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We investigate the complexity of approximately counting stable roommate assignments in
two models: (i) the k-attribute model, in which the preference lists are determined by dot
products of “preference vectors” with “attribute vectors” and (ii) the k-Euclidean model, in
which the preference lists are determined by the closeness of the “positions” of the people
to their “preferred positions”. Exactly counting the number of assignments is #P -complete,
since Irving and Leather demonstrated #P -completeness for the special case of the stable
marriage problem (Irving and Leather, 1986 [11]). We show that counting the number
of stable roommate assignments in the k-attribute model (#k-attribute SR, k � 4) and
the 3-Euclidean model (#k-Euclidean SR, k � 3) is interreducible, in an approximation-
preserving sense, with counting independent sets (of all sizes) (#IS) in a graph, or counting
the number of satisfying assignments of a Boolean formula (#SAT). This means that
there can be no FPRAS for any of these problems unless NP = RP. As a consequence,
we infer that there is no FPRAS for counting stable roommate assignments (#SR) unless
NP = RP. Utilizing previous results by Chebolu, Goldberg and Martin (2010) [3], we give
an approximation-preserving reduction from counting the number of independent sets in
a bipartite graph (#BIS) to counting the number of stable roommate assignments both
in the 3-attribute model and in the 2-Euclidean model. #BIS is complete with respect
to approximation-preserving reductions in the logically-defined complexity class #RH�1.
Hence, our result shows that an FPRAS for counting stable roommate assignments in the
3-attribute model would give an FPRAS for all #RH�1. We also show that the 1-attribute
stable roommate problem always has either one or two stable roommate assignments, so
the number of assignments can be determined exactly in polynomial time.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The stable roommate problem is a generalization of the classical stable marriage problem. An instance of the roommate
problem consists of 2n people, where each person has a strict preference ordering (a total ordering) of the other 2n − 1
people. A matching is a pairing of the people into n pairs, and a matching is said to be stable if there does not exist a pair of
two people P1 and P2, each of whom prefers the other over their current partners in the matching. Such a pair is referred
to as a blocking pair as P1 and P2 would drop their current partners and pair up together.

The stable marriage problem is the special case in which the 2n people consist of n men and n women, and each man
ranks all the women higher than any other man and, similarly, each women ranks all the men higher than any other
woman. (This is not the usual definition of the stable marriage problem, but is equivalent to the standard one.) In 1962,
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Gale and Shapley proved that every stable marriage instance has a stable matching, and described an O (n2) algorithm for
finding one [6]. The stable marriage problem, including many variants, has seen much study as algorithms for finding stable
matchings are used for assigning residents to hospitals in Scotland, Canada, and the USA [2,14,16].

More than twenty years after Gale and Shapley’s seminal paper, Irving provided an efficient algorithm for the stable
roommate problem [10]. In contrast to the marriage problem, an instance of the roommate problem need not have any
stable matching, as this example (which may be found in both [10] and [13]) demonstrates:

Person Preference list

A B C D
B C A D
C A B D
D arbitrary

Irving’s polynomial-time algorithm determines whether a stable roommate assignment exists for the given instance, and
constructs a stable assignment if one exists.

In what follows, we will abbreviate “stable roommate problem” and “stable marriage problem” as SR and SM, respectively.
Since the problem of determining whether a stable assignment exists is solved in both the stable roommate setting and

the stable matching setting, it is natural to ask whether it is feasible to determine how many stable assignments there are
for a given instance. We denote these counting versions of SR and SM as #SR and #SM, respectively.

Irving and Leather [11] demonstrated that #SM (counting the number of stable matchings for a given SM instance) is
#P -complete. This completeness result relies on the connection between stable marriages and downsets in a related partial
order and on the fact that counting downsets in a partial order is #P -complete [15]. As #SM is a restricted version of #SR,
we can obviously conclude that #SR is #P -complete.

Since exactly counting stable matchings is difficult (under standard complexity-theoretic assumptions), it would be good
to have algorithms for approximately counting. In particular, we would like to find a fully-polynomial randomized approxima-
tion scheme (an FPRAS) for this task, i.e. an algorithm that provides an arbitrarily close approximation in time polynomial in
the input size and the desired error.

Randomized approximation schemes have proven successful (sometimes under certain restrictions or conditions) for
problems such as counting the number of (perfect) matchings in bipartite graphs, the number of proper k-colourings of
graphs, and the number of linear extensions of a partial order. Many of these approximation schemes rely on the Markov
Chain Monte Carlo (MCMC) method. This technique also exploits a relationship between counting and sampling described
by Jerrum, Valiant and Vazirani [12], namely, for self-reducible combinatorial structures, the existence of an FPRAS is com-
putationally equivalent to a polynomial-time algorithm for approximate sampling from the set of structures.

Bhatnagar, Greenberg and Randall [1] considered the problem of sampling a random stable matching for the stable
marriage problem using the MCMC method. They examined a natural Markov chain that uses “male-improving” and “female-
improving” rotations (see Section 3.1 for similar definitions in the context of the roommate problem) to define a random
walk on the state space of stable matchings for a given instance. In the most general setting, matching instances can be
exhibited for which the mixing time of the random walk has an exponential lower bound, meaning that it will take an
exponential amount of time to (approximately) sample a random stable matching. This exponential mixing time is due to
the existence of a “bad cut” in the state space. Bhatnagar et al. considered several restricted settings for matching instances
and were still able to show instances for which such a bad cut exists in the state space, implying an exponential mixing
time in these restricted settings.

One of the special cases that Bhatnagar et al. considered was the so-called k-attribute model. In this setting, each man
and woman has two k-dimensional vectors associated with them, a “preference” vector and a “position” (or “attribute”)
vector. A man Mi has a preference vector denoted by M̂i , and a position vector denoted by �Mi . Similarly, a woman wh has
a preference vector ŵ j and a position vector w̄ j . Then, Mi prefers w j over wk (i.e. w j appears higher on his preference
list than wk) if and only if M̂i · w̄ j > M̂i · w̄k , where M̂i · w̄ j denotes the usual k-dimensional dot product of vectors.3

Since we assume that each man has a total order over the women (and vice-versa), a valid instance has the property that
M̂i · w̄ j �= M̂i · w̄k whenever j �= k (and analogously for the women’s preference vectors/men’s position vectors). In this paper
we consider the k-attribute model for the roommate problem.

We also study the stable roommate problem in the k-Euclidean model which we had introduced in a previous paper [3].
In the k-Euclidean model, each person has two associated points in k-dimensional Euclidian space — a “preference” point
and a “position” point. The preference point of a person X is denoted by X̂ , and the position point is denoted by �X . Then,
X prefers y over z (i.e. y appears higher on his/her preference list than z) if and only if | X̂ − ȳ| < | X̂ − z̄|, where | X̂ − ȳ|
denotes the usual k-dimensional Euclidean distance. Once again, a valid instance has the property that | X̂ − ȳ| �= | X̂ − z̄|
whenever j �= k.

3 Recall that the dot product of two vectors a = (a1, . . . ,ak) and b = (b1, . . . ,bk) is the sum
∑k

i=1 aibi which is equal to ‖a‖ ‖b‖ cos θ , where ‖x‖ denotes
the length of a vector x and θ is the angle between a and b.
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We examined the stable marriage problem in our previous paper [3], providing complexity-theoretic evidence for the
difficulty of approximately counting stable matchings in both the k-attribute model and the k-Euclidean model. We con-
structed approximation-preserving reductions between (i) counting the number of stable matchings in the k-attribute marriage
problem (k � 3) and counting independent sets in a bipartite graph (#BIS), and (ii) counting the number of stable marriages
in the k-Euclidean marriage problem (k � 2) and #BIS.

Informally speaking, if there is an approximation-preserving reduction (AP-reduction) from one problem to another, then
an FPRAS for the second problem implies the existence of an FPRAS for the first. We write f �A P g to mean that f has an
AP-reduction to g . Similarly, we write f ≡A P g to mean that f �A P g and g �A P f , or that f and g are AP-interreducible.
Approximation-preserving reductions play a role in approximate counting analogous to the role that polynomial many–one
reductions play in the theory of NP-completeness and polynomial Turing reductions play in the theory of #P -completeness.

The complexity class #RH�1 of counting problems was introduced by Dyer, Goldberg, Greenhill and Jerrum [5] as a
means to classify approximate counting problems. The problems in #RH�1 are those that can be expressed in terms of
counting the number of models of a logical formula from a certain syntactically restricted class which is also known as
“restricted Krom SNP” [4]. The complexity class #RH�1 has a completeness class (with respect to AP-reductions) which
includes many natural counting problems including: #BIS, counting downsets in a partial order, counting configurations in
the Widom–Rowlinson model (all [5]) and computing the partition function of the ferromagnetic Ising model with a mixed
external field [7]. Either all these problems have an FPRAS, or none do. No FPRAS is currently known for any of them,
despite much effort having been expended on finding one. More background and details about AP-reducibility are given in
Section 2.

Before we continue, we define the problems that are of interest to us in this paper.

Name. #SR.
Instance. A stable roommate instance with 2n people.
Output. The number of stable roommate assignments.

Name. #k-attribute SR.
Instance. A stable roommate instance with 2n people, i.e. preference lists are determined using dot products between

k-dimensional preference and position vectors as described above.
Output. The number of stable roommate assignments.

Name. #k-Euclidean SR.
Instance. A stable roommate instance with 2n people. In this setting, each person has a “preference point” and “position

point”. Preference lists are determined using Euclidean distances between preference points and position points as de-
scribed above.

Output. The number of stable roommate assignments.

We also define two other counting problems which are relevant to our results.

Name. #IS.
Instance. A graph G .
Output. The number of independent sets (of all sizes) of G .

Name. #Sat.
Instance. A boolean formula in conjunctive normal form.
Output. The number of satisfying assignments.

1.1. Our results

Zuckerman [17] has shown that #Sat cannot have an FPRAS unless NP = RP. The same is true of any problem in #P
to which #Sat is AP-reducible [5]. For example, it is true of #IS, which is AP-interreducible with #Sat [5]. We have the
following results.

Theorem 1. #IS ≡AP #k-attribute SR for k � 4.

Theorem 2. #IS ≡AP #k-Euclidean SR for k � 3.

Corollary 3. For any k � 4, #k-attribute SR is complete for #P with respect to AP-reductions. For any k � 3, #k-Euclidean SR is
complete for #P with respect to AP-reductions. Also, #SR is complete for #P with respect to AP-reductions. None of these problems has
an FPRAS unless NP = RP.
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Theorem 4. For every #1-attribute SR instance I , there are either 1 or 2 stable assignments. Thus, #1-attribute SR can be solved
exactly in polynomial time.

We also show the following results.4

Theorem 5. #BIS �AP #3-attribute SR.

Theorem 6. #BIS �AP #2-Euclidean SR.

The last two results are significant since #BIS is complete for #RH�1 with respect to approximation-preserving reduc-
tions.

2. Randomized approximation schemes and approximation-preserving reductions

In this section, we give standard definitions of randomized approximation schemes and AP-reductions. A reader who is
already familiar with these concepts may safely skip this section.

A randomized approximation scheme is an algorithm for approximately computing the value of a function f : Σ∗ →R. The
approximation scheme has a parameter ε > 0 which specifies the error tolerance. A randomized approximation scheme for f
is a randomized algorithm that takes as input an instance x ∈ Σ∗ (e.g., for the problem #SR, the input would be an encoding
of a stable roommate instance) and a rational error tolerance ε > 0, and outputs a rational number z (a random variable of
the “coin tosses” made by the algorithm) such that, for every instance x,

Pr
[
e−ε f (x)� z � eε f (x)

]
� 3

4
. (1)

The randomized approximation scheme is said to be a fully-polynomial randomized approximation scheme, or FPRAS, if it runs
in time bounded by a polynomial in |x| and ε−1.

We now define the notion of an approximation-preserving (AP) reduction. Suppose that f and g are functions from Σ∗
to R. As mentioned before, an AP-reduction from f to g gives a way to turn an FPRAS for g into an FPRAS for f . Here is the
formal definition. An approximation-preserving reduction from f to g is a randomized algorithm A for computing f using an
oracle for g . The algorithm A takes as input a pair (x, ε) ∈ Σ∗ × (0,1), and satisfies the following three conditions: (i) every
oracle call made by A is of the form (w, δ), where w ∈ Σ∗ is an instance of g , and 0 < δ < 1 is an error bound satisfying
δ−1 � poly(|x|, ε−1); (ii) the algorithm A meets the specification for being a randomized approximation scheme for f (as
described above) whenever the oracle meets the specification for being a randomized approximation scheme for g; and
(iii) the run-time of A is polynomial in |x| and ε−1.

