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Preface

The well known concept of a graph is general enough to model and formulate a lot
of mathematical and real world problems and concrete enough to allow for a rich
structural and computational theory. Can one extend this theory to a larger class
of mathematical structures? Which are the minimal requirements needed in order
to generalize known graph theoretical results? Can one identify the true essence
of a proof in this way? These were some of the questions that motivated the work
on this thesis. The mathematical structures generalizing graphs considered in this
scope are different classes of hypergraphs. The theoretical results that we generalize
come from matching and flow theory.
This thesis consists of four major parts. In the first three we deal with matchings

and generalizations of them in undirected hypergraphs and in the last part we
develop a flow theory for directed hypergraphs. Table I gives a schematic overview
of the problems we investigate in this thesis. The first two columns state which graph
theoretic result we generalize to hypergraphs, in the third column the corresponding
chapter or section of this thesis is cited, and the last column contains the classes of
hypergraphs under consideration.
After a short introduction, we investigate in Chapter 2 matchings in hypergraphs

generalizing bipartite graphs. Various generalizations of bipartite graphs to classes
of "bipartite" hypergraphs exist in the literature. Among others we look at normal
hypergraphs and give a new generalization of Hall’s Theorem to this class of hyper-
graphs. Our main contribution in this part is to clarify the relationship between
Kőnig’s and Hall’s Theorem for graphs and hypergraphs.
When working on matchings a natural next step is to investigate f -matchings and

f -factors. This is done in Chapter 3, where we give existence theorems for perfect
f -matchings and f -factors in various classes of hypergraphs generalizing bipartite
graphs. These theorems were already known for so-called unimodular hypergraphs,
which are hypergraphs corresponding to totally unimodular binary matrices. Theo-
rems concerning these matrices are often proven using linear programming methods.
Here, we use purely combinatorial methods revealing the combinatorial nature of
these problems and giving new methods in the field of totally unimodular matrices.
For the larger class of Mengerian hypergraphs the proven results are new to the best
of our knowledge. It is again possible to use linear programming methods, however,
we see the pure combinatorial proofs as a main contribution.
In Chapter 2 and Chapter 3 we investigate hypergraphs with some additional

properties in order to characterize the existence of some substructure (perfect match-
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Preface

ing in the first case, perfect f -matchings and f -factors in the second). Another
interesting possibility is to look at the structure of hypergraphs having a perfect
matching. Graphs with a perfect matching can be decomposed along special cuts
into so-called bricks and braces- the indecomposable elements. The way one decom-
poses a graph is not unique. However, in the end, one gets the same list of bricks
and braces. In Chapter 4 we define a tight cut decomposition for hypergraphs and
show that it is unique for uniform hypergraphs, which are hypergraphs in which all
hyperedges have the same size. Furthermore, we investigate hypergraphs in which
every matching of size k lies in some perfect matching for some natural number k.
A hypergraph with this property is called k-extendable. Here, we both consider the
case of general hypergraphs and that of balanced hypergraphs. In balanced uniform
hypergraphs we characterize k-extendability generalizing known results for bipartite
graphs.
Our last chapter deals with flows in directed hypergraphs and is inspired by an

application in the field of rolling stock rotation planning. In this application it is
more convenient to work with directed hypergraphs rather than directed graphs. In
order to model coupling activities and other side constraints hyperarcs are added,
where a hyperarc consists of a set of arcs having no common tail or head vertices.
Some results on flows in directed graphs can be transferred to flows on these specific
directed hypergraphs, e.g., the concept of a residual network or the network simplex
algorithm. On the other hand, some properties are lost as for example the integrality
of a flow for integral input data and the equivalence of the path-based and the arc-
based linear programming formulation of the maximum s, t-flow or minimum cost
flow problem.
All in all, we show that it is worthwhile to investigate hypergraphic generalizations

of graph problems, and that it is possible to obtain nice structural results and
combinatorial algorithms. This thesis is a first step towards further research on
algorithmic and structural hypergraph theory.
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Graph Results Where Hypergraph Classes

Bipartite graphs Chapter 2 & 3

Existence of perfect matchings Sec. 2.3.2 perfect, balanced, normal hypergraphs

Existence of (g, f)-factors, Sec. 3.2 unimodular hypergraphs

perfect f -matchings, Sec. 3.3.1 Mengerian uniform hypergraphs

f -factors Sec. 3.3.2 balanced uniform hypergraphs

Matching covered graphs Chapter 4

Extendability Sec. 4.2 general and balanced hypergraphs

Tight Cuts Sec.4.3 general hypergraphs

Tight Cut Decomposition Sec. 4.4 uniform hypergraphs

Directed graphs Chapter 5

Maximum Flow and Minimum Cost Flow Sec. 5.2 directed hypergraphs

Network Simplex Algorithm Sec. 5.3 graph-based directed hypergraphs

for the minimum cost flow problem

Table I: Contents of this thesis.

v



Preface

Publications and Collaborations

Most of the new results of this thesis have been published in or have been submitted
to peer-reviewed conference proceedings or journals. Moreover, a lot of work has
been done in collaboration with colleagues from Berlin and Aachen.

• Theorem 2.13 in Chapter 2 is joint work with Ralf Borndörfer and appeared
in [Beckenbach and Borndörfer, 2016]. All other results of Section 2.2 have
not been published yet and are independent work of the author of this thesis.

• The results of Section 2.3 are joint work with Ralf Borndörfer and are pub-
lished in [Beckenbach and Borndörfer, 2018].

• Section 3.2 in Chapter 3 is joint work with Britta Peis, Oliver Schaudt,
and Robert Scheidweiler. A preprint version [Beckenbach et al., 2017] can
be found on the preprint server https://opus4.kobv.de/opus4-zib/home
of the Zuse Institute Berlin. The article is currently under review.

• The results of Section 3.3 in Chapter 3 are joint work with Robert Scheidweiler
and are published in [Beckenbach and Scheidweiler, 2017].

• Section 4.3, 4.4 and Subsection 4.2.2 in Chapter 4 are joint work with Meike
Hatzel, and Sebastian Wiederrecht.

Funding

From November 2013 to August 2014 I was supported by a scholarship from Zuse
Institute Berlin. Since September 2014 the research for this thesis was conducted
within the project MODAL-RailLab, which is funded by the German Federal Min-
istry of Education and Research (BMBF) and DB Fernverkehr AG.

Acknowledgements

This thesis would not have been possible without the help and support of a lot of
people:

First of all, my parents supported me a lot and ensured that I could focus on my
studies the whole time.
Then, I would like to thank my supervisor Ralf Borndörfer for giving me the

chance to write my PhD Thesis at Zuse Institute Berlin. He always gave me a lot
of freedom to pursue my own research interests but also took a lot of his little free
time to listen to my ideas.

vi

https://opus4.kobv.de/opus4-zib/home


I enjoyed the nice working atmosphere at Zuse Institute Berlin with all the BBQ’s,
cakes, Game Nights, and so on. I want to thank all my colleagues from the opti-
mization department. Especially, I thank Boris, Stanley, and Niels for proof-reading
parts of this thesis.
I was really lucky to meet Robert Scheidweiler at the Operations Research Con-

ference in Aachen 2014. This was the first time that I met someone else who was
interested in my work. I would like to thank him for the inspiring discussions and his
invitation to Aachen. I would also like to thank my other co-authors from Aachen,
Britta Peis and Oliver Schaudt. Unfortunately, we never met in person to discuss
our ideas.
By the time Robert left the academic world a former student of his, Sebastian

Wiederrecht, wrote me an e-mail asking whether I was interested in a joint project
with his colleague Meike Hatzel on the structure of hypergraphs with a perfect
matching. This was the beginning of an inspiring work that lead to the uniqueness
result of the tight cut decomposition in uniform hypergraphs presented in Section 4.
I really enjoyed our meetings and they motivated me a lot. Meike also read large
parts of this thesis very carefully and helped me a lot correcting stupid mistakes.
Thank you very much!
Moreover, I am grateful to Winfried Hochstättler for examining this dissertation

and for giving me useful tips during the last years.
Last but not least I would like to thank Niels and Felix for all the love and joy

they bring into my life.

vii





Contents

Preface iii

List of Figures xi

List of Tables xiii

1 An Introduction to Hypergraphs 1
1.1 Basic Hypergraph Definitions . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Hypergraphs Generalizing Bipartite Graphs . . . . . . . . . . . . . . 12

2 Matchings in Hypergraphs Generalizing Bipartite Graphs 19
2.1 Literature Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 Linear Programming Methods . . . . . . . . . . . . . . . . . . 20
2.1.2 Approximation Algorithms . . . . . . . . . . . . . . . . . . . 22
2.1.3 Hypergraphs Generalizing Bipartite Graphs . . . . . . . . . . 23
2.1.4 Hall- and Dirac-Type Theorems . . . . . . . . . . . . . . . . . 25

2.2 Matchings in Partitioned Hypergraphs . . . . . . . . . . . . . . . . . 28
2.3 Hall’s and Kőnig’s Theorem in Graphs and Hypergraphs . . . . . . . 36

2.3.1 The Graph Case . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.2 The Hypergraph Case . . . . . . . . . . . . . . . . . . . . . . 42
2.3.3 Relation between Hypergraph Properties . . . . . . . . . . . 49

3 Relaxed Matchings and Factors 53
3.1 Literature Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2 Relaxed Matchings in Unimodular Hypergraphs . . . . . . . . . . . . 56

3.2.1 Relaxed Matchings and Vertex Covers . . . . . . . . . . . . . 57
3.2.2 Existence of (g, f)-Matchings in Unimodular Hypergraphs . . 66

3.3 Perfect f -Matchings and f -Factors . . . . . . . . . . . . . . . . . . . 72
3.3.1 Perfect f -Matchings in Mengerian and Perfect Hypergraphs . 72
3.3.2 Existence of f -Factors in Balanced Hypergraphs . . . . . . . 76

3.4 Complexity Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 Hypergraphs with a Perfect Matching 89
4.1 Literature Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.1.1 Matching Covered Graphs . . . . . . . . . . . . . . . . . . . . 91
4.1.2 Cuts in Hypergraphs . . . . . . . . . . . . . . . . . . . . . . . 96

ix



Contents

4.2 Extendability in Hypergraphs . . . . . . . . . . . . . . . . . . . . . . 98
4.2.1 k-extendable Hypergraphs . . . . . . . . . . . . . . . . . . . . 98
4.2.2 Balanced Hypergraphs . . . . . . . . . . . . . . . . . . . . . . 103
4.2.3 Greedily Matchable Hypergraphs . . . . . . . . . . . . . . . . 111

4.3 Matching Covered Hypergraphs and Tight Cuts . . . . . . . . . . . . 115
4.3.1 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.3.2 Tight Cuts and the Perfect Matching Polytope . . . . . . . . 119

4.4 Tight Cut Decomposition of Hypergraphs . . . . . . . . . . . . . . . 126
4.5 Complexity Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5 Flows in Directed Hypergraphs 141
5.1 Literature Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.2 Paths and Flows in Directed Hypergraphs . . . . . . . . . . . . . . . 145
5.3 The Min Cost Hyperflow Problem on Graph-Based Directed Hyper-

graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.3.1 Basis Matrices of the Minimum Cost Hyperflow Problem . . 155
5.3.2 A Hypernetwork Simplex Algorithm . . . . . . . . . . . . . . 162

A Zusammenfassung 179

Bibliography 181

Index 193

x



List of Figures

1.1 Drawing of a hypergraph. . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 K4 and its dual hypergraph (K4)∗. . . . . . . . . . . . . . . . . . . . 4
1.3 The bipartite representation of the hypergraph depicted in Figure 1.1. 5
1.4 Two non-isomorphic hypergraphs that both have a line graph isomor-

phic to K4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 The three different notions of "subhypergraph". . . . . . . . . . . . . 7
1.6 An odd cycle that is not strong. . . . . . . . . . . . . . . . . . . . . . 11
1.7 A balanced hypergraph that is not unimodular. . . . . . . . . . . . . 14

2.1 Decomposition of a partitioned hypergraph with parts of size two into
a pair of bipartite graphs. . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 The hypergraph of Example 2.11. . . . . . . . . . . . . . . . . . . . . 31
2.3 Four pairwise orthogonal Latin squares of order five. . . . . . . . . . 33
2.4 A semi-bipartite graph that is not stable. . . . . . . . . . . . . . . . 40
2.5 Summary of the relations between the investigated graph properties. 41
2.6 Does Theorem 2.8 hold for normal hypergraphs? . . . . . . . . . . . 43
2.7 A perfect graph and the hypergraph with its maximal cliques as hy-

peredges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.8 An example showing that Theorem 2.30 does not hold for non-uniform

perfect hypergraphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.9 A balanced hypergraph with def(H) = 3 > 1 = d(H). . . . . . . . . . 46
2.10 A hypergraph with the Kőnig property and without the multiplied

Hall property. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.11 Summary of the relations between the hypergraph properties consid-

ered in this section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1 Construction of H̃ from H. . . . . . . . . . . . . . . . . . . . . . . . 70
3.2 The three sets in N (S) (red) where S is the set of blue vertices. . . . 73
3.3 Sharpness example for Lemma 3.19 (b). . . . . . . . . . . . . . . . . 75
3.4 The gadget of the complexity reduction. . . . . . . . . . . . . . . . . 82

4.1 Two hypergraph with the same line graphs, where the hypergraph on
the left is greedily matchable but the one on the right not. . . . . . . 93

4.2 A 3-uniform, 2-extendable hypergraph that is not 1-extendable. . . . 99
4.3 Hypergraph H3,4 as constructed in Example 4.17. . . . . . . . . . . . 100

xi



List of Figures

4.4 A connected, 1-extendable hypergraph and a vertex v such that H \v
is not connected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.5 Illustration of the construction described in Example 4.20. . . . . . . 103
4.6 A 3-partite, balanced hypergraph with two distinct 3-partition where

the vertex classes V1, V2, V3 are indicated by different shapes and
colors of the vertices. . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.7 The hypergrid D3,4, where the two disjoint perfect matchings are
drawn in orange and blue. . . . . . . . . . . . . . . . . . . . . . . . . 113

4.8 A tight cut δH(A) in a hypergraph H, and its tight cut contractions
HA and HA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.9 A unimodular hypergraph with a separating cut that is not tight. . . 125
4.10 A Tight Cut Decomposition of a matching covered hypergraph. . . . 128
4.11 A non-uniform hypergraph with two non-equivalent tight cut decom-

positions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.12 Two tight cuts δH(S), δH(T ) such that δH(S ∩ T ) and δH(S ∪ T )

are trivial cuts. The tight cut contractions with respect to δH(S) are
drawn above H, and the tight cut contractions with respect to δH(T )
below H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.1 A directed hypergraph with one B-arc and two F -arcs. . . . . . . . . 143
5.2 A graph-based directed hypergraph. . . . . . . . . . . . . . . . . . . 143
5.3 A directed hypergraph with a maximum s, t-arc flow of value two and

a maximum s, t-path flow of value one. . . . . . . . . . . . . . . . . . 147
5.4 A decomposition of a hypercircuit into cycles. . . . . . . . . . . . . . 153
5.5 Set of hyperarcs B not forming a basis. . . . . . . . . . . . . . . . . 158
5.6 Computation of the treematrix. . . . . . . . . . . . . . . . . . . . . . 162
5.7 Example of Algorithm 3. . . . . . . . . . . . . . . . . . . . . . . . . . 168
5.8 Example of Algorithm 5. . . . . . . . . . . . . . . . . . . . . . . . . . 171
5.9 Example for the hypernetwork flow algorithm. . . . . . . . . . . . . . 175
5.10 Update of the basis and the flow function. . . . . . . . . . . . . . . . 176
5.11 Step 3 of the hypernetwork simplex algorithm. . . . . . . . . . . . . 177

xii



List of Tables

I Contents of this thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . v

1.1 Summary of the relation between hypergraphs generalizing bipartite
graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1 Approximation guarantees. . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Types of the known polynomial time matching algorithms for hyper-

graph classes generalizing bipartite graphs. . . . . . . . . . . . . . . 26

3.1 Complexity of the perfect matching problem and its generalizations
in different hypergraph classes. . . . . . . . . . . . . . . . . . . . . . 87

xiii





Chapter 1

An Introduction to Hypergraphs

Usually a graph is seen as an abstract structure modeling pairwise connections of
a set of objects called vertices. Two vertices can be either connected by an edge
or be independent from each other. One way to generalize this concept is to al-
low an edge to connect an arbitrary number of vertices. Such edges are called
hyperedges and are nothing other than subsets of the vertex set. A set of ver-
tices together with a family of hyperedges forms a hypergraph. Hypergraphs are
very abstract objects with less structure than graphs. However, in some applica-
tions it is more appropriate to use hypergraphs instead of graphs as a modeling
paradigm. For example, in the field of transportation planning, hypergraphs are
used to model tram lines in [Karbstein, 2013]) or coupling of railway vehicles in
[Borndörfer et al., 2012]. Hypergraphs also occur in the field of logic and artificial
intelligence hypergraphs, see [Eiter and Gottlob, 1995]. Furthermore, both directed
and undirected hypergraphs are successfully used in the field of biological networks
analysis, see [Klamt et al., 2009] for a short overview. For example, protein interac-
tions involve often more than one protein, thus they can be modeled more accurately
if hyperedges instead of edges are used.
As a drawback of the modeling power of hypergraphs, a lot of combinatorial

optimization problems that are solvable in polynomial time on graphs are NP-hard
on hypergraphs. Furthermore, there is no nice structural theory available as in
the graph case. Therefore, we will investigate hypergraphs with some additional
structure. In Chapter 2 and 3 we look at hypergraphs generalizing bipartite graphs,
in Chapter 4 at hypergraphs in which every hyperedge is contained in a perfect
matching, and in Chapter 5 at hypergraphs based on directed graphs. Except of
the last chapter all hypergraphs considered in this thesis are undirected. Thus, we
postpone all definitions and notations for directed hypergraphs to Chapter 5 and
concentrate on the undirected case for now.
This chapter gives an introduction into hypergraph theory to such an extend as

it is needed in the following three chapters. For more details the reader is referred
to [Berge, 1984]. We assume that the reader is familiar with basic graph theory
and linear programming. After introducing some general notation, we give some
elementary definitions concerning hypergraphs. In the second section, we give an
overview about hypergraphs generalizing bipartite graphs.
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Chapter 1 An Introduction to Hypergraphs

General Notation
The sets of rational, integers, and natural numbers are denoted by Q,Z, and N,
respectively, where 0 is not treated as a natural number. The sets Q≥0, Z≥0 consist
of all non-negative rationals, and all non-negative integers. For a natural number n
we abbreviate the set {1, . . . , n} by [n].

The function (·)+ : Q→ Q≥0 is defined by (q)+ =
{
q, if q ≥ 0
0, otherwise

for q ∈ Q.

Given a finite set S we denote by KS the set of all function from S to K. If
x ∈ KS , then we sometimes also view x as a vector indexed by S, and write xs
instead of x(s) for s ∈ S. Furthermore, for any non-empty subset T of S the sum∑
s∈T x(s) is abbreviated by x(T ). If there is some partial order ≤K on K given,

then x ≤ y for x, y ∈ KS if and only if x(s) ≤ y(s) for all s ∈ S. Finally, for some
subset T of S and x ∈ KS we let xT ∈ KT be the restriction of x to T .
If S and T are two finite sets we denote by KS×T the set of all matrices with

entries in K whose rows are indexed by S and whose columns by T .

1.1 Basic Hypergraph Definitions
The literature on hypergraphs is not very consistent and there are various different
notations and concepts. To avoid confusion, we start with a short section summa-
rizing the basic notions needed in the remainder of the thesis.

Definition 1.1 (Hypergraph). A hypergraph H is a pair (V (H), E(H), where V (H)
is a finite set and E(H) is a finite family of non-empty subsets of V (H). An element
v ∈ V (H) is called a vertex, and e ∈ E(H) a hyperedge of H. Given a vertex v
and a hyperedge e, we say that v and e are incident if v ∈ e. The family of all
hyperedges incident to a vertex is denoted by δH(v), and its size is the degree of
vertex v, denoted by degH(v).

Our definition of a hypergraph allows that two distinct hyperedges contain the
same set of vertices. Such hyperedges are called parallel. A simple hypergraph is a
hypergraph without parallel hyperedges. It is possible that a vertex is not contained
in any hyperedge, in which case we call the vertex isolated. Isolated vertices are not
allowed in the definition of a hypergraph due in [Berge, 1984]. In contrast to Berge,
we use the operator notation1 for the vertex and hyperedge set of a hypergraph.
This means that the vertex set of a hypergraph H is denoted by V (H) and the
hyperedge set by E(H).

When we draw a hypergraph we represent vertices as points and hyperedges as
closed simple curves enclosing the vertices they contain. Figure 1.1 shows an ex-

1see point 35 in https://faculty.math.illinois.edu/~west/grammar.html

2
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1.1 Basic Hypergraph Definitions

1

2345

6 7

Figure 1.1: Drawing of a hypergraph.

ample of a drawing of a hypergraph. The yellow curve represents the hyperedge
containing the vertices 1, 2, 3, 4, 5, there are two parallel hyperedges containing the
vertices 3, 4, 6, 7 (dark blue and light blue), there is a hyperedge of size one contain-
ing vertex 5, and five hyperedges of size two. For better readability we draw edges
(hyperedges of size two) just as line segments connecting its two end vertices, and we
might use different colors for hyperedges. The tikz code for drawing an undirected
hyperedge was adapted from that of Meike Hatzel using the hobby package. 2

In general, we want to consider hypergraphs only up to relabeling of vertices and
hyperedges, i.e., up to isomorphism. As we deal with hypergraphs having parallel
hyperedges, we have to be careful in the definition of a hypergraph isomorphism.
Namely, we do not only need a bijection between the vertex sets of two hypergraphs
but also between the hyperedge families, see [Berge, 1975].

Definition 1.2 (Hypergraph isomorphism). Two hypergraphs H1 and H2 are iso-
morphic if there exist bijections f : V (H1)→ V (H2) and g : E(H1)→ E(H2) such
that {f(v) : v ∈ e} = g(e) for all e ∈ E(H1).

There is a correspondence between isomorphism classes of hypergraphs and binary
matrices up to row and column permutations. Namely, given a hypergraph H we
define a binary |V (H)| × |E(H)| matrix A(H) with rows indexed by the vertices
and columns by the hyperedges of H by

A(H)v,e :=
{

1, if v ∈ e
0, otherwise.

The matrix A(H) is the incidence matrix of H. On the other hand, if A ∈ {0, 1}n×m
is a binary matrix, then its associated hypergraph H(A) has vertex set [n] and

2https://ctan.org/pkg/hobby

3
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Chapter 1 An Introduction to Hypergraphs

Dual

Figure 1.2: K4 and its dual hypergraph (K4)∗.

hyperedges ej := {i : Ai,j = 1} for j ∈ [m]. This means that every column of A
induces a hyperedge of H(A). With this definition the incidence matrix of H(A) is
A for every binary matrix A, and every hypergraph H is isomorphic to H(A(H)).
Therefore, binary matrices and hypergraphs are essentially the same. We work with
hypergraphs as we want to highlight the combinatorial nature of these objects, and
use graph theoretic ideas.
An important concept is that of the dual of a hypergraph for which we switch the

roles of vertices and hyperedges, see Figure 1.2 for an example.

Definition 1.3 (Dual hypergraph). Let H be a hypergraph. For every e ∈ E(H)
let ue be a new vertex not in V (H), and for every vertex v ∈ V (H) we define a
hyperedge ev by ev := {ue : e ∈ E(H), v ∈ e}. The dual hypergraph H∗ of H has
{ue : e ∈ E(H)} as its vertex set, and its hyperedge family consists of all hyperedges
ev for v ∈ V (H).

Taking the dual of a hypergraph corresponds to matrix transposition, namely
A(H∗) = A(H)T .
A hypergraph can be represented by a graph in various ways. Mainly two possi-

bilities are considered in the literature. In the first one, the incidence structure of
the vertices and hyperedges is represented by a bipartite graph.

Definition 1.4 (Bipartite Representation). The bipartite representation of a hy-
pergraph H is the bipartite graph with vertex set V (H) ∪ E(H) and edges {v, e}
for every v ∈ V (H), e ∈ E(H) with v ∈ e. It is denoted by Bip(H).

Figure 1.3 shows the bipartite representation of the hypergraph drawn in Fig-
ure 1.1. The bipartite representation captures a lot of information of a hypergraph.
Namely, Bip(H1) is isomorphic to Bip(H2) for two hypergraphs H1, H2 if and only
if H1 is isomorphic to H2 or H∗2 .
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1 2 3 4 5 6 7

Figure 1.3: The bipartite representation of the hypergraph depicted in Figure 1.1.

A second way to represent a hypergraph by a graph is to model the pairwise
intersection of the hyperedges by edges of a graph.

Definition 1.5 (Line Graph). The line graph of a hypergraph H has a vertex ve
for every e ∈ E(H) and edges {ve, vf} for every e, f ∈ E(H) with e∩f 6= ∅, ve 6= vf .
It is denoted by L(H).

In contrast to the bipartite representation, the line graph of a hypergraph and that
of its dual are in general not isomorphic and two non-isomorphic hypergraphs might
have isomorphic line graphs. For example, we allow a hypergraph to have isolated
vertices, which are vertices not contained in any hyperedge, and the existence of
such vertices cannot be seen on the line graph. Even if we only consider hypergraphs
without isolated vertices, it is possible that the line graphs of two non-isomorphic
hypergraphs are isomorphic. An example is depicted in Figure 1.4. The hypergraph
on the left and that on the right both have four hyperedges that intersect pairwise.
This implies that the line graph of both is the complete graph on four vertices. As
the number of vertices differs, the two hypergraphs cannot be isomorphic.
We continue with the definition of some basic hypergraph parameters. As in

the graph case, the maximum degree ∆(H) of a hypergraph H is the maximum
of the degrees of its vertices. A d-regular hypergraph is a hypergraph in which all
vertices have degree d, and a regular hypergraph is a hypergraph that is d-regular
for some d ∈ N. The hyperedges of a hypergraph can vary in size. The rank of H,
denoted by r(H), is equal to the maximum size of a hyperedge of H. The minimum
size of a hyperedge is abbreviated by s(H) and called the lower rank of H. A
uniform hypergraph is a hypergraph in which all hyperedges have the same size or
equivalently the rank of the hypergraph is equal to its lower rank. If additionally
the size r of all hyperedges is known, then the hypergraph is called r-uniform. A 2-
uniform hypergraph is just a graph without loops. If the vertex set of an r-uniform
hypergraph H can be partitioned into r disjoint subsets V1, . . . , Vr such that each
hyperedge intersects each of them in exactly one vertex, then H is r-partite, and
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Chapter 1 An Introduction to Hypergraphs

Figure 1.4: Two non-isomorphic hypergraphs that both have a line graph isomorphic
to K4.

