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Abstract

We consider the one-round Voronoi game, where the first player (“White”, called “Wilma”) places asset of
points in a rectangular area of aspect ratig 1, followed by the second player (“Black”, called “Barney”), who
places the same number of points. Eatdyer wins the fraction of the boaddosest to one of his points, and the
goal is to win more than half of the total area. This problem has been studied by Cheong et al. who showed that for
large enough andp = 1, Barney has a strategy that guarantees a fractiofid#-k, for some small fixed:.

We resolve a number of open problems raised by that papparticular, we give a precise characterization of
the outcome of the game for optimal play: we show that Barney has a winning strategyf®randp > v2/n,
and forn = 2 andp > +/3/2. Wilma wins in all remaining cases, i.e., for> 3 andp < +/2/n, for n = 2 and
p <+/3/2,and fom = 1. We also discuss complexity aspects of the game on more general boards, by proving that
for a polygon with holes, itis NP-hard to maximize the area Barney can win against a given set of points by Wilma.
0 2004 Elsevier B.V. All rights reserved.
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1. Introduction

When determining success or failure of an enterpfisegtion is one of the most important issues.
Probably the most natural way to determine the value of a possible position for a facility is the distance
to potential customer sites. Various geometric scenarios have been considered; see the extensive list 0
references in the paper by Fekete, Mitchell and Weinbrecht [7] for an overview.

One particularly important issue in location theory is the study of strategies for competing players.
See the surveys by Tobin, Friesz and Miller [9], by Eiselt and Laporte [5], and by Eiselt, Laporte and
Thisse [6].

A simple geometric model for the value of a position is used irMirenoi game, which was proposed
by Ahn et al. [1] (calling the two-dimensional scenario the most natural one), and solved for the one-
dimensional scenario. Cheong et al. [3] provided results for the two- and higher-dimensional case. In this
game, a site “owns” the part of the playing arena that is closes tban to any other site. Both considered
a two-player version with a finite arer@. The players, White (“Wilma”) and Black (“Barney”), place
points inQ; Wilma plays first. No point that has been occupied can be changed or reused by either player.
Let W be the set of points that were played by the end of the game by Wilma, Blidl¢he set of points
played by Barney. At the end of the game, a Voronoi diagramial B is constructed; each player
wins the total area of all cells belonging to points in his or her set. The player with the larger total area
wins.

Ahn et al. [1] showed that for a one-dimensional arena, i.e., a line sed®et], Barney can win
the n-round game, in which each player places a single point in each turn; however, Wilma can keep
Barney’s winning margin arbitrarily small. This differs from tbee-round game, in which both players
get a single turn witlh points each: here, Wilma can force a win by playing the odd integer points
{1,3,...,2n —1}; again, the losing player can make the margin as small as he wishes. The used strategy
focuses on “key points”. The question raised in the end of that paper is whether a similar notion can be
extended to the two-dimensional scenario. We will see in Section 3 that in a certain sense, this is indeed
the case.

Cheong et al. [3] showed that the two- or higher-dimensional scenario differs significantly: for suf-
ficiently largen > ng and a square playing surfage, the second player has a winning strategy that
guarantees at least a fixed fraction g2} « of the total area. Their proof uses a clever combination of
probabilistic arguments to show that Barney will do well by playing a random point. The paper gives rise
to some interesting open questions:

e How large does:g have to be to guarantee a winning strategy for Barney? Wilma wins ferl,
but it is not clear whether there is a singlgfor which the game changes from Wilma to Barney, or
whether there are multiple changing points.

o For sufficiently “fat” arenas, Barney wins, while Wilma wins for the degenerate case of a line. How
exactly does the outcome of the game depend on the aspect ratio of the playing board?

e What happens if the number of points played by Wilma and Barney are not identical?

e What configurations of white points limit the possible gain of black points? As candidates, square or
hexagonal grids were named.

e What happens for the multiple-round version of the game?

e What happens for asymmetric playing boards?
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For rectangular boards and arbitrary valueg ofve will give a precise characterization of when Barney
can win the game. If the board has aspect ratip with p < 1, we prove the following:

e Barney has a winning strategy fer> 3 andp > +/2/n, and forn = 2 andp > +/3/2. Wilma wins
in all remaining cases, i.e., far> 3 andp < ﬁ/n, forn =2 andp < \/§/2, and forn = 1.
o If Wilma does not play her points on an orthogonal grid, then Barney wins the game.