According to the definition, approximation-preserving reductions may use randomization and may make multiple oracle
calls. Nevertheless, the reductions that we present in this paper are deterministic. Each reduction makes a single oracle
call (with δ = ε) and returns the result of that oracle call. A word of warning about terminology: Subsequent to [5], the
notation �AP has been used to denote a different type of approximation-preserving reduction which applies to optimization
problems. We will not study optimization problems in this paper, so hopefully this will not cause confusion.

3. Background and definitions

We first review some of the relevant background and definitions related to stable matchings. The combinatorial structure
present in these problems plays a large role in what follows. Many of the definitions are taken from [10] and [8]. The reader
is also referred to Gusfield and Irving’s book [9].

It will also help to have an illustrative example, and for these purposes we give such an example in Appendix A.

3.1. Stable matchings and the rotation poset

Irving’s method for finding a stable matching for an SR instance (or concluding that one doesn’t exist) is a two-phase
algorithm [10]. During both phases of the algorithm, the preference lists are shortened in a well-defined manner. If we
reach a stage where each person has a single element on his/her list, then pairing these people will create a stable matching.
Alternatively, if at any point a person’s preference list becomes empty, we conclude that the instance has no stable matching.

Phase 1 is much akin to the usual Gale–Shapley algorithm for the marriage problem, in that people “propose” to one
another, holding the best proposal from the ones received so far. For every person ei , let hi denote the person who is

4 The proofs of Theorems 5 and 6 (in Section 7) borrow constructions from the AP-reductions that we presented in [3] from #BIS to the problem of
counting stable matchings in the 3-attribute model and the 2-Euclidean model. However, Theorems 5 and 6 do not follow directly from the results of [3]
since, in the stable roommate problem, all people need to rank all other people (rather than just ranking people of the opposite sex) and this needs to be
incorporated into the geometric constructions.
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(currently) first on ei ’s list. Following [8], we will say that ei is semi-engaged to hi if and only if ei is the bottom entry of
hi ’s list. Note that this is not a symmetric relation — hi is not necessarily semi-engaged in this case. A person who is not
semi-engaged is called free.

Phase 1 of Irving’s SR algorithm consists of the following steps:

1. If there is an empty list, then stop, there is no stable assignment.
2. Otherwise, if everyone is semi-engaged, go to Phase 2 (described below).
3. Otherwise, pick an arbitrary free person ei and do the following: For each person p who is ranked below ei on hi ’s list,

remove p from hi ’s list, and remove hi from p’s list.

So as Phase 1 proceeds, people’s preference lists shrink. At any point during this phase (or the next), we refer to the
shortened preference lists as short lists, and we refer to the set of short lists as a table. It is proved in [10] that if a short list
is empty at the end of Phase 1, then the instance has no stable matching. An example of Phase 1 is in Appendix A.

Assuming Phase 1 ends with no empty short list, we proceed to Phase 2. To describe this phase, we need more notation
and definitions. For a person ei , we are already using hi to denote the person at the head of his/her short list, and we use
si to denote the person who is second on his/her short list.

Definition 1. Given a set of short lists, a rotation R is an ordered set of people E = {e1, e2, . . . , ek} such that si = hi+1 for all
i ∈ {1, . . . ,k − 1} and sk = h1. We will also say that R is exposed in the short lists.

Note that rotations are defined relative to a given set of short lists. An example is in Appendix A.
For a rotation R , we will sometimes write R = (E, H, S), where H is the set of head entries of E , ordered in correspon-

dence with E , and, S is the set of second entries of E , again ordered in correspondence with E .

Definition 2. Given a rotation R = (E, H, S) for a set of short lists, the elimination of R consists of performing the following
operation: for every si ∈ S , remove every entry below ei in si ’s short list, i.e. move the bottom of si ’s short list up to ei .
Then remove si from p’s list for each person p that was just removed from si ’s list.

Therefore, the elimination of a rotation results in a new set of short lists, where at least two people’s lists have shrunk
in length.

Phase 2 of Irving’s SR algorithm consists of the following steps:

1. If a short list is empty, then stop, the instance has no stable matching.
2. Otherwise, if each person has exactly one entry on his or her short list, then pairing each person with their head entry

is a stable matching.
3. Otherwise, find and eliminate some rotation.

For an example of one round of Phase 2, see Appendix A. We note the following property of the short lists, which is
easily established from Phase 1 and Phase 2 procedures.

Property 7. At the end of Phase 1, and at the end of each round of Phase 2, person A has person B on his/her list if and
only if person B has person A on his/her list.

An SR instance may have many stable matchings. Each such stable matching can be found as a result of some sequence
of rotation eliminations [8].

The set of rotations exhibits a rich combinatorial structure which has been explored previously by other authors. We
review this structure here. To do so, we need still more notation and definitions.

Definition 3. Suppose that R = (E, H, S) is a rotation for an SR instance, i.e. R is exposed in some set of short lists. Define Rd

to be the triple (S, E, Er), where S and E have the same order as they do in R , and Er is the backwards cyclic rotation of E .
That is, if E = {e1, e2, . . . , ek} then Er = {e2, . . . , ek, e1}.

Rd has the form of a rotation. If Rd is actually a rotation (i.e. Rd is exposed in the set of short lists during some possible
execution of the matching algorithm), then we call R and Rd a dual pair of rotations. Any rotation without a dual is called
a singleton rotation.

An ordering relation can be defined on the set of all rotations (singletons and dual pairs).

Definition 4. A rotation R ′ explicitly precedes a rotation R if there is a person p who satisfies both of the following.

• R contains a triple (ei,hi, si) with hi �= p such that p is above si in ei ’s (original) preference list.
• R ′ removes p from ei ’s list by moving the end of p’s list above ei .
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Definition 5. Π∗ is the reflexive transitive closure of the “explicitly precedes” relation. We will use the term “precedes” to
refer to this relation. Π∗(R, R ′) means that rotation R precedes R ′ in this partial order.

Let Rot(I) denote the set of all rotations (singletons and dual pairs) that are exposed during some execution of the two-
phase algorithm for a given stable roommate instance I . Then Π∗ defines a partial order on Rot(I). We refer to this partial
order as the rotation poset. As usual when dealing with partial orders, a subset U ⊆ Rot(I) is called a downset if R ′ ∈ U and
Π∗(R, R ′) imply that R ∈ U .

The combinatorial significance of the rotation poset is captured in the following theorem.

Theorem 8. (See [8, Theorem 5.1].) There is a one-to-one correspondence between stable matchings and the downsets in Π∗ that
contain every singleton rotation and exactly one of each dual pair.

The rotation poset Π∗ has even more structure to it.

Lemma 9. (See [8, Lemma 5.5].) Let {R1, Rd
1} and {R2, Rd

2} be two dual pairs of rotations and R a singleton rotation. Then:

1. Neither R1 nor Rd
1 precedes R in Π∗ , i.e. only a singleton rotation can precede a singleton.

2. Π∗(R1, R2) if and only if Π∗(Rd
2, Rd

1).

The rotation poset plays a key role in our approximation-preserving reductions. For our reductions, we must define a
roommate instance I , then identify Rot(I), find the precedence relations amongst them (i.e. find Π∗), and show that it
agrees with our initial starting problem.

Given an instance I of SR with 2n people, Gusfield describes a polynomial-time (in n) algorithm for finding the set of all
rotations of I , and for constructing a directed graph D that captures the partial order Π∗ [8]. (Note: The transitive reduction
of D is isomorphic to the Hasse diagram of Π∗ , but D might contain more edges than the covering relations defined by the
“explicitly precedes” relation. Still, D has no more than O (n2) edges.)

Before we demonstrate our constructions, we note one more combinatorial construction that serves to encode the set of
stable matchings for a given instance.

3.2. Stable matchings and independent sets

Gusfield defines an additional way to represent the set of stable roommate assignments [8, Section 5.3.2].
Let I denote an instance of SR. Define an undirected graph G(I) as follows: Each nonsingleton rotation of I corresponds

to a vertex of G(I). Two rotations R1 and R2 are connected by an edge in G(I) if and only if there exists a rotation R
(possibly R1 or R2 themselves) such that Π∗(R, R1) and Π∗(Rd, R2). In particular, we note that R1 and Rd

1 are connected
by an edge for each dual pair {R1, Rd

1} (as a vertex precedes itself, by definition, in the partial order Π∗). See Appendix A
for an example.

Gusfield also defines another partial order involving only the nonsingleton rotations.

Definition 6. Suppose Σ is the set of all singletons in Π∗ . Then Π = Π∗ −Σ is a partial order on the set of all nonsingleton
(dual) rotations.

Having defined this undirected graph and the partial order Π , we have these results, a combination of Lemmas 5.6
and 5.10, and Theorem 5.3 in [8].

Theorem 10. Let I denote an instance of SR and G(I) its corresponding graph constructed as above.

1. Every maximal independent set in G(I) contains exactly one node from each dual pair of rotations.
2. There is a one-to-one correspondence between maximal independent sets in G(I) and stable matchings of I .
3. Rotations R1 and R2 are connected by an edge in G(I) if and only if Rd

1 precedes R2 , i.e. R1 and R2 are connected if and only if
Π(Rd

1, R2).

4. A construction for showing #IS ≡AP #4-ATTRIBUTE SR

Recall that #k-attribute SR denotes the problem of counting stable assignments for k-attribute stable roommate in-
stances. Our goal of this section is to prove Theorem 1 which we restate below.

Theorem 1. #IS ≡AP #k-attribute SR for k � 4.
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Proof. First, since #IS is complete for #P with respect to AP-reductions [5], and #k-attribute SR ∈ #P , we immediately
have #k-attribute SR �AP #IS. Also, it is easy to see, for k > 4, that #4-attribute SR �AP #k-attribute SR (the reduction
uses up the extra k − 4 dimensions by assigning some particular value in every preference vector and attribute vector).
Thus, it remains to prove #IS �AP #4-attribute SR. This is proved in the rest of Section 4, including Sections 4.1—4.6. �

We wish to prove #IS �AP #4-attribute SR. To this end, let Γ = (V , E) be an instance of #IS. Let T be the Cartesian
product T = V × {0} and let B = V × {1}. The sets T and B are just two distinct copies of V . Let E ′ be the matching
on B ∪ T defined by E ′ = {((v,0), (v,1)) | v ∈ V }. Let E ′′ = {((v,0), (w,0)) | (v, w) ∈ E}. The set E ′′ just mimics the edges
of E amongst the vertices of T . Finally, let Γ ′ = (B ∪ T , E ′ ∪ E ′′). Note the bijection between independent sets of Γ (which
we wish to approximately count, using as an oracle an FPRAS for #4-attribute SR), and maximal independent sets of Γ ′ .
Our goal is to construct a 4-attribute stable roommate instance I so that the graph G(I) is isomorphic to Γ ′ . This will
complete the proof, by Theorem 10. So from now on, we will focus exclusively on constructing I so that G(I) is isomorphic
to Γ ′ . As soon as we’ve done that, we are finished.

We recall the construction of G(I) from I: The vertices of G(I) are the nonsingleton rotations of I . From Theorem 10,
two rotations R1 and R2 are connected by an edge of G if and only if Π(Rd

1, R2) (and hence, by Lemma 9, Π(Rd
2, R1)).

Our method, given Γ ′ , will be to construct I so that its nonsingleton rotations can be labelled bijectively with B ∪ T in
such a way that the following conditions are satisfied (by the partial order Π associated with I).

For all v ∈ V , the rotation labelled (v,0) is dual to the one labelled (v,1). (2)

Also, using the vertices of Γ ′ to refer to the corresponding rotations of I , we may write{(
R, R ′) ∈ T × T

∣∣ Π
(

Rd, R ′)} = E ′′, (3){(
R, R ′) ∈ T × T

∣∣ Π
(

R, R ′d)} = ∅, (4){(
R, R ′) ∈ T × T

∣∣ Π
(

R, R ′)} = {(
R, R ′) ∈ T × T

∣∣ R = R ′}. (5)

Under the assumption that (2) holds,

• Eq. (3) guarantees that E(G(I)) ∩ (T × T ) = E ′′ .
• Eq. (4) guarantees that E(G(I)) ∩ (B ×B) = ∅.
• Finally, Eq. (5) guarantees that E(G(I)) ∩ (B × T ) = E ′ .

Thus, Eqs. (2)–(5), taken together, guarantee that G(I) is isomorphic to Γ ′ , as required. So all that we need to do, to
complete the reduction, and the proof, is to use the input graph Γ to construct an instance I so that its nonsingleton
rotations can be labelled bijectively with B ∪ T in such a way that Eqs. (2)–(5) are satisfied. We concentrate on this for the
rest of the proof. (We never need to consider Γ ′ again.)

Unfortunately, the notation that we used to get this far (which came from earlier papers) is not going to be very conve-
nient when we come to actually do the construction. So, in order to make the following (rather complicated!) proof easier
to follow, we are now going to change notation.