V1, . . . , Vr is an r-partition of H.
In contrast to the graph case, there are various different definitions of a "subhy-

pergraph". Given a hypergraph H, we look at three possibilities to restrict H to
some subset of hyperedges and vertices. First, given a non-empty subfamily F of
the hyperedges of H, we restrict E(H) to F and do not change the vertex set. The
resulting hypergraph is denoted by H[F ], and every hypergraph obtained from H
in this way is called a partial hypergraph of H. When restricting H to some sub-
set S of vertices we look at two possibilities to restrict the hyperedges. If we only
consider hyperedges lying completely in S, then the resulting hypergraph is called
the subhypergraph induced by S and denoted by H[S]. On 2-uniform hypergraphs
this definition conforms with the usual one of an induced subgraph. Another pos-
sibility to restrict E(H) is to intersect each single hyperedge with S and keep the
hyperedges that remain non-empty. Formally, the subhypergraph restricted to S has
vertex set S and contains all hyperedges of the form e ∩ S, where e ∈ E(H) has
a non-empty intersection with S. It is denoted by H(S). In the remainder of this
thesis, a subhypergraph of H is a subhypergraph restricted to some set S ⊆ V (H)
and an induced subhypergraph is a subhypergraph induced by some set S ⊆ V (H).
Furthermore, we denote by H −S the subhypergraph induced by V (H) \S, and by
H \ S the subhypergraph restricted to V (H) \ S, i.e., H − S = H[V (H) \ S] and
H \S = H(V (H)\S). Finally, a partial subhypergraph of H is a partial hypergraph
of a subhypergraph of H.

We demonstrate the different definitions of "subhypergraph" on the hypergraph
H depicted in Figure 1.1. We start with the most intuitive of the three notions:
the partial hypergraph. In this case, we only restrict the family of hyperedges to
some subfamily and leave the vertex set unchanged. For example, Figure 1.5a shows
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1

2345

6 7

(a) A partial hypergraph.

1

34

6 7

(b) An induced subhypergraph.

1

34

6 7

(c) A subhypergraph.

Figure 1.5: The three different notions of "subhypergraph".

the partial hypergraph obtained from H by restricting the hyperedges to those of
size greater than two. To illustrate the two other notions of a "subhypergraph" we
consider the set S = {1, 3, 4, 6, 7}. The subhypergraph H[S] induced by S contains
only those hyperedges lying completely in S, which are in this case the two parallel
hyperedges containing 3, 4, 6, 7 and the edges {1, 3}, {6, 7}. On the other hand, the
subhypergraph H(S) restricted to S contains the intersection of all hyperedges with
S if it is non-empty. In our concrete example this means that H(S) contains all four
hyperedges of H[S] and additionally the hyperedges {1}, {3}, {4}, and {1, 3, 4}.
Now, we come to one of the most important definitions in this thesis; the one of

a matching and its different notions of maximality. The definition of a matching
in graphs carries over to hypergraphs directly. However, in contrast to graphs
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it is not clear when a matching is maximum. Should a matching cover as much
vertices as possible or should it contain as many hyperedges as possible? In a non-
uniform hypergraph both approaches can lead to different results. For example,
the hypergraph depicted in Figure 1.1 has a matching of size two covering all seven
hyperedges, which consists of the hyperedges {1, 2, 3, 4, 5} and {6, 7}. However,
it has also a matching of size three, namely, {{1, 2}, {4, 5}, {6, 7}}, which covers
only six vertices. Therefore, we consider both variants, where we use the notions
introduced in [Scheidweiler, 2011].

Definition 1.6 (Matching). AmatchingM in a hypergraphH is a set of hyperedges
of H such that every vertex is contained in at most one of the hyperedges of M . If
a vertex is contained in a hyperedge of M , then it is covered by M , and otherwise
exposed by M . The set of all vertices covered by M is denoted by V (M). A perfect
matching is a matching covering all vertices.
Furthermore, a matching M is called V -maximum if no matching covering more

vertices than M exists, and it is called E-maximum if there exists no matching
of larger cardinality. The size of a V -maximum matching is denoted by νV (H)
and that of an E-maximum matching by νE(H). In general, given any function
b : E(H) → Q the maximum of

∑
e∈M b(e) over all matchings M in H is denoted

by νb(H).

We again consider the hypergraph of Figure 1.1 to illustrate the previous defini-
tions. The hyperedges {1, 2, 3, 4, 5} and {6, 7} form a V -maximum matching that
is also perfect. An E-maximum matching is for example given by the edges {1, 2},
{6, 7}, and {4, 5}. This matching is not perfect because it exposes vertex 3.
The dual concept of matchings are vertex covers, which we directly define for the

weighted case.

Definition 1.7 (Vertex cover). Given a hypergraphH and a function b : E(H)→ Z
on the hyperedges of H, a b-vertex cover is a function x : V (H) → Z≥0 such that∑
v∈e x(v) ≥ b(e) holds for all hyperedges e ∈ E(H). The size of a vertex cover x is∑
v∈V (H) x(v), and a b-vertex cover is minimum if it is of minimum size. The size

of minimum b-vertex cover of H is denoted by τb(H).
If b(e) = 1 for all e ∈ E(H) a b-vertex cover is called an E-vertex cover, and

the minimum size of an E-vertex cover is denoted by τE(H). If b(e) = |e| for all
e ∈ E(H) a b-vertex is called a V -vertex cover and τV (H) is the minimum size of a
V -vertex cover.

For a given function b on the hyperedges of a hypergraph H, every minimum
b-vertex cover satisfies x(v) ≤ maxe∈E(H) b(e) for all v ∈ V (H). Otherwise, if
x(w) ≥ maxe∈E(H) b(e) + 1 for some w ∈ V (H), then x′ : V (H) → Q≥0 defined by
x′(w) = x(w)−1 and x′(v) = x(v) for all v ∈ V (H)\{w} is a b-vertex cover of size less
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than x, contradicting that x is of minimum size. Thus, x(v) ≤ maxe∈E(H) b(e) for
all v ∈ V (H). In particular, every minimum E-vertex cover has range in {0, 1}, and
can therefore be identified by a subset of the vertices that intersects each hyperedge
in at least one vertex.
In our example of Figure 1.1 the set {1, 2, 5, 6} is a minimum E-vertex cover, and

the function that assigns 1 to every vertex is a minimum V -vertex cover.
Every minimum E-vertex cover has to contain at least one vertex from each

hyperedge of a maximum E-matching, thus τE(H) ≥ νE(H) follows. Also the
inequality τV (H) ≥ νV (H) holds. Namely, if x is a minimum V -vertex cover and
M is a maximum V -matching, then∑

v∈V (H)
x(v) ≥

∑
v∈V (M)

x(v) =
∑
e∈M

∑
v∈e

x(v) ≥
∑
e∈M
|e| = |V (M)|.

It is possible that none, exactly one, or both of the inequalities τE(H) ≥ νE(H),
τV (H) ≥ νV (H) are strict. In our running example we have τV (H) = 7 = νV (H)
and τE(H) = 4 > 3 = νE(H). Indeed, every hypergraph with a perfect matching
satisfies νV (H) = |V (H)| = τV (H) but not necessarily νE(H) = τE(H).
Now, we define two other concepts related to matchings and vertex covers. First,

we look at sets of hyperedges covering all vertices.

Definition 1.8 (Hyperedge cover). A hyperedge cover C is a set of hyperedges of
H such that every vertex is contained in at least one hyperedge of C.

A lower bound on the minimum size of an edge cover in a graph is given by the
maximum size of a stable set. In bipartite graphs both values are equal. We define
stable sets for hypergraphs as follows:

Definition 1.9 (Stable set). A subset S of the vertex set of a hypergraph H is
stable if |e ∩ S| ≤ 1 for all e ∈ E(H).

As in the graph case, the maximum size of a stable set is at most the minimum
size of a hyperedge cover because a stable set contains at most one vertex from each
hyperedge of a hyperedge cover.
In Chapter 3 we look at a generalization of matchings, where for every vertex we

are given a lower and upper bound on the number of times this vertex should be
covered.

Definition 1.10 ((g, f)-matching, (g, f)-factor). Given a hypergraph H, and two
functions f, g : V (H) → Z≥0, a function x : E(H) → Z≥0 is called a (g, f)-
matching if g(v) ≤ x(δH(v)) ≤ f(v) holds for all v ∈ V (H). If an additional function
c : E(H) → Z≥0 is given, then a c-capacitated (g, f)-matching is a (g, f)-matching
x with x(e) ≤ c(e) for all e ∈ E(H).
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In the special case that c(e) = 1 for all e ∈ E(H) we call a c-capacitated (g, f)-
matching just a (g, f)-factor . Furthermore, an f -matching is a (g, f)-matching for
g(v) = 0 for all v ∈ V (H), a perfect f -matching is an (f, f)-matching, and an
f -factor is an (f, f)-factor.

We use the term factor instead of matching if we are only allowed to take each
hyperedge once, i.e., a factor can be seen as a set of hyperedges.
The definition of (g, f)-matchings indeed generalizes matchings, hyperedge covers,

and perfect matchings: Namely, if f is constantly one, and h constantly equal to the
maximum degree ∆(H) ofH, then an f -matching is just a matching, an (f, h)-factor
is a hyperedge cover, and a perfect f -matching is a perfect matching.

The concept of a path or a cycle can be defined similarly as in the graph case,
except that it is possible that a hyperedge connects more than two vertices of a
path or cycle, in which case we can shorten it.

Definition 1.11 (Paths and cycles). A path P in a hypergraph H is an alternat-
ing sequence (v1, e1, v2, e2, . . . , vk−1, ek−1, vk) of vertices and hyperedges such that
vi, vi+1 ∈ ei for i ∈ [k]. If all vertices and all hyperedges of P are distinct, then the
path P is called simple. If v1 = vk, and otherwise all vertices are distinct, then P is
called a cycle. The length of a path or cycle is its number of not necessarily distinct
hyperedges. An odd cycle is a cycle of odd length, and an even cycle a cycle of even
length.
A path or cycle (v1, e1, . . . , vk−1, ek−1, vk) is called strong if |ei ∩{v1, . . . , vk}| = 2

for all i ∈ [k − 1].

Example 1.12. Figure 1.6 shows an odd cycle (1, e1, 2, e2, 3, e3, 4, e4, 5, e5, 1) in a
hypergraph. This cycle is not strong because e3 contains three vertices of it. It can
be split into the two strong odd cycles (1, e1, 2, e2, 3, e3, 1) and (1, e3, 4, e4, 5, e5, 1).

A cycle of length k of a hypergraph corresponds to a cycle of length 2k in its
bipartite representation, and vice versa. Using this correspondence, we observe
that a cycle in a hypergraph is strong if and only if the corresponding cycle in the
bipartite representation is induced, where a cycle C = (v1, e1, . . . , ek−1, vk, ek, v1) in
a graph G is induced if G contains no edge {vi, vj} for i = k, and j 6= 1, or i ∈ [k−1]
and j 6= i+ 1.

As in the graph case, a hypergraph H is connected if for every pair of vertices
s, t ∈ V (H) there exists a path starting in s and ending in t. It is also possible to
generalize k-edge and k-vertex connectivity to hypergraphs.

Definition 1.13 (k-connectivity). Let k ∈ N be a natural number, H be a hyper-
graph, and s, t ∈ V (H) be two distinct vertices. We say that s and t are k-hyperedge
connected in H if H has more than k hyperedges and s and t are connected in
H[E \X] for every set X ⊆ E(H) of size k − 1. Furthermore, s and t are k-vertex
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Figure 1.6: An odd cycle that is not strong.

connected in H if H has more than k vertices and s and t are connected in H \ S
for every set S ⊆ V (H) of size k − 1 with s, t /∈ S.

In the graph case Menger’s Theorem relates k-connectivity to cuts. This can be
done in a similar way for hypergraphs. First, we define cuts in hypergraphs formally.

Definition 1.14 (Cut). Given a hypergraph H and a subset S of its vertex set, the
cut induced by S is the set of hyperedges of H that have a non-empty intersection
with both S and V (H) \ S, and it is denoted by δH(S).
A set C ⊆ E(H) of hyperedges is a cut if there exists a set of vertices S ⊆ V (H)

with C = δH(S). In this case, S and V (H) \ S are called the shores of the cut C.
Given two distinct vertices s, t ∈ V (H) an s, t-cut of H is a cut of the form δH(S)

for some S ⊆ V (H) with s ∈ S and t /∈ S.

The bipartite representation of a hypergraph can be used to prove a Menger-type
theorem for hypergraphs, see [Frank, 2011].

Theorem 1.15 (Menger’s Theorem for Hypergraphs). Let H be a hypergraph and
s, t be two distinct vertices of H. The minimum cardinality of an s, t-cut is equal to
the maximum number of hyperedge disjoint paths from s to t.

Corollary 1.16. Two distinct vertices s and t in a hypergraph with at least k + 1
hyperedges are k-hyperedge connected if and only if there are k hyperedge disjoint
paths connecting s and t.

Via duality we can transform statements about hyperedge-connectivity into ones
about vertex-connectivity. In particular, we prove a vertex version of Menger’s
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Theorem. We call two s, t-paths internally vertex disjoint if they only share the
vertices s and t.

Corollary 1.17. Let H be a hypergraph on at least k + 1 vertices, s, t ∈ V (H) be
two distinct vertices such that no hyperedge e ∈ E(H) exists containing both s and
t. The vertices s, t are k-vertex connected in H if and only if there are k internally
vertex disjoint paths in H connecting them.

Proof. Suppose that P1, . . . , Pk are k internally vertex disjoint s, t-paths but s, t are
not k-vertex connected in H. Let S be a vertex set of size k − 1 such that s and
t are not connected in H \ S. The set S has to intersect each of the k paths in at
least one vertex because s and t are not connected in H \S. But this is not possible
because P1, . . . , Pk are internally vertex disjoint and S has size k − 1.

On the other hand, suppose that s and t are k-vertex connected in H. The
vertices s and t correspond to hyperedges es and et in the dual H∗. Let H̃∗ be the
hypergraph obtained from H∗ by adding two new vertices s∗, t∗ and replacing es by
k parallel hyperedges of the form es∪{s∗} and et by k parallel hyperedges et∪{t∗}.
Suppose that there exists an s∗, t∗-cut C of size less than k. In this case, C does
not contain any of the k parallel hyperedges es ∪ {s∗} or et ∪ {t∗}. Let S ⊆ V (H)
be the set of vertices in H corresponding to C. Every path from s to t uses a vertex
v ∈ S because such a path corresponds to a path from s∗ to t∗ and the paths from
s∗ to t∗ have to intersect C. This means that H \S is disconnected. But S has size
less than k and H is assumed to be k-connected. Thus, the minimum size of a cut
separating s∗ and t∗ in H̃∗ is at least k. By Theorem 1.15, there exist k hyperedge
disjoint paths P̃1, . . . , P̃k from s∗ to t∗ in H̃∗. As s and t are not contained in a
common hyperedge of H, there exists no vertex incident to both of s∗ and t∗ in H̃∗.
In particular, this implies that P̃1, . . . , P̃k contain at least three hyperedges and
correspond to k distinct paths in H. These k paths are internally vertex disjoint
s, t-paths in H.

1.2 Hypergraphs Generalizing Bipartite Graphs
There exist several generalizations of the notion of "bipartiteness" to hypergraphs
in the literature, each starting with a different characterization of bipartite graphs.
Namely, a graph G is bipartite if and only if one of the following statements holds:

(a) its incidence matrix is totally unimodular (unimodular hypergraphs),

(b) it has no cycle of odd length (balanced hypergraphs),

(c) the edge set of every subgraphG′ ofG can be partitioned into ∆(G′) matchings
(normal hypergraphs),
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(d) a weighted variant of Kőnig’s Theorem holds (Mengerian hypergraphs),

(e) the vertex set can be partitioned into two disjoint subsets U and W such that
|e ∩ U | = |e ∩W | holds for every edge e of G (partitioned hypergraphs).

The names in brackets indicate the hypergraphic generalization corresponding to
the given statement. It turns out that the five statements above are not equiva-
lent for hypergraphs anymore. In this section we define these classes formally and
summarize their relations.

We start with hypergraphs having a totally unimodular incidence matrix, where
a matrix is called totally unimodular if the determinant of any square submatrix is
equal to 0, 1, or −1.

Definition 1.18 (Unimodular hypergraph). A hypergraph is unimodular if its in-
cidence matrix is totally unimodular.

The definition of a unimodular hypergraph directly implies that a hypergraph
H is unimodular if and only if its dual hypergraph H∗ is unimodular. Namely,
the incidence matrix of H∗ is equal to the transpose of the incidence matrix of H.
As the determinants of square submatrices of a matrix and that of its transpose
are the same, a matrix is totally unimodular if and only if its transpose is totally
unimodular.
There exists a more combinatorial characterization of totally unimodular matrices

than the one via determinants, see [Ghouila-Houri, 1962]. Rewritten in terms of
hypergraph we obtain the following condition for a hypergraph to be unimodular.

Theorem 1.19 ([Ghouila-Houri, 1962]). A hypergraph H is unimodular if for every
S ⊆ V (H) there exists a partition S = S1∪S2 such that |e∩S1|−|e∩S2| ∈ {0,±1} for
all e ∈ E(H). Such a partition is called an equitable coloring of the subhypergraph
H(S) restricted to S.

A class of "bipartite hypergraphs" motivated by property (b) are so-called bal-
anced hypergraphs defined by Berge in [Berge, 1970].

Definition 1.20 (Balanced hypergraph). A hypergraph is balanced if it contains
no strong odd cycle.

Theorem 1.19 and the definition of a balanced hypergraph imply that every uni-
modular hypergraph is balanced. Suppose to the contrary that H is a unimodular
hypergraph that is not balanced. Then H has a strong odd cycle C. If S is the set
of vertices of C, then H(S) has no equitable 2-coloring, which is a contradiction to
Theorem 1.19.
On the other hand, every balanced hypergraph with hyperedges of size at most

three is unimodular, see Theorem 7 and the corollary thereafter in Chapter 5 of
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Figure 1.7: A balanced hypergraph that is not unimodular.

[Berge, 1984]. However, there are balanced hypergraphs of rank four and larger
that are not unimodular. One such hypergraph is shown in Figure 1.7. It has no
strong odd cycle but it also has no equitable 2-coloring.
The famous theorem of Kőnig states that the maximum size of a matching equals

the minimum size of a vertex cover in a bipartite graph, see [Kőnig, 1934]. Berge and
Las Vergnas proved that this min-max relation also holds for balanced hypergraphs.

Theorem 1.21. [Berge and Las Vergnas, 1970] A hypergraph is balanced if and
only if τE(H ′) = νE(H ′) for all partial subhypergraphs H ′ of H.

This theorem implies that balanced hypergraphs are closed under taking sub-
graphs. This follows also directly from the definition of a balanced hypergraph.
Namely, a strong odd cycle in a partial subhypergraph of a balanced hypergraph H
would give a strong odd cycle in H.

Corollary 1.22. Every partial subhypergraph of a balanced hypergraph is balanced.

Berge also proved that the dual of a balanced hypergraph is balanced, see Propo-
sition 5 in Chapter 5 of [Berge, 1984]. This result follows from the correspondence
of strong cycles in a hypergraph and induced cycles in its bipartite representation.
Namely, a hypergraph H contains a strong odd cycle if and only if Bip(H) has an
induced cycle of length 4k+ 2 for some k ∈ N. As the bipartite representation of H
is isomorphic to that of its dual, we directly obtain the following theorem.

Theorem 1.23. [Berge, 1984] A hypergraph H is balanced if and only if its dual
H∗ is balanced.

A stable set in a hypergraph corresponds to a matching in its dual, and a hyper-
edge cover corresponds to an E-vertex cover in the dual. Therefore, the previous
two theorems imply the following corollary.

Corollary 1.24. The maximum size of a stable set equals the minimum size of a
hyperedge cover in a balanced hypergraph.
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Conforti, Cornuéjols, and Rao developed a decomposition theory for balanced
hypergraphs leading to a polynomial time recognition algorithm for those hyper-
graphs, see [Conforti et al., 1999]. These results were generalized to 0,±1- matri-
ces, see [Conforti et al., 2001a] and [Conforti et al., 2001b]. For more results on
balanced matrices and the generalization to 0,±1-matrices we refer to the survey
[Conforti et al., 2006] on balanced matrices.
Now, we introduce the class of normal hypergraphs. Recall that in a bipartite

graph G the edge set can be partitioned into ∆(G) matchings, where ∆(G) is the
maximum degree of G. This fact was proven by Kőnig in one of his first papers on
graph theory, see [Kőnig, 1916].

Definition 1.25 (Normal hypergraph). A hypergraph H is normal if and only if for
every partial hypergraph H ′ of H the hyperedge set E(H ′) of H ′ can be partitioned
into ∆(H ′) matchings.

By definition, every partial hypergraph of a normal hypergraph is normal. In
contrast to balanced hypergraphs, the class of normal hypergraphs is not closed
under taking subgraphs and hypergraph duality. However, Theorem 1.21 holds if
one replaces "partial subhypergraphs" with "partial hypergraphs".

Theorem 1.26. [Lovász, 1972] A hypergraph H is normal if and only if τE(H ′) =
νE(H ′) for every partial hypergraph H ′ of H.

Theorem 1.26 together with Theorem 1.21 shows that balanced hypergraphs are
a subclass of normal hypergraphs. At the end of this section we show that strict
containment holds.
Another generalization of bipartite graphs to hypergraphs are Mengerian hyper-

graphs (also called Max-Flow-Min-Cut hypergraphs), which are hypergraphs satis-
fying a weighted variant of Kőnig’s Theorem.

Definition 1.27 (Mengerian hypergraph). A hypergraph H is Mengerian if the
system ∑

v∈e
yv ≥ 1 ∀e ∈ E(H), y ≥ 0(1.1)

is totally dual integral (TDI).

As system (1.1) is TDI, it defines an integral polyhedron. The reverse implication
is not true. For example, the dual hypergraph of K4, which is the hypergraph with
a vertex for every edge of K4 and hyperedges corresponding to δ(v) for every vertex
v of K4, has matching number one, whereas each vertex cover has size at least two,
thus, it is not Mengerian. However, system (1.1) defines an integral polyhedron.

For an interpretation in terms of hypergraphs we need the notion of vertex-
expansion.
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Definition 1.28 (Vertex expansion). Let H be a hypergraph and λ ∈ Z≥0 be an
integer. Expanding a vertex v ∈ V (H) by λ means replacing v by λ new vertices
v1, v2, . . . , vλ and each hyperedge e containing v by λ new hyperedges e1 = e \
{v} ∪ {v1}, . . ., eλ = e \ {v} ∪ {vλ}. If λ = 0, then we delete v and all hyperedges
e containing v. Given a function f : V (H) → Z≥0, the hypergraph obtained by
expanding each vertex v by f(v) is denoted by Hf .
Using this notion Definition 1.27 can be restated as follows:

Observation 1.29. A hypergraph H is Mengerian if and only if τE(Hf ) = νE(Hf )
for every vertex expansion Hf .

Observe that τE(Hf ) is equal to the maximum f -weight of a vertex cover and
νE(Hf ) equals the maximum size of an f -matching, i.e., a multiset of hyperedges of
H meeting each vertex v at most f(v)-times. In particular, the maximum size of a
matching equals the minimum size of an E-vertex cover in Mengerian hypergraphs.
Fulkerson, Hoffman, and Oppenheim show that every balanced hypergraphH sat-

isfies τ(Hf ) = ν(Hf ) for every f : V (H)→ Z≥0, see [Fulkerson et al., 1974]. Thus,
every balanced hypergraph is Mengerian. We construct Mengerian hypergraphs
that are not balanced at the end of this section.
A special property of Mengerian hypergraphs, which we will use in Chapter 3, is

that an r-uniformMengerian hypergraph is also r-partite. For balanced hypergraphs
this follows from Corollary 2 in Chapter 5 of [Berge, 1984]. For the larger class of
Mengerian hypergraphs we could not find any references for this fact and thus give
a short proof of it.
Theorem 1.30. Every Mengerian r-uniform hypergraph is r-partite.
Proof. We prove the claim via induction on r. For r = 1 it is trivially true.
Now, let r ≥ 2 and suppose that the claim of the theorem holds for all (r − 1)-

uniform Mengerian hypergraphs. We define a vector f ∈ ZV (H)
≥0 by fv := degH(v) for

all v ∈ V (H). The vector y ≡ 1
r satisfies

∑
v∈e yv = 1 for all e ∈ E(H). Therefore,

min{fT y : A(H)T y ≥ 1, y ≥ 0} is at most 1
r

∑
v∈V (H) degH(v) = |E(H)|. On the

other hand, the dual of this linear program is max{1Tx : A(H)x ≤ f, x ≥ 0}. The
optimal value of this linear program is at least |E(H)| because the vector x ≡ 1
satisfies A(H)x = 1. Therefore, min{

∑
v∈V (H) f

T y : A(H)T y ≥ 1, y ≥ 0} = |E(H)|
by linear programming duality. As the system A(H)T y ≥ 1 is totally dual integral,
there exists an integral vector y∗ ∈ ZV (H)

≥0 with A(H)T y∗ ≥ 1 and fT y∗ = |E(H)|.
The vector y∗ only takes values 0, 1 and thus the vertices v ∈ V (H) with y∗v = 1 form
an E-vertex cover C of H. This vertex cover intersects each edge of H exactly once
as otherwise fT y∗ =

∑
v∈C f(v) =

∑
v∈C

degH(v) =
∑
e∈E(H) |e ∩ C| > |E(H)| would

follow. The set C together with an (r − 1)-partition of H \ C forms an r-partition
of H.
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1.2 Hypergraphs Generalizing Bipartite Graphs

Borndörfer and Heismann used a completely different approach to generalize bi-
partite graphs to hypergraphs in [Borndörfer and Heismann, 2012]. They look at
hypergraphs with the property that the vertex set is partitioned into two subsets
and each hyperedge intersects both subsets in the same number of vertices. It is
possible that the two vertex subsets can be further partitioned. This leads to the
definition of a so-called partitioned hypergraph.