In addition, we hint at the difficulties of more complex playing boards by showing the following:

e If QO is a polygon with holes, and Wilma has made her move, it is NP-hard to find a position of black
points that maximizes the area that Barney wins.

This result is also related to recent work by Dehne, Klein and Seidel [4] of a different type: they
studied the problem of placing a single black point within the convex hull of a set of white points,
such that the resulting black Voronoi cell in the unbounded Euclidean plane is maximized. They showed
that there is a unique local maximum. For the problem of finding a location for one additional point
amongn given points on a torus that maximizes the resulting largest Voronoi cell, see the more re-
cent paper by Cheong, Efrat and Har-Peled [2], who give a near-linear polynomial-time approximation
scheme.

The rest of this paper is organized as follows. After some technical preliminaries in Section 2, Section 3
shows that Barney always wins if Wilma does not place her points on a regular orthogonal grid. This is
used in Section 4 to establish our results on the critical aspect ratios. Section 5 presents some results ol
the computational complexity of playing optimally in a more complex board. Some concluding thoughts
are presented in Section 6.

2. Preiminaries

In the following, Q is the playing boardQ is a rectanglef aspect ratio p, which is the ratio of the
length of the smaller side divided by the length of the longer side. Unless noted otherwise (in some parts
of Section 5), both players play points; W denotes the: points played by Wilma, whileB is the set
of n points played by Barney. All distances are measured according to the Euclidean norm. For a set of
points P, we denote by (P) the (Euclidean) Voronoi diagram @f. We call a Voronoi diagran¥ (P) a
regular grid if

o all Voronoi cells are rectangular, congruent and have the same orientation;
e each pointp € P lies in the center of its Voronoi cell.

If e is a Voronoi edge( (e) denotes a Voronoi cell adjacent ¢olf p € P, thenC(p) denotes the
Voronoi cell of p in V(P). 3C(p) is the boundary of”(p) and|C(p)| denotes the area @ (p). |e|
denotes the length of an edgel et x,, andy, denote ther- andy-coordinates of a poing.
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3. Areduction togrids

As a first important step, we reduce the possible configurations that Wilma may play without losing
the game. The following holds for boards of any shape:

Lemma 1. If V(W) contains a cell that is not point symmetric, then Barney wins.

Proof. Letr(w, ¢) be the distance from a poiat in C(w) to the point on the boundary @f(w) that is
stabbed by a ray emanating from at angleg. Let I(w, ¢) be the line that contains the rayw, ¢).
As 0C(w) is a convex curver(w, ¢) is a continuous function. Furthermore, we see titatw)| =
%foz” r?(w, ¢) dp, and the portion ofC(w) enclosed between angles and ¢, is %f(flzrz(w,go) d.
So an infinitesimal rotation df{w, ¢) aboutw changes the area y(r?(w, ¢) — r?(w, —¢)) do.

For all pointsw in a non-symmetric cell, there is @ for which r(w, ¢) # r(w, —¢). Let w be
the location in a non-symmetric cell &f(W) where Wilma has placed her point. Lgetbe such that
r(w, @) #r(w, —¢). So either the liné(w, ¢) does not bisect the area G{w) or we can rotate this line
aroundw so that it does not bisect the area@fw). Therefore there is a line through such that we
have an area of siZz€ (w)|/2+ 2¢ on one side of this line for some small positive value of his means
that by placing a point close t@, Barney can claim at lea$€ (w)|/2 + 26 — ¢/n of the cellC(w). In
each other celC (w) of V(W) Barney can place a point close enoughut@o claim an area of at least
|C(w)|/2—¢/n. Therefore Barney has gained at leg3t/2+¢. O

Corollary 1. If all cells of V(W) are point symmetric but Wiima has not placed all her points in the
centres of each cell, then Barney wins.

Proof. Follows from the fact that the argument used in the proof of Lemma 1 applies whenever a point
of Wilma is not placed in the centre of its cell

The following theorem is based on this observation and will be used as a key tool for simplifying our
discussion in Section 4.

