 ≤ 𝑀1 − 1, 

0 ≤ 𝑘3
𝑚 ≤ 𝑀2 

(5-38) 

Therefore, in addition to the overlap at the zero position, there are 𝑀1 − 1 and 𝑀2 + 1 

integers in the range of 𝑘1
𝑚 and 𝑘3

𝑚, respectively. Consequently, 𝜂2 = (𝑀1 − 1)(𝑀2 +

1) + 1. 

To find 𝜂3 = |𝕃3|, let’s assume 𝑙𝑐23
𝑚 = 𝑘2

𝑚𝑀3 − 𝑘3
𝑚𝑀1 and 𝑙𝑐23

𝑛 = 𝑘3
𝑛𝑀1 − 𝑘2

𝑛𝑀3 be two 

arbitrary lags in the subsets 𝕃𝑐23 and 𝕃𝑐23
−  respectively where 0 ≤ 𝑘2

𝑚, 𝑘2
𝑛 ≤ 𝑀2 − 1 and 

0 ≤ 𝑘3
𝑚, 𝑘3

𝑛 ≤ 𝑀3 − 1. Had 𝑙𝑐23
𝑚 = 𝑙𝑐23

𝑛  been held, we would have (𝑘2
𝑚 + 𝑘2

𝑛)𝑀3 =
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(𝑘3
𝑚 + 𝑘3

𝑛)𝑀1. It is obvious that they overlap at 0 position when 𝑘2
𝑚 = 𝑘2

𝑛 = 𝑘3
𝑚 = 𝑘3

𝑛 =

0. To find the overlapped lags when 𝑘3
𝑚 + 𝑘3

𝑛 ≠ 0, we have to find the solution for the 

following: 

 
𝑘2
𝑚 + 𝑘2

𝑛

𝑘3
𝑚 + 𝑘3

𝑛 =
𝑀1
𝑀3

 (5-39) 

Since we have pairwise coprime integers, the above relation is valid if and only if: 

 
𝑘2
𝑚 + 𝑘2

𝑛 = 𝑀1, 

𝑘3
𝑚 + 𝑘3

𝑛 = 𝑀3 
(5-40) 

Since 0 ≤ 𝑘2
𝑛 ≤ 𝑀2 − 1 and 0 ≤ 𝑘3

𝑛 ≤ 𝑀3 − 1, the requirement is equivalent to: 

 
𝑀1 − (𝑀2 − 1) ≤ 𝑘2

𝑚 ≤ 𝑀1, 

1 ≤ 𝑘3
𝑚 ≤ 𝑀3 

(5-41) 

Meanwhile 0 ≤ 𝑘2
𝑚 ≤ 𝑀2 − 1 and 0 ≤ 𝑘3

𝑚 ≤ 𝑀3 − 1, we end up with: 

 
0 ≤ 𝑘2

𝑚 ≤ 𝑀1, 

1 ≤ 𝑘3
𝑚 ≤ 𝑀3 − 1 

(5-42) 

As a result, in addition to the overlap at the zero position, there are 𝑀1 + 1 and 𝑀3 − 1 

integers in the range of 𝑘2
𝑚 and 𝑘3

𝑚, respectively. Thus, 𝜂3 = (𝑀1 + 1)(𝑀3 − 1) + 1. 

We have not derived yet the last term of (5-24). It is complicated to find all subsets in 

(5-23) since there are three indices, 𝑘1, 𝑘2, and 𝑘3. There are six subsets in (5-23) and the 

mirrored position which we ignore since our objective is to derive an upper bound of the 

achieved DOFs. Therefore, the upper bound of the achievable DOFs for the 3LPA 

Config.A can be expressed as: 
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 DOFs < 2𝜂𝑐 −∑𝜂𝑙

3

𝑙=1

 
(5-43) 

 = 𝑀1𝑀2 +𝑀1𝑀3 + 2𝑀2𝑀3 −𝑀3 +𝑀2 − 1 

where 𝜂1 = 1, 𝜂2 = (𝑀1 − 1)(𝑀2 + 1) + 1, and 𝜂3 = (𝑀1 + 1)(𝑀3 − 1) + 1.  

5.6.2 An Upper Bound of DOFs for the 3LPA Config.B 

The 3LPA Config.B uses an ordered inter-element spacing vector of 𝓢𝐵 = [𝑀3, 𝑀1, 𝑀2]𝑑. 

This array has elements located at: 

 ℙ𝐵 = {𝑘1𝑀3 ∪ 𝑘2𝑀1 ∪ 𝑘3𝑀2}𝑑 (5-44) 

We can proceed as we did in Section 5.6.1 but with ℙ1 = 𝑘1𝑀3, ℙ2 = 𝑘2𝑀1, and ℙ3 =

𝑘3𝑀2.  

Lemma 3: The following facts hold for the 3LPA Config.B based on (5-22) regarding 𝕃𝑙: 

1. There are 2(𝑀1𝑀2 +𝑀1𝑀3 +𝑀2𝑀3) unique lags in 𝕃𝑐12 , 𝕃𝑐12
− , 𝕃𝑐13 , 𝕃𝑐13

− , 𝕃𝑐23 , and 

𝕃𝑐23
−  including the overlapped lags 

2. The subset 𝕃𝑐12 overlaps with 𝕃𝑐12
−  at 𝜂1 = max(2𝑀2 −𝑀3 − 1,0) (𝑀1 − 1) + 1 

position 

3. The number of overlapped lags between 𝕃𝑐13 and 𝕃𝑐13
−  is 𝜂2 = max(2𝑀1 −𝑀2 −

1,0) (𝑀3 − 1) + 1 

4. The number of overlapped lags between 𝕃𝑐23 and 𝕃𝑐23
−  is 𝜂3 = (𝑀2 − 1)(𝑀1 + 1) + 1 

The aforementioned relations can be proved by following the same steps as in 

Section 5.6.1. 
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Therefore, the upper bound of the achievable DOFs for the 3LPA Config.B can be 

expressed as: 

 
DOFs < 2𝜂𝑐 −∑𝜂𝑙

3

𝑙=1

 (5-45) 

= 2{𝑀1𝑀3 +𝑀2𝑀3} + 𝑀1𝑀2 −𝑀2 +𝑀1 − 𝑎(𝑀1 − 1) − 𝑏(𝑀3 − 1) − 2 

where 𝑎 = max(2𝑀2 −𝑀3 − 1,0) and 𝑏 = max(2𝑀1 −𝑀2 − 1,0).  

5.7 Results and Analysis  

This section presents some results to verify the correctness of the derived expressions and 

effectiveness of the proposed configurations. First, we investigate the proposed 

configurations using the minimum possible number of sensors. Then array configurations 

with three and four subarrays are presented and compared based on the difference coarray. 

The number of lags and the required aperture size as a function of the total number of 

sensors are evaluated for different MLPA levels. The number of unit inter-element spacings 

are then evaluated as a function of the total number of sensors. Finally, the upper bounds 

of the achievable DOFs of the 3LPA configurations derived in Section 5.6 are compared 

against the maximum DOFs.  

5.7.1 MLPAs with Minimum Number of Sensors 

This subsection investigates the effectiveness of the proposed configurations using the 

minimum number of sensors (the extreme cases). The purpose of this investigation is to 

explore how the proposed configurations perform at such extremes.  

Table 5-4 illustrates the minimum number of sensors needed to construct the proposed 

MLPA configuration with 2, 3, 4, 5, and 6 levels. Based on Figure 5-4 (a), the minimum 
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number of sensors for 𝑁𝑝 = 2,3,4,5 and 6 is 4 (coprime array), 8 (3LPA), 14 (4LPA), 24 

(5LPA), and 36 (6LPA) sensors respectively. For each case the minimum, the maximum, 

the mean, and the variance of the number of unique lags, the number of consecutive lags, 

and the aperture size are calculated. Moreover, each MLPA configuration is compared with 

coprime array for a fixed 𝑁.  

The results in the table are generated by considering all possible 𝑁𝑐 configurations. For the 

considered configurations, the proposed arrays always achieve larger number of 

consecutive lags, 𝑙𝑐𝑔, compared with coprime arrays whereas the number of unique lags, 

𝑙𝑢𝑔, is less. Therefore, only very few holes appear in the difference coarray of the proposed 

configurations which is not the case in coprime arrays. Additionally, the proposed 

configurations always require smaller aperture size, 𝐷, compared with coprime arrays. 

Coprime arrays always achieve a fixed number of consecutive lags [52] for a fixed 𝑁, this 

is why the variance of 𝑙𝑐𝑔 is zero. The numbers in the table were calculated based on the 

derived equations and were verified by actual simulation of the listed scenarios. 

5.7.2 Array Configurations  

In this subsection, we present some examples for MLPA with three and four subarrays and 

compare them with coprime array in [52], nested array in [34], and super nested arrays in 

[97]. For a given 𝑁, coprime arrays are constructed such that they achieve the largest 𝑙𝑢𝑔 

where the two entries of 𝐦 should be as close as possible [56], [57]. In addition, nested 

arrays and super nested arrays are constructed as in [34], [97] such that they can achieve 

the maximum DOFs where difference coarray has no holes, 𝑙𝑢𝑔 = 𝑙𝑐𝑔.  
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Table 5-4: MLPA configurations using the minimum possible number of sensors 

 Minimum Maximum Mean Variance 𝑁 

Parameters Coprime array configuration 

𝑙𝑢𝑔 9 9 9 0 4 

𝑙𝑐𝑔 9 9 9 0 

𝐷 (𝑑 𝑢𝑛𝑖𝑡𝑠) 4 4 4 0 

Parameters 3LPA configuration 

𝑙𝑢𝑔 19 23 21 8 8 

𝑙𝑐𝑔 17 21 19 8 

𝐷 (𝑑 𝑢𝑛𝑖𝑡𝑠) 10 12 11 2 

Parameters Coprime array configuration 

𝑙𝑢𝑔 21 27 24 18 8 

𝑙𝑐𝑔 17 17 17 0 

𝐷 (𝑑 𝑢𝑛𝑖𝑡𝑠) 12 16 14 8 

Parameters 4LPA configuration 

𝑙𝑢𝑔 53 59 57.5 9 14 

𝑙𝑐𝑔 39 57 52.5 81 

𝐷 (𝑑 𝑢𝑛𝑖𝑡𝑠) 28 30 29.5 1 

Parameters Coprime array configuration 

𝑙𝑢𝑔 39 69 55 228 14 

𝑙𝑐𝑔 29 29 29 0 

𝐷 (𝑑 𝑢𝑛𝑖𝑡𝑠) 24 49 37.667 160.33 

Parameters 5LPA configuration 

𝑙𝑢𝑔 121 139 133.44 41.778 24 

𝑙𝑐𝑔 97 137 121 206 

𝐷 (𝑑 𝑢𝑛𝑖𝑡𝑠) 66 70 68.667 4 

Parameters Coprime array configuration 

𝑙𝑢𝑔 69 179 137 1590 24 

𝑙𝑐𝑔 49 49 49 0 

𝐷 (𝑑 𝑢𝑛𝑖𝑡𝑠) 44 144 107.11 1333.6 

Parameters 6LPA configuration 

𝑙𝑢𝑔 245 263 254.16 31.251 36 

𝑙𝑐𝑔 169 261 204.47 989.26 

𝐷 (𝑑 𝑢𝑛𝑖𝑡𝑠) 130 132 131.37 0.91228 

Parameters Coprime array configuration 

𝑙𝑢𝑔 105 377 281 7854 36 

𝑙𝑐𝑔 73 73 73 0 

𝐷 (𝑑 𝑢𝑛𝑖𝑡𝑠) 68 324 236 7012.5 

The considered, nested array, 2nd, and 3rd order super nested arrays can have equal 

aperture size if 𝑁1 = 𝑁/2 is an odd number [97]. Apart from the 2nd order, when 𝑁1 is an 

even number, the 3rd order super nested array cannot be constructed with 𝑁1 = 𝑁2 [97]. 

As a result, the two numbers have to be different and we end up with an array of a quite 

smaller aperture size and smaller number of lags compared with nested arrays. In some 
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cases, holes might appear in the corresponding difference coarray [97]. In this chapter, the 

2nd and 3rd order super nested arrays are constructed such that they realize equal aperture 

size.  

A. MLPA with Three Subarrays:  

The 3LPA and PA configurations with 𝐦1 = [2,3,7], 𝐦2 = [3,4,5] respectively are 

compared versus coprime arrays [52] using 𝐦 = [5,6] and nested arrays [34] for 𝑁 = 10 

sensors. The array structures for those configurations are as shown in Figure 5-2 and the 

corresponding difference coarrays are plotted in Figure 5-5. The proposed configurations 

are compared in terms of the aperture size, number of unique lags, and number of 

consecutive lags as Table 5-5 summarizes.  

