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Abstract
We present a framework that provides deterministic consistency algorithms for given memory models.
Such an algorithm checks whether the executions of a shared-memory concurrent program are
consistent under the axioms defined by a model. For memory models like SC and TSO, checking
consistency is NP-complete. Our framework shows, that despite the hardness, fast deterministic
consistency algorithms can be obtained by employing tools from fine-grained complexity.

The framework is based on a universal consistency problem which can be instantiated by different
memory models. We construct an algorithm for the problem running in time O∗(2k), where k is
the number of write accesses in the execution that is checked for consistency. Each instance of
the framework then admits an O∗(2k)-time consistency algorithm. By applying the framework, we
obtain corresponding consistency algorithms for SC, TSO, PSO, and RMO. Moreover, we show that
the obtained algorithms for SC, TSO, and PSO are optimal in the fine-grained sense: there is no
consistency algorithm for these running in time 2o(k) unless the exponential time hypothesis fails.
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1 Introduction

The paper at hand develops a framework for consistency algorithms. Given an execution of
a concurrent program over a shared-memory system, consistency algorithms check whether
the execution is consistent under the intended behavior of the memory. Our framework
takes an abstraction of this intended behavior, a memory model, and yields a deterministic
consistency algorithm for it. By applying the framework, we obtain provably optimal
consistency algorithms for the well-known memory models SC [38], TSO, and PSO [1].

Checking consistency is central in the verification of shared-memory implementations.
Such implementations promise programmers consistency guarantees according to a certain
memory model. However, due to the complex and performance-oriented design, implementing
shared memories is sensitive to errors and implementations may not provide the promised
guarantees. Consistency algorithms test this. They take an execution over a shared-memory
implementation, multiple sequences of read and write events, one for each thread. Then they
check whether the execution is viable under the memory model, namely whether read and
write events can be arranged in an interleaving that satisfies the axioms of the model.

In 1997, Gibbons and Korach [32] were the first ones that studied consistency checking as
it is considered in this work. They focused on the basic memory model Sequential Consistency
(SC) by Lamport [38]. In SC, read and write accesses to the memory are atomic making each
write of a thread immediately visible to all other threads. Gibbons and Korach showed that
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42:2 A Framework for Consistency Algorithms

checking consistency in this setting is, in general, NP-complete. Moreover, they considered
restrictions of the problem showing that even under the assumption that certain parameters
like the number of threads are constant, the problem still remains NP-complete.

The SPARC memory models Total Store Order (TSO), Partial Store Order (PSO), and
Relaxed Memory Order (RMO) were investigated by Cantin et al. in [15]. The authors
showed that, like for SC, checking consistency for these models is NP-hard. Furbach et al. [31]
extended the NP-hardness to almost all models appearing in the Steinke-Nutt hierarchy [46],
a hierarchy developed for the classification of memory models. This yields NP-hardness
results for memory models like Causal Consistency (CC) [37], Pipelined RAM (PRAM) [44],
Cache Consistency [33] or variants of Processor Consistency [33, 4]. Bouajjani et al. [11]
independently found that checking (variants of) CC for a given execution is NP-hard as well.

We approach consistency checking under the assumption of data-independence [11, 50, 10].
In fact, the behavior of a shared-memory implementation or a database does not depend on
precise values in many practical applications [49, 3]. We can therefore assume that in a given
execution, a value is written at most once. However, the NP-hardness of checking consistency
under SC, TSO, and PSO carries over to the data-independent case [32, 31]. Deterministic
consistency algorithms for these models will therefore face exponential running times. By
employing a fine-grained complexity analysis, we show that one can still obtain consistency
algorithms that have only a mild exponential dependence on certain parameters. Moreover,
we show that the obtained algorithms are provably optimal.

Fine-grained complexity analyses are a task of Parameterized Complexity [30, 22, 24]. The
goal of this new field within complexity theory is to measure the influence of certain parameters
on a problem’s complexity. In particular, if a problem is NP-hard, one can determine which
parameter k of the problem still offers the opportunity for a fast deterministic algorithm.
Such an algorithm runs in time f(k) · poly(n), where f is a computable function that only
depends on the parameter, and poly(n) is a polynomial in the size of the input n. Problems
admitting such algorithms lie in the class FPT of fixed-parameter tractable problems. The
time-complexity of a problem in FPT is denoted by O∗(f(k)) since f(k) dominates. A
fine-grained complexity analysis determines the precise function f that is needed to solve the
problem. While finding upper bounds amounts to finding algorithms, lower bounds on f

can be obtained from the exponential time hypothesis (ETH) [35]. It assumes that n-variable
3-SAT cannot be solved in time 2o(n). Among other hardness assumptions, ETH is considered
standard in parameterized complexity and was used to derive lower bounds for a variety of
problems [22, 39, 21, 16]. A function f is optimal when upper and lower bound match.

Our contribution is a framework which yields consistency algorithms that are optimal
in the fine-grained sense. Obtained algorithms run in time O∗(2k), where k is the number
of write events in the given execution. We demonstrate the applicability by obtaining
corresponding consistency algorithms for SC, TSO, PSO, and RMO. Relying on the ETH, we
prove that for the former three models, consistency cannot be checked in time 2o(k). This
shows that our framework yields optimal algorithms for these models. Moreover, we are
significantly improving upon already existing deterministic algorithms that are usually based
on a simple iteration running in time O∗(kk). Note that considering other parameters like
the number of threads, the number of events per thread, or the size of the underlying data
domain yields W[1]-hard problems [42, 32] that are unlikely to admit FPT-algorithms [22, 24].

Our framework is based on a universal consistency problem that can be instantiated by a
memory model of choice. We develop an algorithm for this universal problem running in
time O∗(2k). Then, any instance by a memory model automatically admits an O∗(2k)-time
consistency algorithm. For the formulation of the problem, we rely on the formal framework
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of Alglave [5] and Alglave et al. [6] for describing memory models in terms of relations. In
fact, checking consistency then amounts to finding a particular store order [50] on the write
events that satisfies various acyclicity constraints.