First, instead of using the graph Γ as the input to our construction, we will instead take as input a bipartite graph K
which captures all the information about Γ = (V , E). The bipartite graph K will have vertex partition B = {b1, . . . ,bn},
T = {t1, . . . , tn} and edge set E(K ) satisfying the following two properties,

(K1) (bi, ti) /∈ E(K ) ∀i ∈ [n],
(K2) (bi, t j) ∈ E(K ) if and only if (b j, ti) ∈ E(K ).

The correspondence between K and our original graph Γ is as follows: We take n to be |V | so that there is a natural
bijection between B and the set B = V × {1} defined above. Also, there is a natural bijection between T and T = V × {0}.
The edge set E(K ) is constructed from the edge set E of Γ as follows. Suppose that (u,1) is the ith element of B and
that (v,0) is the jth element of T . The edges (bi, t j) and (b j, ti) are included in E(K ) if and only if (u, v) is an edge
of E . The reader should verify that the graph K encodes all the information about the input graph Γ , in the sense that we
could reconstruct Γ given K . Also, for every undirected graph Γ , there is a corresponding K , and it can be constructed in
polynomial time.

The sole problem remaining (and it is a big one!) is to show how, given K (and therefore deducing Γ and Γ ′), to
construct a #4-attribute SR instance I so that its nonsingleton rotations can be labelled bijectively with B ∪ T in such a
way that Eqs. (2)–(5) are satisfied. As soon as we accomplish that, we have finished the reduction and the proof.

The whole point of introducing the bipartite graph K is that we can restate Eqs. (2)–(5) in a manner that will be more
convenient to work with. In particular, using the bijection between B and B and the bijection between T and T , these
equations are equivalent to the following.
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Fig. 1. Defining ρ-cycles and σ -cycles from K .
ρ-cycles: (1,2), (3,4,5,6,7,8), (9,10,11,12), (13,14,15,16)

σ -cycles: (3,4), (1,2,9,10,13,14), (5,6,15,16), (7,8,11,12)

(G1) For all i ∈ [n], the rotation labelled bi is dual to the rotation labelled ti .
(G2) The set of pairs (bi, t j) in Π is E(K ).
(G3) There are no pairs (ti,b j) in Π .
(G4) There are no pairs (ti, t j) in Π except for those with i = j (which are all present).

4.1. The task remaining

We have finally defined all the conditions that we need. At this point, the reader should have verified that the sole
problem remaining is, given a bipartite graph K satisfying (K1)–(K2), we must show how to construct, in polynomial time,
a #4-attribute SR instance I satisfying (G1)–(G4). Once we do that, we are finished with the reduction and the proof. We
will not have to further consider the graphs Γ and Γ ′ . These were needed only to get to this point.

4.2. The construction of I

Our first task will be to show how to construct I , given K , and for this it will be helpful to define some notation for
describing the bipartite graph K . Similarly to the construction defined in [3], label the edges in E(K ) according to the
lexicographic order of the pair (bi, t j) (so the edges with the smallest labels are incident to b1). The first edge incident
to b1 is given the label (1,2), the second is given the label (3,4) and so on. The ith edge in the lexicographic ordering
is given the label (2i − 1,2i). Let m denote the number of edges in K . The roommate instance we construct will have 4m
people in it, which we denote as P1, . . . , P2m, Q 1, . . . , Q 2m .

We define two permutations ρ and σ of [2m] as in [3], so the first ρ-cycle corresponds to the labels of the edges
incident on b1, the first σ -cycle corresponds to the labels of the edges incident on t1, and so on. We explain this with the
help of the example in Fig. 1.

From Fig. 1, it is clear that the ith ρ-cycle is obtained by taking together the labels of the edges incident at node bi .
The first σ -cycle involves the labels of edges incident to t1. Vertex t1 has only one edge incident to it, namely edge (3,4).
Hence, the first σ -cycle is (3,4). The second σ -cycle involves edges incident to t2, namely, edges (1,2), (9,10) and (13,14).
The second σ -cycle is obtained by grouping together the labels of the three edges and the σ -cycle is (1,2,9,10,13,14). In
this manner, we obtain the remaining σ -cycles.

Note that here we have more structure than was present in the construction from [3] — (K1) and (K2) ensure that the
number of ρ-cycles is equal to the number of σ -cycles, and the number of elements in the ith ρ-cycle is identical to the
number of elements in the ith σ -cycle.

Suppose there are n ρ-cycles, and, hence, n σ -cycles. Suppose also that |ρi| = qi , i.e. the ith ρ-cycle consists of qi

elements. Thus, the ith σ -cycle also has qi elements and qi is even. Note that for 1 � k � qi/2, the elements 2k − 1 and 2k
are in the same ρ-cycle and they are in the same σ -cycle. Also, a given ρ-cycle and a given σ -cycle intersect in at most
one such pair. In what follows, we let the “representative” of each ρ-cycle be the (numerically) smallest number in the
cycle. In Fig. 1, the representatives of the ρ-cycles are elements 1, 3, 9 and 13. Note that each representative of a ρ-cycle
is an odd number. We let Rep(ρ) = { f1, . . . , fn} denote the set of representatives, so, for each i ∈ {1, . . . ,n}, the cycle ρi can
be represented as ρi = ( f i,ρ f i,ρ

2 f i, . . . , ρ
qi−1 f i).

Let ψ : [m] → [m] be the bijection defined so that, if  is the kth element of the ith ρ-cycle, then ψ() is the kth element
of the ith σ -cycle. So if the ith ρ-cycle is (i1, . . . , id) then the ith σ -cycle is (ψ(i1), . . . ,ψ(id)). From the properties of the
bipartite graph K , we note that ψ is an involution, i.e. ψ ◦ ψ = identity, where ψ ◦ ψ is usual function composition. Let
Rep(σ ) = {ψ( f i) | f i ∈ Rep(ρ)} be the set of representatives of the n σ -cycles.

Recall that to specify our roommate instance I , we must define 4-dimensional position vectors P i, Q i and preference
vectors P̂ i, Q̂ i for each person.

Before doing this, we give a quick look ahead at what is to come in the construction. First of all, the instance we
specify will have no singleton rotations. In order to satisfy condition (G1), the pair (bi, ti) will correspond to a dual pair
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of rotations. The rotation associated with the vertex bi will relate to the ith ρ-cycle. Suppose that this cycle is (i1, . . . , id).
Then the rotation will be

Q i1 Pi1 Pi2

Q i2 Pi2 Pi3

. . . . . .

Q id P id P i1

(6)

Recalling Definition 3, the dual rotation, associated with the vertex ti , is

Pi1 Q id Q i1

Pi2 Q i1 Q i2

. . . . . .

Pid Q id−1 Q id

(7)

In order to satisfy condition (G2) we need, for (bi, t j) ∈ E(K ), for rotation bi to precede rotation t j . These dependencies will
be captured in our construction by making sure that other (appropriately chosen) P people are on the preference lists of
the P people, between the Q s given on the lists in (7).

The remaining parts of this section are devoted to giving the detailed construction of our 4-dimensional roommate
instance I (which will have no singleton rotations) and showing that its nonsingleton rotations are exactly those given
in (6) and (7). Using this bijection between the rotations and B ∪ T we then show that (G1)–(G4) are satisfied, as required
in Section 4.1.

4.3. Assigning position and preference vectors

We start by assigning the first two coordinates of the position vectors. The people Q 1, . . . , Q 2m have 0 in each of these
coordinates. The first two coordinates of the positions of P1, . . . , P2m are arranged around a unit circle, taking each ρ-cycle
in order (and leaving a big gap before the next ρ-cycle). Let ε = 2π

(2m)2 . The ith ρ-cycle takes up an angle of ε (out of the

2π radians around the circle), starting at an angle of 2π(i − 1)/n. Let θi = ε/(7(qi − 1)). If the ith ρ-cycle is the cycle
(i1, . . . , id), then positions P i1 , . . . , P id are assigned in order, leaving a gap of 7θi between each pair of people.

More formally, we define the first two coordinates of the position vectors as follows (the asterisks in the second two
coordinates will be defined shortly):

For f i ∈ Rep(ρ), for 0 � k � qi − 1, set

Pρk fi
= (

cos
(
2π(i − 1)/n + 7kθi

)
, sin

(
2π(i − 1)/n + 7kθi

)
,∗,∗)

and

Q ρk fi
= (0,0,∗,∗).

We next assign the last two coordinates of the positions. Once again, these coordinates are arranged around a unit circle,
taking each ρ-cycle in order and leaving big gaps between consecutive ρ-cycles. The ith ρ-cycle takes up an angle of up
to ε starting at an angle of 2π(i − 1)/n. Let θ ′

i = ε/4. If the ith ρ-cycle is (i1, . . . , id), then positions are assigned in the
following order:

Q i1 Pψ(i2) Q i2 Pψ(i3) Q i3 Pψ(i4) · · · Q id−1 Pψ(id) Q id Pψ(i1).

For k ∈ {1, . . . ,d − 1}, the angle between Q ik and Q ik+1 is 2−(k−1)2θ ′
i . Also, Pψ(ik+1) is at an equal angle between these.

To simplify the notation while assigning the ith ρ-cycle (i1, . . . , id), let id+1 denote i1. The second coordinates of the
position vectors are defined in the following manner. Note that the asterisks representing values in the first two coordinates
have already been defined above.

For f i ∈ Rep(ρ), for 0 � k � qi − 1, set

Q ρk fi
=

(
∗,∗, cos

(
2π(i − 1)

n
+ 2θ ′

i

k−1∑
j=0

2− j

)
, sin

(
2π(i − 1)

n
+ 2θ ′

i

k−1∑
j=0

2− j

))
and

Pψ(ρk+1 f i)
=

(
∗,∗, cos

(
2π(i − 1)

n
+ 2θ ′

i

k−1∑
j=0

2− j + 2−kθ ′
i

)
, sin

(
2π(i − 1)

n
+ 2θ ′

i

k−1∑
j=0

2− j + 2−kθ ′
i

))
.

A sum of the form
∑−1

j=0 2− j is taken to be equal to 0.
Having defined the position vectors, we now give the preference vectors. These are also defined using the ρ-cycles, and

again are placed around a unit circle.
The preference vectors Q̂ j are 0 in the last two coordinates. If the ith ρ-cycle is (i1, . . . , id), then, in the first two

coordinates, for 1 � j < d, Q̂ i j is placed between P i j and P i j+1 , slightly closer to P i j . Here is the definition. For f i ∈ Rep(ρ),
for 0 � k � qi − 1, set

Q̂ k = (
cos

(
2π(i − 1)/n + 7kθi + 3θi

)
, sin

(
2π(i − 1)/n + 7kθi + 3θi

)
,0,0

)
.
ρ f i
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Suppose that the ith ρ-cycle is (i1, . . . , id). Looking at the preference vectors Q̂ i j and the position vectors P i j , we con-
clude that, for j < d, the preference list of Q i j will start with Pi j P i j+1 . This is consistent with our desired rotation (6).
The preference list of Q id will start with Pid {Pid−1 . . . Pi2 }Pi1 . We refer to the part contained in { } symbols as “noise” on
the preference list. We will have to show that this “noise” does not introduce any extra rotations aside from the ones we
desire.

The preference vectors P̂ j are 0 in the first two coordinates. If the ith ρ-cycle is (i1, . . . , id), then, in the last two
coordinates, for j > 1, P̂ i j is placed 1/3 of the way along between Q i j−1 and Pψ(i j) . Then, P̂ i1 is placed between Q id and

Pψ(i1) , slightly nearer to Q id . Here is the definition. For f i ∈ Rep(ρ), for 0 � k � qi − 1, set

P̂ρk+1 f i
=

(
0,0, cos

(
2π(i − 1)

n
+ 2θ ′

i

k−1∑
j=0

2− j + 1

3
2−kθ ′

i

)
, sin

(
2π(i − 1)

n
+ 2θ ′

i

k−1∑
j=0

2− j + 1

3
2−kθ ′

i

))
.

Suppose that the ith ρ-cycle is (i1, . . . , id). Looking at the preference vectors P̂ i j and the last two coordinates of the
position vectors, we conclude that, for j > 1, the preference list of Pi j starts with Q i j−1 Pψ(i j) Q i j . This is consistent with the
rotation (7) except for the Pψ(i j) in the second position. This is by design, and will help to ensure the desired precedences
between the rotations. The preference list of Pi1 starts with

Q id Pψ(i1){Pψ(id) Q id−1 · · · Pψ(i3) Q i2 Pψ(i2)}Q i1 · · · ,
where, once again, the part of the list in { } is “noise”, which is not desired, but will turn out to do no harm.

Having given our construction, we have to show that the rotations that get exposed are exactly the ones that we have
identified in (6) and (7). Using this bijection between the rotations and B ∪ T we will then show that (G1)–(G4) are satisfied,
as required in Section 4.1.

