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ABSTRACT 
The Gene Ontology (GO) has a large and growing number of 
terms that constitute its vocabulary. An entropy-based ap-
proach is presented to automate the characterization of the 
compositional semantics of GO terms. The motivation is to 
extend the machine-readability of GO and to offer insights 
for the continued maintenance and growth of GO. A proto-
type implementation illustrates the benefits of the approach.  
 
1 INTRODUCTION  
 
The underlying motivation of the work described in this 
paper is to map annotations based on the Gene Ontology  
(GO) (Ashburner, et al., 2000) to a semantic representation 
that exposes the internal semantics of GO terms to computer 
programs. The Gene Ontology (GO) views each gene prod-
uct as being a structural component of a biological entity, 
being involved in a biological process, and as having a mo-
lecular function.  These three dimensions of component (C), 
process (P) and function (F) are hierarchically refined into 
several thousand subconcepts or GO terms for a fine-
grained description of gene products, and ultimately a repre-
sentation of collective biological knowledge. The machine-
readability of GO is based on explicit IS-A or PART-OF 
relations between different GO terms (Fig. 1). The represen-
tation of each GO term in terms of a phrase in English is 
primarily meant for human readability, and not machine-
readability (Wroe, et al., 2003) (Fig. 1). For example, while 
both humans and computer programs can understand that 
‘Folic Acid Transporter Activity’ is one kind of ‘Vitamin 
Transporter Activity,” only a human reader can appreciate 
that proteins annotated with ‘Folic Acid Transporter Activ-
ity’ actually transport the vitamin folic acid. In other words, 
the compositional semantics embedded within each GO 
term is not currently accessible by computer programs; each 
term per se is effectively a black box or meaningless string 
of characters to computer programs.   
It has been estimated that about two-thirds of GO terms 
(Ogren, et al., 2004) contain another GO term as a substring 
within it. For example, the GO term ‘Transporter Activity’ 
is a substring of several GO terms such as ‘Vitamin Trans-
porter Activity’ and ‘Biotin Transporter Activity.’ In other 
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words, many GO terms are combinations of distinct seman-
tic units, as opposed to being a completely new concept. 
The compositional nature of GO terms has the side effect of 
resulting in a combinatorial increase in the size of GO. For  
example, ‘Folic Acid’ appears in 12 different GO terms like 
‘Folic Acid Transport,’ ‘Folic Acid Binding,’ and ‘Folic 
Acid Transporter Activity.’ Similarly, the vitamin Biotin 
appears in 23 GO terms, including 6 terms identical to that 

for Folic Acid except for the replacement of ‘Folic Acid’ 
with ‘Biotin,’ e.g., ‘Biotin Transport,’ ‘Biotin Binding’ and 
‘Biotin Transporter Activity.’ This phenomenon has been 
one of the motivating factors behind the GO Annotation 
Tool (GOAT) (Bada, et al., 2004) and the Gene Ontology 
Next Generation (GONG) project (Wroe, et al., 2003), 
which suggested having multiple intersecting hierarchies, 
with a proposed evolution towards a DAML+OIL represen-
tation. Reasons for studying the compositional nature of GO 
are to suggest missing relations (Mungall, 2004; Ogren, et 
al., 2004), suggest new terms (Lee, et al., 2006; Ogren, et 
al., 2004), increase computability of GO (Doms, et al., 
2005; Ogren, et al., 2004; Wroe, et al., 2003), and for pro-
viding models for GO-based analysis of natural language 
processing of text (Blaschke, et al., 2005; Couto, et al., 
2005; Doms and Schroeder, 2005). 
One way to discretize GO is to represent it as a language 
consisting of progressive concatenation of tokens in the 
form of regular expressions. An example of this is Obol 
(Mungall, 2004), a language that exploits the regularity of 
GO term names to represent it in Backus-Naur format. 
However, this is applicable to only a subset of all GO terms. 
In this paper, we use an entropic approach for the analysis 
of regularity of GO term nomenclature. We show how this 

Fig. 1. The internal semantics of GO terms are visible 
to humans but not to computer programs 
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may be used to detect sets of GO terms sharing similar se-
mantics. The decomposition of GO terms presented here 
also suggests a way to minimize the complexity of GO. 