Theorem 2. If the board is a rectangle and if V(W) isnot aregular grid, then Barney wins.

Proof. We assume that Barney cannot win, and will show that this impliesuli@it) is a regular grid.

By Lemma 1, we may assume that all cells\ofW) are point symmetric. By Corollary 1 we know that
the points inW are the centres of the cells Bf(W). Let ¢ be a Voronoi edge oV (W) on the top side

of the board. Consider the Voronoi céll adjacent taeg. Because&’y is point symmetric, it contains an
edgee; that is parallel tazg with |eg| = |e1|. Let C1 be the cell adjacent to and belaw. It contains an
edgee, with |e;| = |ey|. Similarly define the cell§’;, Cs, .... So cellC; lies belowC;_;. Therefore there

is a cellCy_1 such that, lies on the bottom edge of the board. We ¢®kg) = {Co, C1, Co, ..., Cr_1}

the strip ofeg. Because”; is convex, any horizontal line that intersects the board has an intersection with
S(eg) of length> |eg|. Consider two different Voronoi edgesand f, on the top side of the board, with
their respective strips(e) and S(f). Because Voronoi cells are convex and do not have corners with
angles of sizer, these strips cannot intersect, i.e., do not have a cell in common. For an illustration, see
Fig. 1. LetS be the collection of strips af for all Voronoi edge® of V(W) on the top side of the board.
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e f

strip S(e) strip S(f)

Fig. 1. Playing board with two strips.

The intersection of a line witl§ has a length which is at least as large as the sum of the lengths of the
edges along the top side of the board. Because strips do not intersect, this intersection is exactly as long
as the top side of the board. This implies thatovers the whole board and that any horizontal line that
intersects the board has an intersection \§ithy) of length exactly equal tgg|.

Let e be the left most edge on the top side of the board. The left-hand si§ie pis the left-hand side
of the board. This implies that each cellSie) is a rectangle. By the same argument, each céll(W)
is a rectangle. Let andw be two points inW such thatC(v) and C(w) in V(W) have a horizontal
edgee in common. The distance betweerande is the same as the distance betwaeande. Because
both C (v) andC (w) are point symmetric and rectangular, andndw are the centres af (v) andC (w)
respectively, it follows that (v) and C(w) have the same vertical width. Similarly, if two cell&v)
andC (w) share a vertical edge, these cells have the same horizontal width. Theréi@eis a regular
grid. O

4. Critical aspect ratios

In this section we prove the main result of this paper: 3 3 andp > v/2/n, orn =2 andp > v/3/2,
then Barney wins. In all other cases, Wilma wins. The proof proceeds by a series of lemmas. We start by
noting the following easy observation.

Lemma 3. Barney wins, if and only if he can place a point p that steals an area strictly larger than
|Q]/(2n) from W.

Proof. Necessity is obvious. To see sufficiency, note that Wilma is forced to play her points in a regular
grid. Barney places his first poinpt such that it gains an area of more thgh/(2n). Let w be a point
in W. If Barney places a point on the line throughand p, sufficiently close taw but on the opposite
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side of p, he can claim almost half of the Voronoi cell @f By placing his remaining — 1 points in this
fashion, he can claim an area larger then/2. 0O

Next we take care of the cage= 2; this lemma will also be useful for larger, as it allows further
reduction of the possible arrangements Wilma can choose without losing.

Lemmad4. If n =2 and p > +/3/2, then Barney wins. If the aspect ratio is smaller, Barney loses.

Proof. Assume without loss of generality that the board has giby 1. Suppose that the left bottom
corner ofQ lies on the origin. By Theorem 2 we know that Wilma has to place her poii@=tp /4) and
(0.5,3p/4) or at(0.25, p/2) and(0.75, p/2). If Wilma places her points d0.5, p/4) and (0.5, 3p/4),
then it is not hard to show that she will lose. So assume that Wilma places her po{6t&5jp/2)
and (0.75, p/2). For Barney to win, he will have to gain more thari4 with his first point. Suppose
Barney places his point at locatign Without loss of generality, assume that> 0.5 andy, > p/2.