For solving the universal consistency problem, we show that instead of a store order
we can also find a total order on the write events satisfying similar acyclicity constraints.
The latter are algorithmically simpler to find. We develop a notion of snapshot orders that
mimic total orders on subsets of write events. This allows for shifting from the relation-based
domain of the problem to the subset lattice of writes. On this lattice, we can perform a
dynamic programming which builds up total orders step by step and avoids an explicit
iteration over such which would result in an O∗(kk)-time algorithm. Keeping track of the
acyclicity constraints is achieved by so-called coherence graphs. The dynamic programming
runs in time O∗(2k) which constitutes the time-complexity.

To apply the framework, we follow the formal description of SC, TSO, PSO, and RMO,
given in [5, 6] and instantiate the universal consistency problem. Optimality of the algorithms
for SC, TSO, and PSO is obtained from the ETH. To this end, we construct a reduction from
3-SAT to the corresponding consistency problem that generates only linearly many write
events. The reduction transports the assumed lower bound on 3-SAT to consistency checking.

Related Work. In its general form, consistency checking is NP-hard for most memory
models. Furbach et al. [31] show that LOCAL [2] is an exception. Checking consistency
under LOCAL takes polynomial time. This also holds for Cache Consistency and PRAM
if certain parameters of the consistency problem are assumed to be constant. In the case
of data-independence, Bouajjani et al. [11] show that checking consistency under CC and
variants of CC also takes polynomial time. Wei et al. [48] present a similar result for PRAM.
In [50], Bouajjani et al. present practically efficient algorithms for the consistency problems
of SC and TSO under data-independence. They rely on the polynomial-time algorithm for
CC [11] and obtain a partial store order, which is completed by an enumeration. In theory,
the enumeration has a worst-case time complexity of O∗(kk). We avoid such an enumeration
by a dynamic programming running in time O∗(2k). Consistency checking for weaker and
stronger notions of consistency, like linearizability [34], is considered in [26, 27, 25].

Instead of checking consistency for a single execution of a shared-memory implementation,
there were efforts in verifying that all executions are consistent under a certain memory
model. Alur et al. show in [7] that for SC, the problem is undecidable. This also holds for
CC [11]. Under data-independence, the problem becomes decidable for CC [11]. Verifying
Eventual Consistency [47] was shown to be decidable by Bouajjani et al. in [12]. There
has also been work on other verification problems like reachability and robustness. Atig
et al. show in [8] that, under TSO and PSO, reachability is decidable. In [9] the authors
extend their results and present a relaxation of TSO with decidable reachability problem.
Robustness against TSO was considered in [13] and shown to be PSPACE-complete. This also
holds for POWER [40, 45], as shown in [23], and for partitioned global address spaces [14].

Parameterized complexity has been applied to other verification problems as well. Biswas
and Enea [10] study the complexity of transactional consistency and obtain an FPT-algorithm
in the size and the width of a history. This also yields an algorithm for the serializability
problem, proven to be NP-hard by Papadimitriou [43] in 1979. A fine-grained algorithm for
serializability under TSO was given in [28]. The authors of [29] present an FPT-algorithm
for predicting atomicity violations as well as an intractability result. The parameterized
complexity of data race prediction was considered in [42]. Fine-grained complexity analyses
were conducted for reachability under bounded context switching on finite-state systems [17],
and for reachability and liveness on parameterized systems [18, 19].
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2 Preliminaries

To state our framework, we introduce some basic notions around memory models and the
consistency problem. We mainly follow [6, 5, 50, 11]. Further, we give a short introduction
into fine-grained complexity. For standard textbooks in this field, we refer to [30, 24, 22].

Relations, Histories, and Memory Models. We consider the consistency problem: given
an execution of a concurrent program and a model of the shared memory, decide whether the
execution adheres to the model. Formally, executions consist of events modeling write and
read accesses to the shared memory. To define these, letVar be the finite set of variables of
the program. Moreover, letVal be its finite data domain andLab a finite set of labels. A write
event is defined by w :wr(x, v), where w ∈Lab is a label, x ∈Var is a variable, and v ∈Val is
a value. The set of write events is defined byWR = {w :wr(x, v) | w ∈Lab, x ∈Var , v ∈Val}.
A read event is given by r : rd(x, v). The set of read events is denoted by RD. We define
the set of all events by E =WR ∪RD. If it is clear from the context, we omit the label of
an event. Given an event o ∈ E, we access the variable of o by var(o) ∈Var . For a subset
O ⊆ E, we denote byWR(O) andRD(O) the set of write and read events in O.

For modeling dependencies between events we use strict orders. Let O ⊆ E be a set of
events. A strict partial order on O is an irreflexive, transitive relation over O1. A strict total
order is a strict partial order that is total. We often refer to the notions without mentioning
that they are strict. Given two relations rel, rel ′ ⊆ O × O, we denote by rel ◦ rel ′ their
composition, by rel+ the transitive closure, and by rel−1 the inverse. For variable x, we denote
by relx the restriction of rel to events on x: relx = {(o, o′) ∈ rel | var(o) = var(o′) = x}.

Executions are modeled by histories. A history is a tuple h = 〈O, po, rf 〉, where O ⊆ E is
a set of events executed by the threads of the program. The program order po is a partial
order on O which orders the events of a thread according to the execution. Typically, it is
a union of total orders, one for each thread. The relation rf ⊆WR(O)×RD(O) is called
reads-from relation. It specifies the write event providing the value for a read event in the
history. Moreover, for each read event r ∈RD(O) we have a write event w ∈WR(O) such
that (w, r) ∈ rf and if (w, r) ∈ rf , both events access the same variable.

I Example 1. Consider the history given in Figure 1. It consists of three threads T1, T2,
and Tpre that communicate via the variables x, y, z over the data domain {0, 1}. The set
of events O is given by the events listed in the figure. Each thread processes from top to
bottom indicating the program order po. Hence, po is the union of three total orders, one for
each thread. For simplicity, we do not draw it. The reads-from relation is determined by the
arrows labeled rf . The relation shows that each read event is linked to its corresponding write
event. For instance, the two read events rd(z, 0) are linked to the write wr(z, 0). Intuitively
this means that in an actual execution, the threads T1 and T2 cannot start until Tpre finishes
and writes wr(z, 0) to the memory since the correct value for z is not available earlier.