Definition 1.31 (Partitioned Hypergraph). A hypergraph H is a partitioned hy-
pergraph if V (H) can be partitioned into subsets U , W such that |e ∩ U | = |e ∩W |
for all e ∈ E(H). A partition of U and W into subsets U1, . . . , Uk, W1, . . . ,Wl is
feasible if for every hyperedge e ∈ E(H) there exist indices i ∈ [k], j ∈ [l] such that
e ⊆ Ui ∪Wj . In this case, the sets U1, . . . , Uk, W1, . . . ,Wl are called parts of H.

The trivial partition U1 = U , W1 = W is always feasible, and there are a lot of
feasible partitions in general. However, it is clear that every partitioned hypergraph
has a unique finest feasible partition. The part size of a partitioned hypergraph is
the maximum size of a part in its finest partition.
Partitioned hypergraphs have nothing to do with the classes of "bipartite hyper-

graphs" defined before. In general, they do not have totally unimodular incidence
matrices, they can contain strong odd cycles, their edge set cannot be partitioned
into ∆(H) matchings, and Kőnig’s Theorem does not hold. It turns out that the
matching problem is not tractable on partitioned hypergraphs. It is NP-complete
to decide whether a partitioned hypergraph has a perfect matching even if all parts
are of size at most two, see [Borndörfer and Heismann, 2012]. We include this
hypergraph class into this section as we show in Chapter 2 that there exists an ap-
proximation algorithm for finding a maximum weight matching with approximation
factor depending on the part size.
We conclude this chapter with a schematic overview of the classes of "bipartite

hypergraphs" we considered in this section, see Table 1.1. All of the six hypergraph
classes shown in this table coincide in the 2-uniform case with the class of bipartite
graphs. For arbitrary hyperedge sizes, only the implications depicted (and their
transitive closure) hold. For example, the hypergraph depicted in Figure 1.7 is
balanced but not unimodular. It remains to show that there are normal hypergraphs
that are neither balanced nor Mengerian, and that there are Mengerian hypergraphs
that are neither normal nor balanced.
Normal hypergraphs are closed under hyperedge deletion, i.e., if H is normal,

then H[E(H) \ F ] is normal for all F ⊆ E(H), and Mengerian hypergraphs are
closed under vertex deletion, i.e., if H is Mengerian, then H \S is Mengerian for all
S ⊆ V (H). However, normal hypergraphs are not closed under vertex deletion and
Mengerian hypergraphs not under hyperedge deletion. Using this fact, we construct
non-normal Mengerian and non-Mengerian normal hypergraphs.
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Chapter 1 An Introduction to Hypergraphs

Bipartite Graph

Unimodular
Hypergraph

Balanced
Hypergraph

Normal
Hypergraph

Mengerian
Hypergraph

Partitioned
Hypergraph

Table 1.1: Summary of the relation between hypergraphs generalizing bipartite
graphs

If H is an arbitrary hypergraph and H ′ is the hypergraph obtained from H
by adding all singleton hyperedges {v} to the hyperedge set, then the resulting
hypergraph is Mengerian. In this case system (1.1) reduces to yv ≥ 1 for all vertices
v ∈ V (H), which is clearly totally dual integral. IfH is neither normal nor balanced,
then the same is true for H ′ because H is a partial hypergraph of H ′.
Similar, there is an easy way to construct non-balanced, non-Mengerian, normal

hypergraphs. For an arbitrary hypergraph H we define an auxiliary hypergraph
H ′ by V (H ′) := V (H) ∪ {v∗} and E(H ′) := {e ∪ {v∗} : e ∈ E(H)}. Informally
speaking, we add a new vertex and put this vertex into every hyperedge. The
resulting hypergraph is normal because ∆(H ′[E′]) = |E′| for every E′ ⊆ E(H ′) and
H ′[E′] can trivially partitioned into |E′| matchings. If we start with a non-balanced,
non-Mengerian hypergraph H, then H ′ is non-balanced and non-Mengerian because
the two properties are closed under vertex deletion and H ′ \ v∗ = H.
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Chapter 2

Matchings in Hypergraphs Generalizing Bipartite
Graphs

Hall’s and Kőnig’s theorem are one of the most fundamental results in graph theory
and combinatorial optimization. The former one gives a necessary and sufficient
condition for the existence of a perfect matching in bipartite graphs, and the lat-
ter states that the cardinality of a maximum matching equals the cardinality of a
minimum vertex cover. Kőnig’s theorem can be seen as an optimization version of
Hall’s theorem. It turns out that both theorems can be generalized to hypergraphs,
at least to some special classes.

In the first section of this chapter we review known results about matchings in
hypergraphs. Afterwards, in Section 2.2, we consider partitioned hypergraphs and
give a refined bound on the integrality gap of their fractional matching polytope
depending on the maximum part size. We compare this approximation result to
similar ones on hypergraphs with hyperedges of bounded size, and show that it yields
a better approximation guarantee in some cases. A short version of Section 2.2 was
published in [Beckenbach and Borndörfer, 2016].

The topic of the remaining section is the relationship of Hall’s and Kőnig’s the-
orem in graphs and hypergraphs. In the graph case, both theorems are equivalent
in the sense that one can be easily proven using the other. However, we look at
them from a different perspective by characterizing the graphs G that satisfy Hall’s
and Kőnig’s theorem, respectively. In the case of Kőnig’s theorem, graphs in which
the maximum size of a matching equals the minimum size of a vertex cover are
called Kőnig-Egerváry graphs and were characterized by Deming [Deming, 1979]
and Sterboul [Sterboul, 1979]. However, graphs satisfying Hall’s theorem have not
received much attention. We characterize them in terms of their Gallai-Edmonds
decomposition. Furthermore, we consider variants of Kőnig’s and Hall’s theorem
for hypergraphs. In particular we give a generalization of the known Hall-type
theorem for balanced hypergraphs of Conforti et al. [Conforti et al., 1996] to the
larger class of normal hypergraphs. The results of Section 2.3 are published in
[Beckenbach and Borndörfer, 2018].
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Chapter 2 Matchings in Hypergraphs Generalizing Bipartite Graphs

2.1 Literature Overview

A lot of combinatorial problems can be reformulated in terms of matchings and
coverings in hypergraphs, see for example [Cornuéjols, 2001]. Therefore, both con-
cepts form a very general framework and it is clear that the theory of matchings
in hypergraphs must be more involved than in the graph case. Finding a maxi-
mum weight matching in a graph is polynomial time solvable [Edmonds, 1965b]. In
contrast to graphs, finding a maximum size matching in a general hypergraph is
NP-hard. Indeed, finding a perfect matching in a 3-partite hypergraph is one of
Karp’s 21 NP-complete problems [Karp, 1972].
In the following we focus on four different themes covering most of the existing

literature on matchings and coverings in hypergraphs, namely:

• polyhedral investigations of the matching and covering polytopes (2.1.1),

• approximation algorithms (2.1.2),

• special classes of hypergraphs (2.1.3),

• conditions for the existence of perfect matchings (2.1.4).

2.1.1 Linear Programming Methods

In this subsection we summarize how linear programming can be used to derive
bounds on the matching and vertex cover numbers.

In the introductory chapter we have seen that the size of a maximum matching
is at most the minimum size of a vertex cover (for both the vertex and hyper-
edge version). In an r-uniform hypergraph H we have τE(H) ≤ rνE(H) as the
union of the vertices in an E-maximum matching forms an E-vertex cover. A fa-
mous conjecture states that τE(H) ≤ (r − 1)νE(H) if H is r-partite and r ≥ 2.
This conjecture appeared in the PhD-Thesis of Henderson, see Conjecture 4.3 in
[Henderson, 1971], and is often called Ryser’s conjecture after Herbert John Ryser,
who was the advisor of Henderson. It is known that Ryser’s conjecture is true for
r ≤ 3. Namely, for r = 2 it is just Kőnig’s theorem and for r = 3 it was proven by
Aharoni [Aharoni, 2001]. For r ≥ 4 Ryser’s conjecture is still open. However, there
are some results concerning fractional matchings and fractional vertex covers.
To define fractional matchings and fractional vertex covers, we first observe that

the maximum b-weight matching and the b-vertex cover problem on a hypergraph
H can be formulated as integer linear programs as follows:
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max
∑

e∈E(H)
b(e)xe min

∑
v∈V (H)

yv

s.t.
∑

e∈δH(v)
xe≤ 1 ∀v ∈ V (H) s.t.

∑
v∈e

yv ≥ b(e) ∀e ∈ E(H)

xe ∈ {0, 1} ∀e ∈ E(H) yv ∈ {0, 1} ∀v ∈ V (H).

Replacing the binary constraints by xe ≥ 0 and yv ≥ 0 we obtain two linear
programs whose solutions are called fractional matchings and fractional b-vertex
covers, respectively. Furthermore, we call the polytope given by the inequalities
of type x(δ(v)) ≤ 1 and x ≥ 0 the fractional matching polytope and denote it by
FP(H). The maximum b-weight of a fractional matching is denoted by ν∗b (H) and
the minimum size of a fractional b-vertex cover by τ∗b (H). For the special case that
b(e) = 1 we denote ν∗b (H) by ν∗E(H) and τ∗b (H) by τ∗E(H).

By duality, ν∗b (H) = τ∗b (H) holds, and this value gives an upper bound on νb(H)
and a lower bound on τb(H). In general, the gap between ν∗b (H) and νb(H), or
τ∗b (H) and τb(H) can be arbitrarily large. However, Füredi [Füredi, 1981] showed
that the ratio ν∗E(H)/νE(H) is bounded by (r − 1 + 1/r) if the maximum size of a
hyperedge is r. Furthermore, the constant (r − 1 + 1/r) can be improved to (r − 1)
if H does not contain a partial hypergraph that is a finite projective plane, where a
finite projective plane is an r-uniform, r-regular hypergraph on r2 − r + 1 vertices,
and r2− r+ 1 hyperedges for some r ∈ N, r ≥ 2, satisfying the following conditions
(see for example Sect. 2 in Ch. 2 of [Berge, 1984]):

(1) for two distinct vertices v, w there exists exactly one hyperedge containing
both vertices,

(2) two distinct hyperedges intersect in exactly one vertex.

By the last condition, every finite projective plane has matching number one. Fur-
thermore, its fractional vertex cover number is (r − 1 + 1/r). Thus, if H is a finite
projective plane of rank r, than ν∗E(H) = τ∗E(H) = (r − 1 + 1/r)νE(H).

Later, Füredi, Kahn, and Seymour considered the ratio of ν∗b (H) and νb(H) for
general weight functions b.

Theorem 2.1. [Füredi et al., 1993] If H is a hypergraph of rank r, where r ≥ 3,
and b : E(H)→ Q≥0 is a function, then

ν∗b (H) ≤ (r − 1 + 1/r)νb(H).

If H does not contain a partial hypergraph that is isomorphic to a finite projective
plane, then this inequality can be improved to

ν∗b (H) ≤ (r − 1)νb(H).
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Chapter 2 Matchings in Hypergraphs Generalizing Bipartite Graphs

This result shows that a fractional variant of Ryser’s conjecture holds, namely
τ∗E(H) ≤ (r−1)νE(H) for every r-partite hypergraph H as an r-partite hypergraph
cannot contain a finite projective plane as a partial subhypergraph. Namely, a
hypergraph of rank r with at most one hyperedge is not a finite projective plane.
Furthermore, any partial hypergraph of an r-partite hypergraph is r-partite, and
two vertices of the same vertex class are not contained in a common hyperedge,
thus (1) is not satisfied by any partial hypergraph of an r-partite hypergraph with
more than one hyperedge.
Chan and Lau give a constructive proof of Theorem 2.1, which directly gives a

polynomial time approximation algorithm for the weighted matching problem in
uniform hypergraph, see [Chan and Lau, 2012]. Furthermore, for the unweighted
case they show that after adding all "clique inequalities", which are inequalities of
the form

∑
e∈Q xe ≤ 1 for a set Q of pairwise intersecting hyperedges, the integrality

gap decreases to r+1
2 .

The work of Chan and Lau shows that it is worthwhile to consider additional in-
equalities that are valid for (integral) matchings and cut off some fractional match-
ings. This is the classical cutting plane-approach. In this context the matching
problem in hypergraphs is mostly called set packing problem. We do not go into de-
tail and refer the interested reader to [Borndörfer, 1998] or [Marchand et al., 2002].

2.1.2 Approximation Algorithms

For general hypergraphs there exists no constant factor approximation algorithm
for the maximum weight matching problem unless P = NP. However, there are
approximation algorithms with approximation factor depending on the number of
vertices or the maximum size of a hyperedge.
In the unweighted case, Halldórsson, Kratochv́ıl, and Telle show that an easy

greedy algorithm achieves an approximation guarantee of
√
|V (H)| and that this

result is best possible in the sense that there is no O(|V (H)|
1
2−ε)-approximation

algorithm for any ε > 0 unless P = NP, see [Halldórsson et al., 2000]. For the
weighted matching problem there exists a 2

√
|V (H)|-approximation algorithm, see

[Halldórsson, 1999].
Considering the maximum size r(H) of a hyperedge in a hypergraph H as a

parameter, the result of [Chan and Lau, 2012] mentioned above directly gives an
(r(H)− 1 + 1/r(H))-approximation algorithm based on LP-methods. On the other
hand, in [Hazan et al., 2006] it is shown that no Ω (r(H)/ln(r(H)))-approximation al-
gorithm exists unless P = NP . The best known approximation algorithms for the
unweighted case have a performance guarantee of (r(H)+1)/3 + ε and are based on lo-
cal search, see [Cygan, 2013] and [Fürer and Yu, 2014]. For the weighted matching
problem an ((r(H)+1)/2 + ε)-approximation algorithm exists [Berman, 2000]. This
result is stated for the maximum weight independent set problem in d-claw free
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parameter unweighted weighted hardness

|V (H)| |V (H)|0.5 2|V (H)|0.5 Ω(|V (H)|0.5−ε)

r(H) = maxe∈E(H) |e|
r(H)+1

3 + ε r(H)+1
2 + ε Ω(r(H)/ln (r(H))

Table 2.1: Approximation guarantees.

graphs. There is a tight connection between the matching problem in hypergraphs
and the independent set problem in graphs. Namely, a maximum weight matching
in a hypergraph H corresponds to a maximum weight independent set in the line
graph L(H). The condition that the hyperedges have size at most r translates into
the requirement that L(H) has no (r + 1)-claw, which is an induced subgraph con-
sisting of a stable set of size (r + 1) and a "center" vertex connected to all these
(r+1) vertices. Therefore, approximation results for independent sets in (r+1)-claw
free graphs translate to ones for matchings in hypergraphs with hyperedges of size
at most r.

Table 2.1 gives an overview of the known approximation guarantees depending
on the number of vertices or the maximum size of a hyperedge.

2.1.3 Hypergraphs Generalizing Bipartite Graphs
In this subsection we investigate the hypergraph classes generalizing bipartite graphs
that were introduced in Chapter 1. These hypergraphs have nice polyhedral prop-
erties, which has consequences for the matching and vertex cover problem restricted
to them.
We start with unimodular hypergraphs, which are by definition hypergraphs with

a totally unimodular incidence matrix. On totally unimodular matrices a lot of
integer optimization problems can be solved by linear programming as the famous
Hoffman-Kruskal theorem shows.

Theorem 2.2. [Hoffman and Kruskal, 2010] A matrix A ∈ Qn×m is totally uni-
modular if and only if for all integral vectors b ∈ Zn and c ∈ Zm the polyhedron

Q(b, c) := {x ∈ Qm : Ax ≥ b, x ≥ c}

has only integral vertices.

There are a lot of characterizations for totally unimodular matrices. In particular
the Hoffman-Kruskal theorem is also equivalent to:
For all b′, c′ ∈ Zn, p, q ∈ Zm the polytope

Q(b′, c′, p, q) := {x ∈ Qm : b′ ≤ Ax ≤ c′, p ≤ x ≤ q}
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Chapter 2 Matchings in Hypergraphs Generalizing Bipartite Graphs

is empty or has only integral vertices.
This implies that finding a maximum weight matching or minimum weight ver-

tex cover in a unimodular hypergraph is polynomial-time solvable by linear pro-
gramming. However, a combinatorial algorithm running in polynomial time is only
known for a subclass of unimodular hypergraphs, so-called restricted unimodular
hypergraphs.

Definition 2.3 (Restricted unimodular hypergraph). A hypergraph is restricted
unimodular if and only if it has no odd cycle.

Restricted unimodular hypergraphs are defined in terms of their incidence ma-
trices in [Yannakakis, 1985], where also a polynomial time recognition and match-
ing algorithm is given. Both algorithms are based on a decomposition of the in-
cidence matrix of a restricted unimodular hypergraph into incidence matrices of
bipartite graphs and directed graphs. A combinatorial algorithm for the maxi-
mum cardinality matching problem in restricted unimodular hypergraphs is given
in [Conforti and Cornuéjols, 1987]. Furthermore, Crama, Hammer, and Ibaraki give
a decomposition based algorithm for matching and covering problems in so-called
strongly unimodular hypergraphs, which is a subclass of unimodular hypergraphs
containing the class of restricted unimodular hypergraphs, see [Crama et al., 1990].
In [Crama et al., 1990] it is also mentioned that there is an unpublished algorithm of
Edmonds and Bland for matching and covering problems in unimodular hypergraphs
based on Seymour’s decomposition of totally unimodular matrices [Seymour, 1980].
However, this result seems to remain unpublished. In the meantime, Artmann,
Weißmantel, and Zenklusen developed a polynomial time algorithm for optimizing
a linear function over matrices in which all subdeterminants are bounded by two in
absolute value, see [Artmann et al., 2017]. Their algorithm is based on Seymour’s
decomposition of totally unimodular matrices, and gives also a decomposition based
algorithm for matching and covering problems on unimodular hypergraphs.
For balanced hypergraphs the polyhedron Q(b, c, p, q) might have fractional ver-

tices. However, for some values of b, c, p, q it is integral.

Theorem 2.4. [Fulkerson et al., 1974] If H is balanced, then the following poly-
topes are empty or have only integral vertices:

• {x ∈ QE(H) : x(δ(v)) ≤ 1 ∀v ∈ V (H), x ≥ 0},

• {x ∈ QE(H) : x(δ(v)) = 1 ∀v ∈ V (H), x ≥ 0},

• {x ∈ QE(H) : x(δ(v)) ≥ 1 ∀v ∈ V (H), x ≥ 0}.

It turns out that normal hypergraphs can be characterized as those hypergraphs
that have an integral fractional matching polytope.
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Theorem 2.5. [Lovász, 1972] A hypergraph H is normal if one of the following
equivalent condition holds:

(a) the fractional matching polytope {x ∈ QE(H) : x(δ(v)) ≤ 1 ∀v ∈ V (H), x ≥ 0}
has only integral extreme points,

(b) the system x(δ(v)) ≤ 1 for all v ∈ V (H), x ≥ 0 is total dual integral.

The equivalence of (a) and (b) is notable as in general it is not true that a set
of inequalities defining an integral polyhedron also defines a TDI-system, though
the reverse direction does hold. Statement (b) also implies that a normal hyper-
graph satisfies νb(H) = ν∗b (H) = τ∗b (H) = τb(H) for all b ∈ QE(H)

≥0 , i.e., normal
hypergraphs satisfy a weighted variant of Kőnig’s theorem.

By Theorem 2.4 and Theorem 2.5 maximum weight matchings in balanced or
normal hypergraphs can be calculated in polynomial time using LP-methods. How-
ever, there are no combinatorial polynomial time matching algorithms known for
normal or balanced hypergraphs.

Table 2.2 gives an overview about the type of polynomial time algorithms known
for finding a maximum size matching in the different classes of hypergraphs gener-
alizing bipartite graphs.

2.1.4 Hall- and Dirac-Type Theorems

Hall’s theorem gives a good characterization for the non-existence of a perfect
matching in the sense that if a bipartite graph G has no perfect matching, then
we can certify this by giving a stable set S with less than |S| neighbors. There are
several attempts to generalize this result to hypergraphs starting with a conjecture
of [Aharoni and Kessler, 1990], which turned out to be true. Its proof can be found
in [Aharoni and Haxell, 2000]. They look at hypergraphs H with the property that
the vertex set can be partitioned into two sets A and B such that |e∩A| = 1 for all
hyperedges e ∈ E(H). They call such a hypergraph a bipartite hypergraph (though
this hypergraphs have nothing to do with the ones we considered in the previous sec-
tion). For a bipartite hypergraphH onA∪B and a subset C ⊆ A the hypergraphHC

has vertex set B and hyperedges E(HC) = {e∩B : e ∈ E(H), e∩B 6= ∅, e∩C 6= ∅}.

Theorem 2.6 ([Aharoni and Haxell, 2000]). Let H be a bipartite hypergraph on
A ∪ B with hyperedges of size r ∈ N. If νE(HC) > (r − 1)(|C| − 1) for all C ⊆ A,
then νE(H) = |A|.

Observe that a matching of H contains at most |A| hyperedges as every hyperedge
intersects A in exactly one vertex, i.e., Theorem 2.6 gives a sufficient condition for
the existence of a matching of maximum possible size. In the graph case, r = 2,
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Bipartite Graphs

Restricted Unimodular
Hypergraph

Strongly Unimodular
Hypergraph

Unimodular Hypergraph

Balanced Hypergraph

Normal Hypergraph Mengerian Hypergraph
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Table 2.2: Types of the known polynomial time matching algorithms for hypergraph
classes generalizing bipartite graphs.

it reduces to Hall’s condition |N(C)| ≥ |C| as ν(HC) is equal to the number of
neighbors of C in B.

A similar generalization of Hall’s theorem is given by Haxell.

Theorem 2.7. [Haxell, 1995] Let H be a bipartite hypergraph on A∪B with hyper-
edges of size r. If τE(HC) > (2r−3)(|C|−1) for all C ⊆ A, then H has a matching
of size |A|.

The proof of this theorem in [Haxell, 1995] is non-constructive and does not give
rise to an efficient algorithm to find a matching of size |A|. In [Annamalai, 2016] it
is shown that a polynomial time algorithm can be designed if the slightly stronger
condition τE(HC) > (2r − 3 + ε)(|C| − 1) for some fixed ε > 0 holds.
Finally, in 2000 Aharoni and Haxell gave a Hall-type theorem for matchings in

hypergraphs implying Theorem 2.6, see [Aharoni and Haxell, 2000]. They charac-
terize when for a family A of hypergraphs a function f : A →

⋃
H∈AE(H) exists

with the properties that f(H) ∈ E(H) for all H ∈ A and f(H)∩ f(H ′) = ∅ for any
pair of distinct hypergraphs H,H ′ ∈ A. They call a function f with the properties
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above a system of disjoint representatives of A. Observe that if all hypergraphs
are 1-uniform, then a system of disjoint representatives of A is the same as a sys-
tem of distinct representatives of the family {V (H) : H ∈ A}. Hall’s theorem was
originally stated as a condition for a set system to have a system of distinct repre-
sentatives. Thus, the result of Aharoni and Haxell generalizes Hall’s theorem in its
original form.
Another direction for generalizing Hall’s theorem to hypergraphs was pursued by

Conforti, Cornuéjols, Kapoor and Vušković, who focused on balanced hypergraphs
in [Conforti et al., 1996]. As a motivation, we reformulate Hall’s theorem for bipar-
tite graphs. It states that a bipartite graph G has no perfect matching if and only if
there exists a set S of vertices with less than |S| neighbors. If we color the vertices
in S blue and all neighbors of S red, then each edge contains at least as many red
vertices as blue ones. Thus, Hall’s theorem can be reformulated as follows:

A bipartite graph has no perfect matching if and only if there exist
disjoint vertex sets B and R such that |B| > |R| and each edge contains
at least as many vertices in R as in B.

This reformulation can be used to give a Hall-type theorem for balanced hyper-
graphs.

Theorem 2.8. [Conforti et al., 1996] A balanced hypergraph has no perfect match-
ing if and only if there exists disjoint vertex sets B and R such that |B| > |R| and
each hyperedge contains at least as many vertices in R as in B.

Conforti et al. use linear programming methods to prove this theorem, whereas
purely combinatorial proofs can be found in the articles [Huck and Triesch, 2002]
and [Scheidweiler and Triesch, 2016]. We will show in Section 2.3.2 that Theo-
rem 2.8 also holds for uniform hypergraphs H with the additional property that the
graph G on V (H) with edges {v, w} for every v, w ∈ V (H) such that there exists
a hyperedge e ∈ E(H) with v, w ∈ e is perfect. Furthermore, there is a variant for
normal hypergraphs for which we allow to take multiple copies of some vertices into
the sets R and B in order for a similar statement as that in Theorem 2.8 to hold.
In the remainder of this section we focus on the connection between the degree

of the vertices of a hypergraph and the existence of a perfect matching. Dirac’s
theorem states that every graph on n vertices of minimum degree at least n/2 has
a Hamiltonian cycle. In particular, a perfect matching exists in the case that n is
even. The complete bipartite graph on n vertices with one vertex class of size n/2+1
and the other of size n/2 − 1 shows that the bound n/2 on the minimum degree is
best possible.
In the hypergraph case, the literature focuses on r-uniform or r-partite hyper-

graphs. Furthermore, the minimum degree is defined slightly different. In an r-
uniform hypergraph H the degree of a set of l vertices {v1, v2, . . . , vl} is the number
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Chapter 2 Matchings in Hypergraphs Generalizing Bipartite Graphs

of hyperedges of H containing {v1, v2, . . . , vl}, and the minimum l-degree, δl(H),
is the minimum degree of a set of l vertices. Of particular interest is the mini-
mum (r − 1)-degree: δr−1(H). Rödl, Ruciński, and Szemerédi give an exact bound
on δr−1(H) in order for H to contain a perfect matching, see [Rödl et al., 2009].
Keevash and Mycroft investigate r-uniform hypergraphs with an (r − 1)-degree of
at least n

r and characterize the obstructions for the existence of a perfect matching
[Keevash and Mycroft, 2015]. Using this theory they develop a polynomial time al-
gorithm for the perfect matching problem on r-uniform hypergraphs of minimum
(r− 1)-degree at least (1/r + ε)|V (H)| for each fixed ε > 0 in [Keevash et al., 2015].