If y, = p/2 then Barney gains at mogy4, so we may assume that > p/2. Placing a poinp with
x, > 0.75 is not optimal for Barney: moving in the direction of(0.5, p/2) will increase the area gained.
It is not hard to show that for, = 0.75, Barney cannot gain an area of sizet. So we may assume that
0.5 < x, <0.75. Lethg be the bisector op and(0.25, p/2). Let b1 be the bisector op and(0.75, p/2).
Let g be the intersection dby and b;. The pointg lies on the vertical line through = 0.5. If ¢ lies
outside the board), then|C(p)| < p/4, so assume that lies in Q. Let hg be the length of the line
segment orby, betweery and the top or left side of the board. Let be the length of the line segment
on by, betweery and the top or right side of the board. Consider the ci€tleenter aty which passes
throughp, (0.25, p/2) and(0.75, p/2).

If by does not intersect the top of the board then neither doels this case we can increaf€(p)|
by moving p to the left onC and we can use this to show thét(p)| < p/4. If both by andb; intersect
the top of the board we have, < h1. We can increasé, and decreaség by moving P to the right
onC. So|C(p)| can be increased unt intersects the top right corner of the boardb{fintersects the
top of the board and; intersects the right top corner we hawg< ;. If we move p to the right onC,
both g andi, will decrease. The argd& (p)| will increase as long aky < k1 and reaches its maximum
value whemo = k1. Therefore the maximum exists when at the moment ghaypproaches0.75, p/2),
we havehg > h1. Whenp = (0.75, p/2), we havehg = p —y, andhy = \/(1/4+ (p — 2y,)?). From
ho > h1 we can derive thgb > +/3/2. With his second point Barney can gain an area of si26-9 ¢ for
an arbitrary small positive value efby placing the point close t®.25, p/2). So Barney can gain more
than half the board.

If the aspect ratio is< +/3/2, Barney can gain at mogt/4 with his first move by placing his point at
(x, p/2) with 0.25 < x < 0.75. It can be shown that with his second point he can gain almost, but not
exactly a quarter. O

The gain for Barney is small ip is close tov/3/2. We have performed computer experiments to
compute the gain for Barney for values @t +/3/2. Not surprisingly, the largest gain was foe= 1. If
the board has sizexd 1, Barney can gain an area of approximately 0.2548 with his first point, by placing
it at (0.66825 0.616) as illustrated in Fig. 2(a).
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0.66825
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0.25% 0.25%

0.25 0.5 0.75 1.0 0.75 1.0

(a) (b)

Fig. 2. Barney has gained more than a quarter (a), more than an eighth (b) of the playing surface.

Lemma 5. Quppose that the board is rectangular and that » = 4. If Wilma places her points on a regular
2 x 2 grid, Barney can gain 50.78% of the board.

Proof. Assume that the board has sjz& 1. By Lemma 2 we know that Wilma has to place her points on
the horizontal line at height/2, on the vertical line at = 0.5 or at the pointg0.25, p/4), (0.25, 3p/4),
(0.75, p/4) and (0.75, 3p/4). If Wilma does not place her points on a line, it can be computed that
Barney wins at least (1/8+ 1/128) by placing a point a{0.5, p/4). In addition Barney can gain a little
more than 3/8 — ¢ by placing his remaining three points @25 — 4¢/3, p/4), (0.25— 4¢/3,3p/4)

and (0.75+ 4¢/3,3p/4). So Barney will gain a total area of sizg1/2 + 1/128 — ¢. Because of
1/2+1/128=0.5078125, the result follows. O

The value in the above lemma is not tight. For example, if Wilma places her point in 2 @rid on
a square board, we can compute the area that Barney can gain with his first point. If Barney places it at
(0.5,0.296), he gains approximately 0.136. For an illustration, see Fig. 2(b). By placing his remaining
three points at0.25 — 4¢/3, 0.25), (0.25— 4¢/3,0.75) and(0.75+ 4¢/3, 0.75) Barney can gain a total
area of size of around.®B11 — ¢ for arbitrary small positives. For non-square boards, we have found
larger wins for Barney. This suggests that Barney can always gain more than 51% of the board if Wilma
places her four points in ax 2 grid.