Note that in a history, we assume the reads-from relation rf to be given. This is due
to the data-independence of shared-memory and database implementations in practice
[49, 10, 3, 11, 50]. This means that the behavior of the implementation does not depend on
actual values and in an execution, we may assume each value to be written at most once.
From such an execution, we can simply read off the relation rf .

1 Note that the relation has to be irreflexive. This separates it from a usual partial order.
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T1 :

rd(z, 0)

wr(y, 1)

rd(x, 0)

Tpre :

wr(x, 0)

wr(y, 0)

wr(z, 0)

T2 :

rd(z, 0)

wr(x, 1)

rd(y, 0)

rf rf

rf rf

Figure 1 Example of a history. The program order is given implicitly by the arrangement of the
events. For each thread, T1, T2, and Tpre, the program order progresses top to bottom. Formally, it
is a union of the resulting three total orders. Arrows labeled by rf show the reads-from relation.

Our framework is compatible with histories that feature initial writes. These histories
have a write event for each variable writing the initial value of that variable. Formally, these
write events are smaller than all other events under program order. If a history h = 〈O, po, rf 〉
is fixed, we abuse notation and also useWR andRD to denoteWR(O) andRD(O). For a
variable x, we writeWR(x) = {w ∈WR | var(w) = x} for the set of write events on x in h.
Furthermore, we will later make use of the relation po -loc, defined by restricting po to events
on the same variable: po -loc = {(o, o′) ∈ po | var(o) = var(o′)}.

A memory model is an abstraction of the memory behavior defining axioms that
the relations in a history must adhere to. Formally, a memory model MM is a tuple
MM = (po -mm, rf -mm). The relation po -mm, also called preserved program order, is a sub-
relation of po describing the structure maintained by the memory model. The latter relation
rf -mm is a subrelation of rf . It shows which write events are visible globally under MM.

Fine-Grained Complexity. For many memory models, the consistency problem is NP-hard
[31, 32, 15, 11]. Hence, deterministic consistency algorithms usually face exponential running
times. But exponents might only depend on certain parameters of the problem which still allow
the algorithm for being fast. Finding such parameters is a task of parameterized complexity.

The basis of parameterized complexity are parameterized problems. That is, subsets P

of Σ∗ × N, where Σ is a finite alphabet. An input to P is of the form (x, k), with k being
called the parameter. A particularly interesting class of parameterized problems are the
fixed-parameter tractable (FPT) problems. A problem P is FPT if it can be solved by a
deterministic algorithm running in time f(k) · |x|O(1), where f is a computable function only
dependent on k. The running time of such an algorithm is usually denoted by O∗(f(k)) to
suppress the polynomial part. The class FPT is contained in the class W[1]. Problems that
are W[1]-hard are considered intractable since they are unlikely to be FPT.

Given a fixed-parameter tractable problem P , finding an upper bound for f is achieved
by constructing an algorithm for P . Lower bounds on f are usually obtained from the
exponential time hypothesis (ETH) [35]. This standard hardness assumptions asserts that
3-SAT cannot be solved by an algorithm running in time 2o(n), where n is the number of
variables. A lower bound on f is then obtained by a suitable reduction from 3-SAT to P . We
are interested in finding the optimal f for the consistency problem where upper and lower
bound match. The search for such an f is referred to as fine-grained complexity.

3 Framework

We present our framework. Given a model describing the memory, the framework provides
an (optimal) deterministic algorithm for the corresponding consistency problem. That is,
whether a given history can be scheduled under the axioms imposed by the model. The
obtained algorithm can then be used within a testing routine for concurrent programs.

FSTTCS 2020
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At the heart of the framework is a universal consistency problem that can be instantiated
with different memory models. We solve the problem by switching from a relation-based
domain, where the problem is defined, to a subset-based domain. On the latter, we can then
apply a dynamic programming which constitutes the desired deterministic algorithm.

3.1 Universal Consistency
The basis of our framework is a universal consistency problem which can be instantiated to
simulate a particular memory model. For its formulation, we make use of a consistency notion
that allows for the construction of a fast algorithm but deviates from the literature [5, 6, 50]
at first sight. Therefore, it is proven in Section 4 that instantiating the problem with a
particular memory model yields the correct notion of consistency.

We clarify our notion of consistency. Intuitively, a history is consistent under a memory
model if it can be scheduled such that certain axioms defined by the model are satisfied.
Following the formal framework of [5, 6], finding such a schedule amounts to finding a
particular order of the write events that satisfies acyclicity requirements imposed by the
axioms. Formally, let h = 〈O, po, rf 〉 be a history and let MM be a memory model described
by the tuple (po -mm, rf -mm). Then h is called MM-consistent if there exists a strict total
order tw on the write eventsWR of h such that the graphs

Gloc = (O, po -loc ∪ rf ∪ tw ∪ cf ) and Gmm = (O, po -mm ∪ rf -mm ∪ tw ∪ cf )

are both acyclic. Here, the conflict relation cf is defined by cf = rf−1 ◦
⋃

x∈Var twx. Phrased
differently, (r, w) ∈ cf if r is a read event on a variable x, w is a write event on x, and there
is a write event w′ on x such that (w′, r) ∈ rf and (w′, w) ∈ tw.

The acyclicity of Gloc is called uniprocessor requirement [5] or memory coherence for
each location [15]. Roughly, it demands that an order among writes to the same location
that can be extracted from the history, is kept in tw. The second acyclicity requirement in
the definition resembles the underlying memory model MM. If Gmm is acyclic, the history
can be scheduled adhering to the axioms defined by MM.