We start by summarizing the observations that we have made about the preference lists. Consider one of the ρ-cycles,
ρi = (i1, . . . , id). Using our position and preference vectors, we can write down prefixes of the preference lists for the people
Pi1 , . . . , Pid , Q i1 , . . . , Q id in this ρ-cycle.

Q i1 Pi1 Pi2 · · ·
Q i2 Pi2 Pi3 · · ·
. . . . . .

Q id−1 Pid−1 Pid · · ·
Q id P id {Pid−1 · · · Pi2}Pi1 · · ·

(8)

Pi1 Q id Pψ(i1){Pψ(id) Q id−1 · · · Pψ(i3) Q i2 Pψ(i2)}Q i1 · · ·
Pi2 Q i1 Pψ(i2) Q i2 · · ·
. . . . . .

Pid−1 Q id−2 Pψ(id−1) Q id−1 · · ·
Pid Q id−1 Pψ(id) Q id · · ·

(9)

We have not given the entire preference lists, but only the parts that are relevant for us. As we show in the next
section, the portion of each preference list that is given above is the only part that remains after Phase 1 of Irving’s
Roommate Algorithm. In fact, additional parts of some preference lists, specifically the parts listed in braces, vanish during
the execution of Phase 1.

Example. The prefixes of the preference lists for the example from Fig. 1 are given in Appendix B.

Remark. Strictly speaking, the construction that we have given does not fit into our original definition of a roommate
instance. In particular, with the position and preference vectors we have defined, we note that Q̂ i · Q j = 0 for all i �= j.
This means that each Q i has a tie in his/her preference for all the other Q j s ( j �= i). However, it is easy to modify the
position vectors Q j so that we have a strict preference ordering for each person. We can also do this in such a way that
the beginning of the preference lists of the Q i s is undisturbed. We may, for example, pick some very small δ j > 0 and
assign the first two coordinates of Q j to equal δ j , resulting in a strict preference list for Q i . By choosing the δ j s small
enough, we can get a strict preference for all the people without altering the beginning segment of the preference list of
each person. In particular, as long as the start of the preference lists given in (8) and (9) is maintained, this is sufficient for
our purposes.

4.4. Enumerating rotations

In this section, we will establish the rotations in the stable roommate instance I . First, consider Phase 1. From (8) and (9)
we see that, during Phase 1, each Q i j will become semi-engaged to Pi j and each Pi j will become semi-engaged to Q i j−1 .
Since the outcome of Phase 1 is independent of the order in which free people make proposals, we can assume that these
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proposals occur in order. Thus, the suffixes of the preference lists that are omitted from (8) and (9) will disappear by the
end of Phase 1. The purpose of this section is to show that, by the end of Phase 1, the preference lists look like (11) and (12).

By construction, the length of each cycle is even. If d = 2 then the preference list of Q id in (8) has no noise. Otherwise,
Pi2 , . . . , Pid−1 do not have Q id on their short lists in (9) so, since the process of removing people from each other’s lists is
symmetric, we can conclude that, by the end of Phase 1, these people are removed from the short list of Q id .

If d = 2 then the preference list of Pi1 has prefix Q i2 Pψ(i1) Pψ(i2) Q i1 . Since i1 is the representative of the ρ-cycle (i1, i2),
it is odd, so i2 is even and therefore ψ(i2) is even, and is therefore not the representative of any ρ-cycle. Thus, the
preference list of Pψ(i2) = Pψ(id) starts with Q ρ−1(ψ(id)) Pψ2(id) Q ψ(id) = Q ρ−1(ψ(id)) Pid Q ψ(id) . Pi1 comes after this prefix on
the preference list. Thus, Pi1 is removed from this preference list by the end of Phase 1. Symmetrically, Pψ(id) is removed
from the preference list of Pi1 by the end of Phase 1.

Now suppose d > 2. Suppose that (i1, . . . , id) is the kth ρ-cycle. Now Q i2 , . . . , Q id−1 do not have Pi1 on their short lists
in (8) so we can conclude that, by the end of Phase 1, these people are removed from the short list of Pi1 . For  ∈ {2, . . . ,d},
consider the person Pψ(i) , which is on the short list of Pi1 in (9). If ψ(i) is not the representative of a ρ-cycle, then,
using the same argument that we used in the d = 2 case, the preference list of Pψ(i) starts with Q ρ−1(ψ(i)) Pi Q ψ(i) , so
Pi1 follows this prefix and Pψ(i) is removed from the preference list of Pi1 by the end of Phase 1. Suppose that ψ(i) is
the representative of a ρ-cycle, say the tth ρ-cycle. To ease notation, suppose that ψ(i) = j1 and that ρt = ( j1, . . . , jd′).
From (9), we know that the preference list of P j1 starts with the following prefix

Q jd′ Pψ( j1){Pψ( jd′ ) Q jd′−1
· · · Pψ( j3) Q j2 Pψ( j2)}Q j1 . (10)

Then ψ( j1) = i is a member of the tth σ -cycle and the kth ρ-cycle. ψ(i) is odd, so i is odd, so i and i + 1(= i+1) are
the only two elements that are in both of these cycles. We conclude that i1 is not in both of these cycles, so it is not in the
tth σ -cycle. Thus, none of the people Pψ( jd′ ) · · · Pψ( j3) Pψ( j2) on the prefix (10), all of whom are in the tth σ -cycle, is equal
to Pi1 . Therefore, Pi1 comes after the prefix depicted in (10). As above, we can conclude that Pψ(i) is removed from the
preference list of Pi1 by the end of Phase 1.

Hence, after Phase 1 the short lists look like this.

Q i1 Pi1 Pi2

Q i2 Pi2 Pi3

. . . . . .

Q id−1 Pid−1 Pid

Q id P id P i1

(11)

Pi1 Q id Pψ(i1) Q i1

Pi2 Q i1 Pψ(i2) Q i2

. . . . . .

Pid−1 Q id−2 Pψ(id−1) Q id−1

Pid Q id−1 Pψ(id) Q id

(12)

Example. The short lists for the example from Fig. 1 are given in Appendix B.

After Phase 1, we know that for each ρ-cycle, each Q i j is semi-engaged to Pi j and each Pi j is semi-engaged to Q i j−1.
According to Section 4.1 we now need to identify the rotations, and to establish conditions (G1)–(G4). Then we are finished.

Lemma 11. Suppose the n ρ-cycles of the bipartite graph K are ρ1,ρ2, . . . , ρn, where ρ j = (i j−1 + 1, . . . , i j) for j ∈ [n], with i0 = 0
and in = 2m.

The short lists obtained after Phase 1 have exactly n exposed rotations, R1 through Rn, where R j = (E j, H j, S j),

E j = {Q i j−1+1, Q i j−1+2, . . . , Q i j },
H j = {Pi j−1+1, Pi j−1+2, . . . , Pi j }, and

S j = {Pi j−1+2, Pi j−1+3, . . . , Pi j , Pi j−1+1}.

Proof. By construction, Rep(ρ) = {i0 + 1, i1 + 1, . . . , in−1 + 1}. From (11) and (12), the short lists of the Q ∗ and the P∗
people after Phase 1 can be summarized as follows:

For j ∈ Rep(σ ),

Q ρk j: Pρk j Pρk+1 j, 0 � k � q j − 1,

Pρk j : Q ρ(k−1) j Pψ(ρk j) Q ρk j, 0 � k � q j − 1.

We observe that the Q ∗ people whose indices belong to ρ j , along with their first and second preferences, form an
exposed rotation R j = (E j, H j, S j), where E j, H j , and S j are as defined in the statement of the lemma. This is a rotation as
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displayed in (6). Therefore, at the end of Phase 1, the stable roommate instance I has at least n exposed rotations. Further,
each Q ∗ person appears in one of these n rotations, meaning that each Q ∗ appears in one of the sets E j .

Next, we show that the above n rotations are the only rotations that are exposed after Phase 1. Suppose person Pi
is in an exposed rotation R = (E, H, S), i.e. Pi ∈ E . The initial part of the preference list of Pi at the end of Phase 1 is
Q ρ−1 i Pψ(i) . Hence, by definition, the next person in the ordered set E is Q ψ(i) who is currently semi-engaged to Pψ(i) .
Suppose ψ(i) belongs to the kth ρ-cycle ρk . We know that Q ψ(i) is part of the exposed rotation Rk = (Ek, Hk, Sk), i.e.
Q ψ(i) ∈ Ek = {Q j: j ∈ ρk}. This implies that Pi ∈ Ek which is not possible.

Hence, if R = (E, H, S) is an exposed rotation in the table obtained after Phase 1, then Pi /∈ E for all i. Therefore, there
are exactly n exposed rotations R1, R2, . . . , Rn at the end of Phase 1. �
Example. For the example from Fig. 1, there are 4 exposed rotations, R1 = {E1, H1, S1}, R2 = {E2, H2, S2}, R3 = {E3, H3, S3}
and R4 = {E4, H4, S4}. These are given as follows.

E1 = {Q 1, Q 2},
H1 = {P1, P2},
S1 = {P2, P1},
E2 = {Q 3, Q 4, Q 5, Q 6, Q 7, Q 8},
H2 = {P3, P4, P5, P6, P7, P8},
S2 = {P4, P5, P6, P7, P8, P3},
E3 = {Q 9, Q 10, Q 11, Q 12},
H3 = {P9, P10, P11, P12},
S3 = {P10, P11, P12, P9},
E4 = {Q 13, Q 14, Q 15, Q 16},
H4 = {P13, P14, P15, P16},
S4 = {P14, P15, P16, P13}.

Now we show that each of the n rotations from Lemma 11 has a dual rotation of the form (7).

Lemma 12. For j ∈ [n], there is a dual rotation Rd
j = {Ed

j , Hd
j , Sd

j } corresponding to rotation R j from Lemma 11, where

Ed
j = S j = {Pi j−1+2, Pi j−1+3, . . . , Pi j , Pi j−1+1},

Hd
j = E j = {Q i j−1+1, Q i j−1+2, . . . , Q i j },

Sd
j = Er

j = {Q i j−1+2, . . . , Q i j , Q i j−1+1}.

Proof. First we note that Rd
j as defined above has the form of a rotation and will be the dual to R j provided that there

is some sequence of rotations that can be performed that leads to Rd
j being exposed in the resulting table. We show that

there is such a sequence of rotations.
Let ρ j = (i j−1 + 1, i j−1 + 2, . . . , i j) denote the ρ-cycle corresponding to the rotation R j , where q j = i j − i j−1 = |ρ j|. The

jth σ -cycle, σ j , also has |σ j| = q j , so write σ j = (1, . . . , q j ) = (ψ(i j−1 + 1),ψ(i j−1 + 2), . . . ,ψ(i j)). Recall that ρ j ∩σ j = ∅
and that, for any r ∈ [n], |ρ j ∩ σr | ∈ {0,2}.

Given σ j , there are exactly q j/2 distinct ρ-cycles ρt1 , . . . , ρtq j/2 such that, for k ∈ {1, . . . ,q j/2}, 2k−1 ∈ ρtk and 2k ∈ ρtk .

Consider the table T obtained at the end of Phase 1. We claim that the elimination of rotations Rt1 , . . . , Rtq j/2 from T ,

exposes the (proposed) dual rotation Rd
j . After the elimination of those rotations, every Q r and Pr , for r ∈ ρt1 ∪ ρt2 ∪

· · · ∪ ρtq j/2 , will have only one person on his resulting short list.

Since, for k ∈ {1, . . . ,q j/2}, 2k−1 and 2k are in ρtk , P2k−1 has Pψ(2k−1) on his short list prior to the elimination, but not
subsequently. Similarly, P2k has Pψ(2k) on his short list prior to the elimination, but not subsequently. Thus, the elimination
removes P2k−1 = Pψ(i j−1+2k−1) from the short list of Pi j−1+2k−1 = Pψ(2k−1) and it removes P2k = Pψ(i j−1+2k) from the short
list of Pi j−1+2k = Pψ(2k) .

After eliminating all the rotations Rt1 , . . . , Rtq j/2 , it follows that the preference list of Pr , for r ∈ ρ j , will be Q ρ−1r Q r . This

means that Rd
j is exposed in the resulting table, showing that R j has a dual rotation as desired. �
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Example. The dual rotations for the example from Fig. 1 are given as follows. Rd
1 = {Ed

1, Hd
1, Sd

1}, Rd
2 = {Ed

2, Hd
2, Sd

2}, Rd
3 =

{Ed
3, Hd

3, Sd
3} and Rd

4 = {Ed
4, Hd

4, Sd
4}. These are given as follows.

