87 research outputs found

    GO-WORDS: An Entropic Approach to Semantic Decomposition of Gene Ontology Terms

    Get PDF
    The Gene Ontology (GO) has a large and growing number of terms that constitute its vocabulary. An entropy-based approach is presented to automate the characterization of the compositional semantics of GO terms. The motivation is to extend the machine-readability of GO and to offer insights for the continued maintenance and growth of GO. A proto-type implementation illustrates the benefits of the approach

    Weiqi games as a tree: Zipf's law of openings and beyond

    Full text link
    Weiqi is one of the most complex board games played by two persons. The placement strategies adopted by Weiqi players are often used to analog the philosophy of human wars. Contrary to the western chess, Weiqi games are less studied by academics partially because Weiqi is popular only in East Asia, especially in China, Japan and Korea. Here, we propose to construct a directed tree using a database of extensive Weiqi games and perform a quantitative analysis of the Weiqi tree. We find that the popularity distribution of Weiqi openings with a same number of moves is distributed according to a power law and the tail exponent increases with the number of moves. Intriguingly, the superposition of the popularity distributions of Weiqi openings with the number of moves no more than a given number also has a power-law tail in which the tail exponent increases with the number of moves, and the superposed distribution approaches to the Zipf law. These findings are the same as for chess and support the conjecture that the popularity distribution of board game openings follows the Zipf law with a universal exponent. We also find that the distribution of out-degrees has a power-law form, the distribution of branching ratios has a very complicated pattern, and the distribution of uniqueness scores defined by the path lengths from the root vertex to the leaf vertices exhibits a unimodal shape. Our work provides a promising direction for the study of the decision making process of Weiqi playing from the angle of directed branching tree.Comment: 6 Latex pages including 6 figure

    Depth, balancing, and limits of the Elo model

    Get PDF
    -Much work has been devoted to the computational complexity of games. However, they are not necessarily relevant for estimating the complexity in human terms. Therefore, human-centered measures have been proposed, e.g. the depth. This paper discusses the depth of various games, extends it to a continuous measure. We provide new depth results and present tool (given-first-move, pie rule, size extension) for increasing it. We also use these measures for analyzing games and opening moves in Y, NoGo, Killall Go, and the effect of pie rules

    The one-round Voronoi game replayed

    Get PDF
    We consider the one-round Voronoi game, where player one (``White'', called ``Wilma'') places a set of n points in a rectangular area of aspect ratio r <=1, followed by the second player (``Black'', called ``Barney''), who places the same number of points. Each player wins the fraction of the board closest to one of his points, and the goal is to win more than half of the total area. This problem has been studied by Cheong et al., who showed that for large enough nn and r=1, Barney has a strategy that guarantees a fraction of 1/2+a, for some small fixed a. We resolve a number of open problems raised by that paper. In particular, we give a precise characterization of the outcome of the game for optimal play: We show that Barney has a winning strategy for n>2 and r>sqrt{2}/n, and for n=2 and r>sqrt{3}/2. Wilma wins in all remaining cases, i.e., for n>=3 and r<=sqrt{2}/n, for n=2 and r<=sqrt{3}/2, and for n=1. We also discuss complexity aspects of the game on more general boards, by proving that for a polygon with holes, it is NP-hard to maximize the area Barney can win against a given set of points by Wilma.Comment: 14 pages, 6 figures, Latex; revised for journal version, to appear in Computational Geometry: Theory and Applications. Extended abstract version appeared in Workshop on Algorithms and Data Structures, Springer Lecture Notes in Computer Science, vol.2748, 2003, pp. 150-16

    SAI, a Sensible Artificial Intelligence that plays Go

    Full text link
    We propose a multiple-komi modification of the AlphaGo Zero/Leela Zero paradigm. The winrate as a function of the komi is modeled with a two-parameters sigmoid function, so that the neural network must predict just one more variable to assess the winrate for all komi values. A second novel feature is that training is based on self-play games that occasionally branch -- with changed komi -- when the position is uneven. With this setting, reinforcement learning is showed to work on 7x7 Go, obtaining very strong playing agents. As a useful byproduct, the sigmoid parameters given by the network allow to estimate the score difference on the board, and to evaluate how much the game is decided.Comment: Updated for IJCNN 2019 conferenc

    On receiver design for low density signature OFDM (LDS-OFDM)

    Get PDF
    Low density signature orthogonal frequency division multiplexing (LDS-OFDM) is an uplink multi-carrier multiple access scheme that uses low density signatures (LDS) for spreading the symbols in the frequency domain. In this paper, we introduce an effective receiver for the LDS-OFDM scheme. We propose a framework to analyze and design this iterative receiver using extrinsic information transfer (EXIT) charts. Furthermore, a turbo multi-user detector/decoder (MUDD) is proposed for the LDS-OFDM receiver. We show how the turbo MUDD is tuned using EXIT charts analysis. By tuning the turbo-style processing, the turbo MUDD can approach the performance of optimum MUDD with a smaller number of inner iterations. Using the suggested design guidelines in this paper, we show that the proposed structure brings about 2.3 dB performance improvement at a bit error rate (BER) equal to 10-5 over conventional LDS-OFDM while keeping the complexity affordable. Simulations for different scenarios also show that the LDS-OFDM outperforms similar well-known multiple access techniques such as multi-carrier code division multiple access (MC-CDMA) and group-orthogonal MC-CDMA
    corecore