101 research outputs found

    Multivariate Analysis of Clustering Problems with Constraints

    Get PDF
    Doktorgradsavhandlin

    Non-Uniform Robust Network Design in Planar Graphs

    Get PDF
    Robust optimization is concerned with constructing solutions that remain feasible also when a limited number of resources is removed from the solution. Most studies of robust combinatorial optimization to date made the assumption that every resource is equally vulnerable, and that the set of scenarios is implicitly given by a single budget constraint. This paper studies a robustness model of a different kind. We focus on \textbf{bulk-robustness}, a model recently introduced~\cite{bulk} for addressing the need to model non-uniform failure patterns in systems. We significantly extend the techniques used in~\cite{bulk} to design approximation algorithm for bulk-robust network design problems in planar graphs. Our techniques use an augmentation framework, combined with linear programming (LP) rounding that depends on a planar embedding of the input graph. A connection to cut covering problems and the dominating set problem in circle graphs is established. Our methods use few of the specifics of bulk-robust optimization, hence it is conceivable that they can be adapted to solve other robust network design problems.Comment: 17 pages, 2 figure

    Efficient Flow-based Approximation Algorithms for Submodular Hypergraph Partitioning via a Generalized Cut-Matching Game

    Full text link
    In the past 20 years, increasing complexity in real world data has lead to the study of higher-order data models based on partitioning hypergraphs. However, hypergraph partitioning admits multiple formulations as hyperedges can be cut in multiple ways. Building upon a class of hypergraph partitioning problems introduced by Li & Milenkovic, we study the problem of minimizing ratio-cut objectives over hypergraphs given by a new class of cut functions, monotone submodular cut functions (mscf's), which captures hypergraph expansion and conductance as special cases. We first define the ratio-cut improvement problem, a family of local relaxations of the minimum ratio-cut problem. This problem is a natural extension of the Andersen & Lang cut improvement problem to the hypergraph setting. We demonstrate the existence of efficient algorithms for approximately solving this problem. These algorithms run in almost-linear time for the case of hypergraph expansion, and when the hypergraph rank is at most O(1)O(1). Next, we provide an efficient O(log⁡n)O(\log n)-approximation algorithm for finding the minimum ratio-cut of GG. We generalize the cut-matching game framework of Khandekar et. al. to allow for the cut player to play unbalanced cuts, and matching player to route approximate single-commodity flows. Using this framework, we bootstrap our algorithms for the ratio-cut improvement problem to obtain approximation algorithms for minimum ratio-cut problem for all mscf's. This also yields the first almost-linear time O(log⁡n)O(\log n)-approximation algorithms for hypergraph expansion, and constant hypergraph rank. Finally, we extend a result of Louis & Makarychev to a broader set of objective functions by giving a polynomial time O(log⁡n)O\big(\sqrt{\log n}\big)-approximation algorithm for the minimum ratio-cut problem based on rounding ℓ22\ell_2^2-metric embeddings.Comment: Comments and feedback welcom

    Matchings and Flows in Hypergraphs

    Get PDF
    In this dissertation, we study matchings and flows in hypergraphs using combinatorial methods. These two problems are among the best studied in the field of combinatorial optimization. As hypergraphs are a very general concept, not many results on graphs can be generalized to arbitrary hypergraphs. Therefore, we consider special classes of hypergraphs, which admit more structure, to transfer results from graph theory to hypergraph theory. In Chapter 2, we investigate the perfect matching problem on different classes of hypergraphs generalizing bipartite graphs. First, we give a polynomial time approximation algorithm for the maximum weight matching problem on so-called partitioned hypergraphs, whose approximation factor is best possible up to a constant. Afterwards, we look at the theorems of König and Hall and their relation. Our main result is a condition for the existence of perfect matchings in normal hypergraphs that generalizes Hall’s condition for bipartite graphs. In Chapter 3, we consider perfect f-matchings, f-factors, and (g,f)-matchings. We prove conditions for the existence of (g,f)-matchings in unimodular hypergraphs, perfect f-matchings in uniform Mengerian hypergraphs, and f-factors in uniform balanced hypergraphs. In addition, we give an overview about the complexity of the (g,f)-matching problem on different classes of hypergraphs generalizing bipartite graphs. In Chapter 4, we study the structure of hypergraphs that admit a perfect matching. We show that these hypergraphs can be decomposed along special cuts. For graphs it is known that the resulting decomposition is unique, which does not hold for hypergraphs in general. However, we prove the uniqueness of this decomposition (up to parallel hyperedges) for uniform hypergraphs. In Chapter 5, we investigate flows on directed hypergraphs, where we focus on graph-based directed hypergraphs, which means that every hyperarc is the union of a set of pairwise disjoint ordinary arcs. We define a residual network, which can be used to decide whether a given flow is optimal or not. Our main result in this chapter is an algorithm that computes a minimum cost flow on a graph-based directed hypergraph. This algorithm is a generalization of the network simplex algorithm.Diese Arbeit untersucht Matchings und FlĂŒsse in Hypergraphen mit Hilfe kombinatorischer Methoden. In Graphen gehören diese Probleme zu den grundlegendsten der kombinatorischen Optimierung. Viele Resultate lassen sich nicht von Graphen auf Hypergraphen verallgemeinern, da Hypergraphen ein sehr abstraktes Konzept bilden. Daher schauen wir uns bestimmte Klassen von Hypergraphen an, die mehr Struktur besitzen, und nutzen diese aus um Resultate aus der Graphentheorie zu ĂŒbertragen. In Kapitel 2 betrachten wir das perfekte Matchingproblem auf Klassen von „bipartiten“ Hypergraphen, wobei es verschiedene Möglichkeiten gibt den Begriff „bipartit“ auf Hypergraphen zu definieren. FĂŒr sogenannte partitionierte Hypergraphen geben wir einen polynomiellen Approximationsalgorithmus an, dessen GĂŒtegarantie bis auf eine Konstante bestmöglich ist. Danach betrachten wir die SĂ€tze von Konig und Hall und untersuchen deren Zusammenhang. Unser Hauptresultat ist eine Bedingung fĂŒr die Existenz von perfekten Matchings auf normalen Hypergraphen, die Halls Bedingung fĂŒr bipartite Graphen verallgemeinert. Als Verallgemeinerung von perfekten Matchings betrachten wir in Kapitel 3 perfekte f-Matchings, f-Faktoren und (g, f)-Matchings. Wir beweisen Bedingungen fĂŒr die Existenz von (g, f)-Matchings auf unimodularen Hypergraphen, perfekten f-Matchings auf uniformen Mengerschen Hypergraphen und f-Faktoren auf uniformen balancierten Hypergraphen. Außerdem geben wir eine Übersicht ĂŒber die KomplexitĂ€t des (g, f)-Matchingproblems auf verschiedenen Klassen von Hypergraphen an, die bipartite Graphen verallgemeinern. In Kapitel 4 untersuchen wir die Struktur von Hypergraphen, die ein perfektes Matching besitzen. Wir zeigen, dass diese Hypergraphen entlang spezieller Schnitte zerlegt werden können. FĂŒr Graphen weiß man, dass die so erhaltene Zerlegung eindeutig ist, was im Allgemeinen fĂŒr Hypergraphen nicht zutrifft. Wenn man jedoch uniforme Hypergraphen betrachtet, dann liefert jede Zerlegung die gleichen unzerlegbaren Hypergraphen bis auf parallele Hyperkanten. Kapitel 5 beschĂ€ftigt sich mit FlĂŒssen in gerichteten Hypergraphen, wobei wir Hypergraphen betrachten, die auf gerichteten Graphen basieren. Das bedeutet, dass eine Hyperkante die Vereinigung einer Menge von disjunkten Kanten ist. Wir definieren ein Residualnetzwerk, mit dessen Hilfe man entscheiden kann, ob ein gegebener Fluss optimal ist. Unser Hauptresultat in diesem Kapitel ist ein Algorithmus, um einen Fluss minimaler Kosten zu finden, der den Netzwerksimplex verallgemeinert