The results of [Rödl et al., 2009] and [Keevash and Mycroft, 2015] use probabilis-
tic arguments. In contrast, in [Aharoni et al., 2009] a (r − 1)-degree condition for
the existence of perfect matching in r-partite graphs is given that is derived by el-
ementary combinatorial arguments. In an r-partite hypergraph H with r-partition
V1, . . . , Vr the (r − 1)-degree is defined as the minimum degree of all sets S of size
r − 1 such that S contains at most one vertex from each vertex class Vi.
There are a lot more Dirac-Type results for hypergraphs, e.g., bounds on the

l-degree for l < r− 1 forcing a hypergraph to have a perfect matching or results on
the existence of Hamiltonian cycles. We refer the interested reader to the survey
article [Zhao, 2016].

2.2 Matchings in Partitioned Hypergraphs

This section deals with matchings in partitioned hypergraphs. We give a refined
bound of the ratio between ν∗b (H) and νb(H) in those hypergraphs depending on
the maximum part size. The proof methods are constructive and yield polynomial
time approximation algorithms for the maximum weight matching problem.
The fact that the perfect matching problem is NP-hard on partitioned hyper-

graphs implies that there exists no polynomial time constant factor approximation
algorithm for finding a maximum weight matching unless P = NP as such an al-
gorithm can be used to design a polynomial time algorithm to decide whether a
partitioned hypergraph has a perfect matching. However, we show that the match-
ing problem on partitioned hypergraphs admits an approximation algorithm whose
approximation factor depends on the part size.
A partitioned hypergraph H with parts of size one is just a bipartite graph. In

this case the matching problem is polynomial time solvable and ν∗b (H) = νb(H)
holds for all b ∈ ZE(H)

≥0 .
Next, we consider the case that all parts have size at most two, and there is at

least one part of size equal to two. In this case, all hyperedges have size two or
four, and the latter connect two parts of size two. This implies that a partitioned
hypergraph with parts of size at most two can be seen as a superposition of two
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2.2 Matchings in Partitioned Hypergraphs

(a) A partitioned hypergraph H with parts size two.

(b) The bipartite graph H1 induced by
the edges of H.

(c) The bipartite graph H2 on the parts
induced by the hyperedges of size
four.

Figure 2.1: Decomposition of a partitioned hypergraph with parts of size two into
a pair of bipartite graphs.

bipartite graphs. One graph is obtained by restricting the hypergraph to the set of
all edges (= hyperedges of size two). The second graph has a vertex for each part
of size two and an edge between two vertices if a hyperedge of size four connects
the corresponding parts.

Example 2.9. A partitioned hypergraph with parts of size one and two is drawn
in Figure 2.1a. Vertices are drawn as cycles, its parts are indicated by rectangles
around the vertices, edges are drawn as straight lines, and hyperedges as closed
curves. Figure 2.1b shows the bipartite graph induced by the edges and Figure 2.1c
the bipartite graph on the parts induced by the hyperedges of size four.

Using the decomposition of a partitioned hypergraph with part size two into a
pair of bipartite graphs we prove that the fractional perfect matching polytope has
an integrality gap of at most two.

Theorem 2.10. Let H be a partitioned hypergraph with parts of size at most two.
For every function b : E(H)→ Q we have ν∗b (H) ≤ 2νb(H), i.e., the integrality gap
of the fractional matching polytope is at most two.

Proof. Let H1 be the bipartite graphs induced by the hyperedges of size two of H
and let the weight of the edges of H1 be the same as in H. Furthermore, let H2
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be the bipartite graph with a vertex for each part of size two and an edge between
two vertices if there exists a hyperedge of size four connecting the corresponding
parts of H. The weight of an edge in H2 is set to the weight of the corresponding
hyperedge of size four in H. Every fractional matching x ∈ QE(H) decomposes into
a fractional matching x1 ∈ QE(H1) of H1 and a fractional matching x2 ∈ QE(H2) of
H2. If we choose the vector of x1, x2 for which

∑
e∈E(H) b(e)xi(e) is larger, we obtain

that 2
∑
e∈E(Hi) b(e)xi(e) ≥

∑
e∈E(H) b(e)x(e) for i = 1 or i = 2. As Hi is a bipartite

graph there exists a matching M with
∑
e∈M b(e) ≥

∑
e∈E(Hi) b(e)xi(e). The set M

corresponds also to a matchingM ′ inH (consisting either just of edges or hyperedges
of size four), and 2

∑
e∈M ′ b(e) ≥ 2

∑
e∈E(Hi) b(e)xi(e) ≥

∑
e∈E(H) b(e)x(e).

The proof of the previous theorem gives a simple 2-approximation algorithm for
the maximum weight matching problem in partitioned hypergraphs with maximum
part size two:

Calculate a maximum weight matching of H1 and one of H2 (e.g. using
the Hungarian method), and output the one with the larger weight.

The upper bound of two on ν∗b (H)/νb(H) cannot be improved using our method as the
following example shows.

Example 2.11. Consider the partitioned hypergraph H, whose vertex set is the
disjoint union of U := {u1, u2, u3, u4} andW := {w1, w2, w3, w4}. The hyperedges of
H are {u1, u2, w2, w3}, {u3, u4, w2, w3}, {u1, w1}, {u2, w1}, {u3, w4}, {u4, w4}. The
minimal partition of H is U1 = {u1, u2}, U2 = {u3, u4},W1 = {w1},W2 = {w2, w3},
W3 = {w4}. This hypergraph is drawn in Figure 2.2, where hyperedges of size four
are drawn as straight lines connecting the two parts they contain.
If all hyperedges of size four receive weight 2 and all edges weight 1, then x ≡ 1

2
is a maximum weight fractional matching and its weight is 4. The maximum weight
of a matching consisting solely of edges is 2, which is the same as the maximum
weight of a matching using just hyperedges of size four. However, H has a matching
of weight 3 consisting of the hyperedge {u1, u2, w2, w3} and the edge {u3, w4}.

For the general case of partitioned hypergraphs with parts of size at most d we an-
alyze the proof of Theorem 2.1 in [Chan and Lau, 2012] to derive an approximation
algorithm whose approximation factor depends on d. Chan and Lau consider the
set N [e] := {e′ : e ∩ e′ 6= ∅} of all hyperedges intersecting a fixed hyperedge e. The
crucial point of their proof for an integrality gap of r − 1 for the fractional perfect
matching polytope of an r-partite hypergraph is that for every extreme point x of
the fractional matching polytope with x > 0 there exists a hyperedge e ∈ E(H) with
x(N [e]) ≤ r−1. The further analysis of the algorithm in [Chan and Lau, 2012] does
not use that the considered hypergraph is r-partite. If we can show that for every
extreme point x of the fractional perfect matching polytope with x > 0 there exists
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u1 u2 u3 u4

w1 w2 w3 w4

Figure 2.2: The hypergraph of Example 2.11.

a hyperedge e with x(N [e]) ≤ α for some class C of hypergraphs, then the method of
Chan and Lau directly gives an α-approximation algorithm for the weighted match-
ing problem restricted to C. For partitioned hypergraphs we prove the following
bound.

Lemma 2.12. Let H be a partitioned hypergraph with maximum part size d and let
x be a fractional matching with xe > 0 for all e ∈ E(H). There exists a hyperedge
e∗ ∈ E(H) with x(N [e∗]) ≤ 2

√
d.

Proof. If there exists a hyperedge e∗ of size less than 2
√
d, then∑

e∈N [e∗]
x(e) ≤

∑
v∈e∗

∑
e∈δH(v)

x(e) ≤ |e∗| < 2
√
d.

Otherwise, all hyperedges of H have size at least 2
√
d. We choose e∗ ∈ E(H)

arbitrarily and denote by Ui and Wj the two parts of H such that e∗ ⊆ Ui ∪Wj .
Summing over all inequalities x(δ(v)) ≤ 1 for v ∈ Ui and using |e| ≥ 2

√
d for all

e ∈ E(H) gives

∑
e∈δ(Ui)

√
dx(e) ≤

∑
e∈δ(Ui)

|e|
2 x(e) =

∑
v∈Ui

x(δH(v)) ≤ |Ui| ≤ d,

and the same inequality holds for Wj . Every hyperedge in N [e∗] intersects e in Ui
or Wj , thus N [e∗] ⊆ δH(Ui) ∪ δH(Wj). It follows that∑

e∈N [e∗]
x(e) ≤

∑
e∈δ(Ui)

x(e) +
∑

e∈δ(Wj)
x(e) ≤ 2

√
d.

Using Lemma 2.12 and the ideas of Chan and Lau we directly obtain the following
approximation result for the matching problem on partitioned hypergraphs.

Theorem 2.13. [Beckenbach and Borndörfer, 2016] If H is a partitioned hyper-
graph with parts of size at most d, then ν∗b (H) ≤ 2

√
d · νb(H).
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Proof. Observe that we can delete hyperedges of weight zero without changing the
maximum weight of a fractional matching or of a matching. Thus, we can assume
that b > 0.
We use induction on the number of hyperedges of H. If |E(H)| ≤ 1 the claim is

trivial. For the induction step let x be a fractional matching of maximum b-value.
If there exists a hyperedge e∗ with x(e∗) = 0, then look at the hypergraph H ′

obtained from H by deleting e∗. If we restrict x to E(H ′) = E(H) \ {e∗}, then we
get a fractional matching of H ′. By the induction hypothesis there exists a matching
M of H ′ with 2

√
d · b(M) ≥

∑
e∈E(H′) b(e)xe. The set M is also a matching in H

with 2
√
d · b(M) ≥

∑
e∈E(H) b(e)xe.

If x > 0, then there exists a hyperedge e∗ with x(N [e∗]) ≤ 2
√
d by Lemma 2.12.

We define new weights b1, b2 by b1(e) := b(e∗) for all e ∈ N [e∗] and b1(e) := 0 for
all e ∈ E(H) \ N [e∗], and by b2(e) := b(e) − b1(e) for all e ∈ E(H). Hyperedges
with b2(e) ≤ 0 can be deleted without changing the value of ν∗b2

(H) or νb2(H). We
denote the resulting hypergraph by H ′. As b2(e∗) = 0, H ′ has less hyperedges than
H, and x restricted to E(H ′) is a fractional matching of H ′. By the induction
hypothesis there exists a matching M ′ of H ′ with 2

√
d · b2(M ′) ≥

∑
e∈E(H′) b2(e)xe.

If M ′ ∪{e∗} is a matching of H we set M := M ′ ∪{e∗}, otherwise we set M := M ′.
In both cases, we have b2(M) = b2(M ′) and b1(M) ≥ b(e∗) because b2(e∗) = 0 and
N [e∗] ∩M 6= ∅. It follows that

2
√
d · b(M) = 2

√
d · b2(M) + 2

√
d · b1(M) ≥ 2

√
d · b2(M ′) + 2

√
d · b(e∗)

≥
∑

e∈E(H′)
b2(e)xe + b(e∗)

∑
e∈N [e∗]

x(e)

≥
∑

e∈E(H)
b2(e)xe +

∑
e∈E(H)

b1(e)xe

=
∑

e∈E(H)
b(e)xe.

Thus, we have shown that 2
√
dνb(H) ≥ ν∗b (H).

The proof of Theorem 2.13 gives a polynomial time 2
√
d-approximation algorithm

for finding a maximum weight matching that is literally the same as the iterative
k-dimensional matching algorithm of [Chan and Lau, 2012]. We omit details and
remark that the only difference to the algorithm of Chan and Lau is that we choose
a hyperedge with x(N [e]) ≤ 2

√
d instead of x(N [e]) ≤ k − 1.

Corollary 2.14. There exists a polynomial time 2
√
d-approximation algorithm for

the maximum weight matching problem on partitioned hypergraphs of part size d.

The constant 2
√
d in Theorem 2.13 is almost tight as the following example shows.
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0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

0 2 4 1 3
1 3 0 2 4
2 4 1 3 0
3 0 2 4 1
4 1 3 0 2

0 3 1 4 2
1 4 2 0 3
2 0 3 1 4
3 1 4 2 0
4 2 0 3 1

0 4 3 2 1
1 0 4 3 2
2 1 0 4 3
3 2 1 0 4
4 3 2 1 0

Figure 2.3: Four pairwise orthogonal Latin squares of order five.

Example 2.15. Consider the partitioned hypergraph H on U := {u1, u2, u3, u4}
andW := {w1, w2, w3, w4} with the four hyperedges {u1, u2, w1, w2}, {u3, u4, w1, w2},
{u1, u3, w3, w4}, and {u2, u4, w3, w4}. The minimal partition of H is U1 = U and
W1 = {w1, w2}, W2 = {w3, w4}, i.e., the maximum part size is four. Each pair of
hyperedges has a nonempty intersection, so the maximum size of a matching is one.
Setting x ≡ 1

2 gives a fractional matching because every vertex is incident to two
hyperedges. The size of x is 4 · 1

2 = 2 =
√

4.

The previous example shows that we can only hope to improve the constant 2
√
d

to
√
d. In the remainder of this section we generalize this example to maximum

part sizes of d = q2 where q is a prime power. Namely, we construct a partitioned
hypergraph of part size d in which every vertex has degree q and every pair of
hyperedges intersect. Then x ≡ 1

q is a fractional matching of size q2 · 1
q = q =

√
d,

whereas the maximum size of a matching is one. We use Latin squares for our
construction.

Definition 2.16 (Latin square). A Latin square of order n is an n× n-array filled
with numbers 0, 1, . . . , n − 1 such that each number occurs exactly once in each
row and each column. If we denote a Latin square by L, then L[i, j] denotes the
entry at row i and column j. Two Latin squares L,L′ of order n are orthogonal if
(L[i, j], L′[i, j]) 6= (L[k, l], L′[k, l]) for (i, j) 6= (k, l), i, j, k, l ∈ {1, . . . , n}.

A set of pairwise orthogonal Latin squares of order n can have size at most n−1.
In general, it is not known for which number n one can find n−1 pairwise orthogonal
Latin squares. For example, Figure 2.3 shows four pairwise orthogonal Latin squares
of order five. If n is the power of a prime number, then one can construct such Latin
squares using the finite field Fn with n elements. One such construction is stated
in [Bose, 1938] and works as follows.
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For every a ∈ Fn \ {0} we define a Latin square La by La[x, y] = x + ay, where
the rows and columns are labeled (arbitrarily) with the elements from Fn.
The Latin squares in Figure 2.3 are obtained in this way for a = 1, 2, 3, 4, where

the columns and rows are labeled with 0, 1, 2, 3, 4 consecutively.
Bose shows that La is indeed a Latin square and La, La′ are orthogonal for a 6= a′,

a, a′ ∈ Fn \ {0}. We need another property of these Latin squares. We say that
a pair of Latin squares L,L′ intersects row-wise, if for all i, i′ ∈ {1, . . . , n} there
exists an index j ∈ {1, . . . , n} such that L[i, j] = L′[i′, j]. Not all orthogonal Latin
squares intersect row-wise but the ones obtained from Bose’s construction do as an
easy calculation shows.

Claim: The Latin square La and La′ constructed as above intersect row-wise for
a, a′ ∈ Fn \ {0} with a 6= a′.

Proof. Let x, x′ ∈ Fn be arbitrary, and set y = (x′ − x)(a− a′)−1. Then

x+ ay − (x′ + a′y) = x− x′ + (a− a′)y = x− x′ + x′ − x = 0

holds and this implies La[x, y] = La′ [x′, y].

Now, we have all ingredients to define for each d = q2 = p2k, where p is prime, a
partitioned hypergraph H with νE(H) = 1, maximum part size d, and vertex degree
equal to q for all vertices.
The vertex set consists of U := {u0, u1, . . . , ud−1} and W := {w0, w1, . . . , wd−1}.

We divide each of the sets U and W into q subsets of size q, namely Wi :=
{wiq, wiq+1, . . . , wiq+q−1}, and Ui := {uiq, uiq+1, . . . , uiq+q−1} for i = 0, . . . , q − 1.
Notice that the subsets Wi and Ui are only used to define the hyperedges of H and
they are not all parts of H. Namely, the finest partition will byW0,W1, . . . ,Wq and
U .
Next, we define the hyperedges of H. There are q types of them, where each

type i consists of q different hyperedges containing Wi. Type 0 consists of the
hyperedges W0 ∪ Ui for 0 ≤ i ≤ q − 1. The q − 1 other types are constructed by
using the q−1 mutually orthogonal Latin squares of Bose’s construction. Therefore,
let a1, . . . , aq−1 be the non-zero elements of Fq. For every row x ∈ Fq of the Latin
square Lai we construct the hyperedge

e(i, x) := Wi ∪ {ujq+c : c = Lai [x, aj ], 0 ≤ j ≤ q − 1}.

In this way, we get q hyperedges for every ai with i ≥ 1, which contain all vertices of
Wi and have no vertices of U in common. Furthermore, e(i, x) intersects every Ui′
for i′ ∈ {0, . . . , q−1} in exactly one vertex, thus e(i, x) has a non-empty intersection
with every hyperedge of the form W0 ∪ Ui′ . Also, e(i, x) ∩ e(i′, x′) 6= ∅ for i 6= i′,
because Lai and Lai′ intersect row-wise.

34



2.2 Matchings in Partitioned Hypergraphs

Formally, the hypergraph H has vertex set V (H) := U ∪W and hyperedge set
E(H) := {W0∪Ui : 0 ≤ i ≤ q−1}∪{e(i, x) : 1 ≤ i ≤ q−1, x ∈ Fq \{0}}. The finest
partition of H is U,W0, . . . ,Wq−1. All in all, we have constructed a partitioned
hypergraph with maximum part size q2, maximum degree q, whose hyperedges
intersect pairwise. The maximum size of a matching is one whereas x ≡ 1/q is a
fractional matching of size q =

√
d. Thus, we get ν∗E(H) ≥

√
dνE(H) for every

hypergraph H constructed in this way.

Example 2.17. We illustrate the construction defined above for d = 9 = 32. In
this case, the hyperedges of type 0 are {w0, w1, w2, u0, u1, u2}, {w0, w1, w2, u3, u4, u5}
and {w0, w1, w2, u6, u7, u8}.
The other hyperedges are constructed using the following two Latin squares.

0 1 2
1 2 0
2 0 1

0 2 1
1 0 2
2 1 0

The first Latin square gives rise to the hyperedges of type 1, namely:

• {w3, w4, w5, u0+0, u3+1, u6+2} = {w3, w4, w5, u0, u4, u8},

• {w3, w4, w5, u0+1, u3+2, u6+0} = {w3, w4, w5, u1, u5, u6}, and

• {w3, w4, w5, u0+2, u3+0, u6+1} = {w3, w4, w5, u2, u3, u7}.

The second one defines the hyperedges of type 2, which are

• {w6, w7, w8, u0+0, u3+2, u6+1} = {w6, w7, w8, u0, u5, u7},

• {w6, w7, w8, u0+1, u3+0, u6+2} = {w6, w7, w8, u1, u3, u8}, and

• {w6, w7, w8, u0+2, u3+1, u6+0} = {w6, w7, w8, u2, u4, u6}.

We conclude this section by comparing Theorem 2.13 with the best approxima-
tion guarantees known for hypergraphs with bounded hyperedge size. A partitioned
hypergraph with parts of size at most d can have hyperedges of size up to 2d. This
means that Theorem 2.1 would give a bound of 2d− 1 + 1/2d for the integrality gap
of the fractional matching polytope, which is worse than 2

√
d (the bound obtained

in Theorem 2.13). Furthermore, all approximation algorithms known have an ap-
proximation factor that is linear in the maximum size of a hyperedge and unless
P = NP there exist no algorithms with better guarantees, see Subsection 2.1.2.
On the other hand, given any r-uniform hypergraph H one can define a parti-

tioned hypergraph H ′ with vertex set U = V (H) × {0}, W = V (H) × {1}, and
hyperedges {{(v, 0), (v, 1)} : v ∈ e} for all e ∈ E(H). There is a one-to-one corre-
spondence between matchings, as well as fractional matchings, in H and H ′. Thus,
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ν∗b (H) = ν∗b (H ′) and νb(H) = νb(H ′). We compare the bounds for the ratio of
these numbers obtained by Theorem 2.13 with those of Theorem 2.1. In general
it is possible that H ′ has only the trivial partition U , W , resulting in a factor of
2
√
|V (H)| for Theorem 2.13, which can be arbitrarily worse than r(H)− 1 + 1/r(H).

The construction of H ′ also works for non-uniform hypergraphs. Together with the
2·
√
d-approximation algorithm we get a polynomial time 2·

√
|V (H)|-approximation

algorithm for the maximum weight matching problem on general hypergraphs. The
approximation factor matches the one of the approximation algorithm given in
[Halldórsson, 1999]. The Ω(|V (H)|0.5−ε)-hardness result for approximation algo-
rithms for the maximum weight matching problem implies that the approximation
factor in Theorem 2.13 cannot be improved substantially unless P = NP.
We conclude that neither of the Theorems 2.1, 2.13 dominates the other. Which

of the both gives the better approximation factor highly depends on the concrete
hypergraph structure.

2.3 Hall’s and Kőnig’s Theorem in Graphs and Hypergraphs
In this section we investigate the relationship between Kőnig’s theorem, Hall’s the-
orem, and a deficiency version of Hall’s theorem in several graph and hypergraph
classes. In the first subsection we consider graphs and in the second one we focus
on hypergraphs.

2.3.1 The Graph Case
For a graph G we just write ν(G) instead of νE(G) for the maximum size of a
matching in G. Similar, we drop E from the index of τ(G), τ∗(G), and ν∗(G).
Graphs for which the vertex cover number τ(G) equals the matching number ν(G)
are called Kőnig-Egerváry graphs. If τ(G) and τ∗(G) coincide, then τ(G) = ν(G)
follows, i.e., G is already a Kőnig-Egerváry graph. However, ν(G) = ν∗(G) does not
imply τ(G) = ν(G). For example, the complete graph on four vertices K4 satisfies
ν(K4) = ν∗(K4) = 2 but τ(K4) = 3. Indeed, every graph with an even number
of vertices and a perfect matching satisfies ν(G) = ν∗(G) = |V (G)|/2. In general,
ν∗(G) is an upper bound on ν(G) and we are interested in graphs for which both
values are equal.

Definition 2.18 (stable graph). A graph G is stable if ν(G) = ν∗(G).

The notion of a stable graph comes from the fact that a graph is stable if and
only if the vertices that are missed by at least one maximum matching form a stable
set, see for example [Deng et al., 1999].
To state a variant of Hall’s theorem we need the following two notions, which are

defined in [Levit and Mandrescu, 2012].
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Definition 2.19 (deficiency and critical difference of a graph). The deficiency
def(G) of a graph G is the number of vertices not covered by a maximum matching,
i.e., def(G) := |V (G)| − 2ν(G). The critical difference of a graph G is defined to be
d(G) := max{|S| − |N(S)| : S is a stable set}, where N(S) is the set of neighbors
of S in G.

If S is a stable set, then every matching matches a vertex from S to one of N(S).
In particular, if |S| > |N(S)|, then every matching misses at least |S| − |N(S)|
vertices of S. This implies that the critical difference gives a lower bound on the
deficiency of a graph. We introduce a notion for graphs where this bound is tight.

Definition 2.20 (strong Hall property). A graph G has the strong Hall property if
its deficiency is equal to its critical difference, i.e., if def(G) = d(G).

Every Kőnig-Egerváry graph has the strong Hall property, which is for example
proven in [Levit and Mandrescu, 2012]. We show that there exist also other graphs
with the strong Hall property. Furthermore, we consider the class of graphs for
which Hall’s theorem is true.

Definition 2.21 (Hall property). A graph has the Hall property if it has a perfect
matching or a stable set S with less than |S| neighbors.

Observe that a graph with a perfect matching cannot have a stable set S with
less than |S| neighbors and a graph with such a set S cannot have a perfect match-
ing. Thus, the two statements in the definition of the Hall property are mutually
exclusive.

For graphs the deficiency version of Hall’s theorem seems to be an easy reformu-
lation of Kőnig’s theorem. So, one might expect, that the graphs with the strong
Hall property are exactly the Kőnig-Egerváry graphs. However, this is not the case.
Namely, it is enough that the maximum size of a matching equals the maximum
size of a fractional matching as we show in the following theorem.

Theorem 2.22. A graph has the strong Hall property if and only if it is stable.

Proof. We show that for a graph G the statements def(G) = d(G) is equivalent to
ν(G) = ν∗(G) using integer programming methods and the well-known fact that the
fractional vertex cover polyhedron is half-integral, see for example Theorem 7.5.3
in [Lovász and Plummer, 1986].
The critical difference of a graph G can be computed via the following integer

program.

max
∑
v∈V (G)(bv − rv)(2.1)

s.t.
∑
v∈e(rv − bv) ≥ 0 ∀e ∈ E(G)(2.2)

bv, rv ∈ {0, 1} ∀v ∈ V (G).(2.3)
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Indeed, if S is a stable set, then

bv :=
{

1, v ∈ S
0, v /∈ S

, rv :=
{

1, v ∈ N(S)
0, v /∈ N(S)

satisfies the inequalities of type (2.2) and its objective value is |S| − |N(S)|. Thus,
the optimal value of (2.1)-(2.3) is at least d(G).