The above discussion has an important implication:

Corollary 2. If n > 3, then Wilma can only win by placing her pointsina 1l x »n grid.
This sets the stage for the final lemma:

Lemma6. Let n > 3. Barney can winif p > +/2/n; otherwise, he loses.



88 SP. Fekete, H. Meijer / Computational Geometry 30 (2005) 81-94

To T2

Fig. 3. Wilma has placed at least three points on a line.

Proof. It follows from Corollary 2 that Wilma should place her points in & 2 grid. Assume thap
has size 2 x 2n and that the left bottom point @ lies at(—3, —r) and the top right point an — 3, r).
Wilma must place her points &2, 0), (0, 0), (2,0), ..., (22 — 4,0). From Lemma 3 we know that in
order to win, Barney has to find a locatign= (x, y) with |V (p)| > 2r.

If » > +/3, we know from Lemma 4 that Barney can take more than a quarter from two neighboring
cells of Wilma, i.e., Barney takes more thary & = 2r with his first point. Therefore assume tha{ V3.

We start by describing the size and area of a potential Voronoi cell for Barney’s first point. Without loss
of generality, we assume that= (x, y) with y, x > 0 is placed in the cell of Wilma's point0, 0), so
x<1,y<r.

If y > 0 and if Barney gains parts of three cells¥o{W) with his first point, we have a situation as
shown in Fig. 3. Itis not hard to see that he can steal from at most three;clis distance more than 2
from all cells not neighboring on Wilma'’s cell(—2, 0) andV (2, 0), which is more than the radius of
v/r?2 4+ 1< 2 of those cells with respect to their center points. We see that

2

y X
b1==+4 —, 1
1 2+2y 1)
X
tang, = —, 2)
y
tancpzzz%. 3)

As shown in Fig. 3, the Voronoi cell gf consists of three pieces: the quadrangj€stolen fromV (0, 0)),
the triangleR, (stolen fromV (-2, 0)), and the triangler, (stolen fromV (2, 0)). Furthermore,

2

Ryl =2hy = 2(r —by) =2r — y — % (4)

R =22, ©

hy=r — by +tang; (6)
)CZ X

—r— % A (7)

xp = hptang, = 3oyt (8)
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SO
2 2
(ry =% =%+
Ry = . 9
[R2| 22— 1) )
Analogously,
2 2
ry—%—%—x)7?
Ro|l = 10
| Rol 2t (10)

We first consider < +/2. Assume that Barney can win, i.e., can gain an area larger thatt2his first

point. If y =0, then|V (p)| = 2r, SO we may assume that> 0. From Lemma 4, we know that Barney
will not win if he only steals from two of Wilma'’s cells, so we may assume that Barney steals from three
cells. Therefore we can use results from Egs. (4), (9) and (10). FRg+ |R1| + |R2| > 2r we derive

yz X2 2 yz X2 2
ry—= - - x) Q-0+ (ry—F —F+x) @+x0)>2(7+x7)(4- 7). (11)
2 2 2 2
As the left-hand side is maximized fer= /2, we conclude
yz x2 2 yz X2 2
(ﬁy 5= —x) @-x)+ (ﬁy— 5 -5 +x) 2+x) > 20" +x°)(4-x%),  (12)
SO0
y2 x2 2 y2 x2 2
(V-5 -%) +a(Va- -5 ) ratetredo2d-2d 9
implying
yz X2 X2 2
4(<\/§y— 5~ ?) +?) —x* + 4% > 8y? + 8x% — 2x%y? — 2%, (14)
therefore
yz 2 x4
(S PO =
and thus
y? x?
4% —2V2y° + 5 > 4y + xz(z -5 - yz) (16)
or
2
y3(% —Zﬁ) >x2(2— % —yz)- (7

As the left-hand side is negative for<0y < +/2, we conclude that the right-hand side must also be
negative; clearly, it is minimized for = 1, so we get

(3-2)- (o-2-7)
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and conclude tha¥/2 > y > ./3/2, yielding the contradiction

4
3
4>%+y2>§+2\/§y3>4. (19)

So the best Barney can do is gain an area of siagith all his points and tie the game. However, notice
that the contradiction in Eq. (19) also hold$#,| + |R1| + | R2| = 2r. So Barney cannot gain an area of
size 2 if he places his point &tx, y) with y > 0 and steals from three cells B{W). In Lemma 4 it was
shown that Barney will gain less tham # he places his point atx, y) with y > 0 and steals from two
cells of V(W). Therefore Barney must place his pointgaty) with y = 0. This reduces the problem to
a one-dimensional one, and we know from [1] that in that case Barney will lose.

