11,623 research outputs found

    The Complexity of Approximately Counting Stable Roommate Assignments

    Get PDF
    We investigate the complexity of approximately counting stable roommate assignments in two models: (i) the kk-attribute model, in which the preference lists are determined by dot products of "preference vectors" with "attribute vectors" and (ii) the kk-Euclidean model, in which the preference lists are determined by the closeness of the "positions" of the people to their "preferred positions". Exactly counting the number of assignments is #P-complete, since Irving and Leather demonstrated #P-completeness for the special case of the stable marriage problem. We show that counting the number of stable roommate assignments in the kk-attribute model (k≄4k \geq 4) and the 3-Euclidean model(k≄3k \geq 3) is interreducible, in an approximation-preserving sense, with counting independent sets (of all sizes) (#IS) in a graph, or counting the number of satisfying assignments of a Boolean formula (#SAT). This means that there can be no FPRAS for any of these problems unless NP=RP. As a consequence, we infer that there is no FPRAS for counting stable roommate assignments (#SR) unless NP=RP. Utilizing previous results by the authors, we give an approximation-preserving reduction from counting the number of independent sets in a bipartite graph (#BIS) to counting the number of stable roommate assignments both in the 3-attribute model and in the 2-Euclidean model. #BIS is complete with respect to approximation-preserving reductions in the logically-defined complexity class #RH\Pi_1. Hence, our result shows that an FPRAS for counting stable roommate assignments in the 3-attribute model would give an FPRAS for all of #RH\Pi_1. We also show that the 1-attribute stable roommate problem always has either one or two stable roommate assignments, so the number of assignments can be determined exactly in polynomial time

    A Simply Exponential Upper Bound on the Maximum Number of Stable Matchings

    Full text link
    Stable matching is a classical combinatorial problem that has been the subject of intense theoretical and empirical study since its introduction in 1962 in a seminal paper by Gale and Shapley. In this paper, we provide a new upper bound on f(n)f(n), the maximum number of stable matchings that a stable matching instance with nn men and nn women can have. It has been a long-standing open problem to understand the asymptotic behavior of f(n)f(n) as n→∞n\to\infty, first posed by Donald Knuth in the 1970s. Until now the best lower bound was approximately 2.28n2.28^n, and the best upper bound was 2nlog⁥n−O(n)2^{n\log n- O(n)}. In this paper, we show that for all nn, f(n)≀cnf(n) \leq c^n for some universal constant cc. This matches the lower bound up to the base of the exponent. Our proof is based on a reduction to counting the number of downsets of a family of posets that we call "mixing". The latter might be of independent interest

    A Stable Marriage Requires Communication

    Full text link
    The Gale-Shapley algorithm for the Stable Marriage Problem is known to take Θ(n2)\Theta(n^2) steps to find a stable marriage in the worst case, but only Θ(nlog⁥n)\Theta(n \log n) steps in the average case (with nn women and nn men). In 1976, Knuth asked whether the worst-case running time can be improved in a model of computation that does not require sequential access to the whole input. A partial negative answer was given by Ng and Hirschberg, who showed that Θ(n2)\Theta(n^2) queries are required in a model that allows certain natural random-access queries to the participants' preferences. A significantly more general - albeit slightly weaker - lower bound follows from Segal's general analysis of communication complexity, namely that Ω(n2)\Omega(n^2) Boolean queries are required in order to find a stable marriage, regardless of the set of allowed Boolean queries. Using a reduction to the communication complexity of the disjointness problem, we give a far simpler, yet significantly more powerful argument showing that Ω(n2)\Omega(n^2) Boolean queries of any type are indeed required for finding a stable - or even an approximately stable - marriage. Notably, unlike Segal's lower bound, our lower bound generalizes also to (A) randomized algorithms, (B) allowing arbitrary separate preprocessing of the women's preferences profile and of the men's preferences profile, (C) several variants of the basic problem, such as whether a given pair is married in every/some stable marriage, and (D) determining whether a proposed marriage is stable or far from stable. In order to analyze "approximately stable" marriages, we introduce the notion of "distance to stability" and provide an efficient algorithm for its computation

    The Complexity of Approximately Counting Stable Matchings

    Get PDF
    We investigate the complexity of approximately counting stable matchings in the kk-attribute model, where the preference lists are determined by dot products of "preference vectors" with "attribute vectors", or by Euclidean distances between "preference points" and "attribute points". Irving and Leather proved that counting the number of stable matchings in the general case is #P-complete. Counting the number of stable matchings is reducible to counting the number of downsets in a (related) partial order and is interreducible, in an approximation-preserving sense, to a class of problems that includes counting the number of independent sets in a bipartite graph (#BIS). It is conjectured that no FPRAS exists for this class of problems. We show this approximation-preserving interreducibilty remains even in the restricted kk-attribute setting when k≄3k \geq 3 (dot products) or k≄2k \geq 2 (Euclidean distances). Finally, we show it is easy to count the number of stable matchings in the 1-attribute dot-product setting.Comment: Fixed typos, small revisions for clarification, et

    Counting Popular Matchings in House Allocation Problems

    Full text link
    We study the problem of counting the number of popular matchings in a given instance. A popular matching instance consists of agents A and houses H, where each agent ranks a subset of houses according to their preferences. A matching is an assignment of agents to houses. A matching M is more popular than matching M' if the number of agents that prefer M to M' is more than the number of people that prefer M' to M. A matching M is called popular if there exists no matching more popular than M. McDermid and Irving gave a poly-time algorithm for counting the number of popular matchings when the preference lists are strictly ordered. We first consider the case of ties in preference lists. Nasre proved that the problem of counting the number of popular matching is #P-hard when there are ties. We give an FPRAS for this problem. We then consider the popular matching problem where preference lists are strictly ordered but each house has a capacity associated with it. We give a switching graph characterization of popular matchings in this case. Such characterizations were studied earlier for the case of strictly ordered preference lists (McDermid and Irving) and for preference lists with ties (Nasre). We use our characterization to prove that counting popular matchings in capacitated case is #P-hard

    Size versus stability in the marriage problem

    Get PDF
    Given an instance I of the classical Stable Marriage problem with Incomplete preference lists (smi), a maximum cardinality matching can be larger than a stable matching. In many large-scale applications of smi, we seek to match as many agents as possible. This motivates the problem of finding a maximum cardinality matching in I that admits the smallest number of blocking pairs (so is “as stable as possible”). We show that this problem is NP-hard and not approximable within n1−Δ, for any Δ>0, unless P=NP, where n is the number of men in I. Further, even if all preference lists are of length at most 3, we show that the problem remains NP-hard and not approximable within ÎŽ, for some ÎŽ>1. By contrast, we give a polynomial-time algorithm for the case where the preference lists of one sex are of length at most 2. We also extend these results to the cases where (i) preference lists may include ties, and (ii) we seek to minimize the number of agents involved in a blocking pair
    • 

    corecore