On the other hand, let b∗, r∗ be an optimal solution to (2.1)-(2.3). If there exists a
vertex v with b∗v = r∗v = 1, then decreasing both variables to zero does not affect the
feasibility of r∗, b∗ and it does not change the objective value. Thus, for every vertex
v we can assume that at most one of r∗v , b∗v is non-zero. We set S := {v : b∗v = 1}
and T := {v : r∗v = 1}. Let {v, w} be an edge with v ∈ S, i.e., b∗v = 1. By the
modification of r∗, b∗ we have r∗v = 0, and inequality (2.2) for e = {v, w} states that
(0 − 1) + (r∗w − b∗w) ≥ 0. Thus, we get r∗w − b∗w ≥ 1, which implies r∗w = 1. By the
definition of T , r∗w = 1 means w ∈ T . We have shown that T ⊇ N(S) and S is a
stable set. The objective value of r∗, b∗ is equal to |S| − |T | ≤ |S| − |N(S)| ≤ d(G).
In total, the optimal value of (2.1)-(2.3) is equal to the critical difference of G.
Now, we reformulate the integer program (2.1)-(2.3) using the variable transfor-

mation wv := rv−bv+1
2 for all v ∈ V (G). We obtain the half-integer program

max
(
|V (G)| − 2 ·

∑
v∈V (G)wv

)
(2.4)

s.t.
∑
v∈ewv ≥ 1 ∀e ∈ E(G)(2.5)

wv ∈ {0, 1
2 , 1} ∀v ∈ V (G),(2.6)

which has the same optimal value as the linear program

|V (G)|− 2 ·min
∑
v∈V (G)wv(2.7)

s.t.
∑
v∈ewv ≥ 1 ∀e ∈ E(G)(2.8)

0 ≤ wv ≤ 1 ∀v ∈ V (G)(2.9)

because (2.7)-(2.9) has always an optimal solution with entries in {0, 1
2 , 1}

V (G) by
Theorem 7.5.3 in [Lovász and Plummer, 1986].
On the other hand, the deficiency of G is equal to the optimal value of the

following integer program:

|V |− 2 ·max
∑
e∈E(G) xe(2.10) ∑

e∈δ(v) xe ≤ 1 ∀v ∈ V (G)(2.11)
xe ∈ {0, 1} ∀e ∈ E(G).(2.12)

This implies that def(G) = d(G) if and only if
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min
∑

v∈V (G)
wv =

∑
v∈e

wv ≥ 1 ∀e ∈ E(G)

0 ≤ wv ≤ 1 ∀v ∈ V (G)

max
∑

e∈E(G)
xe

∑
e∈δ(v)

xe ≤ 1 ∀v ∈ V (G)

xe ∈ {0, 1} ∀e ∈ E(G).
The program on the right is an integer programming formulation of the maxi-

mum matching problem. The linear program obtained by relaxing the integrality
constraints xe ∈ {0, 1} by 0 ≤ xe ≤ 1 for all e ∈ E(G) is the dual of the linear
program on the left. It follows that def(G) = d(G) if and only if ν(G) = ν∗(G), i.e.,
G is a stable graph.

Next, we characterize graphs with the Hall property. A fractional perfect matching
in a graph G is a fractional matching x : E(G) → Q≥0 with x(δ(v)) = 1 for
all v ∈ V (G). It is well known that a graph has a fractional perfect matching
if and only if |N(S)| ≥ |S| for all stable sets S holds, see for example Corollary
6.1.5 in [Lovász and Plummer, 1986]. Liu and Liu give another characterization of
those graphs that have a fractional perfect matching, see [Liu and Liu, 2002]. Their
result uses the so-called Gallai-Edmonds decomposition of a graph. Recall, that the
Gallai-Edmonds decomposition of a graph G is a partition of its vertex set into three
sets D(G), A(G), C(G) with the property that D(G) is the set of vertices missed by
at least one maximum matching, A(G) is the set of vertices in V (G)\D(G) adjacent
to D(G), and C(G) contains all remaining vertices.

The Gallai-Edmonds decomposition tells a lot about the structure of maximum
matchings in a graph. It also gives some information about fractional matchings as
the following result of Liu and Liu shows.

Corollary 2.23. [Liu and Liu, 2002] A graph G has a perfect fractional matching
if and only if it has a matching covering every trivial component (a component
consisting of exactly one vertex) of G[D(G)].

Using Corollary 2.23 we characterize graphs with the Hall property.

Corollary 2.24. For a given graph G, let D(G), A(G), C(G) be its Gallai-Edmonds
decomposition, and D′(G) the vertices of D(G) that form a connected component in
G[D(G)] consisting just of one vertex and no edge.
The graph G has the Hall property if and only if

(a) D(G) = ∅, which means that G has a perfect matching, or

(b) the subgraph of G induced by A(G) and D(G) has no matching covering D′(G).
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Proof. First, suppose G has the Hall property and G has no perfect matching. This
means that there exists a stable set S of G with |S| > |N(S)|, which implies that G
has no perfect fractional matching. By Corollary 2.23, G has no matching covering
D′(G), which is equivalent to (b) by the construction of A(G) and D(G).

On the other hand, if G has a perfect matching, then G has clearly the Hall
property. In case (b), using again Corollary 2.23, we get that G has no perfect
fractional matching. Thus, there exists a stable set S of G with |S| > |N(S)|.

This characterization shows again the strength of the Gallai-Edmonds decompo-
sition. Namely, it can be used to characterize Kőnig-Egerváry graphs, as well as
graphs with the strong Hall and the Hall property. In the first two cases, the set
D(G) of vertices missed by any maximum size matching has to be a stable set in
G, whereas in the latter case it is possible that the subgraph of G induced by D(G)
contains non-trivial components, however the trivial components must have some
special structure in G.

Figure 2.4: A semi-bipartite graph that is not stable.

Example 2.25. A class of graphs that are not necessarily stable but have the Hall
property are semi-bipartite graphs with an even number of vertices, where a graph
is semi-bipartite if every two vertex disjoint odd cycles are connected by an edge. In
particular, every graph with at most one odd cycle is semi-bipartite, see Figure 2.4
for an example.
Fulkerson, Hoffman, and McAndrew show in [Fulkerson et al., 1965] that every

semi-bipartite graph with an even number of vertices has the Hall property. This
result also follows from Theorem 2.22 and Corollary 2.24. Namely, if G is semi-
bipartite and stable, then it has even the strong Hall property. If G is a semi-
bipartite, non-stable graph, then either G has a perfect matching or D(G) is non-
empty. In the latter case, G[D(G)] contains exactly one non-trivial connected com-
ponent. Otherwise, G[D(G)] contains two factor-critical connected components (see
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Strong Hall Property

Stable

Thm. 2.22

Bipartite

Kőnig Property

Hall Property

Ex. 2.25

Semi-Bipartite + even

Figure 2.5: Summary of the relations between the investigated graph properties.

Theorem 3.2.1 in [Lovász and Plummer, 1986]). Both of these components are non-
bipartite and contain an odd cycle. Two odd cycles obtained in this way are vertex
disjoint and not connected by an edge in G, which is impossible by the definition of
a semi-bipartite graph. Thus, G[D(G)] has exactly one non-trivial component. If
G has an even number of vertices, then by parity arguments G[D(G)] must contain
at least |A(G)| + 2 components. Thus, |D′(G)| = |D(G)| − 1 ≥ |A(G)| + 1, and
we are in case (b) of Corollary 2.24. If G has an odd number of vertices, then it is
possible that |D′(G)| = |A(G)| and there exists a perfect matching between D′(G)
and A(G), i.e., a semi-bipartite graph with an odd number of vertices might not
have the Hall property.

We conclude this subsection by discussing the relationship between different prop-
erties and graph classes that we investigated before. Table 2.5 gives a schematic
overview where an arrow from one property to another indicates an implication, and
arrows implied by transitivity are not drawn for better readability. For example, a
bipartite graph is a Kőnig-Egerváry graph (by Kőnig’s theorem), it is stable, has
the strong Hall, and the Hall property. A bipartite graph is also semi-bipartite,
however, we only considered semi-bipartite graphs with an even number of vertices.
Thus, there is no arrow from "Bipartite" to "Semi-Bipartite + even". We argue why
exactly the depicted implications hold.

For "Bipartite" this was already done above. Every Kőnig-Egerváry graph is
stable by the characterization of Kőnig-Egerváry graphs in [Lovász, 1983]. Lovász
proves that a graph G is Kőnig-Egerváry if and only if D(G) is a stable set in G
and G[V (G) \ (D(G) ∪N (D (G)))] is Kőnig-Egerváry. For a graph G to be stable
D(G) only needs to be a stable set in G.

The equivalence of "Stable" and "Strong Hall Property" was shown in Theo-
rem 2.22. By definition, the "Strong Hall Property" implies the "Hall Property",
and semi-bipartite graphs with an even number of vertices are an example that the
reverse implication is false. Finally, a semi-bipartite graph with an even number of
vertices has the Hall property by Corollary 2.24 but it is in general neither bipartite,
nor Kőnig-Egerváry, nor stable as the graph depicted in Figure 2.4 shows.
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2.3.2 The Hypergraph Case
In this subsection we regard generalizations of Hall’s Theorem to some special hy-
pergraphs, in particular normal hypergraphs. Conforti, Cornuéjols, Kapoor, and
Vus̆ković give with Theorem 2.8 ([Conforti et al., 1996]) one possibility for a Hall-
type theorem for hypergraphs. Their result motivates the following definition.

Definition 2.26 (Hall property). We say that a hypergraph has the Hall property
if H has a perfect matching or there exists a pair (R,B) of disjoint vertex sets
R,B ⊆ V (H) with |e ∩R| ≥ |e ∩B| for all hyperedges e and |R| < |B|.

Observe that the two properties of this definition are mutually exclusive. If H
has a perfect matching M and (R,B) is a pair of vertex sets with |e ∩R| ≥ |e ∩B|
for all e ∈ E(H), then

|R| =
∑
e∈M
|e ∩R| ≥

∑
e∈M
|e ∩B| = |B|.

Using Definition 2.26, Theorem 2.8 can be restated as "Every balanced hypergraph
has the Hall property". We want to find other classes of hypergraphs with the Hall
property. One starting point is to look at hypergraphs satisfying Kőnig’s theorem.

Definition 2.27 (Kőnig property). A hypergraph H has the Kőnig property if
the maximum size of a matching equals the minimum size of a vertex cover, i.e.,
νE(H) = τE(H).

As every Kőnig-Egervary graph has the Hall property, one might expect that the
Kőnig property implies the Hall property for hypergraphs. This is not the case as
the following counterexample shows. The constructed hypergraph is normal, and
thus has the Kőnig property.

Example 2.28. Let H be the hypergraph on the vertex set {1, 2, 3, 4} with hy-
peredges {1, 2, 4}, {2, 3, 4}, {1, 3, 4}, see Figure 2.6a. This is the smallest normal
hypergraph that is not balanced. We show that H does not have the Hall property.
As all hyperedges intersect in vertex 4 and there is no hyperedge containing all

vertices, H has no perfect matching. If (R,B) is a pair of disjoint vertex sets with
|e∩R| ≥ |e∩B| for all e ∈ E(H), then we claim that |R| ≥ |B|. Indeed, if |B| ≥ 2,
then there exists a hyperedge with |e ∩ B| ≥ 2 and |e ∩ R| ≤ 1 as every pair of
vertices of H is contained in a hyperedge of size three. This shows that |B| ≤ 1.
Clearly, if |B| = 1, then |R| ≥ 1. In total, we get |R| ≥ |B|.
The hypergraph H ′ obtained from H by adding a copy of vertex 4, that is, the

hypergraph on {1, 2, 3, 4, 4′} with hyperedges {1, 2, 4, 4′}, {2, 3, 4, 4′}, {1, 3, 4, 4′}
(see Figure 2.6b), has the Hall property. Namely, if we choose B := {1, 2, 3} and
R := {4, 4′}, then |e ∩R| = 2 = |e ∩B| for all e ∈ E(H ′) and |R| < |B| holds.
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4

1

23

(a) A normal hypergraph without
the Hall property.

4 4’

1

23

(b) The hypergraph on the left after
duplicating vertex 4 has the Hall
property.

Figure 2.6: Does Theorem 2.8 hold for normal hypergraphs?

In the remainder of this subsection we show that the multiplication trick of the
previous example always works and give a generalization of Hall’s theorem to normal
hypergraphs including a deficiency variant.
First, we look at the dual hypergraphs of normal ones. These hypergraphs are

called perfect by Schrijver, see Chapter 82 in [Schrijver, 2002]. The name perfect
comes from a characterization via perfect graphs that we will use as a definition.

Definition 2.29 (perfect hypergraph). A hypergraph H is perfect if there exists
a perfect graph G on the same vertex set such that the maximal hyperedges of H
correspond one-to-one to the maximal cliques of G.

Every balanced hypergraph is perfect. This follows from the fact that every
balanced hypergraph is normal and the observation that the dual of a balanced
hypergraph is balanced.
We prove that uniform perfect hypergraphs have the Hall property. This is partic-

ularly interesting as perfect hypergraphs do not have the Kőnig property in general.
For example, the maximum size of a matching in the hypergraph depicted in Fig-
ure 2.7b is one whereas every E-vertex cover has size at least two.

Theorem 2.30. Every uniform perfect hypergraph has the Hall property.

Proof. LetH be a uniform perfect hypergraph without a perfect matching. AsH is a
perfect hypergraph, the graphG(H) := (V (H), {{v, w} : ∃e ∈ E(H) with v, w ∈ e})
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is perfect, and the maximal cliques of G(H) correspond to the hyperedges of H (see
Theorem 82.4 in [Schrijver, 2002]). As H is uniform, every maximal clique of G(H)
has size r, where r is the rank of H. This implies that there exists a stable set S
of size at most |V (H)|/r that intersects every maximal clique of G(H)(for example
let S be the smallest color class of an r-coloring of G(H)).

The minimum size of a clique cover of G(H) must be larger than |V (H)|/r because
H has no perfect matching and it is r-uniform. As G(H) is perfect, there exists a
maximal stable set S̃ of size greater than |V (H)|/r. We set R := S\S̃ and B := S̃\S.
Observe that both sets are non-empty as S and S̃ are maximal stable sets of different
sizes. By definition, R ∩ B = ∅, and |R| = |S| − |S ∩ S̃| < |S̃| − |S ∩ S̃| = |B|.
Furthermore, |Q ∩ B| ≤ 1 for all maximal cliques Q of G(H) and if |Q ∩ B| = 1,
then 1 = |Q ∩ (S̃ \ S)| = |Q ∩ S̃| − |Q ∩ (S̃ ∩ S)|, and thus Q ∩ (S̃ ∩ S) = ∅. In
particular, we get |Q ∩ R| = |Q ∩ S| = 1 for all maximal cliques Q, which shows
that |e ∩R| ≥ |e ∩B| for all e ∈ E(H).

(a) The graph G(H). (b) A 3-uniform perfect hypergraph H.

Figure 2.7: A perfect graph and the hypergraph with its maximal cliques as hyper-
edges.

Non-uniform perfect hypergraphs do not have the Hall property in general, as the
following example shows:

Example 2.31. Consider the hypergraph H on the vertex set {1, 2, 3, 4} with hy-
peredges {1, 2, 4}, {2, 3, 4}, {2, 3}, {3, 4}, and {2, 4} depicted in Figure 2.8. This
hypergraph is perfect because the maximal edges {1, 2, 4}, {2, 3, 4} correspond to
the maximal cliques in the perfect graph

G = ({1, 2, 3, 4}, {{1, 2}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}).

H has no perfect matching, however, |R| ≥ |B| holds for all disjoint vertex sets
R,B ⊆ V (H) with |e ∩ R| ≥ |e ∩ B| for all e ∈ E(H). Namely, |e ∩ R| ≥ |e ∩ B|
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3

2 4

1

Figure 2.8: An example showing that Theorem 2.30 does not hold for non-uniform
perfect hypergraphs.

for e = {2, 3, 4} implies that |B ∩ {2, 3, 4}| ≤ 1. Thus, |B| ≤ 2. If |B| = 1, then
clearly |R| ≥ 1. If |B| = 2, then B = {1, i} for some i ∈ {2, 3, 4}. In this case,
|{1, 2, 4}∩R| ≥ |{1, 2, 4}∩B| implies B = {1, 3}. As |e∩R| ≥ |e∩B| for e = {2, 3},
and {3, 4}, we get R = {2, 4}, and thus |R| = 2 = |B|. Therefore, H has not the
Hall property.

In the remainder of this subsection, we give a deficiency variant of Theorem 2.8 for
normal hypergraphs. Analogous to graphs, we define the deficiency of a hypergraph,

def(H) := min{|V (H)| − |V (M)| : M is a matching of H},

to be the minimum number of vertices that are exposed by a matching.
In the same vein, we define the critical difference of a hypergraph H by

d(H) := max{|B| − |R| : R,B ⊆ V (H), R ∩B = ∅, |e ∩R| ≥ |e ∩B|∀e ∈ E(H)},

and a pair (R,B) of vertices attaining the maximum at the right hand side of this
definition a critical pair . This generalizes the definition of the critical difference in
graphs by [Levit and Mandrescu, 2012].
As in the graph case, the critical difference of a hypergraph gives a lower bound

on its deficiency. Indeed, if M is a matching covering as many vertices as possible
in a hypergraph H, and (R,B) is a critical pair of H, then

d(H) = |B| − |R| =
∑
e∈M
|e ∩B|+ |B \ V (M)| −

(∑
e∈M
|e ∩R|+ |R \ V (M)|

)
≤ |B \ V (M)| − |R \ V (M)| ≤ |B \ V (M)| ≤ |V (H) \ V (M)| = def(H).
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Figure 2.9: A balanced hypergraph with def(H) = 3 > 1 = d(H).

However, even for a balanced hypergraph the critical difference can be smaller than
the deficiency. In [Huck and Triesch, 2002] the following example is given, which
shows that the gap between the critical difference and the deficiency can be arbi-
trarily large even for very simple balanced hypergraphs.

Example 2.32. Let H be the hypergraph on the vertices 1, 2, . . . , 2n + 1 having
the two hyperedges e1 = {1, . . . , n+ 1}, e2 = {n+ 1, . . . , 2n+ 1}, see Figure 2.9 for
a picture of the case n = 3. As H has only two hyperedges it is obviously balanced.
Furthermore, every non-empty matching misses n vertices, so def(H) = n. However,
d(H) = 1 as there is no pair R,B ⊆ V with |ei ∩ B| ≤ |ei ∩ R| for i = 1, 2 and
|B| − |R| > 1, and thus R = {n+ 1}, B = {n, n+ 2} is a critical pair.

If we could take n copies of the vertex n+ 1 into the set R and all other vertices
into B, then we would get a pair R,B with |ei ∩ R| = n = |ei ∩ B| (i = 1, 2) and
|B| − |R| = 2n − n = n. This means that the deficiency of H equals the critical
difference of the hypergraph in which vertex n+ 1 is “multiplied” n times.

We show that a deficiency variant of Hall’s Theorem can be derived using a
multiplication trick as in the Examples 2.28, and 2.32. This trick can be formalized
as follows.

Definition 2.33 (Vertex multiplication, [Berge, 1984]). Let H be a hypergraph,
v ∈ V (H) be a fixed vertex, and λ ∈ N. The hypergraph obtained by multiplying
v by λ is the hypergraph that arises from H by replacing the vertex v by λ new
vertices (v, 1), . . . , (v, λ) and every hyperedge e containing v by the new hyperedge
e \ {v} ∪ {(v, 1), . . . , (v, λ)}.

For c ∈ NV (H), H(c) is the hypergraph obtained from H by multiplying each
vertex v by cv, and H(c) is called a multiplication of H. For every e ∈ E(H) we
denote the corresponding hyperedge in E(H(c)) by e(c). If all entries of c are equal
to some constant k ∈ N, we also write H(k) and e(k).

Informally speaking, multiplying a vertex by some number λ means replacing
this vertex by λ indistinguishable copies. Observe that the vertex multiplication
operation is different form the vertex expansion defined in Definition 1.28.
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Multiplying a vertex by some λ does not change the intersection behavior of the
hyperedges as λ ≥ 1. Thus, the set of matchings in H corresponds one-to-one to the
set of matchings in H(c). Similarly, there is a one-to-one correspondence between
the set of perfect matchings in H and those in H(c). The maximum degree also
stays unchanged. This implies that if H is normal, then H(c) is also normal.
One problem arises when looking at the critical difference of the multiplied hyper-

graph H(k) for k ∈ N. If R,B is a critical pair of H(k) with d(H(k)) = |B|− |R| > 0,
then we can define a pair of disjoint vertex sets R′, B′ in H(lk) by taking l times
the number of copies of v ∈ V (H) that R or B contains. For all e(lk) ∈ E(lk)

we have |e(lk) ∩ R′| = l · |e(k) ∩ R| ≥ l · |e(k) ∩ B| = |e(lk) ∩ B′|. It holds that
|B′| − |R′| = l · (|B| − |R|), thus d(H(lk)) ≥ l · d(H(k)). This implies that d(H(k))
is not a lower bound on def(H) for all k ∈ N. We can overcome this problem by
considering a restricted version of the critical difference, where we allow to take
multiple copies of a vertex into R but only one copy of each vertex into B.
Definition 2.34 (multiplied critical difference). For a multiplication H(k) of a
hypergraph H we define its multiplied critical difference by

d∗(H(k)) := max{|B| − |R| : R,B ⊆ V (H(k)), R ∩B = ∅,
|e ∩R| ≥ |e ∩B| ∀e ∈ E(H(k)),(2.13)
|B ∩ {(v, 1), (v, 2), . . . , (v, k)}| ≤ 1 ∀v ∈ V (H)}.

By definition, we have d(H(k)) ≥ d∗(H(k)) for all k ∈ N. Furthermore, we ob-
served that def(H) ≥ d(H) but d(H(k)) > def(H) for large values of k ∈ N. We
show that def(H) ≥ d∗(H(k)) for all k ∈ N. In other words, the multiplied critical
difference always gives a lower bound on the deficiency.
Observation 2.35. Let H be a hypergraph and k some natural number. The defi-
ciency of H is greater or equal to the multiplied critical difference of H(k).
Proof. Let M be a matching covering as many vertices as possible, and let R,B ⊆
V (H(k)) be a pair attaining the maximum in (2.13). The matching M corresponds
to a matching M (k) := {e(k)|e ∈ M} ⊆ E(H(k)) of H(k) covering the vertices
C := V (M (k)) ⊆ V (H(k)).
Counting R and B hyperedge-wise and using |e∩R| ≥ |e∩B| for all e ∈ E(H(k))

gives

d∗(H(k)) = |B| − |R|

=

 ∑
e(k)∈M(k)

|e(k) ∩B|

+ |B \ C| −

 ∑
e(k)∈M(k)

|e(k) ∩R|

− |R \ C|
≤ |B \ C| − |R \ C| ≤ |B \ C|
≤ |V (H) \ V (M)| = def(H).
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The last inequality holds because B contains at most one copy of each vertex.

By Observation 2.35, d∗(H(k)) is bounded for k → ∞. This, together with
d∗(H(k)) ≥ d∗(H(k′)) for k ≥ k′, implies that d∗(H(k)) converges. The next lemma
shows that if H is a normal hypergraph, then the limit of d∗(H(k)) for k → ∞ is
equal to the deficiency for a normal hypergraph H. In short, we obtain a deficiency
version of Hall’s Theorem for normal hypergraphs.

Lemma 2.36. If H is a normal hypergraph of rank r, then def(H) = d∗(H(r−1)).

Proof. By Observation 2.35, it remains to show that def(H) ≤ d∗(H(r−1)).
Let M be a V -maximum matching of H and x∗ be a minimum size V -vertex

cover of H. A normal hypergraph satisfies νV (H) = τV (H), and this implies that
|V (M)| =

∑
v∈V (H) x

∗
v. As x∗ is of minimum size, we have x∗v ≤ maxe∈E(H) |e| = r

for all v ∈ V (H). Thus, we can use x∗ to define a pair (R,B) of disjoint vertex sets
in V (H(r−1)) as follows:

B := {(v, 1)|x∗v = 0},
R := {(v, i)|x∗v ≥ 2, 1 ≤ i ≤ x∗v − 1}.

For every hyperedge e ∈ E(H(r−1)) we get

|e ∩R| − |e ∩B| =
∑
v∈e

(x∗v − 1) ≥ |e| − |e| = 0.

Furthermore,

|B| − |R| =
∑

v∈V (H)
(1− x∗v) = |V (H)| −

∑
v∈V (H)

x∗v = |V (H)| − |V (M)| = def(H),

which implies def(H) ≤ d∗(H(r−1)).

Lemma 2.36 gives the following combinatorial characterization for the (non-) ex-
istence of a perfect matching in a normal hypergraph.

Theorem 2.37 ([Beckenbach and Borndörfer, 2018]). A normal hypergraph H of
rank r has no perfect matching if and only if H(r−1) has a pair R,B ⊆ V (H(r−1)) of
disjoint vertex sets such that |e ∩R| ≥ |e ∩B| for all e ∈ E(H(r−1)) and |R| < |B|,
i.e., def(H) > 0 if and only if d(H(r−1)) > 0.

Proof. If def(H) > 0, then d∗(H(r−1)) > 0 by Lemma 2.36. As d(H(r−1)) ≥
d∗(H(r−1)), it follows that d(Hr−1) > 0. On the other hand, if d(H(r−1)) > 0,
then def(H(r−1)) > 0, and thus also def(H) > 0.

The bound in Lemma 2.36 and Theorem 2.37 on the vertex multiplication factor
is best possible as the following example shows.
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Example 2.38. For every natural number n ≥ 3, let Hn be the hypergraph with
vertex set {1, . . . , n, n+1} and hyperedges S∪{n+1} for every subset S of {1, . . . , n}
of size n−1 (see Figure 2.6a for H3). Every two hyperedges of Hn intersect in vertex
n+ 1, so Hn is a normal hypergraph without a perfect matching of rank n.
We claim that N := n−1 is the smallest natural number such that H(N)

n contains
a pair R,B as in Theorem 2.37. Indeed, this can be shown by a simple calculation.
Let N ∈ N such that there exists a pair R,B ⊆ V (H(N)

n ) with |e ∩R| ≥ |e ∩B| for
all e ∈ E(H(N)

n ) and |R| < |B|.
For every i ∈ V (Hn) = {1, . . . , n+ 1} we define

yi := |{copies of i in R}| − |{copies of i in B}|.

Every hyperedge of Hn is of the form e = {1, . . . , n+1}\{i} for some i ∈ {1, . . . , n}.
As |e(N) ∩R| ≥ |e(N) ∩B|, we get

y1 + y2 + . . .+ yn+1 − yi ≥ 0(2.14)

for all i = 1, . . . , n. On the other hand,
∑n+1
i=1 yi = |R| − |B| < 0, thus

yi ≤
n+1∑
i=1

yi < 0

holds for all i = 1, . . . , n. The integrality of yi implies yi ≤ −1 for i = 1, . . . , n. This
together with inequality (2.14) for i = n gives

yn+1 ≥ −y1 − y2 − . . .− yn−1 ≥ n− 1.

It follows that N ≥ n− 1.

2.3.3 Relation between Hypergraph Properties
In this subsection we give an overview of the relation between Kőnig’s theorem and
the different variants of Hall’s theorem considered previously.
We define two Hall-type properties besides the one of Definition 2.26.