I Example 2. Consider the history given in Example 1. We check consistency under the
simple memory model SC. As we will see later in Section 4.2, SC is defined by the tuple
(po -sc, rf -sc) = (po, rf ). For checking consistency, we need to construct the graphs Gloc and
Gsc. To this end, we fix a total order tw on the write events. It is shown as the red edges
labeled by tw in Figure 2. Formally, the strict total order tw is the transitive closure of these
edges. The next step is to determine the conflict relation cf . It contains two edges. There is
an edge rd(y, 0)→ wr(y, 1), shown in blue in Figure 2. This is due to the inverted rf -edge
rd(y, 0)→ wr(y, 0) and the tw-edge wr(y, 0)→ wr(y, 1). Note that the latter edge exists in
tw (transitive closure) and connects writes to the same variable y which is mandatory for cf .
The second cf -edge rd(x, 0)→ wr(x, 1) is obtained similarly but is not shown in the figure.

According to the chosen memory model SC, the graph in Figure 2 shows a subgraph of
Gsc = (O, po ∪ rf ∪ tw ∪ cf ). In fact, only the second conflict edge is missing. But we already
obtain a cycle in this graph which traverses as follows:

rd(y, 0) cf−→ wr(y, 1) tw−→ wr(x, 1) po−→ rd(y, 0).

This constitutes a cycle in Gsc and shows that the chosen total order tw does not lead to
acyclic graphs and is therefore not a witness for consistency. However, any total order on
the write events will cause a cycle implying that the history is not SC-consistent.
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T1 :

rd(z, 0)

wr(y, 1)

rd(x, 0)

Tpre :

wr(x, 0)

wr(y, 0)

wr(z, 0)

T2 :

rd(z, 0)

wr(x, 1)

rd(y, 0)

rf rf

rf rf

tw

tw

tw

tw
cf

Figure 2 A subgraph of Gsc. The total order tw is the transitive closure of the red edges. The
blue edge is part of the conflict relation cf . One cf -edge, namely rd(x, 0) → wr(x, 1), is missing.
The graph contains a cycle showing that the underlying history is not SC-consistent.

Our definition of consistency deviates from the literature in two aspects. First, we demand
a total order tw instead of a store order, a partial order that is total on writes to the same
location [5, 6, 50]. In Section 4 we will show that the resulting notions of consistency are
equivalent. A further difference is that we do not explicitly test for out of thin air values [41].
For the majority of memory models considered in this work, the test is not necessary as it is
implied by the acyclicity of Gloc and Gmm. But it can easily be added when needed.

We are ready to state the universal consistency problem. To this end, let MM be a fixed
memory model. Given a history h, the problem asks whether h is MM-consistent.

MM-Consistency
Input: A history h = 〈O, po, rf 〉.
Question: Is h MM-consistent?

Instantiations of the problem by well-known memory models like SC or TSO are typically
NP-hard [32, 31]. However, we are interested in a deterministic algorithm for MM-Consistency.
While we cannot avoid an exponential running time for such an algorithm, a fine-grained
complexity analysis can determine the optimal exponential dependence. Many parameters of
MM-Consistency like the number of threads, the maximum size per thread, or the size of
the data domain yield parameterizations that are W[1]-hard [42, 32]. Therefore, we conduct
a fine-grained analysis for the parameter k = |WR|, the number of writes in h. The main
finding is an algorithm for MM-Consistency running in time O∗(2k). The optimality of this
approach is shown in Section 5 by a complementing lower bound. We formally state the
upper bound in the following theorem. There, n = |O| denotes the number of events in h.

I Theorem 3. The problem MM-Consistency can be solved in time O(2k · k2 · n2).

Note that an algorithm for MM-Consistency running in time O∗(kk) is immediate. One
can iterate over all total orders ofWR and check the acyclicity of Gloc and Gmm in polynomial
time. Since we cannot afford this iteration in O∗(2k), improving the running time needs an
alternative approach and further technical development that we summarize in Section 3.2.

3.2 Algorithm
We present the upper bound for MM-Consistency as stated in Theorem 3. Our algorithm
is a dynamic programming. It switches from the domain of total orders to subsets of write
events and iterates over the latter. The crux is that for a particular subset we do not need to

FSTTCS 2020
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remember a precise order. In fact, we only need to store that it can be ordered by a so-called
snapshot order that mimics total orders on subsets. Not having a precise order at hand yields
a disadvantage: we cannot just test both acyclicity requirements in the end. Instead, we
perform an acyclicity test on a coherence graph in each step of the iteration. These graphs
carry enough information to ensure acyclicity as it is required by MM-Consistency.

We begin our technical development by introducing snapshot orders. Intuitively, these
simulate total orders of the write events on subsets of writes. Given a subset, a snapshot
order consists of two parts: a total order on the subset and a partial order. The latter
expresses that the complement of the given set precedes the subset but is yet unordered.

I Definition 4. Let V ⊆WR. A snapshot order on V is a union tw[V ] = t[V ] ∪ r [V ].

The relation t[V ] is a strict total order on V and r [V ] = {(v, v) | v ∈ V , v ∈ V } arranges
that the elements of V are smaller than the elements of V . By V , we denote the complement
of V in the write events, V =WR \ V . Note that r [V ] does not impose an order among V .

A snapshot order is indeed a strict partial order. Even more, when the considered set
is the whole write eventsWR, a snapshot order tw[WR] is a total order onWR. Therefore,
MM-consistency can be checked by finding a snapshot order onWR satisfying both acyclicity
requirements. The advantage of this formulation is that we can construct such an order from
snapshot orders on subsets. Technically, we parameterize2 the problem along all V ⊆WR.

For the acyclicity requirements, we need a similar parameterization. To this end, let
V ⊆WR be a subset and tw[V ] a snapshot order on V . We parameterize the above graphs
Gloc and Gmm via exchanging the total order by the snapshot order:

Gloc(tw[V ]) = (O, po -loc ∪ rf ∪ tw[V ] ∪ cf [V ]),
Gmm(tw[V ]) = (O, po -mm ∪ rf -mm ∪ tw[V ] ∪ cf [V ]).