Secondly we considet/2 < r < +/3. Suppose Barney places his first point(@ty) with y > 0.
Clearly he will steal from three cells ¢f (W). From Egs. (4), (9) and (10) we derive that

r2y ry2 y3

R R R|=————+—=2r —y. 20
|Rol + | Ra| +|Rel = —= — =+ =2r —y (20)

Because of > 0 we have
|Rol + |R1| + | R2| > 2r (21)

r2y ry2 y3
L2 4L 0 22
Co T tg Y (22)
Sy —4ry+42-8>0 (23)
<:>0<y<2(r—\/§). (24)

So Barney wins if he places a point@ y) with0 < y <2(r —+/2). O

The resulting value in Eq. (20), i.e., the total area, is maximalfoe (4r — 2+/r2 + 6)/3. Computa-
tional experiments have confirmed that Barney maximizes the area with his first p@nyat.
Summarizing, we get:

Theorem 7. If n >3 and p > +/2/n, or n =2 and p > +/3/2, then Barney wins. In all other cases,
Wima wins.

5. A complexity result

The previous section resolves most of the questions for the one-round Voronoi game on a rectangular
board. Clearly, there are various other questions related to more complex boards; this is one of the ques-
tions raised in [3]. Lemma 1 still applies if Wilma’s concern is only to avoid a loss. Moreover, it is easily
seen that all of Wilma’s Voronoi cells must have the same area, as Barney can steal almost all the area
of the largest cell by placing two points in it, and no point in the smallest cell. For many boards, both of
these conditions may be impossible to fulfill. It is therefore natural to modify the game by shifting the
critical margin that decides a win or a loss. We show in the following that it is NP-hard to decide whether
Barney can beat a given margin for a polygon with holes, and all of Wilma’s points have already been
placed. (In a non-convex polygon, possibly with holes, we measure distances according to the geodesic
Euclidean metric, i.e., along a shortest path within the polygon.)
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Theorem 8. For a polygon with holes, it is NP-hard to maximize the area Barney can claim, even if all
of Wiima’s points have been placed.

Proof. We give an outline of the proof, based on a reduction framNAR 3SAT, which is known to

be NP-complete [10]. For clearer description, we sketch the proof for the case where Barney has fewer
points to play; in the end, we hint at what can be done to make both point sets the same size. (A 3SAT
instance/ is said to be an instance of RNAR 3SAT, if the following bipartite graplt;; is planar: every
variablex; and every clause; in /I is represented by a vertex G;; two vertices are connected, if and

only if one of them represents a variable that appears in the clause that is represented by the other vertex.
First, the planar graph corresponding to an instahoé PLANAR 3SAT is represented geometrically as

a planar rectilinear layout, with each vertex corresponding to a horizontal line segment, and each edge
corresponding to a vertical line segment that intersects precisely the line segments corresponding to the
two incident vertices. There are well-known algorithms (e.g. [13]) that can achieve such a layout in linear
time and linear space. See Fig. 4.

Next, the layout is modified such that the line segments corresponding to a vertex representing a literal
and all edges incident to it are replaced by a loop—see Fig. 5. At each vertex corresponding to a clause,
three of these loops (corresponding to the respective literals) meet. Each loop gets represented by a ver
narrow corridor.

Now we place a sequence of extigea gadgets at equal distancesdz along the variable loop. Let;
be the number of area gadgets along the loop for varighlend letN = Y7, n;, ande = 1/N3. (By
construction,N is polynomially bounded.) As shown in Fig. 6(a), each such gadget consists of an area
element of sized = 1/N, “guarded” by a white point that is at distange+ ¢ from it. Finally, for each
clause, we place an extra gadget as shown in Fig. 6(b). Similar to the area gadgets along the variable
loops, it consists of a white point guarding an area element of&sizel /N at distancel, + €. Thus, the
overall number of white points i8¥| = N + m. By making the corridors sufficiently narrow (say,M3
wide), the overall area for the corridors is small (e.g1V?)). The total area of the resulting polygon
is14+m/N 4+ O(1/N?). See Fig. 5 for a symbolic overall picture.