    Sublinear Time Hypergraph Sparsification via Cut and Edge Sampling Queries

    Get PDF
    The problem of sparsifying a graph or a hypergraph while approximately preserving its cut structure has been extensively studied and has many applications. In a seminal work, Bencz\'ur and Karger (1996) showed that given any nn-vertex undirected weighted graph GG and a parameter Δ∈(0,1)\varepsilon \in (0,1), there is a near-linear time algorithm that outputs a weighted subgraph Gâ€ČG' of GG of size O~(n/Δ2)\tilde{O}(n/\varepsilon^2) such that the weight of every cut in GG is preserved to within a (1±Δ)(1 \pm \varepsilon)-factor in Gâ€ČG'. The graph Gâ€ČG' is referred to as a {\em (1±Δ)(1 \pm \varepsilon)-approximate cut sparsifier} of GG. Subsequent recent work has obtained a similar result for the more general problem of hypergraph cut sparsifiers. However, all known sparsification algorithms require Ω(n+m)\Omega(n + m) time where nn denotes the number of vertices and mm denotes the number of hyperedges in the hypergraph. Since mm can be exponentially large in nn, a natural question is if it is possible to create a hypergraph cut sparsifier in time polynomial in nn, {\em independent of the number of edges}. We resolve this question in the affirmative, giving the first sublinear time algorithm for this problem, given appropriate query access to the hypergraph.Comment: ICALP 202

    The (2,k)(2,k)-connectivity augmentation problem: Algorithmic aspects

    Full text link
    Durand de Gevigney and Szigeti \cite{DgGSz} have recently given a min-max theorem for the (2,k)(2,k)-connectivity augmentation problem. This article provides an O(n3(m+n log n))O(n^3(m+ n \textrm{ }log\textrm{ }n)) algorithm to find an optimal solution for this problem

    Casting Light on the Hidden Bilevel Combinatorial Structure of the Capacitated Vertex Separator Problem

    Get PDF
    Given an undirected graph, we study the capacitated vertex separator problem that asks to ïŹnd a subset of vertices of minimum cardinality, the removal of which induces a graph having a bounded number of pairwise disconnected shores (subsets of vertices) of limited cardinality. The problem is of great importance in the analysis and protection of communication or social networks against possible viral attacks and for matrix decomposition algorithms. In this article, we provide a new bilevel interpretation of the problem and model it as a two-player Stackelberg game in which the leader interdicts the vertices (i.e., decides on the subset of vertices to remove), and the follower solves a combinatorial optimization problem on the resulting graph. This approach allows us to develop a computational framework based on an integer programming formulation in the natural space of the variables. Thanks to this bilevel interpretation, we derive three different families of strengthening inequalities and show that they can be separated in polynomial time. We also show how to extend these results to a min-max version of the problem. Our extensive computational study conducted on available benchmark instances from the literature reveals that our new exact method is competitive against the state-of-the-art algorithms for the capacitated vertex separator problem and is able to improve the best-known results for several difïŹcult classes of instances. The ideas exploited in our framework can also be extended to other vertex/edge deletion/ insertion problems or graph partitioning problems by modeling them as two-player Stackel- berg games and solving them through bilevel optimization

    Min-max results in combinatorial optimization

    Get PDF
    • 

    corecore