As above, the conflict relation is defined by cf [V ] = rf−1 ◦
⋃

x∈Var tw[V ]x. Note that for a
snapshot order tw[WR] on the whole set of write events, the resulting graphs Gloc(tw[WR])
and Gmm(tw[WR]) are exactly those appearing in the acyclicity requirement.

I Example 5. We reconsider the history of Examples 1 and 2. Our goal is to construct
the graph Gsc(tw[V ]) along a snapshot order tw[V ]. To this end, we first fix a set V . Let
V = {wr(y, 1), wr(x, 1)}. The set is shown in Figure 3 by the gray highlighted write events.
As a snapshot order we chose tw[V ] = t[V ] ∪ r [V ], where t[V ] consists of only one edge:
wr(y, 1) → wr(x, 1). Note that this is a total order on V . The edge is shown in Figure 3,
it is marked red and labeled by t[V ]. The relation r [V ] is fixed by definition. It contains
an edge from each write event in V to each write event in V . These are marked green in
Figure 3. To construct Gsc(tw[V ]) it is left to determine the relation cf [V ]. The relation
contains two edges, rd(y, 0)→ wr(y, 1) and rd(x, 0)→ wr(x, 1). We show the former edge in
Figure 3 as well. The latter is omitted to ease readability.

Note that the graph clearly shows that the set V is totally ordered by t[V ] while the
set V is not. The only information that we obtain, from r [V ], is that the write events in
V are smaller than the elements in V . In this case, this is already enough to obtain a
cycle. This means that each total order on write events that contains tw[V ] cannot witness
SC-consistency. Note that the total order of Example 2 is such an order.

2 The parameterization here does not refer to parameterized complexity.
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T1 :

rd(z, 0)

wr(y, 1)

rd(x, 0)

Tpre :

wr(x, 0)

wr(y, 0)

wr(z, 0)

T2 :

rd(z, 0)

wr(x, 1)

rd(y, 0)

rf rf

rf rf

r [V ] r [V ]

t[V ]cf [V ]

Figure 3 The graph Gsc(tw[V ]) with set V = {wr(y, 1), wr(x, 1)}, highlighted gray. The snapshot
order tw[V ] is given as the union of the total order t[V ], marked red, and the partial order r [V ],
marked green. The relation cf [V ] consists of two edges, rd(y, 0) → wr(y, 1), shown in blue, and
rd(x, 0) → wr(x, 1), not shown in the figure.

Now we have the tools to state the parameterization of MM-Consistency along subsets of
write events. This allows for leaving the domain of total orders and switch to subsets instead.
To this end, we define a table T with a Boolean entry T [V ] for each V ⊆WR. Entry T [V ]
will be 1, if there is a snapshot order on V satisfying the acyclicity requirement on both
parameterized graphs. Otherwise, T [V ] will evaluate to 0. Formally, T [V ] is defined by

T [V ] =
{

1, if ∃ snapshot ord. tw[V ] : Gloc(tw[V ]) and Gmm(tw[V ]) are acyclic,
0, otherwise.

The following lemma relates MM-Consistency to the table T . It is crucial in our devel-
opment as it states the correctness of the constructed parameterization. The proof follows
from the beforehand definitions and the fact that a snapshot order onWR is already total.

I Lemma 6. History h is MM-consistent if and only if T [WR] = 1.

We are now left with the problem of evaluating the entry T [WR]. Our approach is to set
up a recursion among the entries of T and evaluate it via a bottom-up dynamic programming.
The recursion will explain how entries of subsets are aggregated to compute entries of larger
sets. In fact, write events are added element by element: the recursion shows how an entry
T [V ] can be utilized to compute the entry of an enlarged set V ∪ {v}, where v ∈ V .

When passing from T [V ] to T [V ∪ {v}], we need to provide a snapshot order on V ∪ {v}
that satisfies the acyclicity requirements. A snapshot order on V can always be extended to a
snapshot order on V ∪ {v}: we insert v as new minimal element in the contained total order.
But we need to keep track of whether the acyclicity is compatible with the new minimal
element v. To this end, we perform acyclicity tests on coherence graphs. These do not depend
on a snapshot order and solely rely on the fact that v is the new minimal element. This will
later allow for an evaluation of the table without touching precise orders.

I Definition 7. Let V ⊆WR and v ∈ V . The coherence graphs of V and v are defined by

Gloc[V, v] = (O, po -loc ∪ rf ∪ r [V, v] ∪ cf [V, v]),
Gmm[V, v] = (O, po -mm ∪ rf -mm ∪ r [V, v] ∪ cf [V, v]).

In the definition, relation r [V, v] expresses that V ∪ {v} is smaller than V ∪{v} and that v is
the minimal element in V ∪{v}. Formally, it is given by r [V, v] = r [V ∪{v}]∪{(v, w) | w ∈ V }.
The conflict relation is defined by cf [V, v] = rf−1 ◦

⋃
x∈Var r [V, v]x.

FSTTCS 2020



42:10 A Framework for Consistency Algorithms

Coherence graphs are key for the recursion among the entries of T . Assume we are given
a snapshot order tw[V ] on V meeting the acyclicity requirements of T and we extend it to a
snapshot order tw[V ′] on V ′ = V ∪ {v}, as above - by inserting v as minimal element of V ′.
We show that each potential cycle in Gloc(tw[V ′]) or Gmm(tw[V ′]) either implies a cycle in a
coherence graph Gloc[V, v] or Gmm[V, v] or in one of the graphs Gloc(tw[V ]) or Gmm(tw[V ]).
If T [V ] = 1, we can assume the latter graphs to be acyclic. Moreover, if we have checked
that the coherence graphs are acyclic as well, we obtain that T [V ′] = 1. Hence, a recursion
should check whether T [V ] = 1 and whether the corresponding coherence graphs are acyclic.

We formulate the recursion in the subsequent lemma. Note that it is a top-down
formulation that only refers to non-empty subsets of write events. An evaluation of the
base case is immediate. Entry T [∅] is evaluated to 1 if Gloc(∅) = (O, po -loc ∪ rf ) and
Gmm(∅) = (O, po -mm ∪ rf -mm) are both acyclic. Otherwise it is evaluated to 0.