2 METHODS 
The general principle is to find clusters of GO terms sharing 
similar semantic structure. Entropy (see below) is used to 
find GO terms that share consistent location of a specific 
token (word) within them. Each cluster is evaluated and a 
corresponding semantic rule created.  
Analysis of position-dependent conservation of GO tokens 
Each GO term (version Feb 16th, 2006), including syno-
nyms, was tokenized on white space into a sequence of in-
dividual words. For example, the GO term “L-amino acid 
transport” is tokenized as “L-amino” + “acid” + “transport.” 
Entropy (Shannon 1950) is used to measure the regularity in 
location of each token within all GO terms: 

 
where EPt is the positional entropy of token t, l  is the length 
(in number of tokens) of the longest GO term or synonym 
that token t is observed to occur in, and t

ip is the probability 
of finding token t at position i. If the logarithm is in base 2, 
then entropy can be quantified in terms of bits. Recognizing 
that gene product and molecule names embedded in GO 
terms consist of a variable number of tokens, we choose to 
note the position of each token relative to both the begin-
ning and end of each GO term. For example, the token “ac-
ceptor” almost always occurs at the end of a GO term (with 
the sole exception of the term “electron acceptor activity”). 
Thus, it is uniformly the first term when counted from the 
end of a GO term, with a resulting low positional entropy of 
0.08 with respect to the end (EPE). In contrast, this token 
has a highly variable position when counted from the start 
of a GO term (as many as 15 different locations) resulting in 
a high positional entropy (EPS) value of 3.3. If we focus 
only on an EPS value, we would miss its positional conser-
vation, i.e., tendency to occur at the very end of GO terms. 
Since Shannon entropy is based only on proportions, it does 
not distinguish between token distributions like [1, 1] (token 
found once at the first position, and once at the second) and 
[100, 100] (token found a hundred times each at the first and 
second positions).  Both would yield an entropy value of 1 
bit even though there are only 2 occurrences of the former 
and 200 of the latter. To distinguish between such tokens, 
the absolute numbers of occurrence at a given distance from 
either the start or end of GO terms are also recorded. The 
calculated entropies are then ‘normalized’ (NEP) by adding 
0.1 to the calculated value and dividing by the total number 
of occurrences. Division of the entropic value by the total 
number of occurrences yields lower values for a higher 

number of token occurrences. The addition of 0.1 bit helps 
to distinguish between tokens having an entropy of zero but 
differing in their frequency of occurrence within GO terms. 
For the above examples, this would yield values of (0.1/2 = 
0.05) and (0.1/200 = 0.0005) respectively, thus yielding a 
lower NEP value (implying higher degree of positional con-
servation after correction for more frequent occurrence) for 
the more frequent token.  
Semantic mapping rule generation 
Tokens with low positional entropy, high number of occur-
rences or low normalized positional entropy are used as a 
starting point for the generation of rules. For each such to-
ken, the corresponding set of GO terms is verified for se-
mantic uniformity and a corresponding rule generated. This 
takes minimal time as the majority of terms in a set follow 
the same pattern. For example, ‘binding’ is a token that has 
much lower entropy when measured from the end (0.28 bit) 
than from the beginning (2.16 bits). The vast majority, 1544 
out of 1597, of GO terms containing the token ‘binding’ end 