The physical aperture is a function of the inter-element spacing and can be either 18𝑑 or 

14𝑑 in 3LPA whereas PA has aperture size equals 16𝑑 or 15𝑑, see Figure 5-2. On the 

other hand, coprime array has larger aperture sizes by at least 7𝑑 and consequently the 

number of unique lags is larger and equals 39 lags. In addition, 21 lags out of them are 

consecutive so there are 18 holes. However, the number of consecutive lags of the proposed 

configurations are larger with only 2 and 4 holes in each configuration for any inter-

element spacing as Figure 5-5 illustrates.  
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Figure 5-5: The difference coarray of 3LPA configurations and PA configurations 

Table 5-5: Comparison between array’s characteristics for N = 10 

Configuration 𝐦 𝓢 𝐷 𝑙𝑢𝑔 𝑙𝑐𝑔 

Nested array 

N1=N2=5 

as in Ref. [34] 

29d 59 -29:29=59 2nd order Super nested 
as in Ref. [97] 

3rd order Super nested 

Coprime array m=[5,6] [6,5]d 25d 39 -10:10=21 

3LPA m1=[2,3,7] 
[7,2,3]d 18d 35 -16:16=33 

[3,7,2]d 14d 27 -12:12=25 

PA m2=[3,4,5] 
[5,3,4]d 16d 29 -13:13=27 

[4,5,3]d 15d 27 -12:12=25 

For larger number of sensors 𝑁 = 12, four 3LPA configurations can be constructed using 

𝐦1 = [3,4,7] and 𝐦2 = [2,5,7]. Figure 5-6 (a) demonstrates those configurations 

compared with coprime array using 𝐦 = [6,7] where the corresponding difference 

coarrays are as depicted in Figure 5-6 (b). Different aperture sizes are required, which 

controlled by the ordered inter-element spacing, 𝓢. The 3LPA configurations using the 

-30 -20 -10 0 10 20 30

(i.2) 2nd-order Super nested array

(i.3) 3rd-order Super nested array

(i.1) Nested array

(ii) Coprime array

The locations of the virtual lags (d units)

 

 

(iii) 3LPA, first configuration

(iv) 3LPA, second configuration

(v) PA, first configuration

(vi) PA, second configuration

Lags

Holes



CHAPTER 5          5.7 Results and Analysis 

143 

 

second vector realize larger aperture size. Therefore, the number of unique lags and the 

number of consecutive lags in Figure 5-6 (b) is larger and reaches up to 57 and 53 lags 

respectively as Table 5-6 summarizes. Additionally, we can achieve the same number of 

unique lags as in coprime array even with smaller aperture size and the number of 

consecutive lags is almost doubled. The 3LPA can even achieve more lags by changing the 

ordered inter-element spacing to 𝓢 = [7,2,5]𝑑 and even with smaller aperture size of 6𝑑.   

In Table 5-5 and Table 5-6, nested arrays and super nested arrays require the largest 

aperture size among all considered configurations, and achieve hole-free difference 

coarrays as demonstrated in Figure 5-5 and Figure 5-6 (b). Large number of elements in 

nested arrays are spaced by a unit inter-element spacing which increases the mutual 

coupling effect. This is not the case in super nested arrays [97]. In addition, higher order 

super nested arrays can overcome this problem more but may have smaller aperture size 

and consequently fewer lags [97]. Increasing the number of sensors to 𝑁 = 12 makes 𝑁1 =

𝑁/2 to be an even number. Therefore, the 3rd order super nested array cannot be 

constructed with 𝑁1 = 𝑁2 = 6 in order to get equal aperture size, 41𝑑 as shown in 

Table 5-6. 

Table 5-6: 3LPA characteristics for N = 12 

Configuration 𝐦 𝓢 𝐷 𝑙𝑢𝑔 𝑙𝑐𝑔 

Nested array N1=N2=6 as in Ref. [34] 41d 83 -41:41=83 

2nd order Super nested 
N1=7, N2=5 as in Ref. [97] 39d 79 -39:39=79 

3rd order Super nested 

Coprime array m=[6,7] [7,6]d 36d 53 -12:12=25 

3LPA 

m1=[3,4,7] 
[7,3,4]d 

[4,7,3]d 

24d 

21d 

43 

37 

-18:18=37 

-15:15=31 

m2=[2,5,7] 
[5,7,2]d 

[7,2,5]d 

28d 

30d 

53 

57 

-24:24=49 

-26:26=53 
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(a) 3LPA configurations 

 

(b) Corresponding difference coarray 

Figure 5-6: 3LPAs with N = 12 sensors (ii)-(iii) using m1 = [3,4,7] and (iv)-(v) using m2 = [2,5,7] 
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B. MLPA with Four Subarrays:  

A 4LPA with a total of 𝑁 = 16 sensors is considered using 𝐦 = [3,4,5,7] and compared 

with coprime array using 𝐦 = [8,9]. Four 4LPA configurations can be constructed by 

selecting the ordered inter-element spacing among the subarrays. Figure 5-7 shows the 

array structures and the corresponding difference coarrays respectively. Three 

configurations have different ordered inter-element spacing and sensor locations. The three 

configurations result in equal aperture size but may have different difference coarray. The 

number of unique lags and number of consecutive lags are summarized in Table 5-7. The 

difference coarray of the first configuration has only two holes. While the fourth 4LPA 

configuration with smaller aperture results in less number of unique lags and consecutive 

lags, see Figure 5-7 (b). Compared with coprime array in [52], the best scenario has got 28 

less unique lags, 24 more consecutive lags, and needed a smaller aperture size by 34𝑑.  

The considered and studied case implies that the difference between the number of unique 

lags and the number of consecutive lags is quite small compared with the 3LPA 

configurations. However, the array becomes less sparse where the sensors become close to 

each other. Consequently, the mutual coupling effect increases. The number of antenna 

elements spaced by a unit inter-element spacing in the considered case is comparable with 

that of nested array as shown in Figure 5-7 (a). This number can be further reduced using 

the 2nd and 3rd order super nested arrays. Those configurations also have hole-free 

difference coarrays as Figure 5-7 (b) depicts. The aperture size of higher order super nested 

arrays is smaller than that of nested arrays. 
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Table 5-7: 4LPA characteristics for N = 16 

Configuration 𝐦 𝓢 𝐷 𝑙𝑢𝑔 𝑙𝑐𝑔 

Nested array N1=N2=8 as in Ref. [34] 71d 143 -71:71=143 

2nd order Super nested 
N1=9, N2=7 as in Ref. [97] 69d 139 -69:69=139 

3rd order Super nested 

Coprime array m=[8,9] [9,8]d 64d 87 -16:16=33 

4LPA m=[3,4,5,7] 

[4,3,7,5]d 

30d 

59 -28:28=57 

[7,3,4,5]d 

[4,7,3,5]d 
57 -27:27=55 

[5,3,7,4]d 28d  53 -25:25=51 

 

(a) 4LPA configurations  

 

(b) Corresponding difference coarray 

Figure 5-7: 4LPAs with N = 16 sensors using m = [3,4,5,7]  
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C. The Optimal Number of Sensors within the Subarrays and the Optimal Ordered Inter-

element Spacing:  

As in coprime arrays and nested arrays, in this part we want to find a relation between the 

entries of 𝐦 that leads to a better MLPA configuration and find the optimal ordered inter-

element spacing. To achieve this purpose, 3LPA and 4LPA are considered with large 

number of sensors such that 𝐌 has multiple rows. Table 5-8 shows a comparison between 

different 3LPA and 4LPA configurations with 𝑁 = 20 sensors where we only consider the 

configuration with the largest 𝑙𝑢𝑔. The 3LPA and 4LPA configurations with m1 achieves 

the largest 𝑙𝑢𝑔 and 𝑙𝑐𝑔 among the same level and need aperture size of 90𝑑 and 70𝑑 

respectively. Generally speaking, the 3LPA needs larger aperture size compared with the 

4LPA. It can be concluded from this example that going to higher level at equal aperture 

size leads to higher DOFs. It can be concluded that, as the entries in of 𝐦 get closer, the 

aperture size becomes smaller and consequently the values of 𝑙𝑢𝑔 and 𝑙𝑐𝑔 are decreased 

and vice-versa. The best ordered inter-element spacing is the one that leads to the least 

number of overlapped lags between the cross-differences and the mirrored positions and 

produces the largest aperture size. Based on (5-3), the aperture size can take only one of 

two values. Since the number of ordered inter-element spacing for the 3LPA is 𝐶3LPA = 2, 

the optimal inter-element spacing is the one that maximizes the aperture size which is 𝓢 =

[𝑀3, 𝑀1, 𝑀2]𝑑 where Table 5-8 confirms this. An extensive simulations have been 

conducted and verified that a 4LPA achieves its maximum number of unique lags when 

the ordered inter-element spacing is either 𝓢 = [𝑀2, 𝑀4, 𝑀1, 𝑀3]𝑑 or 𝓢 =

[𝑀2, 𝑀1, 𝑀4, 𝑀3]𝑑. However, other ordered inter-element spacing gives also the same 

DOFs as Table 5-8 depicts.  
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Table 5-8: 3LPA versus 4LPA characteristics for N = 20   

Configuration 𝐦 𝓢 𝓢 𝐷 𝑙𝑢𝑔 𝑙𝑐𝑔 

3LPA 

𝐦1 = [2,9,11] 

[𝑀3, 𝑀1, 𝑀2]𝑑 

[11,2,9]𝑑 90𝑑 173 165 
𝐦2 = [2,7,13] [13,2,7]𝑑 84𝑑 163 147 
𝐦3 = [3,8,11] [11,3,8]𝑑 80𝑑 147 133 
𝐦4 = [3,5,14] [14,3,5]𝑑 65𝑑 123 115 
𝐦5 = [4,7,11] [11,4,7]𝑑 70𝑑 123 105 
𝐦6 = [4,5,13] [13,4,5]𝑑 60𝑑 109 97 
𝐦7 = [5,8,9] [9,5,8]𝑑 64𝑑 107 83 
𝐦8 = [5,6,11] [11,5,6]𝑑 60𝑑 101 81 
𝐦9 = [2,3,17] [17,2,3]𝑑 48𝑑 95 93 

4LPA 

𝐦1 = [2,3,7,11] [𝑀2, 𝑀4, 𝑀1,𝑀3]𝑑 [3,11,2,7]𝑑 70𝑑 137 129 

𝐦2 = [2,3,5,13] 
[𝑀2, 𝑀4, 𝑀1,𝑀3]𝑑 
[𝑀4, 𝑀1, 𝑀2,𝑀3]𝑑 

[3,13,2,5]𝑑 
[13,2,3,5]𝑑 

60𝑑 119 117 

𝐦3 = [2,5,7,9] 
[𝑀4, 𝑀1, 𝑀2,𝑀3]𝑑 
[𝑀2, 𝑀4, 𝑀1,𝑀3]𝑑 
[𝑀2, 𝑀1, 𝑀4,𝑀3]𝑑 

[9,2,5,7]𝑑 
[5,9,2,7]𝑑 
[5,2,9,7]𝑑 

56𝑑 109 105 

𝐦4 = [3,5,7,8] [𝑀2, 𝑀1, 𝑀4,𝑀3]𝑑 [5,3,8,7]𝑑 49𝑑 97 93 

𝐦5 = [3,4,5,11] 
[𝑀4, 𝑀1, 𝑀2,𝑀3]𝑑 
[𝑀2, 𝑀4, 𝑀1,𝑀3]𝑑 
[𝑀2, 𝑀1, 𝑀4,𝑀3]𝑑 

[11,3,4,5] 
[4,11,3,5]𝑑 
[4,3,11,5]𝑑 

50𝑑 95 85 

5.7.3 The Number of Lags versus the Number of Sensors 

In Figure 5-8 (a) and (b) we generalize the result and plot the maximum number of unique 

lags, the maximum number of consecutive lags, and the maximum aperture size 

respectively as a function of 𝑁 for coprime array, 3LPA, 4LPA, 5LPA, and 6LPA. For a 

certain 𝑁, it is sometimes impossible to build an MLPA because there are no pairwise 

coprime integers that satisfies (5-2). Similar curves in Figure 5-8 (a) indicate that only few 

holes appear in the difference coarray. The number of consecutive lags converges to the 

number of unique lags for the proposed MLPAs which is not the case for coprime array. 

The proposed array configurations always achieve more unique lags and consecutive lags 

as the number of subarrays decreases form 𝑁𝑝 = 6 to 𝑁𝑝 = 3 and vice-versa. The 3LPA 

and 4LPA almost realize more 𝑙𝑢𝑔 compared with coprime array for all 𝑁. The 3LPA 

attains the maximum possible 𝑙𝑢𝑔 and 6LPA achieves the minimum possible 𝑙𝑢𝑔 compared 

with others.  
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Figure 5-8 (b) demonstrates that as the array level decreases, the aperture size increases 

and vice-versa. The proposed configurations always have large number of consecutive lags 

compared with coprime arrays, see Figure 5-8 (a). The worst case (6LPA) achieves large 

𝑙𝑐𝑔 which is more than four and half times of that realized by coprime array and even with 

smaller aperture. For comparison purpose, nested arrays are also included which have a 

hole-free difference coarray, i.e. 𝑙𝑢𝑔 = 𝑙𝑐𝑔 as Figure 5-8 (a) depicts. Nested arrays followed 

by coprime arrays need the largest aperture size among all configurations when 𝑁 is fixed 

as Figure 5-8 (b) reveals. Nested array achieves 104 unique lags and 122 consecutive lags 

more compared with 3LPA configuration for 𝑁 = 42 sensors.  

For equal aperture size, we can use Figure 5-8 (b) to determine the number of sensors and 

then use Figure 5-8 (a) to find the associated number of unique lags and number of 

consecutive lags. For example, when 𝐷 = 132𝑑, an MLPA with 3 levels requires 24 

sensors to achieve 255 unique lags and 245 consecutive lags. On the other hand and for 

the same 𝐷, coprime arrays with 23 sensors realize 165 unique lags and only 47 

consecutive lags. While nested arrays require 22 sensors and generate 263 unique and 263 

consecutive lags. MLPA attains comparable DOFs of that of nested arrays with similar 

equal aperture size while reducing the mutual coupling effect. 
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(a) Maximum number of unique lags and maximum number of consecutive lags 

 

(b) Maximum aperture size 

Figure 5-8: MLPA features including 3LPA, 4LPA, 5LPA, and 6LPA versus the number of sensors  
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5.7.4 Optimum Arrays  

The optimum MLPA configurations are constructed for 𝑁𝑝 = 3,4,5, and 6. The required 

inter-element spacing of the subarrays is plotted versus the total number of elements, 𝑁, in 

Figure 5-9, Figure 5-10, Figure 5-11, and Figure 5-12. There are a total of 2𝑁𝑝 traces in 

each figure. Half of the traces maximizes the number of unique lags and the other half 

maximizes the number of consecutive lags. There are cases where (5-2) cannot be satisfied, 

like the cases of 𝑁 = 11 for 3LPA and 𝑁 = 15 for 4LPA. This explains the missing values 

in Figure 5-9 and Figure 5-10. For the same reason, there is a minimum number of elements 

after which MLPA configuration can be constructed namely 𝑁 = 8, and 14 elements for 

3LPA and 4LPA, respectively.  