Ed
1 = {P2, P1},

Hd
1 = {Q 1, Q 2},

Sd
1 = {Q 2, Q 1},

Ed
2 = {P4, P5, P6, P7, P8, P1},

Hd
2 = {Q 3, Q 4, Q 5, Q 6, Q 7, Q 8},

Sd
2 = {Q 4, Q 5, Q 6, Q 7, Q 8, Q 3},

Ed
3 = {P10, P11, P12, P9},

Hd
3 = {Q 9, Q 10, Q 11, Q 12},

Sd
3 = {Q 10, Q 11, Q 12, Q 9},

Ed
4 = {P14, P15, P16, P13},

Hd
4 = {Q 13, Q 14, Q 15, Q 16},

Sd
4 = {Q 14, Q 15, Q 16, Q 13}.

We state one more structural property of the rotation poset, previously proved in [8].

Lemma 13. (See [8, Lemma 3.5].) If R = (E, H, S) and R ′ = (E ′, H ′, S ′) are two distinct rotations exposed in a table T , then R
removes R ′ from T if and only if R ′ = Rd. Hence, the only way to remove an exposed rotation is to explicitly eliminate it or its dual
rotation, if it has one.

Lemma 14. The only rotations associated with the stable roommate instance I are R j and Rd
j for j ∈ [n].

Proof. Suppose R = (E, H, S) is a rotation different from Ri and Rd
i for all i ∈ [n], and R is exposed in a table T . Suppose

Q j ∈ E . This, in turn, implies that the preference list of Q j , which has at least two persons on it, is P j Pρ j . Suppose j ∈ ρk .
This means that rotation Rk has not been removed and is exposed in table T . Eliminating rotation R would force Q j to
be semi-engaged to Pρ j and remove rotation Rk . From Lemma 13, it follows that the only rotation that could remove the
exposed rotation Rk from table T is Rd

k . This implies R = Rd
k which contradicts our assumption that R is different from Ri

and Rd
i for i ∈ [n]. Hence, Q j /∈ E for j ∈ [2m]. This establishes that the only persons that could potentially belong to E are

P∗ persons.
Suppose P j ∈ E and the preference list of P j in table T does not start with Q ρ−1 j . Let j ∈ ρk . This entails that P j does

not belong to the preference list of Q ρ−1 j . This indicates that rotation Rk has been removed as Rk is exposed at the end of

Phase 1. By Lemma 13, it follows that the exposed rotation Rk was removed by eliminating rotation Rd
k . This forces P j to

be semi-engaged to Q j and P j has only Q j on his/her list. This rules out the possibility of P j ∈ E .
Hence, every Pl ∈ E has to start with Q ρ−1l , i.e. every Pl ∈ E is semi-engaged to Q ρ−1l . The preference list of P j could

read either Q ρ−1 j Pψ( j) Q j or Q ρ−1 j Q j . Suppose the preference list of P j starts with Q ρ−1 j Pψ( j) . This implies that the next
person in the ordered set E is the person semi-engaged to Pψ( j) . This is not possible since every person that belongs to E
is a P · person and every Pl ∈ E is semi-engaged to Q ρ−1l . Therefore, the preference list of every Pl ∈ E reads Q ρ−1l Q l .
Eliminating rotation R from table T would result in every Pl ∈ E being semi-engaged to Q l and would remove Pl from
Q ρ−1l ’s list. Suppose Pi ∈ E and i ∈ ρk . This implies that Pi is removed from Q ρ−1 i ’s list and the exposed rotation Rk is

removed by rotation R . Again, by Lemma 13, it follows that R = Rd
k which is not possible.

Hence, the only rotations that the stable roommate instance I has are R j and Rd
j for j ∈ [n]. �

4.5. Ordering rotations

In this section we will order the rotations using the explicitly precedes relation. We state another lemma from [8].

Lemma 15. (See [8, Lemma 5.2].) Let p be a person who must be removed from ei ’s list before rotation R is exposed. There exists a
unique rotation R ′ whose elimination removes p from ei ’s list.

First we establish one fact about the partial order Π∗ for our constructed instance I .
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Lemma 16. Rotations R1, . . . , Rn are minimal elements in the partial order Π∗ .

Proof. We observe that the table obtained at the end of Phase 1 has rotations R1 through Rn exposed. Hence, there is no
rotation R that explicitly precedes Ri for i ∈ [n]. Therefore, R1 through Rn are minimal elements in the partial order Π∗ . �
Lemma 17. The only rotations that explicitly precede rotation Rd

j are

R = {
Rtk : ρtk ∩ σ j = {

ψ(i j−1 + 2k − 1),ψ(i j−1 + 2k)
}
, 1 � k � q j/2

}
,

where σ j is the jth σ -cycle {ψ(i j−1 + 1),ψ(i j−1 + 2), . . . ,ψ(i j)} and ρtk is the tkth ρ-cycle {itk−1 + 1, itk−1 + 2, . . . , itk−1 + qtk }
for 1 � k � q j/2.

Proof. In rotation Rd
j = (Ed

j , Hd
j , Sd

j ), we have

Ed
j = {Pi j−1+2, Pi j−1+3, . . . , Pi j , Pi j−1+1},

Hd
j = {Q i j−1+1, Q i j−1+2, . . . , Q i j },

Sd
j = {Q i j−1+2, . . . , Q i j , Q i j−1+1}.

The preference lists of members of Ed
j at the end of Phase 1 are as follows for 1 � k � q j/2:

Pi j−1+2k−1: Q ρ−1(i j−1+2k−1) Pψ(i j−1+2k−1) Q i j−1+2k−1,

Pi j−1+2k: Q ρ−1(i j−1+2k) Pψ(i j−1+2k) Q i j−1+2k.

For rotation Rd
j to be exposed, the following has to occur for all 1 � k � q j/2. Person Pψ(i j−1+2k−1) needs to be removed

from the list of person Pi j−1+2k−1 and person Pψ(i j−1+2k) needs to be removed from the list of person Pi j−1+2k .
Note that after the elimination of Rtk , for  ∈ ρtk , Q  is semi-engaged to Pρ and Pρ being semi-engaged to Q  . At this

point, Q  and Pρ have only one person on their lists. In particular, Pψ(i j−1+2k−1) has only Q ρ−1(ψ(i j−1+2k−1)) on his/her
list and is removed from Pi j−1+2k−1’s list. Also, Pψ(i j−1+2k) has only Q ρ−1(ψ(i j−1+2k)) on his/her list and is removed from
Pi j−1+2k ’s list.

From Lemma 15, it follows that Rtk is the unique rotation that does this job. Therefore, the elimination of rotations R ∈R
exposes rotation Rd

j . Since every rotation R ∈ R explicitly precedes Rd
j and the elimination of rotations in R exposes Rd

j ,

we conclude that the only rotations that explicitly precede rotation Rd
j are R ∈R. �

Example. For the example from Fig. 1, the rotations R1, R2, R3, R4 are minimal elements in the partial order Π∗ . The reader
can think about these as corresponding to the vertices b1, b2, b3, and b4, respectively, in Fig. 1. The only other rotations are
Rd

1, Rd
2, Rd

3 and Rd
4, which correspond to vertices t1, t2, t3 and t4, respectively. From Lemma 17, it can be deduced that Ri

explicitly precedes Rd
j if and only if there is an edge from bi to t j in the figure. No other rotations explicitly precede Rd

j .

4.6. Stocktaking

From Section 4.1, the task was, given the bipartite graph K as described by the ρ- and σ -cycles, to construct, in poly-
nomial time, a #4-attribute SR instance I whose nonsingleton rotations can be labelled bijectively with B ∪ T so that
(G1)–(G4) are satisfied. The construction was done in Sections 4.2 and 4.3. The bijection between rotations and B ∪ T is
given informally by (6) and (7). More formally, the vertex in B corresponding to the ith ρ-cycle is labelled with the rota-
tion Ri and the vertex in T corresponding to the ith σ -cycle is labelled with the rotation Rd

i . Lemma 14 guarantees that
these are all the rotations associated with I so the duality relationship gives us (G1). Lemma 17 gives us (G2) and (G4).
Lemma 16 gives us (G3).

Thus, we have completed the task, and, by Section 4.1, we have completed the reduction #IS �AP #4-attribute SR and
the proof that the reduction is correct.

5. Euclidean model

Recall that #k-Euclidean SR denotes the problem of counting stable assignments for k-Euclidian stable roommate in-
stances. The goal of this section is to prove Theorem 2 which we restate below.

Theorem 2. #IS ≡AP #k-Euclidean SR for k � 3.
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Proof. As in the proof of Theorem 1, the main task is to prove #IS �AP #3-Euclidean SR. Given an instance of #IS, we show
how to construct an instance of #3-Euclidean SR whose preference lists are identical to those from Section 4.

We start by assigning position and preference points. We describe the instance of #IS in terms of n ρ-cycles and n
σ -cycles as in Section 4.2. As in that section, we have 4m people whom we label P1 through P2m and Q 1 through Q 2m .
We start by assigning the third coordinate of the P∗ and the Q ∗ people. The people Q 1, . . . , Q 2m have 0 in their third
coordinate. The third coordinate of the position points of P1, . . . , P2m is arranged on the z-axis, taking each ρ-cycle in order
(and leaving a big gap before the next ρ-cycle).

Let ε = 1
(2m)2 . The ith ρ-cycle takes up a distance of ε (out of a unit distance on the z-axis), starting at distance (i −1)/n.

Let θi = ε/(7(qi − 1)). If the ith ρ-cycle is the cycle (i1, . . . , id), then positions P i1 , . . . , P id are assigned in order, leaving a
gap of 7θi between each pair of people.

More formally, we define the third coordinate of the position points as follows (the asterisks in the first and the second
coordinates will be defined shortly):

For f i ∈ Rep(ρ), for 0 � k � qi − 1, set

Pρk fi
= (∗,∗, (i − 1)/n + 7kθi

)
and

Q ρk fi
= (∗,∗,0).

We next assign the first and the second coordinates of the position points. These are similar to the last two coordinates
in Section 4. These coordinates are arranged around a circle of radius R , where R will be specified later, taking each ρ-cycle
in order and leaving big gaps between consecutive ρ-cycles. The ith ρ-cycle takes up an angle of up to ε starting at an
angle of 2π(i − 1)/n. Let θ ′

i = ε/4. If the ith ρ-cycle is (i1, . . . , id), then positions are assigned in the following order:

Q i1 Pψ(i2) Q i2 Pψ(i3) Q i3 Pψ(i4) · · · Q id−1 Pψ(id) Q id Pψ(i1).

For k ∈ {1, . . . ,d − 1}, the angle between Q ik and Q ik+1 is 2−(k−1)2θ ′
i . Also, Pψ(ik+1) is at an equal angle between these.

To simplify the notation while assigning the ith ρ-cycle (i1, . . . , id), let id+1 denote i1. The first two coordinates of the
position points are defined in the following manner. Note that the asterisk representing the value of the third coordinate
has already been defined above.

For f i ∈ Rep(ρ), for 0 � k � qi − 1, set

Q ρk fi
=

(
R cos

(
2π(i − 1)

n
+ 2θ ′

i

k−1∑
j=0

2− j

)
, R sin

(
2π(i − 1)

n
+ 2θ ′

i

k−1∑
j=0

2− j

)
,∗

)
and

Pψ(ρk+1 f i)
=

(
R cos

(
2π(i − 1)

n
+ 2θ ′

i

k−1∑
j=0

2− j + 2−kθ ′
i

)
, R sin

(
2π(i − 1)

n
+ 2θ ′

i

k−1∑
j=0

2− j + 2−kθ ′
i

)
,∗

)
.

A sum of the form
∑−1

j=0 2− j is taken to be equal to 0. Having defined the position points, we now give the preference

points. These are also defined using the ρ-cycles. For the ρ-cycle (i1, . . . , id), the preference points of Q̂ i1 , . . . , Q̂ id are 0 in
the first two coordinates. Since every person has the position of his first two coordinates on a circle of radius R centred at
the origin, the distance between the preference point of a Q ∗ person and the position point of another person depends only
on the third coordinate. In the third coordinate, for 1 � j < d, Q̂ i j is placed between P i j and P i j+1 , slightly closer to P i j .
Here is the definition. For f i ∈ Rep(ρ), for 0 � k � qi − 1, set

Q̂ ρk fi
= (

0,0, (i − 1)/n + 7kθi + 3θi
)
.

The preference points P̂ i1 , . . . , P̂ id are 0 in the third coordinate. We note that the contribution of this coordinate towards
the distance between its preference point and some position point is at most 1. The preference points of the P people are
placed around a circle of radius R in the x–y plane. We pick the radius R large enough, say 10104m

, to ensure that the
third coordinate does not influence the ordering of the initial part of the preference list of a P person. In other words, the
only coordinates that affect the order are the x and the y coordinates. Since the x and y coordinates of the positions of
the P∗ people, the Q ∗ people and the preference positions of the P∗ people all lie on the circle of radius R , the position
of a person Y in the initial part of the preference list of a person Pi is purely a function of the angle subtended by the
preference point of Pi and the position point of Y at the origin.