with it. 1524 of these are of the general form ‘Entity’ + 
‘binding’ where ‘Entity’ represents one or more tokens in 
succession representing a single concept. The Entity most 
often specifies a molecule, and sometimes a structural com-
ponent. The 20 exceptions include terms like ‘Protein do-
main specific binding’ and ‘regulation of binding.’ Thus, the 
discretizing rule applicable to gene products {Mi} annotated 
with these GO terms may be stated as ‘Mi binds Entity.’ In 
other words, each corresponding GO term (e.g. Zinc Bind-
ing) is decomposed into a relational term (e.g. Binds) and 
the embedded concept (e.g. Zinc). Thus, if the protein “40S 
ribosomal protein S27” is annotated with the GO term ‘Zinc 
Binding,’ then the corresponding discretized semantic form 
is ‘40S ribosomal protein S27 Binds Zinc.’ Fig. 2 summa-
rizes the general procedure with another example. Triplets 
of this form correspond to MachineProse assertions  
(Dinakarpandian, et al., 2006) and can contribute to an in-
cremental knowledge-base distinct from paper publications.  
 
3 RESULTS & DISCUSSION 

Fig. 2. Mapping a GO annotation to a discretized triplet. 
The general procedure is shown on the left together with  
a specific example on the right 
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GO-WORDS browser 

Tokenizing GO resulted in a 9152 unique tokens from a 
total of 37,403 terms (20115 canonical + 17288 synonym 
terms). Each token occurred 13.7 times on average. The 
most frequent token was found to be “activity,” occurring a 
total of 8891 times. In contrast, almost half the tokens 
(4204), e.g. “xylem,” occurred only once. We implemented 
a browser (Fig. 3) to analyze position-wise frequencies and 
entropy of GO-terms. EP stands for entropy. The suffix S, 
as in EPS indicates that positions were counted from the 
beginning of the string, whereas the suffix E, as in EPE, 
indicates that positions were counted backwards from the 
end of the string. The prefix N indicates normalization (see 
Methods above). Each token was analyzed using multiple 
metrics. For example, Table I shows that the token ‘nega-
tive’ has the lowest positional entropy because it occurs 
most of the time at the beginning of a GO term (1351 out 
1358 occurrences with a corresponding EPS=0.055, and 
normalized EPS=0.00004). In contrast, the token ‘oxidore-
ductase’ (not shown) has the highest positional entropy 
(EPE=3.854;NEPE=0.019) because its 212 occurrences are 
spread over 29 different positions within GO terms like 
‘oxidoreductase activity, acting on paired donors, with in-
corporation or reduction of molecular oxygen, reduced 
pteridine as one donor, and incorporation of one atom of 
oxygen.’ Clearly, it is potentially easier to map GO terms 
containing the token ‘negative’ than ‘oxidoreductase’ to a 
machine-readable representation.  

The GO-WORDS browser is a useful tool to gain insights 
into the composition of GO terms. With respect to this pa-
per, we focused on using it mainly to create semantic map-
ping rules. Thus, tokens with low values of NEPE (observed 
range=0.00004 – 0.562) (Table I) and a large number of 
occurrences were used to select GO terms for semantic 
mapping to an assertion representation. 
Given a token and position either from the beginning or end 
of a string, the GO-WORDS browser lists all GO terms and 
synonyms that share the token at a given position. For ex-
ample, the token ‘transporter’ occurs second from the end 
(517 out of 650) in GO terms like the following: 
name: L-ornithine transporter activity  
name:  S-adenosylmethionine transporter activity  
exact_synonym: S-adenosyl methionine transporter activity 
name: adenine nucleotide transporter activity  
name: spermine transporter activity  
name: sulfite transporter activity  

Table I.  Tokens with lowest normalized positional entropy 

Token Normalized 
Entropy 

Token Normalized 
Entropy 

activity nepe=0.000 dehydrogenase neps=0.001 
negative neps=0.000 cell nepe=0.001 
positive neps=0.000 complex nepe=0.001 
metabolism nepe=0.000 metabolism neps=0.001 
activity neps=0.000 receptor neps=0.001 
binding nepe=0.000 biosynthesis neps=0.001 
regulation neps=0.000 transporter nepe=0.001 
of neps=0.000 binding neps=0.001 
of nepe=0.000 formation neps=0.002 
biosynthesis nepe=0.000 ligand nepe=0.002 
pathway nepe=0.000 catabolism neps=0.002 
regulation nepe=0.001 transport nepe=0.002 
formation nepe=0.001 cell neps=0.002 
anabolism nepe=0.001 synthesis neps=0.002 
synthesis nepe=0.001 acid nepe=0.002 
differentiation nepe=0.001 proliferation nepe=0.002 
catabolism nepe=0.001 acceptor nepe=0.002 
receptor nepe=0.001 degradation neps=0.002 
breakdown nepe=0.001 exocytosis nepe=0.002 
degradation nepe=0.001 anabolism neps=0.002 
 