As demonstrated in Figure 5-9, except for the case with 𝑁 = 23 elements, a unique 

configuration jointly realizes the maximum 𝑙𝑢𝑔 and 𝑙𝑐𝑔. This demonstrated by overlapping 

markers. The second subarray is always spaced by 2𝑑 or 3𝑑. As a result, the first subarray 

consists of two or three elements (𝑀1 = 2 or 3). The first subarray always has the 

maximum inter-element spacing of 𝑀3𝑑. Consequently, the best ordered inter-element 

spacing is 𝓢3LPA = [𝑀3, 𝑀1, 𝑀2]𝑑. For the special case of 𝑁 = 23, 𝓢 = [11,5,9]𝑑 

maximizes the unique lags, while the number of consecutive lags is maximized when 𝓢 =

[17,3,5]𝑑. 

In most of the 4LPA, the joint optimization of unique and consecutive lags results in a 

unique design as depicted by the overlapping markers in Figure 5-10. There are four cases 

with multiple solutions highlighted in the figure with arrows. Table 5-9 summarizes the 

design alternatives for 4LPA. The case of 𝑁 = 14 or 18 elements has three design 

alternatives which jointly optimize the number of unique and consecutive lags as Table 5-9 
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illustrates. For 𝑁 = 23 elements, there are three design options to maximize the number of 

consecutive lags. The best option is when 𝓢 = [5,3,11,7]𝑑 which also maximizes 𝑙𝑢𝑔. Joint 

optimization cannot be achieved for 𝑁 = 31 elements. As the optimal ordered inter-

element spacing for 𝑙𝑐𝑔 is 𝓢 = [5,19,3,7]𝑑 which is not the same as the two design 

alternatives illustrated in Table 5-9 that maximizes 𝑙𝑢𝑔. 

In general, the second and the third subarrays have the maximum and the minimum inter-

element spacing respectively in most of the considered scenarios. Therefore, the best 

ordered inter-element spacing is 𝓢4LPA = [𝑀2, 𝑀4, 𝑀1, 𝑀3]𝑑.  

 

Figure 5-9: The optimal inter-element spacing versus N for 3LPA 
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Figure 5-10: The optimal inter-element spacing versus N for 4LPA 

Table 5-9: Design alternatives for 4LPA 
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𝑁 
𝒮1 𝒮2 𝒮3 𝒮4 Lags 

14 

7 2 3 5 
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3 7 2 5 
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18 
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23 

11 3 5 7 
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specifies that 𝓢 = [5,2,17,3,13]𝑑 maximizes 𝑙𝑢, while the number of consecutive lags is 

maximized when 𝓢 = [5,2,19,3,11]𝑑 when 𝑁 = 36 elements. In Table 5-10, we present 
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only the design alternatives that maximize either 𝑙𝑢𝑔 or 𝑙𝑐𝑔. For 𝑁 = 30 and 44 elements, 

one of those alternatives also jointly maximizes the number of consecutive lags as 

Figure 5-11 and Table 5-10 confirm. Joint optimization cannot be achieved for 𝑁 = 32 

and 41 elements. 

Others jointly maximize both lags are not included in the table because of the space. For 

example, the case of 𝑁 = 28 elements has six design alternatives which jointly maximize 

both lags. In addition, two design alternatives at 𝑁 = 26,35 elements and three design 

alternatives when 𝑁 = 24 elements are jointly improve both lags. In Figure 5-11 and 

Table 5-10, most of the investigated scenarios have ordered inter-element spacing of 

𝓢5LPA = [𝑀3, 𝑀1, 𝑀5, 𝑀2, 𝑀4]𝑑 or 𝓢5LPA = [𝑀3, 𝑀1, 𝑀2, 𝑀5, 𝑀4]𝑑. 

 

Figure 5-11: The optimal inter-element spacing versus N for 5LPA 
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Table 5-10: Design alternatives for 5LPA 

𝓢 

𝑁 
𝒮1 𝒮2 𝒮3 𝒮4 𝒮5 Lags 

24 

5 2 3 11 7 

𝑙𝑢𝑔, 𝑙𝑐𝑔 

3 5 2 11 7 

3 11 2 5 7 

26 
3 5 2 13 7 

3 13 2 5 7 

28 

13 3 4 5 7 

5 3 13 4 7 

5 3 4 13 7 

4 5 3 13 7 

4 13 3 5 7 

4 3 13 5 7 

30 
5 2 13 3 11 

𝑙𝑢𝑔 
5 2 3 13 11 

32 

3 7 2 13 11 
𝑙𝑢𝑔 

4 5 3 13 11 

3 5 2 19 7 
𝑙𝑐 3 19 2 5 7 

35 
7 3 5 13 11 

𝑙𝑢𝑔, 𝑙𝑐𝑔 
5 7 3 13 11 

41 

7 3 5 17 13 
𝑙𝑢𝑔 

5 7 3 17 13 

19 3 5 7 11 
𝑙𝑐𝑔 7 3 19 5 11 

5 19 3 7 11 

44 
7 2 19 3 17 

𝑙𝑢𝑔 
5 3 19 4 17 

Larger MLPA levels require large number of elements, 36 in case of 6LPA. The 6LPA 

with 𝑁 = 42 elements attains its maximum 𝑙𝑢𝑔 with 𝓢 = [7,2,3,5,17,13]𝑑, see 

Figure 5-12. On the other hand, it has got two ordered inter-element spacings that maximize 

𝑙𝑐𝑔 as Table 5-11 depicts namely: 𝓢1 = [7,2,3,5,19,11]𝑑 and 𝓢2 = [5,2,7,3,19,11]𝑑 based 

on different 𝐦. 

Table 5-11: Design alternatives for 6LPA 

𝓢 

𝑁 
𝒮1 𝒮2 𝒮3 𝒮4 𝒮5 𝒮6 Lags 

36 
7 2 3 5 13 11 

𝑙𝑢𝑔, 𝑙𝑐𝑔 
3 7 2 5 13 11 

38 

7 3 4 5 13 11 

𝑙𝑢𝑔, 𝑙𝑐𝑔 
5 3 7 4 13 11 

4 7 3 5 13 11 

4 3 7 5 13 11 

42 
7 2 3 5 19 11 

𝑙𝑐𝑔 
5 2 7 3 19 11 
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Figure 5-12: The optimal inter-element spacing versus N for 6LPA 
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Figure 5-13: Number of unit spacings versus the total number of elements 
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point of our simulation, we fist find all possible 𝐦 vectors and then we adjust the ordered 

inter-element spacing either 𝓢𝐴 or 𝓢𝐵. Based on 𝐦 and each inter-element spacing vector, 

we might end up with several configurations where we finally pick the one that maximizes 

the number of unique lags. The corresponding 𝐦 vector is used to find the upper bound in 

(5-43) and (5-45). 

When 𝑁 = 10 as an example, we can construct the arrays with 𝐦1 = [2,3,7] or 𝐦2 =

[3,4,5]. Based on 𝓢𝐴 = [𝑀2, 𝑀3, 𝑀1]𝑑 with 𝐦1, and with 𝐦2, we can have up to 27 unique 

lags. Thus, the one that maximizes the bound is selected. For the 3LPA Config.A and based 

on 𝐦1, we have 𝜂1 = 1, 𝜂2 = 5, 𝜂3 = 19, and DOFs < 57. Whereas with 𝐦2, 𝜂1 = 1, 

𝜂2 = 11, 𝜂3 = 17, and DOFs < 65. Consequently, the second vector is selected to find the 

upper bound.  

While 𝓢𝐵 = [𝑀3, 𝑀1, 𝑀2]𝑑 with 𝐦1 and with 𝐦2 produce 35 and 29 unique lags, 

respectively. Thus, we pick 𝐦1 and apply (5-45) to find the upper bound of the 3LPA 

Config.B which makes 𝜂1 = 1, 𝜂2 = 1, 𝜂3 = 7, and DOFs < 73. Similar strategies are 

used and followed for any value of 𝑁.  

Figure 5-14 confirms that the DOFs realizes with 𝓢𝐵 is larger than that of 𝓢𝐴 because the 

former has larger aperture size. The derived bounds for both configurations are valid. 

Moreover, the bound of the 3LPA Config.B is a little bit tighter than that of the 3LPA 

Config.A for the same reason. 
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Figure 5-14: The upper bounds of the achievable DOFs for 3LPA Config.A and Config.B  
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used for selecting the number of sensors and determining the number of ordered inter-

element spacing as well as finding the best MLPA configuration are presented. The 

difference coarray of the proposed MLPA and its aperture have been derived. The 

performance of the proposed configurations was evaluated based on their difference 

coarray, DOFs, aperture size, number of unique lags, and number of consecutive lags. We 

have found that the proposed arrays need small aperture size and can achieve large DOFs. 

This is attractive in antenna designs and array implementations. The proposed 

configuration also has limited holes in the difference coarray which is similar to the 

advantage provided by nested arrays. The proposed array configurations tend to have more 

unique lags and more consecutive lags as the number of subarrays decreases and vice-

versa. We have found that MLPAs can achieve higher DOFs compared with coprime arrays 

provided 𝑁 is large enough through all 𝑁𝑝 levels. Under equal aperture size and comparable 

DOFs with that of nested arrays, the proposed MLPA results in less mutual coupling effects 

when considered. 

We have also found that there is a unique solution which jointly maximizes the number of 

unique lags and the number of consecutive lags which makes the optimum MLPA 

configuration unique. The number of design alternatives increases as the level of the array 

increases. In this case, multiple solutions realize the maximum number of lags and other 

factors like reduced mutual coupling can be used to make the final selection. In addition, 

we have derived an upper bound of the DOFs achieved by the 3LPA configurations. 

Simulation results are conducted to verify the derived bounds. Those bounds are also 

compared with the maximum achievable DOFs by each configuration.  
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CHAPTER 6 SPARSE DOA ESTIMATION BASED ON 

MULTI-LEVEL PRIME ARRAY WITH COMPRESSION 

Multi-level prime array (MLPA) uses multiple uniform linear subarrays where the number 

of elements in the subarrays are pairwise coprime integers. The MLPA requires smaller 

aperture size which is important in mobile applications. Different MLPA configurations 

can be constructed for a given number of antennas and the one that maximizes the DOFs 

is exploited. These configurations have a difference coarray with large number of 

consecutive lags and few holes. The number of consecutive lags can be increased by 

properly compressing the inter-element spacing of one subarray under a fixed number of 

antennas and without changing the aperture size. This chapter proposes a new compressed 

MLPA configuration and demonstrates its superior performance in sparse DOA estimation. 

The resultant array, MLPA with compressed subarray (MLPAC), can have a hole-free 

difference coarray as in nested array case. Sparse reconstruction algorithm is utilized based 

on the difference coarray. MLPAC can estimate larger number of sources using both 

MUSIC and sparse reconstruction algorithms. Simulation results confirm the achievable 

DOFs and the advantage of the proposed configuration in DOA estimation. 

6.1 Introduction 

Antenna arrays have many applications including improved signal reception, interference 

mitigation, and direction-of-arrival (DOA) estimation [28], [38], [39]. The accuracy of 
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DOA estimation depends on the signal characteristics at the array outputs, the array 

geometry, and the characteristics of the propagation medium2.  

Recent works have been directed towards increasing the number of estimated sources or 

the DOFs to be greater than the number of elements. Array configurations that rely on the 

difference coarray including minimum redundancy arrays [91], minimum hole arrays [92], 

coprime arrays [52], and nested arrays [34] can achieve that. The achievable DOFs is 

determined by the properties of the difference coarray [33].  

Minimum redundancy arrays (MRAs) [91] and minimum hole arrays [92] are nonuniform 

linear arrays generated respectively by maximizing the number of consecutive lags and 

minimizing the number of holes in the resulting difference coarray for a given number of 

antennas.  

Coprime arrays has the ability to resolve 𝒪(𝑀1𝑀2) sources using 𝑀1 +𝑀2 − 1 elements 

[52], [53], [54], [55]. The optimal coprime pair is the one that has values of 𝑀1 and 𝑀2 as 

close as possible [56], [57]. To enhance the DOFs, doubling the number of elements of one 

subarray was suggested in [63]. A coprime array with compressed inter-element spacing 

and with displaced subarrays was proposed in [33]. With compression, the inter-element 

spacing for one subarray is reduced while with displacement, a proper shift is introduced 

between the two subarrays. Though, the mutual coupling effect and the aperture size are 

increased because of the compression and the displacement, respectively. Instead of 

processing the entire coprime array, the complexity of the estimation process can be 

                                                 
2 There is an overlap in the review of this chapter and that of chapter 5. Readers who are familiar with that can skip to Section 6.2. 
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reduced by processing each subarray alone and then combine the results to reduce the 

ambiguities [112], [113], [114].  

Nested arrays are constructed using collinearly dense and sparse uniform linear subarrays 

having 𝑀1 and 𝑀2 antenna elements respectively [34]. The antennas in the dense array are 

spaced by a unit inter-element spacing. The antennas in the sparse subarray are spaced by 

(𝑀1 + 1) units and the unit inter-element spacing is half-wavelength. Nested arrays always 

have a hole-free difference coarray. Although the array suffers from the mutual coupling 

effect, nested arrays can resolve 𝒪(𝑁2) sources using 𝑁 = 𝑀1 +𝑀2 antennas [34], [115], 

[116], [54], [117], [118]. The DOFs can be enhanced by increasing the separation between 

the dense and the sparse subarrays [119]. Nested arrays have larger DOFs compared with 

coprime arrays because the difference coarray for coprime arrays has some redundant lags 

[52]. The redundant entries can be exploited to reduce complexity of the estimation 

problem [120]. 