If the ith ρ-cycle is (i1, . . . , id), then, in the first two coordinates, for j > 1, P̂ i j is placed 1/3 of the way along between

Q i j−1 and Pψ(i j) . Then, P̂ i1 is placed between Q id and Pψ(i1) , slightly nearer to Q id . Here is the definition, which is similar
to the definition for the last two coordinates in Section 4. For f i ∈ Rep(ρ), for 0 � k � qi − 1, set

P̂ρk+1 f i
=

(
R cos

(
2π(i − 1)

n
+ 2θ ′

i

k−1∑
2− j + 1

3
2−kθ ′

i

)
, R sin

(
2π(i − 1)

n
+ 2θ ′

i

k−1∑
2− j + 1

3
2−kθ ′

i

)
,∗

)
.

j=0 j=0
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It is now easy to check that the preference lists are the same as those in (8) and (9). As in Section 4, there is a slight
issue because Q i is indifferent between the other Q ∗ people. However, this can be fixed in the same way that it was fixed
in the remark at the end of Section 4.3. The rest of the proof is now identical to Section 4. �
6. #1-ATTRIBUTE SR is easy

The goal of this section is to prove Theorem 4 which we restate below.

Theorem 4. For every #1-attribute SR instance I , there are either 1 or 2 stable assignments. Thus, #1-attribute SR can be solved
exactly in polynomial time.

Proof. We will show that for any #1-attribute SR instance I , there are either 1 or 2 stable assignments. Finding these
stable assignments can be done in polynomial time using Gusfield’s algorithm [8]. Assume that the instance has n people
and, without loss of generality, assume that the positions of these people are ordered 1, . . . ,n. The preference of each person
is either “type A”, in which case his preference list is 1, . . . ,n, excluding himself, or his preference is “type B”, in which case
his preference list is n, . . . ,1, excluding himself. The proof is by induction on n. In the cases below, the notation “iA” means
that, in instance I , person i has a type-A list (and iB is defined similarly). We start with some base cases.

Base cases

(B1) n = 2. There is a single stable assignment in which the two people are paired.
(B2) n = 4. 1A, 2B, 3B, 4A The lists start out as

1 2 3 4
2 4 3 1
3 4 2 1
4 1 2 3

Then 2 becomes semi-engaged to 4 so the lists are

1 2 3 4
2 4 3 1
3 2 1
4 1 2

Then 3 becomes semi-engaged to 2 so the lists are

1 3 4
2 4 3
3 2 1
4 1 2

Now everybody is semi-engaged, so Phase 1 ends. We have two exposed rotations,

R = 1 3 4
2 4 3

Rd = 4 1 2
3 2 1

These lead to the two stable assignments 1 − 4,2 − 3 and 1 − 3,2 − 4.
(B3) n = 4. 1B, 2A, 3A, 4B This is symmetric to Case (B2). The symmetry is as follows. Instead of ordering the positions

in order 1,2,3,4 and then, in that order, assigning the lists consistent, inconsistent, inconsistent, consistent, as in
Case (B2), think about the backwards order 4,3,2,1 and assign the lists, in this order, as consistent, inconsistent,
inconsistent, consistent.

(B4) n = 4. 1A, 2B, 3A, 4B The lists start out as

1 2 3 4
2 4 3 1
3 1 2 4
4 3 2 1

Then 3 becomes semi-engaged to 1 removing pair (1,4) so the lists are

1 2 3
2 4 3 1
3 1 2 4
4 3 2
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Now everybody is semi-engaged, so Phase 1 ends. We have one exposed rotation,

R = 1 2 3
4 3 2

leading to the unique stable assignment 1 − 3,2 − 4.

We now give the inductive argument. The proof is easy, apart from checking that all cases are covered. We start by
enumerating some cases that can occur, which we call “top inductive step cases” and “mixed inductive step cases”. Then
we give some more cases, called “symmetric inductive step cases”. These are symmetric to cases that we’ve already done,
so don’t need a new argument. Finally, we conclude with some accounting to check that all cases are covered.

Top inductive step cases (inductive cases that reduce the number of people, by pairing off two people at the top of the
lists)

(T1) n ��� 4. 1A, 2A Persons 1 and 2 prefer each other, so in Phase 1, 1 becomes semi-engaged to 2 and 2 becomes semi-
engaged to 1. Then the problem is reduced to an instance of size n − 2 without people 1 and 2.

(T2) n ��� 4. 1B, 2A, 3A, iA for some i > 3 Person i becomes semi-engaged to person 1, removing pairs ((1, i − 1), . . . , (1,2)).
Now persons 2 and 3 prefer each other and can pair off. This gives us an intermediate instance, I ′ , with two fewer
people. I ′ is not a 1-attribute instance. However, the 1-attribute instance I ′′ derived from I by removing 2 and 3 has
the same stable assignments as I ′ since it reaches I ′ by having i semi-engaged to 1.

(T3) n ��� 6. 1A, 2B, 3A, (n − 1)A, nB Here 3 becomes semi-engaged to 1 removing (1,4), . . . , (1,n) (including especially
(1,n − 1)). Then n − 1 becomes semi-engaged to 2 removing (2,1), . . . , (2,n − 2) (including especially (2,1)). Now 1
and 3 can pair off. This gives us an intermediate instance I ′ , with 2 fewer people. I ′ is not a 1-attribute instance, so
we have to show that the 1-attribute instance I ′′ derived from I by removing 1 and 3 also gets to I ′ . This happens by
making n − 1 semi-engaged to 2 (which is now his first choice).

Mixed inductive step cases

(M1) n ��� 4. 1B, nA This case reduces to an instance of size n − 2 (without people 1 and n) similar to Case (T1).
(M2) n ��� 4. 1A, 2B, iA, nA for some 2 < i < n From instance I , person i becomes semi-engaged to 1. This removes the pairs

(1, i + 1), . . . , (1,n) from the lists. Now persons n and 2 prefer each other, and pair off. This gives an instance I ′ of
size n − 2 (without people 2 and n). I ′ is not quite a 1-attribute instance, because the initial semi-engagement of i
to 1 knocked out the pairs (1, i + 1), . . . , (1,n − 1) from the lists. However, let I ′′ be the 1-attribute (n − 2)-person
instance derived from instance I by deleting people 2 and n. Note that, from I ′′ , person i becomes semi-engaged to 1
and then we are at instance I ′ . Thus, the stable assignments of I are the stable assignments of I ′′ .

(M3) n ��� 6. 1A, 2B, 3B, (n − 2)A, (n − 1)A, nB Here 3 becomes semi-engaged to n, removing (n,2) and (n,1) so 2 now
prefers n − 1. Then n − 2 becomes semi-engaged to 1, removing (1,n − 1) and (1,n) so n − 1 now prefers 2. Then 2
and n − 1 can pair off. Suppose that we started from the original instance I and we just removed people 2 and n − 1
then we can get to this “paired off” state by having 3 become semi-engaged to n and having n − 2 become semi-
engaged to 1.

Symmetric inductive step cases

(S1) n ��� 4. (n − 1)B, nB Symmetric to (T1). People n − 1 and n pair off.
(S2) n ��� 4. 1B, iB, (n − 1)A, nB for some 1 < i < n − 1 This is symmetric to Case (M2). The semi-engagement from i to n

removes the pairs (i − 1,n), . . . , (1,n) so 1 and n − 1 pair off.
(S3) n ��� 4. iB, (n − 2)B, (n − 1)B, nA for some i < n − 2 Symmetric to case (T2). Person i becomes semi-engaged to person n,

removing pairs ((i + 1,n), . . . , (n − 1,n)). Now persons n − 2 and n − 1 prefer each other and can pair off.
(S4) n ��� 6. 1A, 2B, (n − 2)B, (n − 1)A, nB Symmetric to Case (T3). Here n − 2 becomes semi-engaged to n removing

(1,n), . . . , (n − 3,n) (including especially (2,n)). Then 2 becomes semi-engaged to n − 1 removing (3,n − 1), . . . ,

(n,n − 1) (including especially (n,n − 1)). Now n − 2 and n can pair off.

Now let’s see that we’ve covered all cases for n � 4. Start by looking at all 16 cases for lists 1, 2, n − 1 and n. Cases (T1),
(M1) and (S1) cover all possibilities except

(C1) 1A, 2B, (n − 1)A, nA,
(C2) 1A, 2B, (n − 1)A, nB,
(C3) 1A, 2B, (n − 1)B, nA,
(C4) 1B, 2A, (n − 1)A, nB,
(C5) 1B, 2B, (n − 1)A, nB.
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Also, (C1) is covered by Case (M2) and (C5) is covered by Case (S2). For n = 4, (C2), (C3) and (C4) are explicitly covered by
our n = 4 base cases. For n = 6, they are covered as follows.

• (C3): If any of 3, . . . ,n − 2 is an A, then use Case (M2). Otherwise, use Case (S3).
• (C4): Symmetrically, if any of 3, . . . ,n − 2 is a B, then use Case (S2). Otherwise, use Case (T2).
• (C2): This is covered by cases (T3) and (S4) and (M3). �

7. #BIS hardness of #3-ATTRIBUTE SR and #2-EUCLIDEAN SR

7.1. #3-attribute SR

The goal of this section is to prove Theorem 5 which we restate below.

Theorem 5. #BIS �AP #3-attribute SR.

Proof. We re-use the construction that we used in [3] to reduce #BIS to counting stable assignments in the 3-attribute
stable marriage model.

In [3, Section 4.1.1], we show how to take a #BIS instance G = (V 1 ∪ V 2, E), where E ⊆ V 1 × V 2 and |E| = n and turn
it into a 3-attribute stable matching instance I∗ with 3n men and 3n women which are denoted {A1, . . . , An, B1, . . . , Bn,

C1, . . . , Cn} and {a1, . . . ,an,b1, . . . ,bn, c1, . . . , cn}, respectively. We associate two permutations, ρ and σ of [n] with the BIS
instance. We show that independent sets of G are in one-to-one correspondence with stable assignments of I∗ .

Using the permutations ρ and σ we will now show how to modify the construction to obtain a 3-attribute stable
roommate instance I with people

{A1, . . . , An, B1, . . . , Bn, C1, . . . , Cn} ∪ {a1, . . . ,an,b1, . . . ,bn, c1, . . . , cn}
so that stable assignments for our instance I are in one-to-one correspondence with stable assignments for I∗ . Even though
the stable roommate instance I simply has 6n people (rather than having 3n men and 3n women), we will refer to the
people {A1, . . . , An, B1, . . . , Bn, C1, . . . , Cn} as “men” and the people {a1, . . . ,an,b1, . . . ,bn, c1, . . . , cn} as “women” to simplify
some of the descriptions.

Position and preference vectors for the instance I are defined similarly to those of I∗ from [3, Section 4.1.2]. We reproduce
here the required notation from [3]: the ith σ -cycle has length pi , the ith ρ-cycle has length qi , Rep(ρ) is the set consisting
of one representative for each cycle in ρ , and Rep(σ ) is the set consisting of one representative for each cycle in σ . The
number of σ -cycles is . The number of ρ-cycles is k. The only difference between the construction used here and the
construction used in [3] is that, instead of using the full unit circle in the first two coordinates to position people, we use
an angle of ζ < π/4 to fit in the position vectors of the women and the preference vectors of the men. The third coordinate
of every vector remains unaltered.

Let ε = ζ

n2
.

For ei ∈ Rep(σ ), let θi = ε/(7pi − 1). Then for 0 �m � pi − 1 define

āσmei = (
cos

(
ζ(i − 1)/l + 7mθi + 4θi

)
, sin

(
ζ(i − 1)/l + 7mθi + 4θi

)
,0

)
,

b̄ρσmei = (
cos

(
ζ(i − 1)/l + 7mθi + 6θi

)
, sin

(
ζ(i − 1)/l + 7mθi + 6θi

)
,4ρσmei

)
, and

c̄σm−1ei
= (

cos
(
ζ(i − 1)/l + 7mθi

)
, sin

(
ζ(i − 1)/l + 7mθi

)
,0

)
.

Let φ = 2π/100 and ε = ζ

n2
.

For ei ∈ Rep(σ ), let θi = ε/(7pi − 1). Then for 0 �m � pi − 1 define

Âσmei = (
cos

(
ζ(i − 1)/l + 7mθi + (14/3)θi

)
, sin

(
ζ(i − 1)/l + 7mθi + (14/3)θi

)
,0

)
,

B̂σmei = (
sinφ cos

(
ζ(i − 1)/l + 7mθi + 4θi

)
, sin φ sin

(
ζ(i − 1)/l + 7mθi + 4θi

)
, cos φ

)
, and

Ĉσm−1ei
= (

cos
(
ζ(i − 1)/l + 7mθi + (8/5)θi

)
, sin

(
ζ(i − 1)/l + 7mθi + (8/5)θi

)
,0

)
.