As indicated in Fig. 6, there is a limited set of positions where a black point can steal more than one
area gadget. Stealing all area gadgets along a variable loop is possibig A&ifioints, by picking every
other potential location along the loop. This can be done in two ways, and either such choice represents
a truth assignment of the corresponding variable. In a truth assignment in which the variable satisfies a
clause, a black point is placed on the variable loop in such a manner that the area element of the clause

G

G, C;

Xy

Fig. 4. A geometric representation of the variable-clause incidence gtgplfior the Planar 3SAT instancé = (x1 Vv
X2V X3) A (X1 VX3V Xg) A (X2V X3V Xg).
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Fig. 5. A symbolic picture of the overall representation: the location of white points is indicated by white dots (with area
elements on variable loops not drawn for the sake of clarity). The location of black points (indicated by black dots) corresponds
to the truth assignment; =0, x2 = 1, x3 =0, x4 = 1, which satisfied. See Fig. 6 for a closeup of the gadgets.

potential locations for Barney .

potential locations for Barney

(d

(a) (b)

Fig. 6. Area gadget (a) and clause gadgets (b).
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gadget is stolen. (See Fig. 5 for our example.) Thus, a satisfying truth assignménytiétats a position
of N /2 black points that steals all the area elements, i.e., claims an areamf/ V.

To see the converse, assume that Barney can claim an area of atdeast/l, i.e., he can steal all
area elements. As noted before, no position of a black point can steal more than two area elements on ¢
variable; stealing two requires placing it at less than distahees from both of them. As thev /2 black
points must form a perfect matching of thearea elements, we conclude that there are only two basic
ways to cover all area elements of a variabldy not more tham; /2 black points, where each location
may be subject to variations of sizg£). One of these perfect matchings corresponds to setting
true, the other tdalse. If this truth assignment can be done in a way that also steals all area elements of
clause gadgets, we must have a satisfying truth assignment.

By adding some extra area elements (say, of sikeright next toN /2 + m of the white points along
variable gadgets, and increasing| to N + m, we can modify the proof to apply to the case in which
|W| = |B|. Similarly, it is straightforward to shift the critical threshold such that Wilma is guaranteed a
constant fraction of the board.

6. Conclusion

We have resolved a number of open problems dealing with the one-round Voronoi game. There are
still several issues that remain open. What can be said about achieving a fixed margin of win in all of
the cases where Barney can win? We believe that our above techniques can be used to resolve this issu
As we can already quantify this margin if Wilma plays a grid, what is still needed is a refined version of
Lemma 1 and Theorem 2 that guarantees a fixed margin as a function of the amount that Wilma deviates
from a grid. Eventually, the guaranteed margin should be a function of the aspect ratio. Along similar
lines, we believe that it is possible to resolve the question stated by [3] on the scenario where the number
of points played is not equal.

There are some real-life situations where explicit zoning laws enforce a minimum distance between
points; obviously, our results still apply for the limiting case. It seems clear that Barney will be at a
serious disadvantage when this lower bound is raised, but we leave it to future research to have a close
look at these types of questions.

The most tantalizing problems deal with the multiple-round game. Given that finding an optimal set of
points for a single player is NP-hard, it is natural to conjecture that the two-player, multiple round game
is PSPACE-hard. Clearly, there is some similarity to the game of Go an-an board, which is known
to be PSPACE-hard [11] and even EXPTIME-complete [12] for certain rules.

However, some of this difficulty results from the possibility of capturing pieces. It is conceivable that
at least for relative simple (i.e., rectangular) boards, there are less involved winning strategies. Our results
from Section 4 show that for the cases where Wilma has a winning strategy, Barney cannot prevent this
by any probabilistic or greedy approach: unless he blocks one of Wilma'’s key points by placing a point
there himself (which has probability zero for random strategies, and will not happen for simple greedy
strategies), she can simply play those points like in the one-round game and claim a win. Thus, analyzing
these key points may indeed be the key to understanding the game.
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