Array configurations using three linear subarrays were considered to improve the DOFs 

[104], [105], [106], [108], [121]. A Coprime array collinear with a ULA was suggested in 

[104]. The number of consecutive lags can be increased by properly selecting the location 

of the appended ULA, though large aperture size is required. In [105] and [106], three 

overlapped ULAs with coprime inter-element spacing was proposed. Compressed nested 

array was proposed in [121] by appending another similar sparse subarray to the other side 

of the dense subarray. This array improves the DOFs but at the expense of increased 

number of antennas and aperture size.  
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Generalizing the above to multi-level configurations which have more than three subarrays 

has received more attention recently. The coprime array in [33] was extended to multi-

level coprime array [107]. Nested arrays was extended to multi-level in [34]. Fourth-level 

nested array, which can resolve 𝒪(𝑁4) sources [94], was developed for narrowband [122] 

and wideband [123] DOA estimation. Super nested array [96], [95] which is a recent 

developed configuration of nested arrays was extended to multi-level in [97], [124]. To 

gain more from such generalization, the fourth order difference coarray statistics was 

exploited to increase the DOFs based on coprime arrays [104], [125] and nested arrays 

[121], [94], [126].  

In addition to the spatial domain, the concept of sparsity was also implemented in the 

frequency domain for DOA estimation in radar applications [115], [127], [29], [101], [128], 

[129], [130]. Array configuration with two coprime frequencies was exploited in [127], 

[29]. The two subarrays used equal number of antennas, 𝑁, and the spacing was adjusted 

as an integer multiple of half-wavelength at both frequencies. The scheme in [127], [29] 

was extended to multiple coprime frequencies [101] where 𝑄 ≥ 2 signals are transmitted. 

The achievable DOFs was derived for two frequencies case [127], [101] and improved by 

properly selecting the coprime pairs and the number of antennas. The achievable DOFs 

was upper bounded and proportional to 𝒪(𝑁2𝑄2) in case of multiple coprime frequencies 

[101]. Multi-frequency operation was also utilized to fill the missing lags in the difference 

coarray and consequently the DOFs was enhanced [131]. Though, this approach needs the 

sources to have large bandwidth to cover the exploited frequencies. The DOFs was 

enhanced by interpolating the holes that appear in the difference coarray [103], [132], 

[133], [134] and by exploiting the difference coarray and the sum coarray [102], [115].  
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Based on the above literature review, there is room to improve the performance of DOA 

estimation without increasing the aperture size which is very important in hand-held and 

mobile devices. In this chapter, sparse DOA estimation based on MLPAs is demonstrated. 

MLPA uses multiple uniform subarrays “or levels” where the number of antenna elements 

of the subarrays are pairwise coprime integers [111]. By selecting the number of antennas 

of the subarrays and controlling the inter-element spacing, various MLPAs of different 

features can be constructed. The configuration that realizes the maximum number of unique 

lags is recommended because the DOFs is upper bounded by the number of lags [33]. For 

DOA estimation, sparse reconstruction algorithms exploit all unique lags in the difference 

coarray whereas subspace-based algorithms such as MUSIC algorithm requires 

consecutive lags [33]. The MLPA configuration [111] is further optimized in order to 

increase the DOFs by compressing the inter-element spacing of one subarray but without 

changing the number of antennas nor the aperture size. A proper selected compression 

factor and a specific subarray can maximize the number of lags and results in a hole-free 

difference coarray. We demonstrate that large number of sources can be detected based on 

MLPA configurations using sparse reconstruction and MUSIC algorithms. The newly 

proposed compressed MLPA configuration can resolve larger number of sources compared 

with MLPA due to the increased number of lags. 

The rest of the chapter is organized as follows. The system model is presented in 

Section 6.2 in which MLPA configuration is introduced followed by the model for DOA 

estimation. In Section 6.3, the compressed version of MLPA configuration is proposed. 

Simulation and results are presented in Section 6.4, and Section 6.5 concludes the chapter. 
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6.2 System Model  

In this section, the generalized MLPA [111] that includes coprime [53] and Pythagorean 

[108] arrays as special cases is introduced briefly. Then the model for DOA estimation is 

presented.   

6.2.1 Multi-Level Prime Array (MLPA) 

An array configuration that combines multiple uniform linear subarrays located along the 

𝑥-axis is referred to as “MLPA” [111]. An MLPA with 𝑁𝑝 subarrays or a level has 𝑀𝑖 

antenna elements within the 𝑖𝑡ℎ subarray where the number of elements in the subarrays 

are pairwise coprime integers. The elements of the 𝑖𝑡ℎ subarray are located at: ℙ𝑖 = 𝑘𝑖𝒮𝑖𝑑 

where 0 ≤ 𝑘𝑖 ≤ 𝑀𝑖 − 1 and 𝒮𝑖𝑑 is the inter-element spacing which equals to multiple units 

of half-wavelength. The inter-element spacing of all 𝑁𝑝 subarrays can be ordered and 

combined in a vector of unique entries, 𝓢 = [𝒮1, 𝒮2, … , 𝒮𝑁𝑝] 𝑑. More details are presented 

in Section 5.2.1.  

When the number of subarrays is 𝑁𝑝 = 2,3, or 4, we refer to the array as coprime array, 

3LPA, or 4LPA respectively. For a given number of antenna elements, 𝑁, and MLPA level, 

𝑁𝑝, there could be multiple 𝐦 vectors that satisfy (5-2) and multiple ordered inter-element 

spacing for each 𝐦. Thus, several MLPA configurations can be constructed. The 

generalized MLPA covers special cases like the Pythagorean array (PA) [108] which is a 

special case of the 3LPA when the entries of 𝐦 are also primitive Pythagorean triple, 𝑀1
2 +

𝑀2
2 = 𝑀3

2. In case of two subarrays (𝑁𝑝 = 2), it becomes a coprime array [52]. 
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Table 6-1: The ordered inter-element spacing for different MLPA levels 

Configurations Coprime Array 3LPA 4LPA 5LPA 

Levels (𝑁𝑝) 2 3 4 5 

𝐦 [𝑀1, 𝑀2] [𝑀1, 𝑀2, 𝑀3] [𝑀1, 𝑀2, 𝑀3, 𝑀4] [𝑀1, 𝑀2, 𝑀3, 𝑀4, 𝑀5] 
In
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𝓢1 [𝑀2, 𝑀1]𝑑 [𝑀2, 𝑀3, 𝑀1]𝑑 [𝑀4, 𝑀1, 𝑀2, 𝑀3]𝑑 [𝑀5, 𝑀1, 𝑀2, 𝑀3, 𝑀4]𝑑 

𝓢2  [𝑀3, 𝑀1, 𝑀2]𝑑 [𝑀2, 𝑀4, 𝑀1, 𝑀3]𝑑 [𝑀4, 𝑀1, 𝑀2, 𝑀5, 𝑀3]𝑑 

𝓢3   [𝑀2, 𝑀1, 𝑀4, 𝑀3]𝑑 [𝑀3, 𝑀1, 𝑀5, 𝑀2, 𝑀4]𝑑 

𝓢4   [𝑀3, 𝑀1, 𝑀4, 𝑀3]𝑑 [𝑀3, 𝑀1, 𝑀2, 𝑀5, 𝑀4]𝑑 

𝓢5    [𝑀2, 𝑀4, 𝑀1, 𝑀5, 𝑀3]𝑑 

𝓢6    [𝑀2, 𝑀3, 𝑀1, 𝑀5, 𝑀4]𝑑 

𝓢7    [𝑀2, 𝑀5, 𝑀1, 𝑀3, 𝑀4]𝑑 

𝓢8    [𝑀2, 𝑀1, 𝑀5, 𝑀3, 𝑀4]𝑑 

𝓢9    [𝑀2, 𝑀1, 𝑀4, 𝑀5, 𝑀3]𝑑 

Table 6-1 lists the ordered inter-element spacing for different MLPA levels. Higher MLPA 

levels can be also constructed for large 𝑁. For a given 𝐦, there exists one coprime array, 

two 3LPAs, four 4LPAs, and nine 5LPAs. For example, a 3LPA with 𝑁 = 12 can be 

constructed using either 𝐦1 = [3,4,7] or 𝐦2 = [2,5,7]. Based on each vector, two 

different 3LPAs can be constructed by setting the ordered inter-element spacing as 𝓢1 =

[𝑀2, 𝑀3, 𝑀1]𝑑 or 𝓢2 = [𝑀3, 𝑀1, 𝑀2]𝑑, see Table 6-1.  

6.2.2 DOA Signal Model 

Assume that there are 𝐾 uncorrelated narrowband signals impinging on an array with 𝑁 

elements from DOAs 𝜽 = [𝜃1, 𝜃2, … , 𝜃𝐾]
𝑇, see Figure 4-2. The received signal, 𝐲(𝑡) =

[𝑦1(𝑡), 𝑦2(𝑡), … , 𝑦𝑁(𝑡)]
𝑇, at the array output over 𝑇 samples can be expressed as: 

 𝐲(𝑡) = 𝐀(𝜽)𝒔(𝑡) + 𝐧(𝑡) (6-1) 
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 𝑡 ∈ {𝑡1, 𝑡2, … , 𝑡𝑇}  

where 𝒔(𝑡) = [𝑠1(𝑡), 𝑠2(𝑡), … , 𝑠𝐾(𝑡)]
𝑇 is the transmitted signal vector of size 𝐾 × 1, 

𝐀(𝜽) = [𝐚(𝜃1) 𝐚(𝜃2) ⋯ 𝐚(𝜃𝐾)] is the steering matrix of size 𝑁 × 𝐾, and 𝐧(𝑡) is the 

white Gaussian complex noise vector of size 𝑁 × 1 whose elements are assumed to be 

independent and identically distributed (i.i.d.) with zero-mean and variance 𝜎𝑛
2. Let 𝑝𝑖𝑑 ∈

ℙ represents the position of the 𝑖𝑡ℎ antenna element along the array axis with 𝑝1 = 0 as a 

reference. When all sources are located in the far-field, the steering vector can be expressed 

as [33]:  

 𝐚(𝜃𝑖) = [1, exp(𝑗2𝜋𝑝2𝑑 sin(𝜃𝑖) /𝜆 ) , … , exp(𝑗2𝜋𝑝𝑁𝑑 sin(𝜃𝑖) /𝜆)]
𝑇 (6-2) 

The received signal can be written in a matrix format as: 

 𝐘 = 𝐀(𝜽)𝐒 + 𝐍 (6-3) 

where 𝐘 = [𝐲(𝑡1),… . , 𝐲(𝑡𝑇)], 𝐍 = [𝐧(𝑡1),… . , 𝐧(𝑡𝑇)] are matrices of size 𝑁 × 𝑇 and 𝐒 =

[𝒔(𝑡1), 𝒔(𝑡2), . . . , 𝒔(𝑡𝑇)]
𝑇 is a matrix of size 𝐾 × 𝑇. When the noise is assumed to be 

uncorrelated with all sources the covariance matrix of the received signal is given by: 

 𝐑𝐘𝐘 = E[𝐘𝐘𝐻] = 𝐀𝐑𝐒𝐒𝐀
𝐻 + 𝜎𝑛

2𝐈𝑁 (6-4) 

where 𝐑𝐒𝐒 = E[𝐒𝐒
𝐻] = 𝑑𝑖𝑎𝑔([𝜎1

2, 𝜎2
2, . . . , 𝜎𝐾

2]) represents the covariance matrix of the 

transmitted signal where (. )𝐻 is the conjugate transpose and 𝜎𝑖
2 is the signal power of the 

𝑖𝑡ℎ source, 𝑖 = 1,2, . . . , 𝐾. Given the received data 𝐘 and the array geometry, our objective 

is to estimate the DOAs, �̂�. The matrix 𝐑𝐘𝐘 can be estimated as:
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 �̂�𝐘𝐘 =
1

𝑇
∑𝐲(𝑡𝑖)𝐲

𝐻(𝑡𝑖)

𝑇

𝑖=1

=
1

𝑇
𝐘𝐘𝐻 (6-5) 

6.3 Multi-Level Prime Array With Compressed Subarray (MLPAC) 

The advantage of MLPA configuration can be demonstrated through its difference coarray. 

Consider an MLPA configuration with 𝑁 antenna elements. The pairwise differences of 

the array can be expressed as: 

 𝔻 = {𝑝𝑖 − 𝑝𝑗|𝑝𝑖𝑑, 𝑝𝑗𝑑 ∈ ℙ} (6-6) 

The difference coarray, 𝔻𝑢, is defined as the set of distinct or unique integers in the set 𝔻. 

Applications that rely on the correlation depend on all distinct virtual lags given by the 

difference coarray. The achievable DOFs which is a measure of the maximum number of 

sources that can be estimated in DOA applications is related to the number of unique lags 

in 𝔻𝑢. The weight function, 𝑤(𝑙𝐷), where 𝑙𝐷 ∈ 𝔻, is defined as the number of occurrences 

of every lag in 𝔻. 

The array structure and the corresponding weight function for the 3LPA with 𝑁 = 16, 𝐦 =

[4,5,9], and 𝓢2 = [9,4,5]𝑑 are plotted in Figure 6-1 (a). The symmetric difference coarray 

has 69 unique lags, 𝑙𝑢𝑔, and 57 consecutive lags, 𝑙𝑐𝑔. There are few missing lags (holes) in 

addition to some redundant lags as demonstrated by the weight function. There is room to 

improve the weight distribution to realize larger DOFs which motivates us to modify the 

MLPA.   
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The DOFs of the MLPA can be enhanced by compressing the inter-element spacing while 

maintaining the number of antennas and aperture size fixed. Therefore, the subarray that 

affects the number of antennas or the aperture size as in (5-3) should not be compressed. If 

the 𝑖𝑡ℎ entry in 𝐦 can be factored into two integers 𝑐 and �̌�𝑖, that is 𝑀𝑖 = 𝑐�̌�𝑖, then the 

inter-element spacing of the subarray spaced by 𝑀𝑖𝑑 can be compressed by a factor, c. 

