12,196 research outputs found

    A Framework for Consistency Algorithms

    Get PDF
    We present a framework that provides deterministic consistency algorithms for given memory models. Such an algorithm checks whether the executions of a shared-memory concurrent program are consistent under the axioms defined by a model. For memory models like SC and TSO, checking consistency is NP-complete. Our framework shows, that despite the hardness, fast deterministic consistency algorithms can be obtained by employing tools from fine-grained complexity. The framework is based on a universal consistency problem which can be instantiated by different memory models. We construct an algorithm for the problem running in time ?^*(2^k), where k is the number of write accesses in the execution that is checked for consistency. Each instance of the framework then admits an ?^*(2^k)-time consistency algorithm. By applying the framework, we obtain corresponding consistency algorithms for SC, TSO, PSO, and RMO. Moreover, we show that the obtained algorithms for SC, TSO, and PSO are optimal in the fine-grained sense: there is no consistency algorithm for these running in time 2^{o(k)} unless the exponential time hypothesis fails

    On model checking data-independent systems with arrays without reset

    Full text link
    A system is data-independent with respect to a data type X iff the operations it can perform on values of type X are restricted to just equality testing. The system may also store, input and output values of type X. We study model checking of systems which are data-independent with respect to two distinct type variables X and Y, and may in addition use arrays with indices from X and values from Y . Our main interest is the following parameterised model-checking problem: whether a given program satisfies a given temporal-logic formula for all non-empty nite instances of X and Y . Initially, we consider instead the abstraction where X and Y are infinite and where partial functions with finite domains are used to model arrays. Using a translation to data-independent systems without arrays, we show that the u-calculus model-checking problem is decidable for these systems. From this result, we can deduce properties of all systems with finite instances of X and Y . We show that there is a procedure for the above parameterised model-checking problem of the universal fragment of the u-calculus, such that it always terminates but may give false negatives. We also deduce that the parameterised model-checking problem of the universal disjunction-free fragment of the u-calculus is decidable. Practical motivations for model checking data-independent systems with arrays include verification of memory and cache systems, where X is the type of memory addresses, and Y the type of storable values. As an example we verify a fault-tolerant memory interface over a set of unreliable memories.Comment: Appeared in Theory and Practice of Logic Programming, vol. 4, no. 5&6, 200

    Proving sequential consistency by model checking

    Get PDF
    Sequential consistency is a multiprocessor memory model of both practical and theoretical importance. Unfortunately, the general problem of verifying that a finitestate protocol implements sequential consistency is undecidable, and in practice, validating that a real-world, finitestate protocol implements sequential consistency is very time-consuming and costly. In this work, we show that for memory protocols that occur in practice, a small amount of manual effort can reduce the problem of verifying sequential consistency into a verification task that can be discharged automatically via model checking. Furthermore, we present experimental results on a substantial, directorybased cache coherence protocol, which demonstrate the practicality of our approach.

    Verification of a lazy cache coherence protocol against a weak memory model

    Get PDF
    In this paper we verify a modern lazy cache coherence protocol, TSO-CC, against the memory consistency model it was designed for, TSO. We achieve this by first showing a weak simulation relation between TSO-CC (with a fixed number of processors) and a novel finite-state operational model which exhibits the laziness of TSO-CC and satisfies TSO. We then extend this by an existing parameterisation technique, allowing verification for an unlimited number of processors. The approach is executed entirely within a model checker, no external tool is required and very little in-depth knowledge of formal verification methods is required of the verifier.Comment: 10 page

    Predicate Abstraction with Indexed Predicates

    Full text link
    Predicate abstraction provides a powerful tool for verifying properties of infinite-state systems using a combination of a decision procedure for a subset of first-order logic and symbolic methods originally developed for finite-state model checking. We consider models containing first-order state variables, where the system state includes mutable functions and predicates. Such a model can describe systems containing arbitrarily large memories, buffers, and arrays of identical processes. We describe a form of predicate abstraction that constructs a formula over a set of universally quantified variables to describe invariant properties of the first-order state variables. We provide a formal justification of the soundness of our approach and describe how it has been used to verify several hardware and software designs, including a directory-based cache coherence protocol.Comment: 27 pages, 4 figures, 1 table, short version appeared in International Conference on Verification, Model Checking and Abstract Interpretation (VMCAI'04), LNCS 2937, pages = 267--28
    • …
    corecore