Definition 2.39 ((strong) multiplied Hall property). A hypergraph H has the
multiplied Hall property if it has a perfect matching or there exists a number k ∈ N
such that d(H(k)) > 0. If there exists k ∈ N such that def(H) = d∗(Hk), then H
has the strong multiplied Hall property.

The strong multiplied Hall property implies the multiplied Hall property. Namely,
if H has no perfect matching and d∗(H(k)) = def(H), then d(H(k)) ≥ d∗(H(k)) > 0.

In contrast to graphs, the Kőnig property does not imply the Hall property. For
example every normal hypergraph has the Kőnig property, but there are normal
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v1

v2 v3

v4

v5

Figure 2.10: A hypergraph with the Kőnig property and without the multiplied Hall
property.

hypergraphs without the Hall property, see Figure 2.6a. However, every normal
hypergraph has the multiplied Hall property. Thus, the question arises whether
every hypergraph with the Kőnig property has the multiplied Hall property. This
is not the case as the following counterexample shows.

Example 2.40. We consider the hypergraph H on the vertex set {v1, . . . , v5} with
hyperedges {v1, v2, v3, v4}, {v1, v5}, {v2, v5}, {v3, v4}, see Figure 2.10. The maxi-
mum size of a matching of H is two (e.g. {{v1, v5}, {v3, v4}}) and the minimum size
of a vertex cover is two (e.g. {v5, v3}). Thus, H has the Hall property. We claim
that H does not have the multiplied Hall property.

Suppose to the contrary that there exists a number k ∈ N such that d(H(k)) > 0,
and let (R,B) be a critical pair of H(k). For every i ∈ [5] we define

yi := |number of copies of vi in R| − |number of copies of vi in B|.

As |R| < |B| we get

y1 + y2 + y3 + y4 + y5 < 0.(2.15)

The inequalities |e(k) ∩ R| ≥ |e(k) ∩ B| for e ∈ E(H) give rise to the following
inequalities

y1 + y5 ≥ 0(2.16)
y2 + y5 ≥ 0(2.17)
y3 + y4 ≥ 0(2.18)

y1 + y2 + y3 + y4 ≥ 0(2.19)
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Strong Multiplied
Hall PropertyNormal

Lemma
2.36

Balanced
Thm. 2.8

Hall Property

Multiplied Hall
Property

Bipartite

Kőnig Property

Thm. 1.26

Stable

Hall Thm.
2.30

Semi-Bipartite + even

perfect + uniform

Figure 2.11: Summary of the relations between the hypergraph properties consid-
ered in this section.

The inequalities (2.15) and (2.19) imply that y5 < 0. On the other hand, (2.15)
together with (2.16) and (2.18) gives y2 < 0. Together we get y2 + y5 < 0, contra-
dicting (2.17).

Table 2.11 summarizes the relationship of the hypergraph properties considered
in the previous subsection; solid lines indicate hypergraph results and dashed lines
an “overlay” of Table 2.5. As in the graph case, we do not draw implications implied
by transitivity for better readability.
We argue that exactly the depicted implications and their transitive closure hold

where we suppress trivial implications or ones that are well known. For example,
all classes except "perfect + uniform" contain non-uniform hypergraphs, thus there
is no arc pointing into "perfect + uniform". We go from left to right.

a) Balanced: Theorem 2.8 states that every balanced hypergraph has the Hall
property. We have shown in the previous subsection that there are non-
balanced hypergraphs with the Hall property, see Theorem 2.30. Further-
more, neither the multiplied nor the strong multiplied Hall property imply
balancedness (take any normal, non-balanced hypergraph).

b) Normal: By Lemma 2.36, every normal hypergraph has the strong multiplied
Hall property. However, there are hypergraphs with the strong multiplied
Hall property that are not normal, for example, stable graphs. Every perfect
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uniform hypergraph that is not normal has the Hall and the multiplied Hall
property. Thus, both properties do not imply normality.

c) Kőnig Property: The example in Figure 2.10 shows a hypergraph with the
Kőnig property not having the multiplied Hall property. Thus, the Kőnig
property does not imply the multiplied Hall property and therefore neither
the Hall nor the strong multiplied Hall property. On the other hand, perfect
uniform hypergraphs have the Hall and the multiplied Hall property but in
general not the Kőnig property. Furthermore, every stable graph has the
strong multiplied Hall property but there are stable graphs without the Kőnig
property.

d) Strong Multiplied Hall Property: Clearly, the strong multiplied Hall property
implies the multiplied Hall property. The reverse implication is not true. For
example, the hypergraph depicted in Figure 2.7 has deficiency three but its
multiplied critical difference is one. Furthermore, the strong multiplied Hall
property does not imply the Hall property as every normal hypergraph has
the strong multiplied Hall property but not necessarily the Hall property.

e) Multiplied Hall Property: We have already seen that there are hypergraphs
with the multiplied Hall property but without the Hall property.

f) Hall Property: By Theorem 2.30 every perfect uniform hypergraph has the
Hall property.
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Chapter 3

Relaxed Matchings and Factors

In Chapter 2 we investigate when some specific hypergraphs have a perfect matching,
i.e., when they admit a partial hypergraph in which all vertices have degree one.
A way to generalize perfect matchings is to assign to every vertex a lower and
an upper bound on the degree this vertex should have in a partial hypergraph.
This leads to the concept of (g, f)-matchings, and the question whether or not a
hypergraph has a (g, f)-matching for given functions g, f . For the case of perfect
f -matchings (g = f) in graphs this question was answered in [Tutte, 1952]. Tutte’s
first proof was rather long and complicated. Later, he showed that the existence of
a perfect f -matching or the existence of an f -factor can be reduced to the problem
of deciding whether an auxiliary graph has a perfect matching, see [Tutte, 1954]. It
is possible to generalize this approach to the (g, f)-matching case, see for example
[Akiyama and Kano, 2011].
We approach the (g, f)-matching problem in hypergraphs using similar ideas.

We restrict our attention to classes of hypergraphs generalizing bipartite graphs
because the perfect matching problem on hypergraphs is already NP-complete,
and it is unlikely that there exists a good characterization for the existence of a
perfect matching in general hypergraphs.
After a short literature overview, we look at unimodular hypergraphs in Sec-

tion 3.2, where we first consider so-called relaxed f -matchings. In a relaxed f -
matching we are allowed to exceed the degree bound at a vertex by paying some
penalty. We define the dual concept of a relaxed b-vertex cover, where one has
to pay some penalty for not covering a hyperedge often enough. We then prove a
min-max theorem between relaxed f -matchings and relaxed b-vertex covers. This
result is used to characterize the existence of (g, f)-matchings in unimodular hy-
pergraphs. Section 3.2 contains joint work with Britta Peis, Oliver Schaudt, and
Robert Scheidweiler. A preliminary version was published as a technical report, see
[Beckenbach et al., 2017].

In Section 3.3 we investigate when a uniform hypergraph has a perfect f -matching
or f -factor for Mengerian, perfect, and balanced hypergraphs. Our main results
are characterizations of the existence of perfect f -matchings in uniform Mengerian
hypergraphs, and f -factors in uniform balanced hypergraphs. It seems artificial
to demand that all hyperedges have the same size. However, we show that it is
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NP-complete to decide whether a non-uniform balanced hypergraph has a perfect
f -matching or f -factor. For non-uniform Mengerian hypergraphs it is even NP-
complete to decide whether a perfect matching exists. To the best of our knowledge
complexity questions on these hypergraph classes have not been considered before.
Section 3.3 is based on the article [Beckenbach and Scheidweiler, 2017], which is
joint work with Robert Scheidweiler.

3.1 Literature Overview
There is a vast literature on perfect f -matchings and f -factors in graphs. We con-
centrate on the bipartite graph case as we generalize existence results for perfect
f -matchings and f -factors in bipartite graphs to some classes of bipartite hyper-
graphs. For general graphs we refer to the book of Akiyama and Kano on factors,
see [Akiyama and Kano, 2011], or the survey article [Plummer, 2007]. After looking
at bipartite graphs, we summarize what is known about factors in hypergraphs.

The existence conditions for perfect f -matchings and f -factors given by Tutte
take a much simpler form on bipartite graphs.
Theorem 3.1 (Thm. 2.4.4 [Lovász and Plummer, 1986]). Given a bipartite graph
G with vertex partition V (G) = A ∪ B and a function f : V (G) → Z≥0, the graph
G has a perfect f -matching if and only if

f(A) = f(B) and(3.1)
f(S) ≤ f(N(S)) for all S ⊆ A,(3.2)

where N(S) := {v ∈ V (H) \ S : v is adjacent to s ∈ S} denotes the neighborhood of
a set of vertices.
Observe, that Theorem 3.1 is a direct generalization of Hall’s theorem where the

cardinality of a set is replaced by its f -value. Indeed, it can be deduced from Hall’s
theorem by considering the multiplication Gf of G, where each vertex v is replaced
by f(v) copies v1, . . . , vf(v) and two vertices vi, wj are connected by an edge in Gf
if v and w are adjacent in G. The graph Gf is still bipartite and it has a perfect
matching if and only if G has a perfect f -matching. Hall’s theorem applied to Gf
gives rise to conditions (3.1) and (3.2) on G.
Concerning factors in bipartite graphs we get the following existence result, which

is proven in [Lovász and Plummer, 1986] using the max-flow min-cut theorem.
Theorem 3.2 (Thm. 2.4.2 [Lovász and Plummer, 1986]). A bipartite graph G with
vertex partition V (G) = A∪B has an f -factor for a given function f : V (G)→ Z≥0
if and only if

f(A) = f(B) and(3.3)
f(S)− f(T ) ≤ |{e ∈ E(G) : e ∩ S 6= ∅, e ∩ T = ∅}| for all S ⊆ A, T ⊆ B.(3.4)
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Theorem 3.2 can be deduced from Theorem 3.1 using the reduction of the ex-
istence of an f -factor to that of a perfect f -matching described by Lovász and
Plummer in Section 10.1 of [Lovász and Plummer, 1986]. Namely, each edge is sub-
divided into a path of length three by adding two new vertices, and f is extended
to these new vertices by giving them weight one. If we start with a bipartite graph,
then the resulting graph is still bipartite.
Condition (3.4) for the existence of f -factors in bipartite graphs depends on two

sets in contrast to the related one for the existence of perfect f -matchings. However,
it is also possible to give a one-set condition in the case of f -factors, which follows
from a result of Heinrich, Hall, Kirkpatrick, and Liu in [Heinrich et al., 1990]. They
characterize the existence of (g, f)-factors on bipartite graphs, and on general graphs
for the special case that g(v) < f(v) for all vertices v.

Theorem 3.3. [Heinrich et al., 1990] Given a bipartite graph G, and two functions
g, f : V (G)→ Z≥0 with g(v) ≤ f(v) ≤ degG(v) for all v ∈ V (G), the graph G has a
(g, f)-factor if and only if∑

v/∈S

(
g(v)− degG−S(v)

)
+ ≤ f(S) ∀S ⊆ V (G),

where G− S denotes the subgraph of G induced by V (G) \ S and (q)+ := max (0, q)
for all q ∈ Q.

The decision problem whether a graph (bipartite or not) has a c-capacitated
(g, f)-matching lies in P by a result in [Anstee, 1985]. Though Anstee’s algorithm
is only stated for the case c ≡ 1, it can also be used for the general capacities c
as its running time depends only on the number of vertices and multiple edges are
allowed.
In contrast to the graph case, there is only little known about factors in hyper-

graphs. The existing literature mainly focuses on extremal problems like Dirac-type
results, see Section 2.1 of Chapter 2 and its references. Besides that, Hoffman char-
acterizes in [Hoffman, 1960] when a system of the form

(3.5) g ≤ Ax ≤ f, l ≤ x ≤ u

has a solution for a totally unimodular binary matrix A. He calls his result (which
is not proven in [Hoffman, 1960]) “the most general theorem of the Hall type” as
many Hall type theorems (existence of a system of distinct representatives, perfect
matchings in bipartite graphs, flows in networks, etc.) can be reduced to it. Sixteen
years later Hoffman published a proof of a slight generalization of this theorem in
[Hoffman, 1976] using linear programming arguments.

Theorem 3.4. [Hoffman, 1976] A matrix A ∈ Qm×n is totally unimodular if and
only if for all f, g ∈ Qm, l, u ∈ Qn with gi ≤ fi for i ∈ [m] and lj ≤ uj for j ∈ [n]
the following two statements are equivalent
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(i) The system g ≤ Ax ≤ f, l ≤ x ≤ u has a solution x ∈ Qn.

(ii) For all w ∈ {0,±1}m, v ∈ {0,±1}n with ATw = v we have∑
i:wi=−1

gi +
∑
j:vj=1

lj ≤
∑
i:wi=1

fi +
∑

j:vj=−1
uj .

Hoffman’s result implies a characterization of the existence of capacitated (g, f)-
matchings in unimodular hypergraphs. In terms of c-capacitated (g, f)-matchings
on unimodular hypergraphs condition (ii) gives:

g(X)− f(Y ) ≤
∑

e∈E(H)
c(e) (|e ∩X| − |e ∩ Y |)+(3.6)

holds for all X,Y ⊆ V (H) with |e ∩X| − |e ∩ Y | ∈ {0,±1}.
We give a combinatorial proof of this condition in Subsection 3.2.2.

3.2 Relaxed Matchings in Unimodular Hypergraphs
There are many different proofs for Kőnig’s theorem in bipartite graphs. One possi-
bility is to show that every bipartite graph has a vertex covered by every maximum
size matching, and then use induction. The proof works as follows:
First, we show that in every bipartite graph with at least one edge there exists a

vertex covered by every maximum matching. Suppose that G is a bipartite graph
that has no such vertex, and choose any edge e∗ = {u, v} of G. Let Mu, Mv be two
maximum matchings exposing u and v, respectively. We consider the multigraph
G′ on V (G) induced by Mu ∪Mv ∪ {e∗}, i.e., edges occurring both in Mu and Mv

lead to parallel edges in G′. As the maximum degree of G′ is two, its edge set
can be partitioned into two matchings M1,M2 one of which must be larger than
Mu or Mv. However, M1 and M2 form also matchings in G and therefore we get a
contradiction becauseMu andMv are maximum matchings in G. Thus, there exists
a vertex covered by every maximum matching.
Now, we use induction on the number of edges of a bipartite graph. A graph

without edges has vertex cover number zero and matching number zero, thus the
base case of the induction is trivial. If G is a bipartite graph with at least one edge,
and w is a vertex covered by every maximum matching of G, then we use induction
on G − w, which has strictly less edges than G, to obtain a vertex cover C of size
ν(G−w), and observe that C∪{w} is a vertex cover of G of size ν(G−w)+1 = ν(G).

Scheidweiler generalizes in his dissertation [Scheidweiler, 2011] the idea of this
proof to balanced hypergraphs, where he exploits a nice coloring property of bal-
anced hypergraphs. Together with Triesch he uses the same proof idea for a Kőnig-
type theorem involving relaxed matchings in [Scheidweiler and Triesch, 2016], where
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a relaxed matching is a partial hypergraph in which one has to pay a penalty if a
vertex is covered more than once. They use this result to give a short proof of
Hall’s theorem in balanced hypergraphs. Their work is the starting point of our
investigation of existence criteria for (g, f)-matchings. It turns out that we have
to restrict ourselves to unimodular hypergraphs, and that one not only has to re-
lax matchings but also vertex covers. In Subsection 3.2.1 we define formally what
kind of relaxation of matchings and vertex covers we are looking at, and give a
min-max theorem for relaxed matchings and relaxed vertex covers in unimodular
hypergraphs. Building on these results we give a combinatorial proof of Hoffman’s
Hall-type theorem for unimodular hypergraphs in Subsection 3.2.2.

3.2.1 Relaxed Matchings and Vertex Covers

Kőnig’s theorem states that any bipartite graph admits a matching and a vertex
cover of equal size. This min-max result can be extended to unimodular hyper-
graphs using the fact that both the matching and the vertex cover polyhedron of a
unimodular hypergraph are integral. In this subsection, we give a purely combina-
torial proof of a min-max theorem for unimodular hypergraphs, which can be seen
as a weighted version of Kőnig’s theorem, using coloring properties of unimodular
hypergraphs. Our main result of this subsection, Theorem 3.13, is not new in the
sense that it can also be derived from the Hoffman-Kruskal theorem (Theorem 2.2).
However, the proof ideas are new and might give rise to new methods for totally
unimodular matrices.
By Definition 1.18, every unimodular hypergraph admits an equitable 2-coloring,

that is, a partition of its vertex set into two subsets S1, S2 such that every hyperedge
e intersects S1, S2 in nearly the same number of vertices (|e ∩ S1| − |e ∩ S2| ∈
{0, 1,−1}). There exists also the notion of an equitable k-coloring for k ≥ 2.

Definition 3.5 (equitable k-coloring). Given an integer k ∈ N and a hypergraph
H, an equitable vertex k-coloring, or equitable k-coloring, of H is a partition of V (H)
into k subsets C1, . . . , Ck, which are called color classes, such that⌊ |e|

k

⌋
≤ |e ∩ Ci| ≤

⌈ |e|
k

⌉
,

for all i ∈ [k] and every hyperedge e ∈ E(H).

It is also possible to color the hyperedges leading to the concept of an equitable
edge k-coloring.

Definition 3.6 (equitable edge k-coloring). Given an integer k ∈ N and a hyper-
graph H, an equitable edge k-coloring of H is a partition of E(H) into k subsets
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C1, . . . , Ck, which are called color classes, such that⌊degH(v)
k

⌋
≤ degH[Ci](v) ≤

⌈degH(v)
k

⌉
,

for all i ∈ [k] and every vertex v ∈ V (H).

De Werra strengthens in [de Werra, 1971] the result on the existence of equitable
2-colorings in unimodular hypergraphs to equitable k-colorings.

Theorem 3.7. [de Werra, 1971] A unimodular hypergraph H has an equitable ver-
tex k-coloring for k ≥ 2.

The proof of this theorem is constructive and uses equitable 2-colorings to refine
an arbitrary k-coloring until it is equitable.
A similar result holds for hyperedge colorings of unimodular hypergraphs, see for

example Corollary 2 in Chapter 5 of [Berge, 1984]. It also follows from Theorem 3.7
by hypergraph duality. Namely, an equitable edge k-coloring in a hypergraph H
corresponds to an equitable k-coloring in H∗. If H is unimodular, then also H∗
is unimodular. Therefore, every unimodular hypergraph has not only an equitable
k-coloring but also an equitable edge k-coloring.

Theorem 3.8. A unimodular hypergraph H has an equitable edge k-coloring for
k ≥ 2.

The only properties of unimodular hypergraphs that we need in the remainder of
this subsection are Theorem 3.7, Theorem 3.8, and the fact that that the class of
unimodular hypergraphs is closed under duality.
We consider so-called relaxed f -matchings and relaxed b-vertex covers, which are

nothing but bounded functions from the hyperedge or vertex set to the non-negative
integers. The key point in the definition are the associated cost functions.

Definition 3.9 (relaxed f -matching, relaxed b-vertex cover). Let H be a given
hypergraph together with functions b, c : E(H)→ Z≥0, and f, p : V (H)→ Z≥0.

A c-capacitated relaxed f -matching is a function y : E(H)→ Z≥0 with y(e) ≤ c(e)
for all e ∈ E(H). The violation of y at v is violv(y) := (

∑
e∈δH(v) y(e)− f(v))+ for

every v ∈ V (H), and the weight of y is L(y) := bT y − pTviol(y). An optimal
c-capacitated relaxed f -matching is one that maximizes the weight function L.
A p-capacitated relaxed b-vertex cover is a function x : V (H)→ Z≥0 with x(v) ≤

p(v) for all v ∈ V (H). The violation of x at e is viole(x) := (b(e) −
∑
v∈e

x(v))+ for

every e ∈ E(H), and the weight of x is L̃(x) := fTx + cTviol(x). A p-capacitated
relaxed b-vertex cover minimizing L̃ is called optimal.
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If no confusion might occur, we call a c-capacitated relaxed f -matching just a
relaxed f -matching and a p-capacitated relaxed b-vertex cover a relaxed b-cover.

Our goal in this subsection is to show that the maximum weight of a c-capacitated
relaxed f -matching is equal to the minimum weight of a p-capacitated relaxed b-
vertex cover on unimodular hypergraphs. Therefore, we use a similar strategy as in
the alternative proof of Kőnig’s Theorem described at the beginning of Section 3.2,
where we argued that there exists a vertex covered by every maximum matching,
and then used induction. In our case, we work on the dual side and show that there
exists a hyperedge e covered at least b(e)-times by every optimum p-capacitated
relaxed b-vertex cover, and then use induction by decreasing the capacity c(e) of
this hyperedge by one.
First, we prove a lemma that shows how equitable colorings can be used to improve

a set of relaxed b-covers. Therefore, we need the following assumptions on the
penalty costs ∑

v∈e
p(v) > b(e) for all e ∈ E(H),(3.7) ∑

e∈δH(v)
c(e) > f(v) for all v ∈ V (H).(3.8)

We call the first inequality the penalty inequality as it states that for every hyperedge
the sum of penalties for covering a vertex v ∈ e more than f(v)-times is at least its
b-weight b(e). If this inequality does not hold, then we can always choose y(e) = c(e)
in an optimal relaxed f -matching as the gain b(e) we get from increasing y(e) is at
least the penalty we have to pay for covering the vertices v ∈ emore than f(v)-times.
The second inequality is called capacity inequality and states that for every vertex

v the sum of the capacities of all hyperedges e incident to v is larger than the number
of times f(v) this vertex can be covered by a c-capacitated f -matching without
paying any penalty. If this inequality is violated, then there exists an optimal b-
vertex cover with x(v) = 0, as decreasing a value of x(v) ≥ 1 by one unit changes
the weight function L̃ by an amount of at most −f(v) +

∑
e∈δH(v) c(e) ≤ 0, i.e., the

weight L̃ can only decrease.
The next lemma tells us how to improve a set of relaxed b-covers if no hyperedge

exists such that every relaxed b-cover has violation zero at this hyperedge. In the
proof of this lemma we use vertex multiplication as defined in Definition 2.33 except
that we allow to multiply a vertex by zero. Multiplying a vertex v in a hypergraph
H by 0 results in the subhypergraph H \ v restricted to V (H) \ {v}. We show that
vertex multiplication does not destroy unimodularity:
Multiplying a vertex by 0 means deleting this vertex. As every subhypergraph

of a unimodular hypergraph is unimodular, deleting a vertex does not destroy uni-
modularity. It remains to show that a unimodular hypergraph is still unimodular
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after multiplying a vertex by some λ ≥ 1. In the dual hypergraph, multiplying a
vertex v by λ results in replacing the hyperedge ev corresponding to v by λ parallel
hyperedges. Clearly, replacing a hyperedge by some number of parallel hyperedges
does not destroy the property of being unimodular. As a hypergraph is unimodular
if and only if its dual is unimodular, we obtain that every vertex multiplication of
a unimodular hypergraph remains unimodular.

Lemma 3.10. Let H be a unimodular hypergraph, b, c : E(H) → Z≥0, and f, p :
V (H) → Z≥0 be functions satisfying the capacity inequality (3.8). If there exists a
vertex v0 ∈ V (H) contained in exactly k hyperedges {e1, . . . , ek} ⊆ E(H) and k (not
necessarily distinct) p-capacitated relaxed b-covers x(1), . . . , x(k) satisfying

•
∑
v∈ei

x(i)(v) < b(ei) for each i ∈ [k], and

• x(j)(v0) < p(v0) for at least one j ∈ [k],

then there is a p-capacitated relaxed b-cover x∗ with k · L̃(x∗) <
k∑
i=1

L̃(x(i)).

Proof. Let us define a function m : V (H)→ Z≥0 by

m(v) :=


k∑
i=1

x(i)(v) for v 6= v0,

k∑
i=1

x(i)(v0) + 1 for v = v0.

We consider the hypergraph H ′ that arises from H by first adding singleton hyper-
edges {v} for every v ∈ V (H), and then multiplying each vertex v by m(v). Both
operations preserve unimodularity, thus H ′ is unimodular.
By Theorem 3.7, there exists an equitable k-coloring C1, . . . , Ck of the vertices of

H ′. These color classes induce functions c(1), . . . , c(k) : V (H) → Z≥0 by c(i)(v) =
|Ci∩{(v, 1), . . . , (v,m(v))}| for each v ∈ V (H) and each i ∈ [k]. That is, c(i)(v) is the
number of copies of v contained in Ci. Each of these functions is a p-capacitated
b-cover, since H ′ contains at most p(v) · k copies of each vertex v ∈ V (H) so
that the equitable k-coloring property applied on {(v, 1), . . . , (v,m(v))} ensures that
c(i)(v) ≤ dm(v)/ke ≤ p(v) for all v ∈ V (H) and i ∈ [k].

We show that the sum of the L̃-weight of the relaxed b-covers c(1), . . . , c(k) is less
than that of x(1), . . . , x(k) implying that at least one of the p-capacitated relaxed
b-covers c(j) must have smaller L̃-weight than the average of L̃(x(i)) for i ∈ [k].
By construction, we know that

k∑
i=1

∑
v∈V (H)

f(v) · c(i)(v) =
k∑
i=1

∑
v∈V (H)

f(v) · x(i)(v) + f(v0).(3.9)
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To bound the change of L̃ caused by the penalties, we consider for each individual
edge g ∈ E(H) the sum of violations

∑k
i=1 violg(x(i)) and

∑k
i=1 violg(c(i)) caused at

g.
We claim that none of c(1), . . . , c(k) has positive violation at a hyperedge g ∈ E(H)

with
∑
v∈g

∑k
i=1 x

(i)(v) ≥ k · b(g). Using the equitable k-coloring property we get

∑
v∈g

c(i)(v) = |Ci ∩ g(m)| ≥
⌊
|g(m)|
k

⌋
≥
⌊∑

v∈gm(v)
k

⌋
≥ b(g).