When 𝑀𝑖 is a prime number, the only nontrivial compression factor is 𝑐 = 𝑀𝑖. Since 𝐦 

contains pairwise coprime integers, �̌�𝑖 is also coprime with all remaining entries.  

For a given MLPA, our objective is to find the proper subarray to be compressed and the 

value of the compression factor that increases the number of consecutive lags which is a 

function of 𝐦 and 𝓢. The optimization operation can be expressed as: 

 (𝑀𝑖, 𝑐) = argmax
𝑀𝑖,𝑐∈ℤ

+
{𝑙𝑐𝑔(𝐦, 𝓢)} 

(6-7) 

 

subject to: 

𝑀𝑖 ≠ {
𝑀𝑁𝑝 , 𝒮𝑁𝑝−1 (𝑀𝑁𝑝−1 − 1) < 𝒮𝑁𝑝 (𝑀𝑁𝑝 − 1)

𝑀𝑁𝑝−1, otherwise
, ∀𝑖 ∈ {1,2, … ,𝑁𝑝} 

𝑁 =∑𝑀𝑖 − (𝑁𝑝 − 1)

𝑁𝑝

𝑖=1

 

 

where ℤ+ is the set of positive integers. The first constraint avoids compressing the 

subarray that determines the aperture size. The second constraint ensures that the number 

of elements are the same for both MLPA and its compressed version. The optimized 

compressed subarray results in larger number of consecutive and unique lags. It may also 

result in hole-free difference coarray.  
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The resultant array is referred to as MLPA with compressed subarray (MLPAC). The 

ordered inter-element spacing of the proposed MLPAC is the same as the corresponding 

MLPA except that the inter-element spacing of the compressed subarray becomes 𝒮𝑖𝑑/𝑐. 

Therefore, the location of the antenna elements of the ith compressed subarray, ℙ𝑖, is given 

by:  

 ℙ𝑖 = ⋃{𝑘𝒮𝑖/𝑐 𝑑

𝑀𝑖−1

𝑘=0

|𝒮𝑖 ≠ 𝑀𝑖} (6-8) 

For notation purposes, we start with the number of levels, 𝑁𝑝, then “LPA” and in case of 

compression, we append the letter “C” indicating compression and two additional digits 

indicating the compressed subarray number and the compression factor “𝑁𝑝LPAC𝑖𝑐”. As 

an example, consider the 3LPA configuration with 𝐦 = [4,5,9] and ordered inter-element 

spacing 𝓢2 = [9,4,5]𝑑 shown in Figure 6-1: (a). According to (5-3), the required aperture 

size is determined by the third subarray, 𝐷 = max(4(5 − 1)𝑑, 5(9 − 1)𝑑) = 40𝑑. 

Therefore, the third subarray cannot be compressed while maintaining equal aperture size. 

There is a possibility to compress the first or the second subarrays. If the first subarray is 

compressed, the ordered inter-element spacing becomes 𝓢2 = [9/𝑐, 4,5]𝑑 with 𝑐 = 3 or 

𝑐 = 9. The corresponding arrays are referred to as 3LPAC13 and 3LPAC19, respectively. 

The arrays structure and the corresponding weight functions are illustrated in Figure 6-1 

(b) and (c). In the second alternative compression, the ordered inter-element spacing can 

be 𝓢2 = [9,4/𝑐, 5]𝑑 with 𝑐 = 2 or 𝑐 = 4 which corresponds to 3LPAC22 and 3LPAC24, 

respectively.  
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(a) 3LPA Configuration B with 𝓢2 = [𝑀3,𝑀1, 𝑀2]𝑑 

  

(b) 3LPAC13 

  

(c) 3LPAC19 

Figure 6-1: The 3LPA and 3LPAC configurations and the corresponding weight  

Although 3LPA has large number of consecutive lags, twelve missig lags appear in the 

corresponding weight function, see Figure 6-1 (a). Through compression, the weight 

function has been redistributed and some of the redundant lags were moved to the missing 

lags as shown in Figure 6-1 (b) and (c). The 3LPAC19 and 3LPAC24 achieve hole-free 

difference coarrays where all lags are unique and consecutive. The price paid for this 

improvement is the reduction in the inter-element spacing of the compressed subarray. 

In Table 6-2, Table 6-3, and Table 6-4 the 3LPA, 3LPAC, 4LPA, and 4LPAC 

configurations are compared in terms of the aperture size, number of unique lags, and 

number of consecutive lags. The conventional coprime arrays [33], [56], [57] and nested 

arrays [34] that achieve the maximum DOFs are also included. A total of 𝑁 = 10 antenna 
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elements are used to construct 3LPA and PA configurations. All 3LPA and PA 

configurations in Table 6-2 have larger number of consecutive lags and requires smaller 

aperture size compared with coprime array and nested array at the expense of reduced 

number of unique lags.  

In Table 6-3, we increase the number of antennas to 𝑁 = 12 elements. As the aperture size 

of the 3LPA increases, the number of unique lags and the number of consecutive lags 

increase. We can achieve larger number of unique lags with smaller aperture size compared 

with that of coprime array and the number of consecutive lags is almost doubled. There are 

some 3LPAC and PA with compressed subarray (PAC) configurations which achieve hole-

free difference coarrays.  

With 𝑁 = 14, four 4LPA configurations can be constructed by selecting the ordered inter-

element spacing as shown in Table 6-4. Although three 4LPA configurations have different 

inter-element spacing and antenna locations, they result in equivalent difference coarrays 

where 𝐷 = 30𝑑, 𝑙𝑢𝑔 = 59, and 𝑙𝑐𝑔 = 57. Few holes appear in the difference coarray which 

can be removed through compression. The number of consecutive lags can be improved 

using different compression factors. As a result, 4LPAC configurations with hole free 

difference coarrays are realized. Note that, the number of unique lags in all considered 

cases of Table 6-2, Table 6-3, and Table 6-4 are increased as well.  
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Table 6-2: Comparison between array’s characteristics for N = 10  

Configuration 𝐦 
Compressed 

Subarray 
𝑐 𝓢 𝐷 𝑙𝑢𝑔 𝑙𝑐𝑔 

Nested array as in Ref. [34] NA as in Ref. [34] 29𝑑 59 59 

Coprime array 𝐦 = [5,6] NA [6,5]𝑑 25𝑑 39 21 

3LPA 

Config.A 

𝐦1 = [2,3,7] 

NA [7,2,3]𝑑 

18𝑑 

35 33 

3LPAC17 1 7 [1,2,3]𝑑 
37 37 

3LPAC22 2 2 [7,1,3]𝑑 

3LPA 
Config.B 

NA [3,7,2]𝑑 
14𝑑 

27 25 

3LPAC 1 3 [1,7,2]𝑑 29 29 
PA 

Config.A 

𝐦2 = [3,4,5] 

NA [5,3,4]𝑑 

16𝑑 

29 27 

PAC15 1 5 [1,3,4]𝑑 
33 33 

PAC23 2 3 [5,1,4]𝑑 

PA 

Config.B 

NA [4,5,3]𝑑 

15𝑑 

27 25 

PAC12 1 2 [2,5,3]𝑑 29 27 
PAC14 1 4 [1,5,3]𝑑 31 31 

Table 6-3: 3LPA and 3LPAC characteristics for N = 12  

Configuration 𝐦 
Compressed 

Subarray 
𝑐 𝓢 𝐷 𝑙𝑢𝑔 𝑙𝑐𝑔 

Nested array as in Ref. [34] NA as in Ref. [34] 41𝑑 83 83 

Coprime array 𝐦 = [6,7] NA [7,6]𝑑 36𝑑 53 25 

3LPA 

Config.A 

𝐦1 = [3,4,7] 

NA [7,3,4]𝑑 

24𝑑 

43 37 

3LPAC17 1 7 [1,3,4]𝑑 
49 49 

3LPAC23 2 3 [7,1,4]𝑑 

3LPA 

Config.B 

NA [4,7,3]𝑑 

21𝑑 

37 31 

3LPAC12 1 2 [2,7,3]𝑑 41 39 
3LPAC14 1 4 [1,7,3]𝑑 43 43 
3LPA 

Config.C 
𝐦2 = [2,5,7] 

NA [7,2,5]𝑑 

30𝑑 

57 53 

3LPAC17 1 7 [1,2,5]𝑑 59 53 
3LPAC22 2 2 [7,1,5]𝑑 61 61 
3LPA Config.D NA [5,7,2]𝑑 28𝑑 53 49 

Table 6-4: 4LPA and 4LPAC characteristics for N = 14 

Configuration 𝐦 
Compressed 

Subarray 
𝑐 𝓢 𝐷 𝑙𝑢 𝑙𝑐 

Nested array as in Ref. [34] NA as in Ref. [34] 71𝑑 143 143 

Coprime array 𝐦 = [7,8] NA [8,7]𝑑 49𝑑 69 29 

4LPA 
Config.A 

𝐦 = [2,3,5,7] 

NA [7,2,3,5]𝑑 

30𝑑 

59 57 

4LPAC17 1 7 [1,2,3,5]𝑑 61 61 

4LPA Config.B NA [3,7,2,5]𝑑 59 57 

4LPA 
Config.C 

NA [3,2,7,5]𝑑 59 57 

4LPAC22 2 2 [3,1,7,5]𝑑 61 61 

4LPA 

Config.D 

NA [5,2,7,3]𝑑 

28𝑑 

53 39 

4LPAC15 1 5 [1,2,7,3]𝑑 55 45 

4LPAC22 2 2 [5,1,7,3]𝑑 55 47 
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6.4 Simulation and Results  

This section verifies the effectiveness of the proposed configuration in DOA estimation. 

Narrowband and uncorrelated sources located in the far-field are assumed. The sources are 

uniformly distributed between −60𝑜 and 60𝑜 and their number is greater than the number 

of antenna elements, 𝐾 > 𝑁. Isotropic antenna elements are assumed in all simulations. 

For comparison with Ref. [33], the grid search is uniform with a step size of 0.25𝑜 within 

[−90𝑜 , 90𝑜], number of samples is 𝑇 = 1000, and the unit inter-element spacing is set to 

𝑑 = 𝜆/2. All these parameters are fixed unless stated otherwise. Both MUSIC [33], [34] 

and CS algorithms are used for DOA estimation. CS based on Yall1 [135] is used due to 

its fast computation compared with Lasso which implemented on CVX toolbox. The 

maximum number of correctly estimated sources using the generalized MLPA and 

MLPAC is evaluated with numerical examples. The performance of the proposed 

configurations is further evaluated based on Monte Carol simulations.  

6.4.1 Impact of Compression on the DOFs  

In this subsection, the results are examined in terms of the maximum number of sources 

that can be estimated using MLPA and MLPAC configurations. A total of 𝑇 = 1000 noise 

free samples are used.  

Figure 6-2 shows the spatial spectra estimated using MUSIC (upper subplots) and CS 

(lower subplots) algorithms for the PA (column 1), PAC15 (column 2), and PAC23 

(column 3) Config.A with 𝑁 = 10 elements when 𝐾 = 16 sources. In all figures, the 

estimated spatial spectra are plotted versus the DOA in degrees where the actual DOAs are 

indicated by dotted vertical lines. 
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Figure 6-2: Spatial spectra estimated using MUSIC (upper subplots) and CS (lower subplots) algorithms for PA 

(column 2), PAC15 (column 2), and PAC23 (column 3) Config.A using N = 10 and with K = 16  

Based on Table 6-2, configurations with DOFs larger than 16 can estimate all sources. For 

MUSIC algorithm, only half the number of consecutive lags can be exploited. In case of 

CS algorithm, higher number of sources can be estimated because all unique lags are 

utilized. Therefore, for the same configuration, the performance using CS algorithm is 

better than that with MUSIC algorithm (row 1 and row 2). On the other hand, the 

performance is improved after compression (coulmn 2 and 3) compared with that of PA 

(coulmn 1). Consequently, PAC configurations can resolve all the 16 sources correctly, 

while PA cannot due to its samll DOFs as shown in Figure 6-2.   

6.4.2 Statistical Error Analysis 

The effectiveness of the proposed configurations is further verified through Monte Carol 

simulations. A grid refinement is applied to find the RMSE as defined in Section 4.3.5. 

According to our assumption that the sources are uniformly distributed between −60𝑜 and 

60𝑜, any two adjacent sources are separated by: 
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 Δ𝜃 =
120

𝐾 − 1
 (6-9) 

This makes any two adjacent sources spaced by ⌊Δ𝜃/ 𝜃𝑖
g
⌋ grid points where ⌊. ⌋ denotes the 

floor operation. In our simulation, we use 𝐼𝑖𝑡𝑒𝑟 = 5000 independent trials. The RMSE is 

evaluated as a function of the SNR, number of samples, 𝑇, and grid refinement, 𝛿.  

A. RMSE versus SNR 

Array configurations are compared with respect to the SNR using MUSIC and CS 

algorithms with a grid refinement of 𝛿 = 3 grid points. The results are presented in 

Figure 6-3 where we divide the figure into four subplots (a)-(d). The performance of the 

selected MLPA configuration and its compressed versions are plotted in the same subplot. 

The performance of each array configuration and its compressed versions is plotted in the 

same subplot using MUSIC and CS algorithms, respectively. In addition, coprime array 

and nested array are included and plotted for comparison purposes in subplot (b) and (d), 

respectively. In the following figures, similar colors and similar markers within a subplot 

or a figure denote the same array configuration where the dotted and solid lines represent 

the performance using MUSIC and CS algorithms, respectively. 