I Lemma 8. Let V ⊆WR be a non-empty subset. Entry T [V ] admits the following recursion:

T [V ] =
∨

v∈V

(Gloc[V \{v}, v] acyclic) ∧ (Gmm[V \{v}, v] acyclic) ∧ T [V \{v}].

We interpret the expression (Gloc[V \{v}, v] acyclic) as a predicate evaluating to 1 if the
graph is acyclic and to 0 otherwise. Hence, the recursion requires the existence of a write
event v ∈ V such that both coherence graphs are acyclic and entry T [V \{v}] evaluates to 1.
A proof of Lemma 8 is provided in the full version of the paper.

With the recursion at hand we can evaluate the table T by a dynamic programming.
To this end, we store already computed entries and look them up when needed. An entry
T [V ] is evaluated as follows. We branch over all write events v ∈ V and test whether the
coherence graphs Gloc[V \{v}, v] and Gmm[V \{v}, v] are acyclic. Then, we look up whether
T [V \ {v}] = 1. If all three queries are positive, we store T [V ] = 1. Otherwise, T [V ] = 0.

The complexity estimation of Theorem 3 is obtained as follows. The table has 2k many
entries that we evaluate, which constitutes the exponential factor. For each entry T [V ], we
branch over at most k write events v ∈ V . Looking up the value of T [V \{v}] can be done
in constant time. The following lemma shows that O(k · n2) time suffices to construct the
coherence graphs and to check them for acyclicity. The latter checks are based on Kahn’s
algorithm [36] for finding a topological sorting. This completes the proof of Theorem 3.

I Lemma 9. Let V ⊆WR and v ∈ V . Constructing the coherence graphs Gloc[V, v] and
Gmm[V, v] and testing both for acyclicity can be done in time O(k · n2).

4 Instantiating the Framework

We show the applicability of our framework and obtain consistency algorithms for the memory
models SC, TSO, PSO, and RMO. To this end, we first need to show that our notion of
consistency coincides with the notion of consistency used in the literature for these models.
This ensures that the obtained algorithms really solve the correct problem. Once this is
achieved, we can directly apply the framework to SC, TSO, and PSO. For RMO, we show
how the framework can be slightly modified to also capture this more relaxed model.

4.1 Validity
Consistency, as it is considered in the literature, is also known as validity [5, 6]. We use
the latter name to avoid confusion with our notion of consistency. Before we show that
both notions actually coincide, we formally define validity. The definition is based on store
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orders [5, 6, 50] (also known as coherence orders). Given a history h = 〈O, po, rf 〉, a store
order ww ⊆WR×WR takes the form ww =

⋃
x∈Var wwx so that each wwx is a strict total

order onWR(x). Phrased differently, store orders are unions of total orders on writes to the
same variable. Note that, in contrast to a total order onWR, a store order does not have
any edge between write events referring to distinct variables.

Validity is similar to consistency. But instead of a total order, the acyclicity require-
ments need to be satisfied by a store order. Let MM be a memory model described by
(po -mm, rf -mm). A history h = 〈O, po, rf 〉 is MM-valid if there exists a store order so that

Gww
loc = (O, po -loc ∪ rf ∪ ww ∪ fr) and Gww

mm = (O, po -mm ∪ rf -mm ∪ ww ∪ fr)

are acyclic. The from-read relation is defined by fr = rf−1 ◦ww. Note that the definition, as
in the case of consistency above, omits checking for out of thin air values. We will later add
an explicit test for memory models that require it. This will not affect the complexity.

We show the equivalence of validity and consistency. To this end, we need to prove that a
store order can be replaced by a total order on the write events while acyclicity is preserved.
The following lemma states the result. It is crucial for the applicability of our framework.

I Lemma 10. A history h is MM-valid if and only if it is MM-consistent.

Before we give the proof of Lemma 10, we need an auxiliary statement. It shows that a
store order ww in Gww

loc can be replaced by any linearization of ww without affecting acyclicity.
Phrased differently, any total order tw on the write events that contains ww can be inserted
into the graph Gww

loc - it will still be acyclic. We state the corresponding lemma.

I Lemma 11. Let h = 〈O, po, rf 〉 be a history, ww a store order, and tw a total order on
WR such that ww ⊆ tw. If Gww

loc is acyclic, then so is Gtw
loc = (O, po -loc ∪ rf ∪ tw ∪ fr).

The proof of Lemma 11 is given in the full version. We turn to the proof of Lemma 10.

Proof of Lemma 10. First assume that h = 〈O, po, rf 〉 is MM-valid. Then there is a store
order ww such that Gww

loc and Gww
mm are acyclic. Consider the edges of the latter graph. They

form a relation ord -mm = po -mm ∪ rf -mm ∪ ww ∪ fr . Since Gww
mm is acyclic, the transitive

closure ord -mm+ is a strict partial order on O. Hence, there exists a linear extension, a
strict total order L containing ord -mm+. We define tw = L ∩WR×WR. Then, tw is a total
order onWR and we have ww ⊆ L∩WR×WR = tw. We show that Gloc and Gmm are acyclic.
Note that the latter refer to the graphs from the definition of consistency.

The store order ww is contained in tw. Hence, we obtain that wwx ⊆ twx for each
variable x ∈Var . This implies that wwx = twx since wwx is total onWR(x). We can deduce
ww =

⋃
x∈Var wwx =

⋃
x∈Var twx and thus cf = rf−1 ◦

⋃
x∈Var twx = rf−1 ◦ ww = fr .

Since fr = cf , we get the acyclicity of Gloc = Gtw
loc from Lemma 11. The acyclicity of

Gmm follows since its edges po -mm ∪ rf -mm ∪ tw ∪ cf form a subrelation of L. A cycle would
mean that L has a reflexive element, but L is a strict order. Hence, h is MM-consistent.