We note that ε and the 2π factor in the cosine and sine terms have been scaled appropriately (relative to the construc-
tion in [3]) by the factor (ζ/2π). If we were to restrict the preference lists of the men to the set of women, then these
preference lists would match the lists of the men from the stable marriage instance I∗ of [3].

Since we are working with a stable roommate instance, we also have to place the position vectors of the men and
the preference vectors of the women in the same 3-dimensional space. We take the position vectors of the men and the
preference vectors of the women from the stable marriage instance I∗ and modify them as follows:
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(i) We scale down the ε and 2π terms in the sine and cosine terms by a factor of (ζ/2π),
(ii) we offset the angle in the sine and cosine terms by an angle of π , and

(iii) we negate the third coordinate of all the position and preference vectors.

We summarize the position vectors of the men and the preference vectors of the women in the stable roommate instance I
below.

Let ε = ζ

n2
.

For f i ∈ Rep(ρ), let ωi = ε/(7qi − 1). Then for 0 � m � qi − 1 we define

�Aρm−1 f i
= (

cos
(
π + ζ(i − 1)/k + 7mωi

)
, sin

(
π + ζ(i − 1)/k + 7mωi

)
,0

)
,

�Bρm fi = (
cos

(
π + ζ(i − 1)/k + 7mωi + 4ωi

)
, sin

(
π + ζ(i − 1)/k + 7mωi + 4ωi

)
,0

)
, and

�Cρm fi = (
cos

(
π + ζ(i − 1)/k + 7mωi + 6ωi

)
, sin

(
π + ζ(i − 1)/k + 7mωi + 6ωi

)
,−4ρm fi

)
.

Let φ = 2π/100 and ε = ζ

n2
.

For f i ∈ Rep(ρ), let ωi = ε/(7qi − 1). Then for 0 � m � qi − 1 we define

âρm fi = (
sinφ cos

(
π + ζ(i − 1)/k + 7mωi + 4ωi

)
, sinφ sin

(
π + ζ(i − 1)/k + 7mωi + 4ωi

)
,− cos φ

)
,

b̂ρm fi = (
cos

(
π + ζ(i − 1)/k + 7mωi + (8/5)ωi

)
, sin

(
π + ζ(i − 1)/k + 7mωi + 8/5ωi

)
,0

)
, and

ĉρm fi = (
cos

(
π + ζ(i − 1)/k + 7mωi + 14/3ωi

)
, sin

(
π + ζ(i − 1)/k + 7mωi + (14/3)ωi

)
,0

)
.

As observed before, if we were to restrict the preference lists of the women to the set of men then these preference lists
would match the lists of the women from the stable marriage instance I∗ from [3].

We now state a very simple lemma which we will use to connect our stable roommate instance I to the stable matching
instance I∗ .

Lemma 18. Suppose vector v̄1 = (cosθ1, sinθ1,α1) and vector v̄2 = (cosθ2, sinθ2, α2).

(i) If π/2 < |θ1 − θ2| < 3π/2 and α1 · α2 � 0, then v̄1 · v̄2 < 0.
(ii) If 0 < |θ1 − θ2| < π/4 and α1 · α2 � 0, then v̄1 · v̄2 > 0.

Proof. (i) The dot product v̄1 · v̄2 = cos(θ1 − θ2) + α1 · α2 < 0.
(ii) The dot product v̄1 · v̄2 = cos(θ1 − θ2) + α1 · α2 > 0. �
Applying this lemma to the preference vectors and the position vectors of the men, we see that the dot product of a

preference vector of a man with the position vector of a man is always negative. Similarly, the dot product of a preference
vector of a man with the position vector of a woman is always positive. This implies that the initial n positions on the
preference lists of the men would be populated by the women and would coincide with the preference lists of the men in
the stable matching instance I∗ from [3]. The same holds true for the preference lists of the women. The first n positions
on their preference lists are occupied by the men and this initial part of their preference lists matches the preference lists
of the women from the stable matching instance I∗ .

To finish the proof we show that the stable matchings of I are in one-to-one correspondence with the stable matchings
of I∗ .

First, suppose that M is a stable matching of I∗ . It is clear that M is a matching of I , so we must show that it is stable
for I . Since M is stable for I∗ , it has no man–woman blocking pairs. Also, it is easy to see that, in I , there is no man–man
blocking pair (since each man prefers all women to the other men) and similarly, there is no woman–woman blocking pair.
Thus, M is a stable matching of I .

Next, suppose that M is a stable matching of I . First, we show that M is a valid matching of I∗ — that is, every matched
pair consists of one man and one woman. Suppose instead that two men Pi and P j are matched in I . By the pigeonhole
principle, two women pk and p must also be matched in I but now (Pi, p) form a blocking pair. Thus, M is a matching
of I∗ . Since M has no blocking pairs in I it also has no blocking pairs in I∗ , so it is a stable matching of I∗ .

Thus, the set of stable assignments for the roommate instance I is identical to the set of stable assignments (matchings)
for the stable marriage instance I∗ . We have already shown in [3] that the latter is in one-to-one correspondence with the
independent sets of G , completing the proof. �
7.2. #2-Euclidean SR

The goal of this section is to prove Theorem 6 which we restate below.
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Theorem 6. #BIS �AP #2-Euclidean SR.

Proof. As in Section 7.1, we re-use the construction that we used in [3] to reduce #BIS to counting stable assignments in
the 2-Euclidian stable marriage model.

In [3, Section 6], we show how to take a #BIS instance G = (V 1 ∪ V 2, E), where E ⊆ V 1 × V 2 and |E| = n and turn it into a
2-Euclidian stable matching instance I∗ with 3n men and 3n women which are denoted {A1, . . . , An, B1, . . . , Bn, C1, . . . , Cn}
and {a1, . . . ,an,b1, . . . ,bn, c1, . . . , cn}, respectively, as before. Once again, we associate two permutations, ρ and σ of [n]
with the BIS instance. We show that independent sets of G are in one-to-one correspondence with stable assignments
of I∗ .

Using the permutations ρ and σ we will now show how to modify the construction to obtain a 2-Euclidian stable
roommate instance I with people

{A1, . . . , An, B1, . . . , Bn, C1, . . . , Cn} ∪ {a1, . . . ,an,b1, . . . ,bn, c1, . . . , cn}
so that stable assignments for our instance I are in one-to-one correspondence with stable assignments for I∗ . We will
refer to the people {A1, . . . , An, B1, . . . , Bn, C1, . . . , Cn} as “men” in I and to the people {a1, . . . ,an,b1, . . . ,bn, c1, . . . , cn} as
“women” in order to make it easier to describe the construction.

In the stable roommate construction, the preference points of the men and the position points of the women are the
same as those in the 2-Euclidean stable marriage construction from [3]. The preference points of the women are obtained
from those in the stable marriage instance by negating both coordinates. Also, the position points of the men are obtained
from those in the stable marriage instance by negating both coordinates. Before we define the positions, we wish to remind
the reader that the ith σ -cycle (out of  σ -cycles) has length pi , the ith ρ-cycle (out of k ρ-cycles) has length qi , Rep(ρ) is
the set consisting of one representative for each cycle in ρ , and Rep(σ ) is the set consisting of one representative for each
cycle in σ as in [3].

The positions are defined as follows. For e j ∈ Rep(σ ), f j ∈ Rep(ρ), 0 � h � p j − 1, and 0 � g � q j − 1 we let

āσ he j
=

( j−1∑
i=0

2pi + h + 1,0

)
,

b̄ρσ he j
=

(
0,

j−1∑
i=0

2pi + h + 1

)
,

c̄σ (h−1)e j
=

( j−1∑
i=0

2pi + h + 0.3,0

)
,

�Aρ g−1 f j
=

(
−

j−1∑
i=0

2qi − g − 0.3,0

)
,

�Bρ g f j =
(

−
j−1∑
i=0

2qi − g − 1,0

)
, and

�Cρ g f j =
(

0,−
j−1∑
i=0

2pi − g − 1

)
.

The preferences are defined as follows. Let ε = 1/100n . For e j ∈ Rep(σ ), f j ∈ Rep(ρ), 0 � h � p j − 1, 0 � g � q j − 1, we
let

Âσ he j
=

( j−1∑
i=0

2pi + h + 1,

j−1∑
i=0

2pi + h + 1 − ε

)
,

B̂σ he j
=

( j−1∑
i=0

2pi + h + 1,1000n

)
,

Ĉσ (h−1)e j
=

( j−1∑
i=0

2pi + h + 0.6,0

)
,
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âρ g f j =
(

−
j−1∑
i=0

2qi − g − 1,−1000n

)
,

b̂ρ g f j =
(

−
j−1∑
i=0

2qi − g − 0.6,0

)
, and

ĉρ g f j =
(

−
j−1∑
i=0

2qi − g − 1,−
j−1∑
i=0

2qi − g − 1 + ε

)
.

We show in [3, Section 6] that the preference lists of the stable matching instance I∗ have prefixes as described as
follows, where τ is a permutation of [n] (we won’t need the details of τ in this paper). In all stable matchings, the men and
women of I∗ are matched to partners which are included in these prefixes. We refer to these lists as the “initial” preference
lists of I∗ .

For f i ∈ Rep(ρ),

bρm fi : Aρ(m−1) f i
Bρm fi , 0 � m � qi − 1,

cρm fi : Bρm fi Cρm fi , 0 � m � qi − 1,

aρm fi : CnCn−1 · · · C1 Bρm fi Aρm fi , 0 � m � qi − 2, and

aρ(qi−1) f i
: CnCn−1 · · · C1

Bρ(qi−1) f i
Aρ(qi−2) f i

Bρ(qi−2) f i
· · · Bρ2 f i

Aρ f i Bρ f i A fi B fi Aρ(qi−1) f i
. (13)

For ei ∈ Rep(σ ),

Aσmei : aσmei bρσmei , 0 � m � pi − 1,

Cσ (m−1)ei
: cσ (m−1)ei

aσmei , 0 �m � pi − 1,

Bσmei : bτ (n)bτ (n−1) · · ·bτ (1)aσmei cσmei , 0 � m � pi − 2, and

Bσ (pi−1)ei
: bτ (n)bτ (n−1) · · ·bτ (1)aσ (pi−1)ei

cσ (pi−2)ei
aσ (pi−2)ei

· · ·aσ ei cei aei cσ (pi−1)ei
. (14)

We now make three observations. The first of these is self-evident from the construction. We provide justifications below
for Observations 2 and 3.

1. For the stable roommate instance I , the preference lists of the men, when restricted to women, match the preference
lists from the stable marriage instance I∗ . Similarly, the preference lists of the women, when restricted to men, match
the preference lists from I∗ .

2. For the stable marriage instance I∗ , the distance between the preference position of any man and the position point
of any woman on his initial preference list is less than the distance between his preference position and the origin.
Similarly, the distance between the preference position of any woman and the position point of any man on her initial
preference list is less than the distance between her preference position and the origin.

3. For the stable roommate instance I , the distance between the preference position of any man and the origin is less than
the distance between his preference position and the position point of any other man. Similarly, the distance between
the preference position of any woman and the origin is less than the distance between her preference position and the
position point of any other woman.

We now provide arguments that validate Observations 2 and 3. The following calculations use the prefixes of the pref-
erence lists of I∗ from (13) and (14). To establish Observation 2, we show that the preference point of a man is closer to
the last woman on his initial preference list than to the origin. Similarly, we show that the preference point of a woman is
closer to the last man on her initial preference list than to the origin.

For man Aσmei , where ei ∈ Rep(σ ) and 0 � m � pi − 1, the distances to woman bρσmei and the origin (0̄) are as follows.

d2( Âσmei , b̄ρσmei ) =
(

i−1∑
j=0

2p j + m + 1 − 0

)2

+
(

i−1∑
j=0

2p j + m + 1 − ε −
i−1∑
j=0

2p j − m − 1

)2

=
(

i−1∑
2p j + m + 1

)2

+ ε2
j=0
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d2( Âσmei , 0̄) =
(

i−1∑
j=0

2p j + m + 1 − 0

)2

+
(

i−1∑
j=0

2p j + m + 1 − ε − 0

)2

�
(

i−1∑
j=0

2p j + m + 1

)2

+ (1 − ε)2

>

(
i−1∑
j=0

2p j + m + 1

)2

+ ε2 = d2( Âσmei , b̄ρσmei ).