The RMSE of the configurations presented in Table 6-2 is plotted versus the SNR in 

Figure 6-3 using MUSIC and CS algorithms for 𝐾 = 12 sources. In this case, all sources 

are located on the grid search. Based on Figure 6-3, it is evident that the performance 

improves as the SNR increases for all cases using both algorithms. Smaller RMSE was 

realized using CS algorithm (solid lines) as Figure 6-3 shows compared with that using 

MUSIC algorithm (dotted lines) based all configurations Since MUSIC algorithm utilizes 

only half the number of consecutive lags cand CS algorithm uses all unique lags. The 



CHAPTER 6          6.4 Simulation and Results 

178 

 

performance of the 3LPA in Figure 6-3 (a) is better than that of PA configurations 

presented in Figure 6-3 (c) and (d) since it has got more unique lags. Nested array achieves 

the best performance because it achieves the largest number of lags. Coprime array has the 

worst RMSE using MUSIC algorithm due to the low number of consecutive lags, see 

Figure 6-3 (b). Though, nested and coprime arrays require larger aperture size as 

demonstrated in Table 6-2 and Table 6-3.  

With compression, the RMSE for all corresponding configurations have been improved as 

demonstrated in Figure 6-3. The difference between the RMSE of a 3LPA and that of its 

compressed versions is a function of the difference in the number of lags. For example, this 

difference is only two lags for the 3LPA Config.A and its compressed versions, see 

Table 6-2. Although the performance has enhanced, the RMSE of all configurations are 

comparable as shown in Figure 6-3 (a). While, it is four lags for the PA Config.A and its 

compressed versions which leads to evident improvement in the performance. After 

applying compression for the PA Config.A, the RMSE was reduce by around 3.63𝑜 and 

3.92𝑜 using CS at SNR = -3 dB based on the PAC15 and PAC23, respectively. On the 

other hand, the RMSE was decreased by around 9𝑜 at SNR = 6 dB using MUSIC algorithm 

based on both the PAC15 and PAC23. Both 3LPAC17 and 3LPAC22 Config.A realize 

similar RMSE which is the minimum RMSE among all proposed configurations as shown 

in Figure 6-3 (a) since they have got the largest number lags. To realize a RMSE of 1𝑜 with 

CS algorithm, MUSIC algorithm requires more than 6 dB SNR based on the compressed 

versions of the 3LPA Config.A. due to the lack of lags. The large errors floor in Figure 6-3 

(b) and (d) are due to the lack of lags in the corresponding configurations. At 0 dB SNR, 

the RMSE based on the 3LPAC17 and 3LPAC22 Config.A is larger than that based on 



CHAPTER 6          6.4 Simulation and Results 

179 

 

nested array by around 0.05𝑜 using CS algorithm. On the other hand, it is around 2𝑜 and 

2.6𝑜 larger based on the 3LPAC22 and 3LPAC17 Config.A respectively using MUSIC 

algorithm. Though, the proposed configurations require smaller aperture size by 11𝑑.  

Similarly, the RMSE of the 3LPA configurations presented in Table 6-3 is plotted versus 

the SNR in Figure 6-4 for 𝐾 = 15 sources using MUSIC and CS algorithms. In this case, 

we have off-grid sources. The compressed versions in Figure 6-4 (a) have equal number of 

lags and attain similar RMSE at around SNR = 2 dB. Although, comprssing the inter-

element spacing led to higher number of consective lags, the improvement in the RMSE is 

not significant of the 3LPA Config.C and its comprssed versions due to the small difference 

in the number of consecutive lags. This is not the case with the remaing configurations. 

Generally speacking, the results match what we have summarized in Table 6-3. Using CS 

algorithm, the improvement in the RMSE of the compressed versions of the 3LPA 

Config.A is very clear as Figure 6-4 (a) demonstrates. Those configurations have got six 

unique lags more compared with the corresponding 3LPA configuration. The performances 

of the compressed versions in Figure 6-4 (c) are affected differently. A reduction in the 

RMSE can be related to the enhancement in the number of unique lags, while degradation 

in the RMSE is as a result of wrong estimation for some lags and the corresponding 

measurement. The large error floor in Figure 6-4 (b) is due to the lack of lags in the 

corresponding configurations.  
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Figure 6-3: RMSE versus SNR for (a)-(b) 3LPA and 3LPAC (c)-(d) PA and PAC with K = 12 sources, and N = 10. 

MUSIC (dotted lines) and CS (solid lines) 
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Figure 6-4: RMSE as a function of the SNR for 3LPA and 3LPAC with K = 15 sources and N = 12 elements. MUSIC 

(dotted lines) and CS (solid lines) 

B. RMSE versus Number of Samples 

The RMSE versus number of samples of the 3LPA Config.A and its compressed versions 

presented in Table 6-2 is plotted in Figure 6-5 using MUSIC and CS algorithms. The same 

number of sources is assumed, 𝐾 = 12, with 𝛿 = 3 grid points, and SNR = 0 dB. It is 

apparent the performance is enhanced with increase of the number of samples. As the 

number of samples increases, better estimation for the covariance matrix of the received 

signal is achieved and consequently, the RMSE is reduced. The performance using CS 

algorithm is better than that with MUSIC algorithm since all unique lags can be exploited. 
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Figure 6-5: RMSE versus number of samples for the 3LPA Config.A and its compressed versions with K = 12 sources, 

SNR = 0 dB, and N = 10 elements. MUSIC (dotted lines) and CS (solid lines)

C. RMSE versus Number of Grid Points 

Finally, the RMSE using MUSIC and CS algorithms is plotted in Figure 6-6 as a function 

of 𝛿. A total of 𝐾 = 12 sources is assumed with 𝑇 = 1000 samples, and SNR = 0 dB. The 

3LPA Config.A and its compressed versions arrays with 𝑁 = 10 elements are constructed 

as in Table 6-2. Six values of the window size are assumed that is 𝛿 = 0,3,5,7,9, and 11 

grid points where the first value indicates no grid refinement. Those are equivalnet to 

0,0.5,1,1.5,2, and 2.5 degree, respectively. Large RMSE is achieved without using grid 

refinement. Refine the grid search improves the RMSE for all configurations. Increasing 𝛿 

above certain value does not enhance the perfoamnce (array dependent) which means that 

the estimation is perfect and consequently error floor appears.   
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Figure 6-6: RMSE versus different window size for the 3LPA Config.A and its compressed versions with K = 12 

sources, SNR = 0 dB, and N = 10 elements. MUSIC (dotted lines) and CS (solid lines)  

6.5 Chapter Summary  

In this chapter, MLPA is proposed for sparse DOA estimation. The MLPA configuration 

uses multiple uniform linear subarrays where the number of elements is pairwise coprime 

integers. The array has closed form expressions for the antenna locations and the 

corresponding aperture size. There are more than one way to select the number of elements 

in the subarrays and to select the spacing in between which result in different 

configurations of different features. Although few missing lags or holes appear in the 

difference coarray, large DOFs can be achieved. Motivated by this, this chapter proposed 

a compressed version of the MLPA by compressing the inter-element spacing of one 

subarray under fixed number of antenna elements and fixed aperture size. The resultant 
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MLPAC can realize a hole-free difference coarray by properly selecting the compression 

factor and the intended subarray. MLPA and MLPAC configurations require smaller 

aperture size compared with nested and coprime arrays. MLPAC can estimate larger 

number of sources compared with MLPA using both MUSIC and sparse reconstruction 

algorithms. The effectiveness of the proposed configuration has been investigated through 

simulation for DOA estimation. We have shown that the RMSE of the PA Config.A can 

be reduced by around 3.63𝑜 and 3.92𝑜 using CS at SNR = -3 dB based on the PAC15 and 

PAC23, respectively. Additionally, the RMSE was decreased by around 9𝑜 at SNR = 6 dB 

using MUSIC algorithm based on the PAC15 and PAC23.  
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CHAPTER 7 DOA ESTIMATION WITH TWO 

DIMENSIONAL MLPA ARRAY CONFIGURATION 

A multi-level prime array (MLPA) uses multiple uniform linear subarrays along one axis 

where the number of elements within the subarrays are pairwise coprime integers. This 

chapter proposes two-dimensional direction of arrival (2D-DOA) estimation using parallel 

MLPAs. In this approach, we use two MLPA configurations located on the x-y plane with 

half-wavelength spacing in between. The array has a closed form expression for the 

antenna locations. The corresponding difference coarray has large number of consecutive 

lags and few holes. A hole-free difference coarray can be realized if compressed MLPAs 

(MLPAC) are used. Simulation results verify the effectiveness of the proposed array with 

examples for 2D-DOA estimation.  

7.1 Introduction 

Recently, the problem of the two-dimensional direction-of-arrival (2D-DOA) estimation 

has attracted many researchers. Increasing the degrees-of-freedom (DOFs) was one of the 

main objectives. Researchers have developed different configurations and diverse 

algorithms to solve the estimation problem. This includes two parallel subarrays [136]–

[139], L-shape [140], [141], cross-shape coprime arrays [142], coprime planar arrays 

[143]–[146] L-shape nested arrays [147], [148], planar nested arrays [149]–[152], two 

parallel subarrays based nested structure [153], hourglass configurations and others [154]. 
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Sparse reconstruction [136]–[139], [141], [143], [153], [155], [156], and 2D MUSIC 

algorithm [140], [144], [146], [149], [152] were among the most widely used algorithms.  

Two parallel uniform linear subarrays were used to implement a 2D-coprime array [136]–

[139]. The two subarrays are spaced by half-wavelength and the number of elements in the 

second subarray was doubled [138], [139]. The elevation angle was estimated using Lasso 

[139], SPGL1 [136], and complex multitask Bayesian compressive sensing [138] and then 

the result was combined through a least square process to estimate the azimuth angle [138], 

[139]. At SNR = 0 dB, the RMSEs of the elevation and azimuth angles of two sources were 

around 0.07𝑜 and 1𝑜, respectively [139].  

Coprime arrays implemented in multiple axes were proposed [140]–[142]. Two coprime 

arrays were combined to perform an L-shape array [140], [141]. A 2D-DOA with MUSIC 

algorithm was exploited with phase ambiguity elimination in [140]. On the other hand, 1D 

search grid based on a sparse reconstruction was performed in [141]. A cross shape array 

that includes two symmetric coprime arrays in each axis was proposed in [142]. Based on 

the fourth-order-cumulant, the improved subspace algorithm was used where there is no 

issue of angle ambiguity but the complexity increases. The RMSEs at 0 dB SNR of two 

sources [140], [142] and three sources [141] were around 0.08𝑜 , 1.5𝑜 , and 0.3𝑜 using 

nineteen [140], seventeen [141], and thirty [142] antenna elements, respectively.  

Planar coprime arrays was proposed in [143]–[146] for 2D-DOA estimation. In [143], 

aperture extension was realized by relying on the sum-difference coarray. Moreover, sparse 

representation was used based on multiple 1D search grids. A 2D MUSIC algorithm was 

utilized in [144] where the complexity was reduced through 1D partial search grid. The 
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authors in [145] generalized the work in [146] which is based on 2D MUSIC algorithm and 

phase ambiguity elimination. At SNR = 0 dB, the RMSEs of two sources were around 0.3𝑜 

and 0.03𝑜 using twenty four [143] and seventy three [146] antenna elements, respectively. 

Moreover, the RMSEs for the elevation and the azimuth angles of two sources were around 

0.05𝑜 and 0.09𝑜 respectively at 0 dB SNR and using forty antenna elements [144]. On the 

other hand, a RMSE of around 0.03𝑜 and 0.04𝑜 was obtained for estimating the elevation 

and the azimuth angles respectively of two sources at SNR = 0 dB and using eighty eight 

antenna elements [145].  

A 2D-DOA estimation was performed using L-shape nested arrays [147], [148] and planar 

nested arrays [149]–[152]. The angles were estimated and paired automatically by signal 

subspace joint diagonalization algorithm [147], a 2D MUSIC algorithm with spatial 

smoothing [152], and with augmented matrix approach [149]. The authors in [148] 

proposed an algorithm based on the minimum-norm and the least square techniques which 

does not require either the number of sources or pair matching, no need to find the 

corresponding azimuth angle for each elevation angle. The authors in [152] constructed a 

covariance-like matrix of much larger size based on the virtual difference coarray. So, large 

number of sources can be estimated greater than the number of antenna elements. Two 

parallel subarrays, coprime array with compressed inter-element spacing (CACIS)-like 

nested array, were used with the weighted 𝑙1-norm algorithm [153]. At SNR = 0 dB, the 

RMSE of both angles of three source was around 3𝑜 using seven antenna elements [147]. 

The RMSEs of the azimuth and elevation angles of two sources were around 0.1𝑜 and 2𝑜 

respectively using nine antenna elements [153]. Whereas in [148], both angles realize 

almost equal RMSEs that is 0.05𝑜 using eleven antenna elements. The authors in [152] 
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were able to estimate thirty six sources using twenty two elements with RMSEs of around 

0.7𝑜 and 0.6𝑜 for the azimuth and elevation angles, respectively.  

A hole-free difference coarray was realized with nested planar arrays and few holes appear 

in coprime planar arrays [149]. Large number of elements with nested planar array are 

spaced by half-wavelength which leads to significant mutual coupling. The authors in [157] 

proposed several generalized planar arrays. Those arrays have closed form expressions for 

antenna locations and have hole-free difference coarrays. Moreover, the mutual coupling 

effect was reduced in [154] and further mitigated in [157]. A 2D unitary ESPRIT algorithm 

was exploited for 2D-DOA estimation [157]. 

An MLPA uses multiple uniform linear subarrays [111]. The number of elements in the 

subarrays are pairwise coprime integers and the subarrays share the first element. The array 

was proposed as an extension of coprime array in 1D-plane. In this chapter, we combine 

two parallel MLPAs to perform a 2D-MLPA as a generalization of multiple subarrays 

along two parallel axes. This configuration can estimate the elevation and the azimuth 

angles in the x-y plane. The difference coarray of the proposed 2D-MLPA is investigated. 