For the other direction, assume that h is MM-consistent. By definition, there is a
total order tw on WR such that Gloc and Gmm are acyclic. We construct the store order
ww =

⋃
x∈Var twx. Note that, since twx is total on WR(x), ww is indeed a store order

and we have ww ⊆ tw. We show that Gww
loc and Gww

mm are acyclic. In fact, we have that
fr = rf−1 ◦ ww = cf . This implies that Gww

loc and Gww
mm are subgraphs of Gloc and Gmm,

respectively. Hence, the two graphs are acyclic and h is MM-valid. J
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4.2 Instances
We apply the algorithmic framework to the mentioned memory models and obtain (optimal)
deterministic algorithms for their corresponding validity/consistency problem. To this end,
we employ the formal description of these models given in [5, 6].

Sequential Consistency. Sequential Consistency (SC) is a basic memory model, first defined
by Lamport in [38]. Intuitively, SC strictly follows the given program order and flushes each
issued write immediately to the memory so that it is visible to all other threads.

Formally, SC is described by the tuple SC = (po -sc, rf -sc) with po -sc = po and rf -sc = rf .
Hence, it employs the full program order and reads-from relation, making the uniprocessor
test on Gloc obsolete. However, our framework still applies. It yields an algorithm for the
corresponding validity/consistency problem running in time O(2k · k2 · n2). We show in
Section 5 that the obtained algorithm is optimal under ETH.

Total Store Ordering. The SPARC memory model Total Store Order (TSO) [1] resembles
a more relaxed memory behavior. Instead of flushing writes immediately to the memory, like
in SC, each thread has an own FIFO buffer and issued writes of that thread are pushed into
the buffer. Writes in the buffer are only visible to the owning thread. If the owner reads a
certain variable, it first looks through the buffer and reads the latest issued write on that
variable. This is called early read. At some nondeterministic point, the buffer is flushed to
the memory, making the writes visible to other threads as well.

The formal description of TSO is given by the tuple TSO = (po -tso, rf -tso), where
po -tso = po\WR×RD is a relaxation of the program order, containing no write-read pairs.
The relation rf -tso = rf e is a restriction of rf to write-read pairs from different threads:

rf e = {(w, r) ∈ rf | (w, r) /∈ po, (r, w) /∈ po}.

Unlike in the case of SC, we do not have the full program order and reads-from relation at
hand. Hence, the uniprocessor test is essential. Applying the framework yields an algorithm
for the validity/consistency problem of TSO running in time O(2k · k2 · n2). The optimality
of the obtained algorithm is shown in Section 5.

Partial Store Ordering. The second SPARC model that we consider is Partial Store Order
(PSO) [1]. It is weaker than TSO since writes to different locations issued by a thread may
not arrive at the memory in program order. Intuitively, in PSO each thread has a buffer per
variable where the corresponding writes to the variable are pushed. Like for TSO, threads
can read early from their buffers and the buffers are, at some point, flushed to the memory.

Formally, PSO is captured by the tuple PSO = (po -pso, rf -pso). Here, the relation
po -pso = po\(WR×RD ∪WR×WR) takes away the write-read pairs and the write-write pairs
from the program order and, like for TSO, we have rf -pso = rf e. Hence, we can apply our
framework and obtain an O(2k · k2 · n2)-time algorithm. The obtained algorithm is optimal.

Relaxed Memory Order. We extend the framework to also capture SPARC’s Relaxed
Memory Order (RMO) [1]. The model needs an explicit out of thin air test and allows for
so-called load-load hazards. We show how both modifications can be built into the framework
without affecting the complexity of the resulting consistency algorithm.

The model RMO relies on an additional dependency relation resembling address and data
dependencies among events in an execution of a program. For instance, if a read event has
influence on the value written by a subsequent write event. We assume that the dependency
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relation dp is given along with a history h = 〈O, po, rf 〉 and is a subrelation of po ∩ (RD×O).
The latter means that dp always starts in a read event. With the relation at hand we can
perform an out of thin air test. In fact, such a test [5] requires that (O, dp ∪ rf ) is acyclic.
This can be checked by Kahn’s algorithm [36] in time O(n2). Hence, the test can be added to
the framework without increasing the time complexity of the obtained consistency algorithm.

Load-load hazards are allowed by RMO. These occur when two reads of the same variable
are scheduled not following the program order. To obtain an algorithm from the framework in
this case, we need to weaken the uniprocessor check [5]. In fact, we replace the relation po -loc
by po -locllh = po -loc\RD×RD and require that the graph Gloc−llh = (O, po -locllh∪rf∪tw∪cf )
is acyclic. The correctness of the framework is ensured since Lemma 10 still holds in this
setting. Moreover, the running time of the resulting algorithm is not affected.

With these modifications, we can obtain a consistency algorithm for RMO. Formally,
RMO = (po -rmo, rf -rmo) where po -rmo = dp and rf -rmo = rf e. Applying the framework
with out of thin air test and Gloc−llh yields a consistency algorithm running in O(2k ·k2 ·n2).

5 Lower Bounds

We show that the framework provides optimal consistency algorithms for SC, TSO, and
PSO. To this end, we employ the ETH and prove that checking consistency under these
three memory models cannot be achieved in subexponential time 2o(k). Since the algorithms
obtained in Section 4 match the lower bound, they are indeed optimal.

We begin with the lower bound for SC-Consistency. For its proof, we rely on a characteri-
zation of the ETH, known as the Sparsification Lemma [35]. It states that ETH is equivalent
to the assumption that 3-SAT cannot be solved in time 2o(n+m), where n is the number
of variables and m is the number of clauses of the input formula. To transport the lower
bound to consistency checking, we construct a polynomial-time reduction from 3-SAT to
SC-Consistency which controls the number of writes k. Technically, for a given formula ϕ,
the reduction yields a history hϕ that has only k = O(n + m) many write events and is
SC-consistent if and only if ϕ is satisfiable. By invoking the reduction, an 2o(k)-time algorithm
for SC-Consistency, would yield an 2o(n+m)-time algorithm for 3-SAT, contradicting the ETH.

I Theorem 12. SC-Consistency cannot be solved in time 2o(k) unless ETH fails.