On the other hand, every x(i) has a positive violation at ei by assumption. Thus,
we get

k∑
i=1

violg(x(i)) ≥


1 =

k∑
i=1

violg(c(i)) + 1, if v0 ∈ g

0 =
k∑
i=1

violg(c(i)), otherwise.
(3.10)

Now, we consider hyperedges g ∈ E(H) with
∑
v∈g

∑k
i=1 x

(i)(v) < k · b(g). For
each such hyperedge and each i ∈ [k] the equitable coloring property ensures that∑

v∈g
c(i)(v) ≤

⌈
|g(m)|
k

⌉
≤ b(g),

which implies that the sum of violations at g caused by the c(1), . . . , c(k) is
k∑
i=1

b(g)−
∑
v∈g

c(i)(v)


+

=
k∑
i=1

b(g)−
∑
v∈g

c(i)(v)

 .
On the other hand, the b-covers x(1), . . . , x(k) cause the following violation at g

k∑
i=1

violg(x(i)) =
k∑
i=1

b(g)−
∑
v∈g

x(i)(v)


+

≥
k∑
i=1

b(g)−
∑
v∈g

x(i)(v)

 .
By construction, we know that

k∑
i=1

b(g)−
∑
v∈g

x(i)(v)

 =
k∑
i=1

b(g)−
∑
v∈g

c(i)(v)

+ |g ∩ {v0}|.

It follows that for every hyperedge g with
∑
v∈g

∑k
i=1 x

(i) < k · b(g) we have

k∑
i=1

violg(x(i)) ≥


k∑
i=1

violg(c(i)) + 1, if v0 ∈ g
k∑
i=1

violg(c(i)), otherwise.
(3.11)
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Combining inequalities (3.9), (3.10), and (3.11) we obtain:

k∑
i=1

L̃(x(i)) + f(v0) ≥
k∑
i=1

L̃(ci) +
∑
e:v0∈e

c(e).

As
∑
e∈δH(v0) c(e) > f(v0) by (3.8), this leads to

k∑
i=1

L̃(x(i)) >
k∑
i=1

L̃(c(i)). If we

choose x∗ to be the color class c(j) of smallest L̃-weight, then k · L̃(x∗) <
k∑
i=1

L̃(x(i))
as claimed.

Lemma 3.10 implies that there exists a hyperedge e that is covered at least b(e)-
times by every optimum b-cover if the penalty inequalities (3.7) and the capacity
inequalities (3.8) hold.

Corollary 3.11. Let H be a unimodular hypergraph, b, c : E(H) → Z≥0, and
f, p : V (H) → Z≥0 be functions satisfying the penalty and the capacity inequalities
(3.7)-(3.8). There exists a hyperedge e ∈ E(H) such that

∑
v∈e x(v) ≥ b(e) for every

optimum p-capacitated relaxed b-vertex cover.

Proof. Suppose that no such hyperedge exists. We choose any e1 ∈ E(H) and an
optimum p-capacitated relaxed b-vertex cover x(1) with

∑
v∈ei

x(1)(v) < b(e1). As∑
v∈e1 p(v) > b(e1) by (3.7), there exists a vertex v0 ∈ e1 with x(1)(v0) < p(v0). Let

e2, . . . , ek be the other hyperedges of H containing v0. For every i = 2, . . . , k let
x(i) be an optimum p-capacitated relaxed b-vertex cover with

∑
v∈ei

x(i)(v) < b(ei).
By Lemma 3.10, there exists a p-capacitated relaxed b-cover x∗ with k · L̃(x∗) <∑k
i=1 L̃(x(i)); a contradiction to the optimality of x(1), . . . , x(k).

Given a hyperedge e∗ that is covered at least b(e∗)-times be every relaxed b-vertex
cover we decrease its capacity c(e∗) by one. Afterwards, we have to pay less if we
cover e∗ less than b(e∗)-times. The next lemma shows that even after this change of
the capacity function there exists an optimum relaxed b-vertex cover that covers e∗
at least b(e∗)-times. This fact is needed for an inductive proof of our main theorem:
Theorem 3.13.

Lemma 3.12. Let H be a unimodular hypergraph, b, c : E(H) → Z≥0, and f, p :
V (H) → Z≥0 be functions satisfying the capacity inequalities (3.8). Let e∗ be a
hyperedge with c(e∗) ≥ 1 that is covered at least b(e∗)-times by every optimum relaxed
b-cover. If we define a new capacity function c′ : E(H)→ Z≥0 by c′(e∗) := c(e∗)−1
and c′(e) := c(e) for all other hyperedges e, then there exists an optimum relaxed
b-cover x′ : V (H) → Z≥0 with respect to b, c′, f, p such that

∑
v∈e∗ x

′(v) ≥ b(e∗)
holds.
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Proof. Let x′ be an optimum relaxed b-cover with respect to b, c′, f, p covering e∗ as
often as possible, and let x be an optimum relaxed b-cover with respect to b, c, f, p.
Suppose that

∑
v∈e∗ x

′(v) = b(e∗) − k where k ≥ 1, otherwise x′ covers e∗ at least
b(e∗)-times and we are done.
We denote by L̃ the weight of a relaxed b-cover with respect to the capacity

function c and by L̃′ the weight with respect to c′. As c and c′ only differ at e∗ and
viole∗(x) = 0 we get that L̃′(x) = L̃(x). Furthermore, we have L̃(x′) = L̃′(x′) + k
as viole∗(x′) = k, and L̃(x) ≤ L̃(x′) − 1 because otherwise x′ would be an optimal
relaxed b-cover with respect to c covering e∗ less than b(e∗)-times. In total, we get
L̃′(x) ≤ L̃′(x′) + k − 1.

If k = 1, then we get L̃′(x) ≤ L̃′(x′), which shows that x is also an optimal relaxed
b-cover with respect to the adjusted penalty function c′. As x has violation zero at
e∗, we found an optimum relaxed b-vertex cover with respect to c′ covering e∗ at
least b(e∗)-times.

For k ≥ 2 we apply a coloring trick similar as in Lemma 3.10, namely, we define
a function m(v) : V (H) → Z≥0 by m(v) := (k − 1)x′(v) + x(v) for all v ∈ V (H),
and consider the hypergraph H ′ that arises from H by adding singleton hyperedges
{v} for every v ∈ V (H), and then multiplying each vertex v by m(v).

Analogously as in Lemma 3.10, we choose an equitable vertex k-coloring in H ′,
which gives us k new p-capacitated relaxed b-covers c(1), . . . , c(k).
The total L̃′-weight given by x and the (k − 1) copies of x′ is

(k − 1)L̃′(x′) + L̃′(x) ≤ (k − 1)L̃′(x′) + L̃′(x′) + k − 1 = kL̃′(x′) + k − 1.

This shows that
∑k
i=1 L̃

′(c(i)) ≤ kL̃′(x′) + k − 1. This and the integrality of L̃′
imply that there exists an index j ∈ [k] such that L′(c(j)) ≤ L̃′(x′). Indeed, as x′
is optimal with respect to L̃′ we have equality and c(j) is also an optimal relaxed
cover. Furthermore, the inequality

| (e∗)(m) | =
∑
v∈e∗

m(v) ≥ (k − 1)(b(e∗)− k) + b(e∗) = k · (b(e∗)− k + 1)

together with the fact that we have chosen an equitable vertex k-coloring gives

∑
v∈e∗

c(j)(v) ≥
⌊
|(e∗)(m)|

k

⌋
≥ b(e∗)− k + 1.

This contradicts the choice of x′ and the proof is completed.

Now, we state our main result that the cost of an optimal c-capacitated relaxed
f -matching equals the cost of an optimal p-capacitated relaxed b-vertex cover.
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Theorem 3.13. Let H be a unimodular hypergraph, b, c : E(H) → Z≥0, and f, p :
V (H) → Z≥0 be functions. The maximum weight L(y) of a c-capacitated relaxed
f -matching y is equal to the minimum weight L̃(x) of a p-capacitated relaxed b-cover
x.

Proof. Let y be a c-capacitated relaxed f -matching and x be a p-capacitated and
relaxed b-cover. The following chain of equalities and inequalities shows that L(y)
is a lower bound for L̃(x).

L(y) =
∑

e∈E(H)
y(e)b(e)−

∑
v∈V (H)

 ∑
e∈δH(v)

y(e)− f(v)


+

· p(v)

≤
∑

e∈E(H)
y(e)

(∑
v:v∈e

x(v)
)

+
∑

e∈E(H)
y(e)

(
b(e)−

∑
v:v∈e

x(v)
)

+

−
∑

v∈V (H)

 ∑
e∈δH(v)

y(e)− f(v)


+

· x(v)

≤
∑

e∈E(H)
y(e)

(∑
v:v∈e

x(v)
)

+
∑

e∈E(H)

(
b(e)−

∑
v:v∈e

x(v)
)

+
· c(e)

−
∑

v∈V (H)

 ∑
e∈δH(v)

y(e)− f(v)

 · x(v)

=
∑

v∈V (H)
x(v)f(v) +

∑
e∈E(H)

(
b(e)−

∑
v:v∈e

x(v)
)

+
· c(e)

= L̃(x).

We prove that the maximum weight L(y) of a c-capacitated relaxed f -matching y
is an upper bound on the minimum weight L̃(x) of a p-capacitated relaxed b-cover
x by induction over |V (H)|+ |E(H)|+

∑
e∈E(H)

c(e).

For the induction basis we consider the hypergraph whose vertex and hyperedge
set is the empty set. Clearly, the statement of the theorem holds for this hypergraph.
For the inductive step, we assume that the theorem is true for all hypergraphs

with |V (H)| + |E(H)| +
∑
e∈E(H) c(e) ≤ k and we let H be a hypergraph with

|V (H)|+ |E(H)|+
∑
e∈E(H) c(e) = k + 1.

If (3.7) does not hold, then there exists a hyperedge e′ ∈ E(H) with
∑
v:v∈e′ p(v) ≤

b(e′). In this case, we use induction on the hypergraph H ′ = H[E(H) \ {e′}]
together with the functions b, c restricted to E(H) \ {e′} and f ′, p, where f ′ :
V (H ′) → Z≥0 is defined by f ′(v) := max (0, f(v)− c(e′) · |{v} ∩ e′|). Let x be an
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optimum relaxed p-cover and y be an optimum relaxed f ′-matching for the instance
(H ′, b|E(H′), c|E(H′), f

′, p). We denote the weight of y by L′(y) and that of x by
L̃′(x). By the induction hypothesis, we know that L′(y) = L̃′(x). The function x is
also a p-capacitated relaxed b-cover of H. Using that f(v) = f ′(v) for all v /∈ e′ and
f(v) = f ′(v)+min (c(e′), f(v)) for v ∈ e′, x ≤ q, and

∑
v∈e′ x(v) ≤

∑
v∈e′ p(v) ≤ b(e′)

we get

L̃(x) =
∑

v∈V (H)
x(v)f(v) +

∑
e∈E(H)

c(e)
(
b(e)−

∑
v∈e

x(v)
)

+

=
∑

v∈V (H)
x(v)f ′(v) +

∑
v∈e′

min
(
c(e′), f(v)

)
x(v) +

∑
e∈E(H)

c(e)
(
b(e)−

∑
v∈e

x(v)
)

+

= L̃′(x) +
∑
v∈e′

min
(
c(e′), f(v)

)
x(v) + c(e′)

b(e′)−∑
v∈e′

x(v)


+

= L̃′(x) +
∑
v∈e′

min
(
c(e′), f(v)

)
x(v) + c(e′)b(e′)− c(e′)

∑
v∈e′

x(v)

≤ L̃′(x) + c(e′)b(e′) +
∑
v∈e′

min
(
0, f(v)− c(e′)

)
p(v)

We define a relaxed f -matching y′ on H by y′(e) = y(e) for all e ∈ E(H ′) and
y(e′) := c(e′). The function y′ is a c-capacitated relaxed f -matching of weight

L(y′) =
∑

e∈E(H)
y′(e)b(e)−

∑
v∈V (H)

 ∑
e∈δH(v)

y′(e)− f(v)


+

p(v)

=
∑

e∈E(H′)
y(e)b(e) + c(e′)b(e′)−

∑
v∈V (H)\e′

 ∑
e∈δH(v)

y(e)− f ′(v)


+

p(v)

−
∑
v∈e′

 ∑
e∈δH(v),e6=e′

y(e)− f ′(v) + c(e′)−min
(
c(e′), f(v)

)
+

p(v)

≥ L′(y) + c(e′)b(e′)−
∑
v∈e′

(
c(e′)−min

(
c(e′), f(v)

))
p(v)

= L′(y) + c(e′)b(e′) +
∑
v∈e′

min
(
0, f(v)− c(e′)

)
p(v).

In total, we get L(y′) ≥ L̃(x).
Next, we consider the case that (3.8) is violated, i.e., there exists v ∈ V (H) with∑
e∈δH(v) c(e) ≤ f(v), then the capacity bounds y(e) ≤ c(e) for e ∈ δH(v) imply the

degree inequality
∑
e∈δH(v) y(e) ≤ f(v) for v which shows that no penalty cost occurs

65



Chapter 3 Relaxed Matchings and Factors

at v. Thus, the optimal value of a c-capacitated relaxed f -matching in H is the
same as the optimal value of a c-capacitated relaxed f ′-matching in H(V (H) \ {v})
where f ′ denotes the restriction of f to V (H) \ {v}. On the dual side, we already
argued that

∑
e:v∈e c(e) ≤ f(v) implies that there exists an optimal relaxed b-cover

x∗ with x∗(v) = 0. Thus, we remove vertex v from H and apply induction on
H(V (H) \ {v}).

In the remainder of the proof we assume that the penalty and capacity inequalities
(3.7)-(3.8) hold. By Corollary 3.11, there exists a hyperedge e∗ that is covered at
least b(e∗)-times by every optimum relaxed b-cover. If c(e∗) = 0, then y(e∗) = 0 for
every relaxed f -matching and for every relaxed b-cover x the penalty c(e∗) ·viole∗(x)
at e∗ is zero. This shows that the optimal weight of a relaxed f -matching in H with
respect to b, c, f , p is the same as the optimal weight of a relaxed f -matching in
H[E(H) \ {e∗}] with respect to b|E(H)\{e∗}, c|E(H)\{e∗}, f , p. The same observation
holds for the optimal weight of a relaxed b-vertex cover inH and H[E(H)\{e∗}]. By
induction hypothesis, the optimal weight of an relaxed f -matching inH[E(H)\{e∗}]
is equal to the weight of an optimal relaxed b-vertex cover.
If c(e∗) ≥ 1, we reduce the capacity of the hyperedge e∗ by one and denote

the changed capacity function by c′. Furthermore, we denote the weight functions
corresponding to b, c′, f and p by L′ and L̃′. By induction hypothesis, there exist
an optimum c′-capacitated relaxed f -matching y′ and an optimum p-capacitated
relaxed b-cover x′ with L̃′(x′) = L′(y′). We choose x′ such that it covers e∗ at least
b(e∗)-times, which is possible by Lemma 3.12. Given an optimum c-capacitated
relaxed f -matching y concerning L we get

L(y) ≥ L′(y′) = L̃′(x′) =
∑

v∈V (H)
x′(v)f(v) +

∑
e∈E(H)

(
b(e)−

∑
v:v∈e

x′(v)
)

+
· c′(e)

=
∑

v∈V (H)
x′(v)f(v) +

∑
e∈E(H)

(
b(e)−

∑
v:v∈e

x′(v)
)

+
· c(e)

= L̃(x′).

As x′ is also a p-capacitated relaxed b-cover of H, this completes the proof.

3.2.2 Existence of (g, f)-Matchings in Unimodular Hypergraphs

In this subsection we characterize the existence of c-capacitated (g, f)-matchings
in unimodular hypergraphs. Therefore, we reduce the existence of a c-capacitated
(g, f)-matching in a unimodular hypergraph to that of a perfect f -matching in an
auxiliary unimodular hypergraph. Hence, we start by characterizing the existence of
perfect f -matchings. We need the notion of vertex expansion as introduced in Def-
inition 1.28: A hypergraph H has a perfect f -matching if and only if its expansion
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Hf has a perfect matching. However, it is possible that Hf is not unimodular, even
not balanced, for a unimodular hypergraph H. Thus, we cannot apply Hall’s condi-
tion for balanced hypergraphs (see [Conforti et al., 1996]). However, we use Theo-
rem 3.13 to obtain a version of Kőnig’s theorem for Hf , similar to the one for perfect
matchings in balanced hypergraphs obtained in [Scheidweiler and Triesch, 2016].
We apply this result to prove a direct generalization of the Hall-type condition in
[Conforti et al., 1996] to perfect f -matchings in unimodular hypergraphs.
Recall, that νV (H) denotes the maximum number of vertices covered by a match-

ing in H. A hypergraph has a perfect f -matching for a given function f if and only
if νV (Hf ) = f(V (H)). A unimodular hypergraph is Mengerian and therefore it
satisfies νV (Hf ) = τV (Hf ), see Section 1.2. Thus, the non-existence of a perfect
f -matching in a unimodular hypergraph H can be witnessed by a V -vertex cover
x : V (H)→ Z≥0 with

∑
v∈V (H) f(v)x(v) < f(V (H)). In general, such a vertex cover

has entries in {0, 1, . . . , r(H)} where r(H) is the rank of H, which is the maximum
size of any hyperedge. In the following corollary we show that if νV (H) < f(V (H)),
then we can find a V -vertex cover of size less than f(V (H)) that only takes val-
ues in {0, 1, 2}. This is done by a similar approach as for perfect matchings in
[Scheidweiler and Triesch, 2016].

Corollary 3.14. Let H be a unimodular hypergraph, and f : V (H) → Z≥0 be
a function. We have νV (Hf ) ≤ f(V (H)) − k if and only if there exists a V -
vertex cover x : V (H) → Z≥0 with x(v) ≤ k + 1 for all vertices v ∈ V (H), and∑
v∈V (H) f(v)x(v) ≤ f(V (H))− k.

Proof. “⇐”: Let x be a V -vertex cover with
∑
v∈V (H) f(v)x(v) ≤ f(V (H))− k and

y : E(H)→ Z≥0 be an f -matching with
∑
e∈E(H) |e|y(e) = νV (Hf ). Then

∑
e∈E(H)

|e|y(e) ≤
∑

e∈E(H)

(∑
v∈e

x(v)
)
y(e) =

∑
v∈V (H)

x(v)
∑

e∈δH(v)
y(e)

≤
∑

v∈V (H)
x(v)f(v) ≤ f(V (H))− k.

“⇒”: Apply Theorem 3.13 with b(e) = |e| for all e ∈ E(H), p(v) = k + 1 for all
v ∈ V (H), f as given, and c(e) = f(V (H)) for all e ∈ E(H). Let y : E(H) → Z≥0
be an optimum relaxed f -matching. If violv(y) = 0 for every v ∈ V (H), then y is
an f -matching and by assumption

∑
e∈E(H) |e|f(e) ≤ f(V (H))− k. Otherwise, we

67



Chapter 3 Relaxed Matchings and Factors

get the following bound on L(y).

L(y) =
∑

e∈E(H)
|e|y(e)−

∑
v∈V (H)

violv(y) · (k + 1)

=
∑

v∈V (H)
y(δH(v))−

∑
v∈V (H)

(y(δH(v))− f(v))+ · (k + 1)

≤
∑

v∈V (H),
violv(y)≤0

f(v) +
∑

v∈V (H),
violv(y)>0

y(δH(v))

−
∑

v∈V (H)
(y(δH(v))− f(v))+ · (k + 1)

≤
∑

v∈V (H),
violv(y)≤0

f(v) +
∑

v∈V (H),
violv(y)>0

f(v)− k ·
∑

v∈V (H)
(y(δH(v))− f(v))+

≤ f(V (H))− k.

The last inequality holds because of violv(y) ≥ 1 for at least one v ∈ V (H).
In both cases, Theorem 3.13 guarantees the existence of a p-capacitated relaxed

b-cover x : E(H)→ Z of size at most f(V (H))− k. As the penalty for not covering
a hyperedge e at least b(e)-times is f(V (H)), x covers every hyperedge at least
b(e)-times. Thus, x is a V -vertex cover with x(v) ≤ k + 1 for all v ∈ V (H) of size∑
v∈V (H) f(v)x(v) = L(y) ≤ f(V (H))− k.

Now, we proceed as in [Scheidweiler and Triesch, 2016].

Theorem 3.15. Let H be a unimodular hypergraph, and f : V (H) → Z≥0 be a
given function. The hypergraph H has a perfect f -matching if and only if for all
disjoint subsets X,Y ⊆ V (H) with f(X) > f(Y ) there exists a hyperedge e ∈ E(H)
with |e ∩X| > |e ∩ Y |.

Proof. First, suppose H has a perfect f -matching y, and let X,Y ⊆ V (H) be sets
with f(X) > f(Y ), then∑
e∈E(H)

|e ∩X|y(e) =
∑
v∈X

∑
e∈δH(v)

y(e) =
∑
v∈X

f(v) >
∑
v∈Y

f(v) =
∑

e∈E(H)
|e ∩ Y |y(e).

Thus, there exists a hyperedge e ∈ E(H) with |e ∩X| > |e ∩ Y |.
If H has no perfect f -matching, then νV (Hf ) ≤ f(V (H))− 1. By Corollary 3.14,

there exists a V -vertex cover x : V (H) → Z with 0 ≤ x(v) ≤ 2 for all v ∈ V (H),
and

∑
v∈V (H) x(v) ≤ f(V (H)) − 1. If we set X := {v ∈ V (H) | x(v) = 0} and

Y := {v ∈ V (H) | x(v) = 2}, then

2f(Y ) + f(V (H) \ (X ∪ Y )) < f(V (H)),
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which implies f(Y ) < f(X), and for every e ∈ E(H) we have

2|e ∩ Y |+ |e \ (X ∪ Y )| ≥ |e|,

which shows that |e ∩ Y | ≥ |e ∩X| for every e ∈ E(H).

Finally, we reduce the capacitated (g, f)-matching problem to the perfect f -
matching problem.

Corollary 3.16 (implied by [Hoffman, 1960]). Let H be a unimodular hypergraph,
and c : E(H) → Z≥0, g, f : V (H) → Z≥0 be functions with g(v) ≤ f(v) for all
v ∈ V (H).
The hypergraph H has a c-capacitated (g, f)-matching if and only if

g(X)− f(Y ) ≤
∑

e∈E(H)
c(e) (|e ∩X| − |e ∩ Y |)+(3.12)

holds for all disjoint sets X,Y ⊆ V (H).

Proof. If H has a c-capacitated (g, f)-matching y, then the following calculation
shows that inequality (3.12) holds for all disjoint X,Y ⊆ V (H).

g(X)− f(Y ) ≤
∑
v∈X

∑
e∈δH(v)

y(e)−
∑
v∈Y

∑
e∈δH(v)

y(e)

=
∑

e∈E(H)
y(e) (|e ∩X| − |e ∩ Y |)

≤
∑

e∈E(H)
y(e) (|e ∩X| − |e ∩ Y |)+

≤
∑

e∈E(H)
c(e) (|e ∩X| − |e ∩ Y |)+ .

We complete the proof by showing that if H has no c-capacitated (g, f)-matching,
then there exist disjoint sets X,Y ⊆ V (H) that violate (3.12). Therefore, we reduce
the existence of a c-capacitated (g, f)-matching in H to the existence of a perfect
f -matching in an auxiliary hypergraph. For every vertex v ∈ V (H) let v′ be a
copy of v, and for every hyperedge e ∈ E(H) let ve be a new vertex. We set
V ′ := {v′ : v ∈ V (H)} and VE := {ve : e ∈ E(H)}. The auxiliary hypergraph H̃
has vertex V (H̃) := V (H) ∪ V ′ ∪ VE , and hyperedges E(H̃) := {e ∪ {ve}, {ve} :
e ∈ E(H)} ∪ {{v, v′}, {v′} : v ∈ V (H)}. Additionally, we define a vertex function
f̃ : V (H̃)→ Z≥0 by

f̃(ṽ) :=


f(v) if ṽ = v ∈ V (H),
f(v)− g(v) if ṽ = v′ ∈ V ′,
c(e) if ṽ = ve ∈ VE

.
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Figure 3.1: Construction of H̃ from H.

Figure 3.1 illustrates the construction of H̃. We show that H̃ has a perfect f̃ -
matching if and only if H has a c-capacitated (g, f)-matching.

First, let y : E(H) → Z≥0 be a c-capacitated (g, f)-matching of H. We define a
function ỹ on E(H̃) by

ỹ(ẽ) :=


y (e) if ẽ = e ∪ {ve},
c(e)− y (e) if ẽ = {ve},
f(v)− y (δH(v)) if ẽ = {v, v′},
y (δH(v))− g(v) if ẽ = {v′}

.

With this definition ỹ ≥ 0 holds as y is a c-capacitated (g, f)-matching. It remains
to show that ỹ

(
δ
H̃

(ṽ)
)

= f̃(ṽ) for all ṽ ∈ V (H̃). If v ∈ V (H), then

ỹ
(
δ
H̃

(v)
)

= y (δH(v)) + ỹ
(
{v, v′}

)
= y (δH(v)) + f(v)− y (δH(v)) = f̃(v).

For v′ ∈ V ′, we have

ỹ
(
δ
H̃

(v′)
)

= ỹ
(
{v, v′}

)
+ ỹ

(
{v′}

)
= f(v)− y (δH(v)) + y (δH(v))− g(v) = f(v)− g(v)
= f̃(v′),

and for ve ∈ VE we get

ỹ
(
δ
H̃

(ve)
)

= ỹ ({ve}) + ỹ (e ∪ {ve}) = c(e)− y (e) + y (e) = c(e) = f̃(ve).