Few holes appear in the difference coarray, which motivates us to further enhance the 2D-

MLPA. A 2D-MLPA with compressed subarray (2D-MLPAC) is also proposed by 

compressing the inter-element spacing of a specific subarray without changing the number 

of elements and the aperture size. The 2D-MLPAC realizes a hole-free difference coarray. 

Sparse 2D-DOA estimation is used to find the angles, which paired automatically. 

Simulation results are presented to further verify the proposed 2D configuration. We have 

shown that the array can estimate two angles of sources larger than the number of its 
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antenna elements. The advantage of the proposed configuration is that it includes coprime 

arrays as special case.  

The rest of the chapter is organized as follows. The system model is presented in 

Section 7.2 where the proposed array is presented. In Section 7.3, we present a sparse signal 

recovery for 2D-DOA estimation. Simulation and results are discussed in Section 7.4, and 

finally Section 7.5 concludes the chapter. 

7.2 System Model  

In this section, the proposed array is introduced. Then the considered model for 2D-DOA 

estimation is presented.  

7.2.1 Proposed Array 

In this subsection, the MLPA proposed in 0 is extended into 2D in the x-y plane. Consider 

two vectors 𝐦(𝑙) = [𝑀1
(𝑙), 𝑀2

(𝑙), … ,𝑀
𝑁𝑝
(𝑙)
(𝑙)
] of length 𝑁𝑝

(𝑙)
 where 𝑀𝑖

(𝑙) < 𝑀𝑗
(𝑙)

, ∀𝑗 > 𝑖 and 𝑙 =

1,2. The entries within each vector are selected to be pairwise coprime integers. As a 

special case, the value of 𝑙 = 0 represents the 1D MLPA presented in 0. Let us assume that 

we have two parallel MLPAs separated by a distance 𝑑 as Figure 7-1 depicts. The elements 

of the first MLPA are located along the y-axis. While the elements of the second MLPA 

are located along 𝑥 = 𝑑 where 𝑑 = 𝜆/2 with 𝜆 being the signal wavelength. The first and 

the second MLPAs have 𝑁𝑝
(𝑙)

 uniform linear subarrays “levels”, for 𝑙 = 1,2, respectively. 

The subscript “.(𝑙)” is used to distinguish between the two parallel MLPAs where 𝑙 = 1 

refers to the MLPA along the y-axis and 𝑙 = 2 is for that along 𝑥 = 𝑑.  
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The 𝑖𝑡ℎ subarray has 𝑀𝑖
(𝑙)

 elements spaced by multiple units of half-wavelength, 𝒮𝑖
(𝑙)
𝑑, 

where 𝒮𝑖
(𝑙) ∈ 𝐦(𝑙), for 𝑖 = 1,2, … ,𝑁𝑝

(𝑙)
. Consequently, the elements of the 𝑖𝑡ℎ subarray are 

located at: ℙ𝑖
(𝑙) = 𝑘𝑖𝒮𝑖

(𝑙)𝑑 where 0 ≤ 𝑘𝑖 ≤ 𝑀𝑖
(𝑙) − 1. The inter-element spacing of all 𝑁𝑝

(𝑙)
 

subarrays can be ordered and combined in a vector of unique entries, 𝓢(𝑙) =

[𝒮1
(𝑙), 𝒮2

(𝑙), … , 𝒮
𝑁𝑝
(𝑙)
(𝑙)
] 𝑑. The vector 𝓢(𝑙) comprises all entries in 𝐦(𝑙) scaled by 𝑑 but with 

different order such that 𝒮𝑖
(𝑙) ≠ 𝑀𝑖

(𝑙)
 for 𝑙 = 1,2, respectively.  

The two MLPAs can have similar structure or might be different. Taking all subarrays into 

consideration, the first and second MLPA have elements located respectively at [111]: 

 ℙ(𝑙) =⋃{𝑘𝑖𝒮𝑖
(𝑙)
𝑑|0 ≤ 𝑘𝑖 ≤ 𝑀𝑖

(𝑙) − 1, 𝒮𝑖
(𝑙) ≠ 𝑀𝑖

(𝑙)}

𝑁𝑝
(𝑙)

𝑖=1

 (7-1) 

The first and the second MLPA has a total of [111]: 
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z
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Figure 7-1: Parallel MLPA configurations for 2D-DOA estimation  
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 𝑁(𝑙) =∑𝑀𝑖
(𝑙) − (𝑁𝑝

(𝑙) − 1)

𝑁𝑝
(𝑙)

𝑖=1

 (7-2) 

antenna elements for 𝑙 = 1 and 𝑙 = 2, respectively. The required aperture sizes by the two 

MLPAs are given as [111]: 

 𝐷(𝑙) = max(𝒮
𝑁𝑝
(𝑙)
−1

(𝑙)
(𝑀𝑁𝑝−1

(𝑙) − 1) , 𝒮𝑁𝑝
(𝑙) (𝑀

𝑁𝑝
(𝑙)
(𝑙)

− 1)) (7-3) 

Combining these two MLPAs yields a two dimensional MLPA (2D-MLPA) where the 

locations of its elements are given by taking the union of (7-1) for 𝑙 = 1 and 𝑙 = 2 as: 

 ℙ2D = ℙ(1) ∪ ℙ(2) (7-4) 

There are no shared antenna element between the two MLPAs. Consequently, the number 

of antenna elements of the 2D-MLPA is:  

 𝑁 = 𝑁(1) + 𝑁(2) = 𝑁𝑦 + 𝑁𝑥 (7-5) 

where 𝑁(1) = 𝑁𝑦 and 𝑁(2) = 𝑁𝑥.  

7.2.2 2D-DOA Estimation  

Consider 𝐾 uncorrelated narrowband sources located in the far-field impinging on the 2D-

MLPA from directions (𝛼𝑘, 𝛽𝑘), 𝑘 = 1,2, … , 𝐾 where 𝛼𝑘 is the angle between the line that 

connects the 𝑘𝑡ℎ source to the origin and the y-axis, while 𝛽𝑘 is the angle between the line 

that connects the 𝑘𝑡ℎ source to the origin and the x-axis as shown in Figure 7-1.  

Let 𝐩𝑦 = [𝑝1
(1)𝑑, 𝑝2

(1)𝑑,… , 𝑝𝑁𝑦
(1)
𝑑]

𝑇

 and 𝐩 𝑥 = [𝑝1
(2)𝑑, 𝑝2

(2)𝑑,… , 𝑝𝑁𝑥
(2)
𝑑]

𝑇

 be two vectors that 

represent the antenna locations of the two MLPAs where 𝑝𝑖
(𝑙)𝑑 ∈ ℙ(𝑙) for 𝑙 = 1,2.  
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The steering vectors of the MLPA located on the y-axis (𝑙 = 1) and 𝑥 = 𝑑 axis (𝑙 = 2) 

can be expressed as [137], [138], [158]:  

 𝐚(𝑙)(𝛼𝑖) = {
�̃�(𝑙)(𝛼𝑖)𝑒

𝑗𝜋 cos(𝛽𝑖), 𝑙 = 1

�̃�(𝑙)(𝛼𝑖),                  𝑙 = 2
 (7-6) 

 �̃�(𝑙)(𝛼𝑖) = [exp(𝑗𝜋𝑝2
(𝑙) cos(𝛼𝑖)) , … , exp (𝑗𝜋𝑝𝑁(𝑙)

(𝑙)
cos(𝛼𝑖))]

𝑇

 (7-7) 

The received signal vector at time instant 𝑡 along each axis can be written as [137], [138], 

[158]: 

 𝐲(1)(𝑡) = �̃�(1)𝐀𝛽𝒔(𝑡) + 𝐧
(1)(𝑡) (7-8) 

 𝐲(2)(𝑡) = �̃�(2)𝒔(𝑡) + 𝐧(2)(𝑡) (7-9) 

where 𝐧(1)(𝑡) and 𝐧(2)(𝑡) are zero mean white complex Gaussian noise vectors that are 

independent from each other and independent from the signal. The two modified steering 

matrices are given as: �̃�(𝑙) = [�̃�(𝑙)(𝛼1) �̃�(𝑙)(𝛼2) ⋯ �̃�(𝑙)(𝛼𝐾)] for 𝑙 = 1,2 and the 

matrix 𝐀𝛽 is given as [137], [138], [158]:  

 𝐀𝛽 = diag([𝑒
𝑗𝜋 cos(𝛽1), … , 𝑒𝑗𝜋 cos(𝛽𝐾)]) (7-10) 

which is a diagonal matrix of size 𝐾 × 𝐾. In matrix format, the received signal over 𝑇 

samples can be rewritten as:

 𝐘(1) = �̃�(1)𝐀𝛽𝐒 + 𝐍
(1) (7-11) 

 𝐘(2) = �̃�(2)𝐒 + 𝐍(2) (7-12) 
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where 𝐘(1) = [𝐲(1)(𝑡1), … . , 𝐲
(1)(𝑡𝑇)], 𝐍

(1) = [𝐧(1)(𝑡1),… . , 𝐧
(1)(𝑡𝑇)] are matrices of size 

𝑁𝑦 × 𝑇, 𝐘(2) = [𝐲(2)(𝑡1), … . , 𝐲
(2)(𝑡𝑇)], 𝐍

(2) = [𝐧(2)(𝑡1),… . , 𝐧
(2)(𝑡𝑇)] are matrices of 

size 𝑁𝑥 × 𝑇, and 𝐒 = [𝒔(𝑡1), 𝒔(𝑡2), . . . , 𝒔(𝑡𝑇)]
𝑇 is a matrix of size 𝐾 × 𝑇. When the noise 

along the two axes are independent and uncorrelated with the signals, the cross correlation 

matrix of the received signals is given by [137], [138], [158]: 

𝐑𝐘(2)𝐘(1) = E [𝐘(2)𝐘(1)
𝐻
] = �̃�(2)𝐑𝐒𝐒𝐀𝛽

𝐻�̃�(1)
𝐻

 (7-13) 

where 𝐑𝐒𝐒 = E[𝐒𝐒
𝐻] = diag([𝜎1

2, 𝜎2
2, . . . , 𝜎𝐾

2]) represents the covariance matrix of the 

transmitted signal and 𝜎𝑖
2 is the signal power of the 𝑖𝑡ℎ source, 𝑖 = 1,2, . . . , 𝐾. Given the 

received data 𝐘(1), 𝐘(2), and the array geometry, our objective is to come up with �̂� and �̂� 

estimate. In practice, the statistics are not available and we rely on the sample average of 

the covariance matrix as:  

 �̂�𝐘(2)𝐘(1) =
1

𝑇
∑𝐲(2)(𝑡𝑖)𝐲

(1)𝐻(𝑡𝑖)

𝑇

𝑖=1

=
1

𝑇
𝐘(2)𝐘(1)

𝐻
 (7-14) 

7.3 2D-DOA Estimation via Sparse Representation 

For a 2D array specified by ℙ2D, its difference coarray, 𝔻2D, is defined as the differences 

between all sensor locations: 

𝔻2D = {𝐩𝑚 − 𝐩𝑛|𝑚, 𝑛 = 1,2, … ,𝑁} 
(7-15) 

where 𝐩𝑚 and 𝐩𝑛 are vectors and 𝐩𝑚𝑑, 𝐩𝑛𝑑 ∈ ℙ2D. It is always desired to maximize the 

number of lags and minimize the holes in the difference coarray. The proposed 

configuration is compared with others in Section 7.4 based on their difference coarrays.  
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Column-wise vectorization of the cross correlation matrix produces a vector 𝐳 of length 

𝑁𝑥𝑁𝑦 × 1 as follows:  

 𝐳 = vec(𝐑𝐘(2)𝐘(1)) = �̃�𝐛 (7-16) 

where �̃� = [�̃�(𝛼1), �̃�(𝛼2), . . . , �̃�(𝛼𝐾)] is an extended steering matrix of size 𝑁𝑥𝑁𝑦 × 𝐾, 

�̃�(𝛼𝑘) = �̃�
(2)(𝛼𝑘)⨂�̃�

(1)∗(𝛼𝑘) with ⨂ denotes the Kronecker product, 𝐛 =

[𝜎1
2𝑒−𝑗𝜋 cos(𝛽1), 𝜎2

2𝑒−𝑗𝜋 cos(𝛽2), . . . , 𝜎𝐾
2𝑒−𝑗𝜋 cos(𝛽𝐾)]

𝑇
, and the operator (∗) denotes the 

complex conjugate. The signal model in (7-16) is a single snapshot of 𝐛 [34], so the rank 

of 𝐑𝐳𝐳 is one. Thus, the sources become fully correlated and consequently, subspace-based 

DOA estimation algorithm cannot be used directly [52]. To solve this, spatial smoothing 

can be performed before [34]. Spatial smoothing can be exploited if we have an array 

configuration that has consecutive lags [34]. Since the MLPA can achieve large number of 

consecutive lags, MUSIC algorithm can be applied for DOA estimation.  