The general pattern for the above examples is “Entity trans-
porter activity.” Thus, the mapping rule applicable to gene 
products {Mi} annotated with these GO terms may be stated 
as ‘Mi transports Entity,’ where entity is presumed to be the 
prefix of ‘transporter activity.’ This assumption is true in 
420 of the 440 cases. Exceptions to the rule include terms 
like “siderophore-iron (ferrioxamine) uptake transporter 
activity” and “transporter activity.” In the former, only a 
subset of the prefix of “transporter activity” represents an 

Fig.3. Browser for analyzing tokens/words found within GO 
terms. Columns 2 and 5 are measures of positional variation 
of each token within GO terms, column 1 indicates whether 
position in each row is  with respect to the beginning or end 
of corresponding GO terms, column 3 shows name of token, 
and column 4 shows number of GO terms it is found in.  
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Entity, i.e, the word ‘uptake’ doesn’t conform to the same 
pattern. The latter is the parent term representing the ab-
stract concept of ‘transporter activity.’  
The GO token entropic measure helps in clustering terms 
that share a token at the same relative position. Based on the 
general patterns ‘Entity binding’ and ‘Entity transporter 
activity,’ 23780 and 903 annotations respectively were 
mapped to discretized triplets. However, the entropic analy-
sis is based on the naïve assumption that each token repre-
sents a concept. In reality, names of entities often consist of 
a variable number of words strung together, e.g., lipoprotein 
lipase. Measuring the positional entropy of a token from 
either end helps mitigate this problem to an extent, but only 
to an extent. In particular, GO terms where the token of in-
terest is flanked by entities of variable length will not show 
a peak in the positional distribution. Further, since it is 
based purely on a textual approach (no prior semantics), 
manual verification is required to find sub-concepts that are 
made up of contiguous tokens.   

4 CONCLUSION 
This paper has presented and addressed the advantages of a 
discretized triplet representation of GO annotations and a 
partially automated approach for doing so. In future, we 
intend to extend the approach to the entire Gene Ontology, 
combine information from other sources, and devise a so-
phisticated search interface that shall incorporate the Ma-
chineProse relation ontology (Dinakarpandian, et al., 2006). 
The number of terms in GO has been rapidly growing since 
its inception (Ashburner, et al., 2000). The total number of 
terms has grown from 4507 in 2000 to more than 20,000 in 
Feb 2006 (Gene Ontology Consortium). One reason is a 
richer description, but redundancy of nomenclature is also a 
factor. As GO is continuously revised (terms becoming ob-
solete, renamed and rearranged), maintaining its semantic 
integrity is quite challenging. This paper suggests an ap-
proach to a leaner GO that is both people and machine 
friendlier by allowing annotations to be built from reuse of 
semantically defined building blocks. This would lessen the 
growth rate of GO, with the resultant smaller size helping in 
ensuring uniformity and semantic consistency of GO. The 
benefits would be easier maintenance of GO and higher 
semantic transparency. In the interim, a triplet view of GO 
annotations offers a pragmatic solution. A potential advan-
tage is to facilitate searches specified as a set of triplets, 
occupying the middle ground between a natural language 
interface and a keyword-based one. 
Since a large number of entities within GO are general or 
specific names of molecules, extracting the embedded mo-
lecular ontology would be a useful adjunct.  Using other 
ontologies like ChEBI (ChEBI) and completed mappings 
between GO and other ontologies (Johnson, et al., 2006) 
would be useful in this regard. 
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