It is left to construct the reduction. Let ϕ be a 3-SAT-instance over the variables
X = {x1, . . . , xn} and with clauses C1, . . . , Cm. Moreover, let L denote the set of literals.
We construct a history hϕ the number of writes of which depends linearly on n + m.

The main idea of the reduction is to mimic an evaluation of ϕ by an interleaving of the
events in hϕ. To this end, we divide evaluating ϕ into three steps: (1) choose an evaluation
of the variables, (2) evaluate the literals accordingly, and (3) check whether the clauses are
satisfied. For each of these steps we have separate threads taking care of the task. Scheduling
them in different orders will yield different evaluations. An overview is given in Figure 4.

Figure 4 presents hϕ as a collection of threads. The program order is obtained from
reading threads top to bottom. The reads-from relation is given since each value is written at
most once to a variable. Hence, there is always a unique write event providing the read value.

We elaborate on the details of the reduction. For realizing Step (1), we construct two
threads, T0(x) and T1(x), for each variable x ∈ X. These mimic an evaluation of the variable
and consist of only one write event. Thread T0(x) writes 0 to x, thread T1(x) writes 1. If
T0(x) gets scheduled before T1(x), variable x is evaluated to 1 and to 0 otherwise. Hence,
the thread that is scheduled later will determine the actual evaluation of x.
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T0(x) :
wr(x, 0)

T1(x) :
wr(x, 1)

T0(`) :
rd(x, 0)
wr(`, c)
rd(x, 0)

T1(`) :
rd(x, 1)
wr(`, d)
rd(x, 1)

T 1(C) :
rd(`3, 0)
rd(`1, 1)

T 2(C) :
rd(`1, 0)
rd(`2, 1)

T 3(C) :
rd(`2, 0)
rd(`3, 1)

Figure 4 Parts of the history hϕ for a variable x ∈ X, a literal ` ∈ L, and a clause C = `1 ∨`2 ∨`3.
Values of c and d depend on `. If ` = x, then c = 0, d = 1. Otherwise, c = 1, d = 0.

In Step (2), we propagate the evaluation of the variables to the literals. To this end, we
construct two threads for each literal ` ∈ L. Let ` = x/¬x be a literal on variable x ∈ X. The
first thread T0(`) is responsible for evaluating ` when x is evaluated to 0. It first performs a
read event rd(x, 0), followed by wr(`, c) and rd(x, 0). The value c depends on the literal: if
` = x, then c = 0. Otherwise c = 1. Note that the read events guard the write event. This
ensures that T0(`) can only run if x is already evaluated to 0 and once T0(`) is running, the
evaluation of x cannot change until the thread finishes. Thread T1(`) behaves similar. It
evaluates the literal ` when x is evaluated to 1. Both threads cannot interfere. Like for the
variables, the later scheduled thread determines the actual evaluation of the literal.

It is left to evaluate the clauses. For a clause C = `1 ∨ `2 ∨ `3, we have threads T 1(C),
T 2(C), and T 3(C) as shown in Figure 4. It is the task of these threads to ensure that at least
one literal in C evaluates to 1. To see this, assume we have the contrary, an evaluation of the
variables (and the literals) such that `1, `2, and `3 evaluate to 0. Due to the construction, `1
storing 0 implies that wr(`1, 1) preceded the write event wr(`1, 0). Hence, the read event
rd(`1, 1) in T 1(C) must have already been scheduled. In particular, it has to occur before
rd(`1, 0) in T 2(C). Since `2 and `3 also store 0, we get a similar dependency among their
reads: rd(`2, 1) occurs before rd(`2, 0) and rd(`3, 1) occurs before rd(`3, 0). Due to program
order, we obtain a dependency cycle involving all these reads:

rd(`1, 1)→ rd(`1, 0)→ rd(`2, 1)→ rd(`2, 0)→ rd(`3, 1)→ rd(`3, 0)→ rd(`1, 1).

An arrow r → r′ means that r has to precede r′ in an interleaving of the events in hϕ. Since
cycles cannot occur in an interleaving, the threads can only be scheduled properly when a
satisfying assignment is given. The construction of a proper schedule is subtle. We provide
details in the full version of the paper. The following lemma states the correctness.

I Lemma 13. Formula ϕ is satisfiable if and only if the history hϕ is SC-consistent.

Clearly, hϕ can be constructed in polynomial time. We determine the number of write
events. For each variable x ∈ X and each literal ` ∈ L, we introduce two write events. Hence,
k = 2 · n + 2 · |L|. Since there are at most 3 ·m many literals in ϕ, we get that k is bounded
by 2 · n + 6 ·m, a number linear in n + m. This finishes the proof of Theorem 12.

We obtain lower bounds for TSO and PSO by constructing a similar reduction from 3-SAT
to TSO and PSO-Consistency. To this end, we extend the above reduction by only adding
read events that enforce sequential behavior. Intuitively, we can force the FIFO buffers
of TSO and PSO to push each issued write to the memory immediately. Then, the above
correctness argument still applies. The number of write events does not change and is still
linear in n + m. This yields the following result. Details are given in the full version.

I Theorem 14. TSO and PSO-Consistency cannot be solved in time 2o(k) unless ETH fails.
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6 Conclusion

We studied the problem of checking whether an execution of a shared-memory concurrent
program is consistent under the intended behavior of the memory, formalized by a memory
model. The main finding is a framework which, given a memory model, yields a deterministic
consistency algorithm for it. Obtained algorithms run in time O∗(2k), where k is the number
of writes in the execution. Technically, the framework works on an abstract memory model
and can be instantiated by a concrete one. We applied it to obtain O∗(2k)-time consistency
algorithms for SC, TSO, PSO, and RMO. This improves on the formerly known O∗(kk)-time
algorithms for these models. Furthermore, for SC, TSO, and PSO we have proven that the
obtained algorithms are optimal in the fine-grained sense. To this end, we employed the
exponential time hypothesis to show that deterministic consistency algorithms for these
models cannot run in time 2o(k) unless the ETH fails. Our framework relies on the assumption
of data-independence. It is an interesting question, and considered future work, whether one
can obtain a similar framework yielding optimal algorithms if the assumption is dropped.
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