Sparse reconstruction algorithms can also be utilized for DOA estimation. The problem in 

(7-16) can be formulated to be a sparse one as:

 𝐳 = vec(𝐑𝐘(2)𝐘(1)) = �̃�z𝐫 (7-17) 

where �̃�z is a new steering matrix constructed using all possible angles of 𝛼1
g
, 𝛼2

g
, … , 𝛼𝑁𝛼

g
 

where 𝑁𝛼 ≫ 𝐾. The variable 𝐫 is a sparse vector with only 𝐾 nonzero entries. Sparse signal 

recovery using Lasso can be used to solve such problem based on the 𝑙1-norm as [33]:  

 �̂�g = argmin
𝐫𝐠
[
1

2
‖𝐳 − �̃�z𝐫

g‖
𝟐
+ 𝜆𝑡‖𝐫

g‖1] (7-18) 
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where 𝜆𝑡 is a regularization parameter. The positions of the nonzero entries of �̂�g represents 

�̂� and their values indicates the corresponding signals’ power. Based on (7-16), the least 

square solution can be applied to estimate 𝐛 as [137], [138], [158]: 

 �̂� = (�̂̃�𝐻�̂̃�)
−1

�̂̃�𝐻𝐳 (7-19) 

where �̂̃� = [�̃�(�̂�1), �̃�(�̂�2), . . . , �̃�(�̂�𝐾)]. An estimate of 𝛽 can be realized through [136], 

[137]:  

 −𝑗𝜋cos(�̂�𝑘) = arg(�̂�𝑘) (7-20) 

7.4 Simulation and Results 

To validate the 2D-DOA estimation using parallel MLPAs, the following parameters are 

selected. Uncorrelated narrowband sources located in the far-field are assumed. The total 

number of samples is 𝑇 = 1000 samples. For comparison with [33], the grid search is 

uniform with a step size 𝛼𝑖
g
= 0.25𝑜 within [0𝑜 , 180𝑜] which is the range of both angles. 

Additionally, the regularization parameter is 𝜆𝑡 = 0.85 and the minimum inter-element 

spacing is set to 𝑑 = 𝜆/2. All these parameters are fixed unless stated otherwise. CS based 

on Yall1 [135] algorithms is used for DOA estimation. The difference coarray is used to 

assess the performance. Then the maximum number of correctly estimated sources using 

the 2D-MLPA and MLPAC is evaluated with numerical examples. The performance of the 

proposed configuration is further evaluated based on Monte Carol simulations. 
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7.4.1 Difference Coarray in 2D 

A total of 𝑁 = 24 elements is assumed. The 2D-3LPA is constructed with 𝐦(𝑙) = [2,5,7] 

and 𝓢(𝑙) = [7,2,5]𝑑. Whereas, the 2D-3LPAC22 is constructed with 𝐦(𝑙) = [2,5,7] and 

𝓢(𝑙) = [7,1,5]𝑑. The proposed configurations are compared with previous work which 

utilize two subarrays Ref. [136], [137], and those suggest to double the number of elements 

within one subarray Ref. [138], [139]. An array constructed according to Ref. [136], [137] 

with a coprime pair of [11,13] and with a coprime pair of [7,10] according to Ref. [138], 

[139] are considered. The corresponding difference coarrays are shown in Figure 7-2 (a) 

and (b), respectively.  

The 2D-3LPA and 2D-3LPAC22 require very small aperture size as illustrated in 

Figure 7-2 (c) and (e), respectively. The 2D-3LPAC22 realizes a hole-free difference 

coarray, while few holes appear using 2D-3LPA as shown in Figure 7-2 (f) and (d), 

respectively. On the other hand, all configurations based on Ref. [136], [137], and Ref. 

[138], [139] require much larger aperture size and there are a lot of holes in the 

corresponding difference coarray as shown in Figure 7-2 (b) and (d). The number of unique 

lags with Ref. [136], [137] and Ref. [138], [139], is 331 and 325, respectively. While, the 

2D-3LPA attains 171 unique lags and the 2D-3LPAC22 manages 183 unique lags which 

are all consecutive. Thus, we reduce the required aperture which is the main scope of this 

dissertation at the expense of the number of lags.  

  



CHAPTER 7       7.4 Simulation and Results 

 

197 

 

  

(a) The difference coarray of Ref. [136], [137] (b) The difference coarray of Ref. [138], [139] 

  

(c) 2D-3LPA (d) corresponding difference coarray 

  

(e) 2D-3LPAC22 (f) corresponding difference coarray 

Figure 7-2: The difference coarray of (a) Ref. [138], [139], (b) Ref. [140], [141], (c)-(d) 2D-3LPA and its difference 

coarray (e)-(f) 2D-3LPAC22 and its difference coarray 
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7.4.2 Impact of Compression in 2D 

A total of 𝐾 = 26 uniformly distributed sources between (𝛼, 𝛽) = (20𝑜 , 20𝑜) and 

(160𝑜 , 160𝑜) is assumed. The 2D-3LPA and 2D-3LPAC22 presented in Section 7.4.1 with 

𝑁 = 24 elements, SNR = 0 dB, and 𝑇 = 1000 samples are used. Figure 7-3 shows the 2D-

DOA estimation using 2D-3LPA and 2D-3LPAC22. The latter configuration has larger 

number of lags, consequently most of the 26 sources are estimated correctly compared with 

those using 2D-3LPA. A 2D-coprime array is also simulated which realizes up to 159 

unique lags. Consequently, it is performance is the worst among the three configurations. 

There is a big error in detecting two and one sources with the 2D-coprime array and 2D-

3LPA, respectively.  

 

Figure 7-3: 2D-DOA estimation based on 2D-3LPA and 2D-3LPAC22 using CS with K = 26 sources in noise free and 

N = 24 elements  
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7.4.3 Statistical Error Analysis  

The RMSE of the estimated DOA is defined as [143]:  

 RMSE = √
1

𝐼𝑖𝑡𝑒𝑟𝐾
∑∑(𝛼𝑖 − �̂�𝑖(𝑗))

2
+ (𝛽𝑖 − �̂�𝑖(𝑗))

2
𝐾

𝑖=1

𝐼𝑖𝑡𝑒𝑟

𝑗=1

 (7-21) 

where �̂�𝑖(𝑗) and �̂�𝑖(𝑗) are the estimates of 𝛼𝑖 and 𝛽𝑖, respectively, at the 𝑗𝑡ℎ Monte Carlo 

trial, 𝑗 = 1,2, . . . , 𝐼𝑖𝑡𝑒𝑟. In our simulation, a total of 𝐼𝑖𝑡𝑒𝑟 = 5000 independent trials are 

used. A total of 𝐾 = 16 uniformly distributed sources between (𝛼, 𝛽) = (20𝑜 , 20𝑜) and 

(160𝑜 , 160𝑜) with 𝑇 = 1000 samples and 𝛿 = 3 grid points are assumed.  

The RMSE in degree versus the SNR using CS is plotted in Figure 7-4 for the 2D-3LPA 

and 2D-3LPAC22 presented in Section 7.4.1 with 𝑁 = 24 elements. It is evident that the 

RMSE is decreased with SNR for all configurations. The RMSE of the 2D-3LPAC22 is 

almost similar to that of the 2D-3LPA. A 2D-coprime array has the largest RMSE due to 

the lack of lags and it requires 36𝑑 × 𝑑 aperture size. On the other hand, 2D-nested array 

has better performance since it has got around 249 lags. Though, most its elements are 

spaced by half-wavelength and it requires aperture size of 41𝑑 × 𝑑. This is not the case for 

the 2D-3LPA and its compressed version which need only 30𝑑 × 𝑑. are used. At SNR = 0 

dB, around 2𝑜 RMSE is realized using the 2D-nested array. The 2D-3LPA and 2D-

3LPAC22 both require a 1 dB SNR while the 2D-coprime array needs 8 dB SNR to achieve 

the same error.   
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Figure 7-4: RMSE versus SNR based on 2D-3LPA and 2D-3LPAC22 using CS with K = 16, δ = 3, and N = 24 

7.5 Chapter Summary  

In this chapter, two new array configurations were proposed by combining two parallel 

MLPAs or MLPACs. The 2D-MLPA and 2D-MLPAC can estimate two angles in the x-y 

plane. The arrays have closed form expression for antenna locations and aperture size. The 

2D-MLPA requires small aperture and has large number of lags with only few holes in the 

difference coarray. On the other hand, the 2D-MLPAC achieves a hole-free difference 

coarray. The effectiveness and validity of the proposed work was evaluated based on the 

difference coarray and further verified with numerical examples for 2D-DOA estimation. 

Simulations show that the proposed configuration can realize the same performance as the 

2D-nested array by increasing the SNR by only 1 dB.  
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CHAPTER 8 CONCLUSIONS AND FUTURE WORK 

This dissertation focused on the problem of sparse DOA estimation with constrained 

antenna arrays. The main constrains are: limited number of receive antenna elements and 

limited inter-element spacing between these antennas which appear due to the available 

physical size in mobile handsets. For a given aperture size, fitting more elements can 

improve the DOA estimation, though mutual coupling effect will increase. On the other 

hand, large inter-element spacing degrades the accuracy due to the limited number of 

elements and may lead to grating lobe problem if the inter-element spacing goes beyond 

half-wavelength. 

This dissertation comprises eight chapters where the main findings are summarize in the 

next section followed by recommendations and suggestions for future work.   

8.1 Summary of Findings  

CHAPTER 1 gave an introduction about the dissertation and summarized the main 

contributions. CHAPTER 2 provided the technical background and literature review. 

In CHAPTER 3, we presented a comparative study on sparse DOA estimation with 

practical antenna arrays. The two elements arrays can support systems in a typical mobile 

phone or small wireless terminals. Other higher order arrays such as 𝑁 = 4, or 8 elements 

can fit on larger devices (tablets, laptops, etc.) or access points. We have presented 

simulation results and compared the performance of beamforming, Capon, MUSIC, and 

𝑙1-SVD algorithms in terms of the RMSE, beamwidth, bias, PRR, and the sources 

resolvability in the presence of such constrains. The 𝑙1-SVD algorithm realizes super-
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resolution because the beamwidth at the DOA is very sharp. In addition, this algorithm 

exploits sparsity/SVD concepts and the processing time is reduced dramatically due to data 

reduction. 

In CHAPTER 4, experimental setups for DOA estimation using sparse arrays in realistic 

channels were implemented and evaluated. Three main sections were included in this 

chapter. The first section suggested a moving coprime array under sparse reconstruction 

framework for DOA estimation. With this approach, both complexity and mutual coupling 

effect can be reduced. Experimental results using on single snapshot were conducted to 

evaluate the advantage of the moving coprime array. In the second section, an SDR (NI-

USRP-2950R) platform system for a general 1D array configuration was implemented in 

order to provide more flexibility to the main parameters. We took into account the issues 

of synchronizing the USRPs and calibrating the phases of the received signals. The 

implemented setups in the first and second sections were tested in a laboratory with dense 

multipath environment. To the best of our knowledge, the performance of sparse arrays 

was not demonstrated experimentally in realistic environments. The third section 

incorporated the radiation pattern of the antennas in DOA estimation. Specifically, sparse 

DOA estimation with directive coprime arrays was proposed. We have quantified the 

impact of the radiation pattern on the DOA estimation accuracy. It is difficult to estimate 

any source of at angles outside the main beam of the directional antenna even in noise free 

circumstances.  

0 proposed a new array configuration that can be used for sparse DOA estimation. The 

proposed MLPA uses multiple uniform linear subarrays where the number of sensors is 

pairwise coprime integers. There are more than one way to select the number of sensors in 



CHAPTER 8   8.1 Summary of Findings 

 

203 

 

the subarrays and the ordered inter-element spacing which have a direct impact on the 

achievable DOFs. Two different optimization criteria were used to design the optimum 

MLPA configuration. In most of the cases, there is a unique solution which jointly 

maximizes the number of unique lags and the number of consecutive lags which makes the 

optimum MLPA configuration unique. The number of design alternatives increases as the 

level of the array increases in this case, other factors like reduced mutual coupling can be 

used to make the final selection. We also derived an upper bound on the DOFs achieved 

by the 3LPA configurations and compared them with the maximum achievable DOFs.  

A compressed version of the multi-level prime array (MLPAC) was proposed 

in CHAPTER 6. This configuration is constructed by compressing the inter-element 

spacing of one subarray under fixed number of antenna elements and fixed aperture size. 

MLPAC can realize a hole-free difference coarray by properly selecting the compression 

factor and the intended subarray. MLPA and MLPAC configurations require smaller 

aperture size compared with nested and coprime arrays. This is attractive in antenna design 

and array implementation. MLPAC can estimate larger number of sources compared with 

MLPA using both MUSIC and sparse reconstruction algorithms.  

In CHAPTER 7, sparse 2D-DOA estimation based on two parallel MLPA configurations 

was proposed. The array has a closed form expression for the antenna locations and limited 

number of holes appears in the corresponding difference coarray. A hole-free difference 

coarray can be realized if the MLPAs are replaced by optimized MLPACs. 
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8.2 Suggestions for Future Work  

The work in this dissertation considers sparse DOA estimation with constrained antenna 

arrays. There are still some open problems whose solutions could add advantages in the 

field of DOA estimation. We may summarize them in the following points: 

 Evaluate the performance in the presence of antenna location perturbations 

 Use practical antennas and practical radiation patterns to evaluate the performance 

of DOA estimation 

 Develop an improved DOA estimation technique, which equalizes/compensates for 

the effect of the radiation pattern to improve the estimation accuracy. This requires 

knowledge about the complex radiation pattern of all antennas to account for the 

magnitude and phase variations at different angels. 

 Derive a closed form expression for the achievable DOFs of the proposed MLPA 

and MLPAC for any number of subarrays 

 Since the difference coarray of the MLPA is not a ULA (few holes), a great 

advantage will be achieved if higher order statistics are considered instead of the 

second order. In future, we shall consider MLPA and MLPAC with higher order 

statistics.  

 Experimentally evaluate the performance for multiple sources, which we have 

already started. Since MLPAs, MLPACs, and other sparse arrays can estimate large 

number of sources greater than the number of elements, the advantage of these 

configurations will be more evident at their extremes. Thus, it will be interesting to 
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evaluate the performance and increase the capability of the SDR system in the 

presence of larger number of transmitters and/or receivers.  

 Extend the work on 2D-DOA estimation for multiple scenarios and different 

constrains. There is room for experimental implementation and then validate the 

fabricated arrays with the developed SDR system. 
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