For man Cσm−1ei
, where ei ∈ Rep(σ ) and 0 � m � pi − 1, the distances to woman aσmei and the origin are as follows.

d2(̂Cσ (m−1)ei
, āσmei ) =

(
i−1∑
j=0

2p j + m + 0.6 −
i−1∑
j=0

2p j − m − 1

)2

+ (0 − 0)2 = 0.16,

d2(̂Cσ (m−1)ei
, 0̄) =

(
i−1∑
j=0

2p j + m + 0.6 − 0

)2

+ (0 − 0)2 � 0.62 = 0.36

> 0.16 = d2(̂Cσ (m−1)ei
, āσmei ).

For man Bσmei , where ei ∈ Rep(σ ), we consider two cases: (i) m �= pi − 1, and (ii) m = pi − 1.
Case (i) m �= pi − 1: From the preference position of Bσmei , we compute distances to cσme j and to the origin.

d2(B̂σmei , c̄σmei ) =
(

i−1∑
j=0

2p j + m + 1 −
i−1∑
j=0

2p j − (m + 1) − 0.3

)2

+ (
1000n)2

= 0.09 + 10002n and

d2(B̂σmei , 0̄) =
(

i−1∑
j=0

2p j + m + 1 − 0

)2

+ (
1000n)2

� 1 + 10002n > 0.09 + 10002n = d2(B̂σmei , c̄σmei ).

Case (ii) m = pi − 1: From the preference position of Bσmei , we compute distances to cσ pi−1e j
= cσ 0−1e j

and to the origin.

d2(B̂σmei , c̄σmei ) =
(

i−1∑
j=0

2p j + m + 1 −
i−1∑
j=0

2p j − 0.3

)2

+ (
1000n)2

= (m + 0.7)2 + 10002n = (pi − 1 + 0.7)2 + 10002n

= (pi − 0.3)2 + 10002n and

d2(B̂σmei , 0̄) =
(

i−1∑
j=0

2p j + m + 1 − 0

)2

+ (
1000n)2

� (m + 1)2 + 10002n = (pi − 1 + 1)2 + 10002n

= (pi)
2 + 10002n > (pi − 0.3)2 + 10002n = d2(B̂σmei , c̄σmei ).

The above set of computations and comparisons establishes that the preference point of a man is closer to the last
woman on his initial preference list than to the origin. We can establish a similar result for the women by repeating
the above computations for the preference position of every woman and the position point of the last man on her initial
preference list. Hence, we can conclude that Observation 2 holds.

Next we establish Observation 3. We start by comparing the distance between the preference point of any man and
the origin with the distance between this preference point and the position point of an A∗ or B∗ man. We note that the
x-coordinate of the position point of an A∗ or B∗ man is at most −0.3. We also note that the x-coordinate of the preference
point of any man is non-negative. In the equations to follow, X̂ stands for the preference point of a man and �Y stands
for the position point of an A∗ or B∗ man. The x- and y-coordinates of X̂ will be denoted X̂x and X̂ y respectively. The
x-coordinate of �Y will be denoted �Yx . As noted above, X̂x � 0 and �Yx � −0.3.
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d2( X̂, 0̄) = ( X̂x − 0)2 + ( X̂ y − 0)2

= ( X̂x)
2 + ( X̂ y)

2,

d2( X̂,�Y ) = ( X̂x − �Yx)
2 + ( X̂ y − 0)2

�
(

X̂x − (−0.3)
)2 + ( X̂ y − 0)2

= ( X̂x + 0.3)2 + ( X̂ y)
2

> ( X̂x)
2 + ( X̂ y)

2 = d2( X̂, 0̄).

Next we compare the distance between the preference point of a man and the origin with the distance between this
preference point and the position point of a C∗ man. We note that the y-coordinate of the position point of a C∗ man
is at most −1. We also note that the y-coordinate of the preference point of any man is non-negative. In the equations
to follow, X̂ stands for the preference point of a man. The x- and y-coordinates of X̂ will be denoted X̂x and X̂ y respec-
tively.

d2( X̂,�C∗) � ( X̂x − 0)2 + (
X̂ y − (−1)

)2

= ( X̂x)
2 + ( X̂ y + 1)2,

d2( X̂, 0̄) = ( X̂x − 0)2 + ( X̂ y − 0)2

= ( X̂x)
2 + ( X̂ y)

2

< ( X̂x)
2 + ( X̂ y + 1)2 � d2( X̂,�C∗).

The above calculations establish that the preference point of any man is closer to the origin than the position point of
any man. We can establish a similar result for the women. Hence, we can conclude that Observation 3 holds.

Combining Observations 1, 2 and 3, we note that the prefixes of the preference lists of the stable roommate instance I
are the same as those of the stable matching instance I∗ from (13) and (14). We conclude that the set of stable assignments
for the roommate instance I is identical to the set of stable assignments for the stable marriage instance I∗ . From [3], we
have that the latter is in one-to-one correspondence with the independent sets of G , thereby, establishing the required
result. �
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Appendix A. An example

We give the following example to illustrate the definitions from Section 3 and the two-phase algorithm for finding a
stable roommate assignment. Consider the following preference lists.

1 12 7 4 6 9 5 10 2 3 8 11

2 5 6 1 9 12 4 3 10 8 11 7

3 11 9 4 1 8 12 2 6 5 7 10

4 2 9 12 10 7 6 1 8 5 11 3

5 12 6 3 9 4 10 11 8 7 2 1

6 8 4 1 10 2 11 3 5 12 7 9

7 3 5 2 6 10 4 11 1 8 9 12

8 1 7 10 12 3 2 5 4 9 6 11

9 2 12 1 6 5 11 8 10 3 7 4

10 1 4 3 11 2 7 6 8 9 5 12

11 6 4 8 10 12 5 3 1 2 7 9

12 11 6 3 2 7 4 9 10 1 5 8
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Phase I proceeds as outlined in Section 3.1, with proposals occurring and “semi-engagements” forming. Here are the
short lists at the end of Phase I.

1 7 4 6 9 10

2 6 9

3 9 8 12 5

4 12 10 7 6 1 8 5 11

5 3 9 4 8 7

6 8 4 1 10 2

7 5 10 4 1

8 10 3 5 4 9 6

9 2 1 5 8 3

10 1 4 11 7 6 8

11 4 10 12

12 11 3 4

R1

3 9 8

6 8 4

11 4 10

8 10 3

5 3 9

At the end of Phase I, rotation R1 is exposed in the table (and no other rotations are exposed). Note that R1 is a singleton
rotation. After eliminating this rotation, we have the following table:

1 7 6 9 10

2 6 9

3 8

4 12 10 7 6

5 9 7

6 4 1 2

7 5 4 1

8 3

9 2 1 5

10 1 4 11

11 10 12

12 11 4

R2
4 12 10

11 10 12

R3

1 7 6

2 6 9

5 9 7

R4
6 4 1

10 1 4

There are three rotations, R2, R3, and R4, exposed in this new table. Using Definition 4, we find that, in the rotation
poset for this instance, R1 precedes each of R2, R3, and R4. For example, to see that R1 explicitly precedes R2, take ei = 4
and ad p = 2. Also, rotations R2, R3 and R4 do not precede each other. Each can be performed from the above table.

Also, each of R2, R3, and R4 has a dual rotation. For example, performing rotation R4 results in the following table, in
which both Rd

2 and Rd
3 are now exposed (as are R2 and R3).

1 7 6

2 6 9

3 8

4 12 10

5 9 7

6 1 2

7 5 1

8 3

9 2 5

10 4 11

11 10 12

12 11 4

Rd
2

10 4 11

12 11 4

Rd
3

6 1 2

9 2 5

7 5 1
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So in the rotation poset we have the relations Π∗(R4, Rd
2) and Π∗(R4, Rd

3). Recalling Theorem 9, this also means that
Π∗(R2, Rd

4) and Π∗(R3, Rd
4).

By a careful analysis, we can determine that there are five stable roommate assignments, which we list next along with
the set of rotations that leads to each assignment.

Rotations Stable assignment

R1, R2, R3, R4
(1,6), (2,9), (3,8)

(4,10), (5,7), (11,12)

R1, R2, R3, Rd
4

(1,10), (2,9), (3,8)

(4,6), (5,7), (11,12)

R1, R2, R4, Rd
3

(1,7), (2,6), (3,8)

(4,10), (5,9), (11,12)

R1, R3, R4, Rd
2

(1,6), (2,9), (3,8)

(4,12), (5,7), (10,11)

R1, R4, Rd
2, Rd

3
(1,7), (2,6), (3,8)

(4,12), (5,9), (10,11)

The Hasse diagram of rotation poset of this roommate instance is as follows.

R1

R2 R3 R4

Rd
4 Rd

2 Rd
3

Finally, the graph G(I) (recall the definition from Section 3.2) for this instance is as follows.

Rd
4Rd

2 Rd
3

R4R2 R3

G(I) :

Recall that the maximal independent sets in G(I) are in 1–1 correspondence with the stable roommate assignments.
These independent sets can be read off directly from the table above using the left-hand column, and deleting R1 from the
set of rotations, e.g. the third assignment (1,7), (2,6), (3,8), (4,10), (5,9), (11,12) corresponds to the maximal independent
set {R2, R4, Rd

3} in G(I).

Appendix B. Preference lists and rotations for the example given in Fig. 1

Here are the prefixes (from (8) and (9)) for the example given in Fig. 1. First, from the first ρ-cycle, (1,2) and the first
σ -cycle, (3,4), we have the following lists.

Q 1 P1 P2 · · ·
Q 2 P2 P1 · · ·
P1 Q 2 P3{P4}Q 1 · · ·
P2 Q 1 P4 Q 2 · · ·
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Then, from the ρ-cycle (3,4,5,6,7,8) and the corresponding σ -cycle (1,2,9,10,13,14) we have the following.

Q 3 P3 P4 · · ·
Q 4 P4 P5 · · ·
Q 5 P5 P6 · · ·
Q 6 P6 P7 · · ·
Q 7 P7 P8 · · ·
Q 8 P8{P7 P6 P5 P4}P3 · · ·
P3 Q 8 P1{P14 Q 7 P13 Q 6 P10 Q 5 P9 Q 4 P2}Q 3 · · ·
P4 Q 3 P2 Q 4 · · ·
P5 Q 4 P9 Q 5 · · ·
P6 Q 5 P10 Q 6 · · ·
P7 Q 6 P13 Q 7 · · ·
P8 Q 7 P14 Q 8 · · ·

From the ρ-cycle (9,10,11,12) and the corresponding σ -cycle (5,6,15,16) we have the following.

Q 9 P9 P10 · · ·
Q 10 P10 P11 · · ·
Q 11 P11 P12 · · ·
Q 12 P12{P11 P10}P9 · · ·
P9 Q 12 P5{P16 Q 11 P15 Q 10 P6}Q 9 · · ·
P10 Q 9 P6 Q 10 · · ·
P11 Q 10 P15 Q 11 · · ·
P12 Q 11 P16 Q 12 · · ·

Similarly, from the ρ-cycle (13,14,15,16) and the corresponding σ -cycle (7,8,11,12) we have the following.

Q 13 P13 P14 · · ·
Q 14 P14 P15 · · ·
Q 15 P15 P16 · · ·
Q 16 P16{P15 P14}P13 · · ·
P13 Q 16 P7{P12 Q 15 P11 Q 14 P8}Q 13 · · ·
P14 Q 13 P8 Q 14 · · ·
P15 Q 14 P11 Q 15 · · ·
P16 Q 15 P12 Q 16 · · ·

The short lists (from Eqs. (11) and (12)) are therefore as follows.

Q 1 P1 P2 · · ·
Q 2 P2 P1 · · ·
P1 Q 2 P3 Q 1 · · ·
P2 Q 1 P4 Q 2 · · ·
Q 3 P3 P4 · · ·
Q 4 P4 P5 · · ·
Q 5 P5 P6 · · ·
Q 6 P6 P7 · · ·
Q 7 P7 P8 · · ·
Q 8 P8 P3 · · ·
P3 Q 8 P1 Q 3 · · ·
P4 Q 3 P2 Q 4 · · ·
P5 Q 4 P9 Q 5 · · ·
P6 Q 5 P10 Q 6 · · ·
P7 Q 6 P13 Q 7 · · ·
P Q P Q · · ·
8 7 14 8
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Q 9 P9 P10 · · ·
Q 10 P10 P11 · · ·
Q 11 P11 P12 · · ·
Q 12 P12 P9 · · ·
P9 Q 12 P5 Q 9 · · ·
P10 Q 9 P6 Q 10 · · ·
P11 Q 10 P15 Q 11 · · ·
P12 Q 11 P16 Q 12 · · ·
Q 13 P13 P14 · · ·
Q 14 P14 P15 · · ·
Q 15 P15 P16 · · ·
Q 16 P16 P13 · · ·
P13 Q 16 P7 Q 13 · · ·
P14 Q 13 P8 Q 14 · · ·
P15 Q 14 P11 Q 15 · · ·
P16 Q 15 P12 Q 16 · · ·
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