70



3.2 Relaxed Matchings in Unimodular Hypergraphs

Thus, ỹ is a perfect f̃ -matching of H̃.
Second, let a perfect f̃ -matching ỹ be given. If we define a function y : E(H)→ Z

by y(e) := ỹ (e ∪ {ve}) for all e ∈ E(H), then y is upper bounded by c because
y(e) ≤ ỹ ({ve}) + ỹ (e ∪ {ve}) = c(e). Furthermore, for every v ∈ V (H) we have

y (δH(v)) = ỹ
(
δ
H̃

(v)
)
− ỹ

(
{v, v′}

)
≤ f̃(v) = f(v),

and
y (δH(v)) = ỹ

(
δ
H̃

(v)
)
− ỹ

(
{v, v′}

)
≥ f(v)− (f(v)− g(v)) = g(v),

where we use that ỹ ({v, v′}) ≤ ỹ
(
δ
H̃

(v′)
)

= f(v)− g(v). Thus, y is a c-capacitated
(g, f)-matching of H.
We claim that H̃ is unimodular if H is unimodular. We show that H̃(S) has an

equitable 2-coloring for every S ⊆ V (H̃). As H is unimodular, H(S ∩ V (H)) has
an equitable 2-coloring S′1, S′2. We extend this coloring to an equitable 2-coloring
S1, S2 of H̃(S). If ve ∈ S ∩ VE and |e∩S1| ≤ |e∩S2|, we set ve ∈ S1, and otherwise
ve ∈ S2. For every v′ ∈ S ∩ V ′ we set v′ ∈ S2 if v ∈ S1, and v′ ∈ S1 otherwise.
The resulting sets S1, S2 partition S, and, by construction, they form an equitable
2-coloring of H̃(S).
If H̃ has no perfect f̃ -matching, then there exist disjoint sets X̃, Ỹ ⊆ V (H̃) such

that

f̃(X̃) > f̃(Ỹ ) and(3.13)
|ẽ ∩ X̃| ≤ |ẽ ∩ Ỹ | for all ẽ ∈ E(H̃).(3.14)

By inequality (3.14) applied to the hyperedges of size one, X̃ contains no vertices
from V ′ and VE , i.e., X̃ ⊆ V (H). If we set X := X̃ and Y := Ỹ ∩ V (H), then

|e ∩ Y | = | (e ∪ {ve}) ∩ Ỹ | − |{ve} ∩ Ỹ | ≥ | (e ∪ {ve}) ∩ X̃| − |{ve} ∩ Ỹ |
= |e ∩X| − |{ve} ∩ Ỹ |

holds for all e ∈ E(H). This implies that |e ∩X| − |e ∩ Y | ≤ 1 with equality if and
only if ve ∈ Ỹ . Furthermore, inequality (3.14) for ẽ = {v, v′} implies that v′ ∈ Ỹ
for all v ∈ X. These observations together with (3.13) lead to

f(X)− f(Y ) = f̃(X̃)− f̃(Ỹ ) +
∑

v′∈Ỹ ∩V ′
(f(v)− g(v)) +

∑
ve∈Ỹ ∩VE

c(e)

>
∑

v′∈Ỹ ∩V ′
(f(v)− g(v)) +

∑
ve∈Ỹ ∩VE

c(e)

≥
∑
v∈X

(f(v)− g(v)) +
∑

e∈E(H)
c(e) (|e ∩X| − |e ∩ Y |)+ .

This shows that X,Y are disjoint subsets of V (H) violating condition (3.12).
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3.3 Perfect f-Matchings and f-Factors
In this section we characterize the existence of perfect f -matchings in uniform hy-
pergraphs that are Mengerian or perfect, as well as the existence of f -factors in
balanced uniform hypergraphs using purely combinatorial arguments. Our results
can be seen as generalizations of the conditions (3.2) and (3.4). Balanced, perfect,
and Mengerian hypergraphs do not have totally unimodular incidence matrices in
general. Therefore, we cannot use the results of the previous section.
The restriction to uniform hypergraphs is justified by the fact that the perfect

f -matching and the f -factor problem are NP-complete on non-uniform balanced
hypergraphs, and for non-uniform Mengerian hypergraphs it is even NP-complete
to decide whether a perfect matching exists. These complexity results are proven
in Section 3.4.

3.3.1 Perfect f-Matchings in Mengerian and Perfect Hypergraphs
First, we look at f -matchings in uniform Mengerian hypergraphs. Recall, that a hy-
pergraph H is Mengerian if ν(Hf ) = τ(Hf ) holds for all functions f : V (H)→ Z≥0.
Furthermore, every Mengerian r-uniform hypergraph is r-partite by Theorem 1.30,
and every balanced hypergraph is Mengerian but not the other way around.
In order to generalize Condition (3.2) stated in Section 3.1, we introduce a new

concept for the neighborhood in hypergraphs. Its definition is different to the usual
one in graphs. In particular, the neighborhood in a hypergraph will be a set of
subsets of the vertex set and not just one subset of vertices.

Definition 3.17 (neighborhood). Let H be a hypergraph and A ⊆ V (H). The
neighborhood N (A) of A is defined by

N (A) := {B ⊆ V (H) \A : B is (inclusionwise-)minimal such that
if e ∩A 6= ∅, then e ∩B 6= ∅ ∀e ∈ E(H)}.

If e ∩A = ∅ for all hyperedges e ∈ E(H), then we define N (A) := {∅}.

If G is a graph and S ⊆ V (G) is a stable set, then N (S) contains only the (graph)
neighborhood N(S) of S. In general hypergraphs, the neighborhood may contain
more than one minimal set (compare Figure 3.2), and it is empty if there exists a
hyperedge that lies completely in A.
Using the notion of a neighborhood, we state a condition that characterizes the

existence of perfect f -matching. For bipartite graphs (r = 2) it reduces to Theo-
rem 3.1.

Theorem 3.18. Let H be an r-uniform Mengerian hypergraph with r-partition
V1, . . . , Vr, and let f : V (H) → Z≥0 be a function. The hypergraph H admits a
perfect f -matching if and only if
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Figure 3.2: The three sets in N (S) (red) where S is the set of blue vertices.

(a) f(V1) = . . . = f(Vr) and

(b) f(X) ≤ f(Y ) for all X ⊆ V1, Y ⊆ V (H) \ V1, Y ∈ N (X).

Proof. If H has a perfect f -matching x : E(H) → Z≥0, then (a) holds because for
every i ∈ {1, . . . , r} we have

f(Vi) =
∑
v∈Vi

f(v) =
∑
v∈Vi

∑
e∈δH(v)

x(e) =
∑

e∈E(H)
|e ∩ Vi|x(e) =

∑
e∈E(H)

x(e).

For (b), let X ⊆ V1, Y ⊆ V (H) \ V1, Y ∈ N (X). As X ⊆ V1, every hyperedge
intersects X in at most one vertex. Furthermore, Y ∈ N (X) implies that |e∩Y | ≥ 1
for every hyperedge e with |e ∩X| = 1. Together, we get that |e ∩X| ≤ |e ∩ Y | for
all e ∈ E(H), which yields

f(X) =
∑
v∈X

∑
e∈δH(v)

x(e) =
∑

e∈E(H)
|e ∩X|x(e) ≤

∑
e∈E(H)

|e ∩ Y |x(e) = f(Y ).

For the other direction, suppose that H has no perfect f -matching and f(Vi) = f∗

for all i ∈ {1, . . . , r}. Let C be an E-vertex cover of minimum f -weight. As H is
Mengerian and has no perfect f -matching, we know that

f(C) = τE(Hf ) = νE(Hf ) < f∗.

Set Ai := Vi \ C and Ci := C \ Vi for i = 1, . . . , r. We claim that there exists an
index j with f(Aj) > f(Cj). Otherwise,

f(V (H) \ C) =
r∑
i=1

f(Ai) ≤
r∑
i=1

f(C \ Vi) = (r − 1)f(C)
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follows, which implies f(C) ≥ f(V (H))/r = f∗, a contradiction to τ(Hf ) < f∗.
If j 6= 1, we have A1 = V1\C = V1\Cj and C1 = C\V1 = (C∩Vj)∪(C \ Vj)\V1 =

(Vj \Aj) ∪
(
Cj \ V1

)
. This together with (a) and f(Aj) > f(Cj) implies that

f(C1) = f(Vj)− f(Aj) + f(Cj)− f(Cj ∩ V1)
< f(V1)− f(Cj ∩ V1) = f(A1).

Thus, we may assume that j = 1. As e ∩ A1 6= ∅ implies e ∩ C1 6= ∅, there exists a
subset Y of C1 with Y ∈ N (A1). The sets X := A1 and Y violate condition (b).

For non-uniform Mengerian hypergraphs we give a necessary and a sufficient con-
dition involving the maximum size r(H) and the minimum size s(H) of a hyperedge
in a hypergraph H. We assume that s(H) ≥ 1, which means that H has at least
one hyperedge. The necessary condition holds even for general hypergraphs.

Lemma 3.19. Let H be a hypergraph with s(H) ≥ 1 and f : V (H) → Z≥0 be a
function on the vertices of H.

(a) If H has a perfect f -matching, then f(A) ≤ (r(H)−1)f(B) for all A ⊆ V (H)
and B ∈ N (A).

(b) If H is Mengerian and f(A) ≤ (s(H) − 1)f(B) for all sets A ⊆ V (H) and
B ∈ N (A), then H has a perfect f -matching.

Proof. For (a), let H be a hypergraph with a perfect f -matching and A ⊆ V (H),
B ∈ N (A) be fixed sets. For every hyperedge e ∈ E(H) intersecting A we have
|e∩A| ≤ r(H)− |e∩B| ≤ (r(H)− 1)|e∩B| because |e∩A| ≥ 1 implies |e∩B| ≥ 1.
If e ∈ E(H) does not intersect A, then |e ∩ A| ≤ (r(H) − 1)|e ∩ B| holds trivially.
Now, for every perfect f -matching x we have

f(A) =
∑

e∈E(H)
|e ∩A|x(e) ≤ (r(H)− 1)

∑
e∈E(H)

|e ∩B|x(e) = (r − 1)f(B).

For (b), suppose that H is a hypergraph without a perfect f -matching and let
x : E(H) → Z≥0 be an f -matching maximizing

∑
e∈E(H) x(e), in other words∑

e∈E(H) x(e) = νE(Hf ). Then s(H) ·
∑
e∈E(H) x(e) ≤

∑
e∈E(H) |e|x(e) < f(V (H)).

It follows that νE(Hf ) < f(V (H))/s(H). As H is Mengerian, there exists an E-
vertex cover C of H with f(C) < f(V (H))/s(H). Setting A := V (H) \ C we get
f(A) = f(V (H))− f(C) > (s(H)− 1)f(C). Because of e∩C 6= ∅ for all e ∈ E(H),
we can choose a minimal set B ⊆ C with B ∈ N (A). Clearly, also the inequality
f(A) > (s(H)− 1)f(B) holds.

The constants r(H)− 1 and s(H)− 1 in (a) and (b) of the foregoing lemma are
best possible as the following examples show:
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s − 1

1 1 1 1

1 1 1 1

1 1 1 1

. . .

. . .

. . .

...
...

...
...

s hyperdges

s−1 vertices
for each hyperedge

Figure 3.3: Sharpness example for Lemma 3.19 (b).

(a) Let H be the complete r-partite hypergraph on n · r vertices, that is, the
hypergraph with |V1| = . . . = |Vr| = n, and E(H) consists of all nr hyperedges
{v1, . . . , vr} with v1 ∈ V1, . . . , vr ∈ Vr. Clearly, H has a perfect matching. If
we set A := V (H) \ V1, then the only set in the neighborhood of A is V1, and
|A| = (r − 1)|V1|.

(b) For s ≥ 3 define Hs by V (Hs) := {v∗} ∪ {vi,j : i ∈ [s − 1], j ∈ [s]}, and
E(Hs) := {V (Hs)}∪{{v∗, v1,j , v2,j , . . . , vs−1,j} : j ∈ [s]}. We define a function
f : V (Hs)→ Z≥0 by f(v∗) := s−1 and f(v) := 1 for all v ∈ V (Hs)\{v∗} (com-
pare Figure 3.3). The hypergraph Hs contains no strong odd cycles. Thus,
Hs is balanced and therefore also Mengerian. Furthermore, the minimum size
of a hyperedge in Hs is s, and Hs admits no perfect f -matching.
We show that f(A) ≤ s·f(B) for all A ⊆ V (H) and B ∈ N (A). We distinguish
whether v∗ is contained in A or not. If v∗ ∈ A, then B has to contain at
least one vertex from {vi,j : i ∈ [s − 1]} for every j ∈ [s]. This implies that
s · f(B) ≥ s2 > (s− 1) + s(s− 2) ≥ f(A).
If v∗ /∈ A and v∗ ∈ B, then sf(B) ≥ s(s− 1) ≥ f(A).
Finally, if v∗ /∈ A and v∗ /∈ B, then vi,j ∈ A implies vk,j ∈ B for some k 6= i,
and A contains at most s− 2 vertices of {v1,j , . . . , vs−1,j} for every j ∈ [s]. It
follows that f(A) = |A| ≤ (s− 2)|B| = (s− 2)f(B).

Now, we consider another class of hypergraphs generalizing bipartite graphs,
namely perfect hypergraphs. Recall, that a hypergraph H is called perfect if a
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perfect graph G on V (H) exists such that the maximal hyperedges of H corre-
spond to the maximal cliques of G. In Chapter 2 we show that Hall’s theorem for
balanced hypergraph given by [Conforti et al., 1996] also holds for uniform perfect
hypergraphs, see Theorem 2.30. Indeed, using a similar argument, Hall’s theorem
can be generalized to a characterization for the existence of perfect f -matchings by
replacing the size of a set with its f -value.

Theorem 3.20. Let H be a perfect r-uniform hypergraph and f : V (H)→ Z≥0 be
a given function. The hypergraph H has no perfect f -matching if and only if there
exists a pair R,B ⊆ V (H) of disjoint vertex sets such that |e ∩ R| ≥ |e ∩ B| for
every hyperedge e ∈ E(H) holds but f(R) < f(B).

Proof. Suppose that H has a perfect f -matching x and let R,B ⊆ V (H) be a pair
of disjoint vertex sets such that |e ∩ R| ≥ |e ∩ B| for every e ∈ E(H) holds. Using
double-counting we obtain

f(R) =
∑
v∈R

x(δH(v)) =
∑

e∈E(H)
|e ∩R|x(e) ≥

∑
e∈E(H)

|e ∩B|x(e) = f(B).

Now, suppose that H has no perfect f -matching. Let G be a perfect graph
on V (H) such that the hyperedges of H correspond to the maximal cliques of G.
As G is perfect, there exists an r-coloring of the vertices of G. If S is the color
class of this coloring with the smallest f -value, then S is a stable set in G with
f(S) ≤ f(V (H))/r. On the other hand, G has a stable set S̃ of f -value greater
than f(V (H))/r. This follows from the fact that every minimum size set of cliques
covering each vertex v at least f(v)-times must have size greater than f(V (H))/r,
otherwise it would correspond to a perfect f -matching of H.
Now, we set R := S \ S̃, B := S̃ \ S. It follows that

f(R) = f(S)− f(S ∩ S̃) < f(S̃)− f(S ∩ S̃) = f(B).

By the same arguments as in the proof of Theorem 2.30, |e∩R| ≥ |e∩B| holds for
every e ∈ E(H).

Theorem 3.20 does not hold for non-uniform perfect hypergraphs, even not in the
case that f(v) = 1 for all vertices v as Example 2.31 in Chapter 2 shows.

3.3.2 Existence of f-Factors in Balanced Hypergraphs
In this subsection we consider the f -factor problem in balanced hypergraphs, which
form a subclass of Mengerian hypergraphs. First, we give a one-set condition for
the existence of f -factors in balanced uniform hypergraphs. In the case of bipartite
graphs this condition is equivalent to the one stated in Theorem 3.3. Afterwards,
we give a two-set condition generalizing Theorem 3.2.
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In order to prove a variant of Theorem 3.3 for balanced uniform hypergraphs, we
use the following min-max result given by Scheidweiler and Triesch.

Theorem 3.21. [Scheidweiler and Triesch, 2016] Let H be a balanced hypergraph,
d : E(H)→ Z≥0 and b : V (H)→ Z≥0 be functions such that

∑
v∈e b(v) ≥ d(e) holds

for all e ∈ E(H). We define the weight of a partial hypergraph H ′ of H by

w(H ′) :=
∑

e∈E(H′)
d(e)−

∑
v∈V (H′)

(degH′(v)− 1)+ b(v).

Further we set

X := {x ∈ ZV (H) :
∑
v∈e

x(v) ≥ d(e) ∀e ∈ E(H), 0 ≤ x(v) ≤ b(v) ∀v ∈ V (H)}.

The following min-max relation holds:

max
H′⊆H

w(H) = min
x∈X

∑
v∈V (H)

x(v),

where the maximum is taken over all partial hypergraphs H ′ of H.

We apply this theorem to the dual hypergraph to prove the following condition
for the existence of f -factors in balanced uniform hypergraphs. Recall from Theo-
rem 1.30 that balanced r-uniform hypergraphs are r-partite.

Theorem 3.22. If H is a balanced r-uniform hypergraph with r-partition V1, . . . , Vr,
and f : V (H) → Z≥0 is a function with f(v) ≤ degH(v) for all v ∈ V (H), then H
has an f -factor if and only if

(a) f(V1) = . . . = f(Vr) and

(b) f(S)− f(V1) ≤
∑

e∈E(H)
(|e ∩ S| − 1)+ for all S ⊆ V (H).

Proof. First, suppose that H has an f -factor F ⊆ E(H). For every S ⊆ V (H) the
following holds:

f(S)− f(V1) =
∑
v∈S

degH[F ](v)−
∑
v∈V1

degH[F ](v) =
∑
e∈F
|e ∩ S| −

∑
e∈F
|e ∩ V1|

≤
∑
e∈F

(|e ∩ S| − |e ∩ V1|)+ ≤
∑

e∈E(H)
(|e ∩ S| − 1)+ .

Choosing S = Vi yields f(Vi)−f(V1) ≤ 0. By the same argument f(V1)−f(Vi) ≤ 0
holds.
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For the other direction, suppose that H has no f -factor and (a) holds. The
optimal value of

min
∑

e∈E(H)
x(e)

∑
e∈δH(v)

x(e) ≥ f(v) for all v ∈ V (H)

0 ≤x(e) ≤ 1 for all e ∈ E(H)

is larger than f(V (H))/r as H is r-uniform and balanced. Now, we apply Theo-
rem 3.21 to the dual hypergraph H∗ with d = f and penalty costs b(e) = 1 for all
e ∈ E(H), which is possible as the dual of a balanced hypergraph is again balanced.
By Theorem 3.21, there exists a set S ⊆ V (H) with

f(S)−
∑

e∈E(H)
(|e ∩ S| − 1)+ > f(V (H))/r.

Rearranging this inequality and using (a) yields

f(S)− f(V1) >
∑

e∈E(H)
(|e ∩ S| − 1)+ ,

contradicting (b).

Now, we give an alternative characterization of the existence of f -factors in bal-
anced uniform hypergraphs generalizing Condition (3.4) mentioned in Section 3.1.

Theorem 3.23. If H is a balanced r-uniform hypergraph with r-partition V1, . . . , Vr,
and f : V (H)→ Z≥0 is a given function, then H has an f -factor if and only if

(a) f(V1) = . . . = f(Vr) and

(b) f(X) − f(Y ) ≤ |{e ∈ E(H) : e ∩ X 6= ∅, e ∩ Y = ∅}| for all X ⊆ V1 and
Y ⊆ V (H) \ V1.

Proof. If H has an f -factor, then (a) holds by Theorem 3.22. For (b) let F ⊆ E(H)
be an f -factor of H and X ⊆ V1, Y ⊆ V (H) \ V1 be two sets. A simple calculation
gives

f(X)− f(Y ) =
∑
e∈F

(|e ∩X| − |e ∩ Y |) ≤
∑
e∈F

(|e ∩X| − |e ∩ Y |)+

≤
∑

e∈E(H)
(|e ∩X| − |e ∩ Y |)+

= |{e ∈ E(H) : e ∩X 6= ∅, e ∩ Y = ∅}|,
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where the last equation holds because of |e∩X| ≤ |e∩V1| = 1, and |e∩X|−|e∩Y | = 1
if and only if e ∩X 6= ∅ and e ∩ Y = ∅.

For the other direction we define an auxiliary hypergraph H ′ with vertex set
V (H ′) := V (H)∪ {ve : e ∈ E(H)} and hyperedges E(H ′) := {e∪ {ve} : e ∈ E(H)}.
Every new vertex ve is contained in exactly one hyperedge of H ′ and therefore it
cannot be part of a strong odd cycle. This implies that any strong odd cycle in H ′
is a strong odd cycle in H. As H is balanced there are no strong odd cycles in H
and thus H ′ is balanced, too.
We define a function f ′ on the vertices of H ′ by f ′(v) := f(v) for all v ∈ V (H)

and f ′(ve) := 1 for all ve ∈ V (H ′) \ V (H). Every f ′-matching x′ : E(H ′) → Z≥0
gives rise to an f -matching x : E(H)→ Z≥0 with x ≤ 1 via x(e) := x′(e∪{ve}), and
vice versa. Furthermore, every f ′-matching x′ in H ′ has size at most f(V (H))/r
because∑

v∈V (H)
f(v) ≥

∑
v∈V (H)

∑
e∈δH′ (v)

x′(e) =
∑

e∈E(H′)
|e ∩ V (H)|x′(e) = r ·

∑
e∈E(H′)

x′(e).

The previous inequality implies that H ′ has an f ′-matching x′ of size f(V (H))/r if
and only if x′(δH′(v)) = f(v) for all v ∈ V (H). Such an f ′-matching exists if and
only if H has a perfect f -matching x with x ≤ 1, i.e., H has an f -factor.

The maximum size of an f ′-matching in H ′ is equal to the maximum size of a
matching in H ′f

′ . As H ′ is balanced and thus Mengerian, this value is the same
as the minimum f ′-weight of an E-vertex cover in H ′. Let C ′ ⊆ V (H ′) be such a
vertex cover. If H has no f -factor, then f ′(C ′) < f(V (H))/r. Set C := C ′ ∩ V (H),
and Ẽ := {e ∈ E(H) : ve ∈ C ′}. By the minimality of C ′, we know that Ẽ is exactly
the set of hyperedges e ∈ E(H) with e ∩ C = ∅. As in the proof of Theorem 3.18,
we set Ai := Vi \C and Ci := C \ Vi for i = 1, . . . , r. We claim that there exists an
index j with

f(Aj)− f(Cj) > |{e ∈ E(H) : e ∩Aj 6= ∅, e ∩ Cj = ∅}|.

Otherwise, we obtain

f(V (H) \ C)− (r − 1)f(C) ≤
r∑
i=1
|{e ∈ E(H) : e ∩Ai 6= ∅, e ∩ Ci = ∅}|.(3.15)

By the definition of Ai and Ci, e∩Ai 6= ∅ and e∩Ci = ∅ for e ∈ E(H) is equivalent
to e ∩ C = ∅. This shows that inequality (3.15) implies f(C) + |Ẽ| ≥ f(V (H))/r.
However, f(C) + |Ẽ| is equal to f ′(C ′), which is smaller than f(V (H))/r. Thus,
there exists and index j ∈ [r] with

f(Aj)− f(Cj) > |{e ∈ E(H) : e ∩Aj 6= ∅, e ∩ Cj = ∅}|.

If condition (a) holds, then by the same arguments as in the proof of Theorem 3.18
we can assume j = 1. In this case X = A1, Y = C1 violate (b).
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As multiple hyperedges are allowed, Theorem 3.23 directly implies a condition for
the existence of capacitated perfect f -matchings in balanced r-uniform hypergraphs.

Corollary 3.24. If H is a balanced r-uniform hypergraph with r-partition V1, . . . , Vr,
and f : V (H) → Z≥0, c : E(H) → Z≥0 are functions, then H has a c-capacitated
perfect f -matching if and only if

(a) f(V1) = . . . = f(Vr) and

(b) f(X) − f(Y ) ≤
∑
e∈E(X,Y ) c(e) for all X ⊆ V1 and Y ⊆ V (H) \ V1, where

E(X,Y ) := {e ∈ E(H) : e ∩X 6= ∅, e ∩ Y = ∅}.

Proof. Let H ′ be the hypergraph on the same vertex set as H, containing c(e) copies
of every hyperedge e ∈ E(H). The hypergraph H has a c-capacitated perfect f -
matching if and only if H has an f -factor. Thus, the stated corollary follows from
Theorem 3.23.

It is an open problem whether Theorem 3.23 and Corollary 3.24 also hold for uni-
form Mengerian hypergraphs. At first sight it seems like the proof of Theorem 3.23
also works for Mengerian hypergraphs as we only need that the constructed auxiliary
hypergraph is Mengerian. However, the construction of the auxiliary hypergraph
might destroy the Mengerian property as the following example shows.

Example 3.25. Let H be a triangle with one singleton hyperedge e1 = {v1} added.
The vertex-hyperedge incidence matrix of H is 1 1 1 0

0 1 0 1
0 0 1 1

 .
It is straightforward to see that H is Mengerian:

Given a function f : V (H)→ Z≥0 we show that the minimum f -weight of a vertex
cover equals the maximum size of an f -matching in H. Every minimal vertex cover
contains v1 and exactly one of the vertices v2, v3, thus the minimum weight of a
vertex cover is f(v1) + min(f(v2), f(v3)). On the other hand, if we take f(v1) times
edge e1 and min(f(v2), f(v3)) times the edges {v2, v3} we get an f -matching of size
f(v1) + min(f(v2), f(v3)), i.e., νE(Hf ) = τE(Hf ).
Now, we look at the hypergraphH ′ obtained fromH by adding for every e ∈ E(H)

a new vertex ve to the vertex set and replacing e by e ∪ {ve}. If we define a weight
function f by f(ve1) = 0 and f(v) = 1 for all other vertices of H ′, then the minimum
f -weight of an E-vertex cover is 2 while the maximum size of an f -matching is 1.
So, H ′ is not Mengerian.
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3.4 Complexity Results
In the foregoing two sections we only dealt with uniform hypergraphs, which is
justified by the fact that most non-uniform existence questions turn out to be hard.
Indeed, we show in the remainder of this chapter that the f -factor and perfect
f -matching problem on non-uniform balanced hypergraphs, as well as the perfect
matching problem on Mengerian hypergraphs are NP-complete.

Theorem 3.26. Let H be a balanced hypergraph and f : V (H)→ Z≥0 be a function
on the vertices of H. Deciding whether H has an f -factor, respectively, a perfect
f -matching is NP-complete, even if f(v) ≤ 4 for all vertices v ∈ V (H).

Proof. The two problems are clearly in NP. We show that 3-dimensional matching,
which is one of Karp’s 21 NP-complete problems [Karp, 1972], is reducible to the f -
factor problem in balanced hypergraphs. The same reduction works for the perfect
f -matching problem as well.
An instance of the 3-dimensional matching problem consists of an arbitrary 3-

partite hypergraph H with vertex set V (H) = V1 ∪ V2 ∪ V3 and |V1| = |V2| = |V3|.
One has to decide whether or not H admits a perfect matching.

Given an instance of the 3-dimensional matching problem we define an auxiliary
balanced hypergraph H̃ as follows (compare Figure 3.4).

• The vertex set V (H̃) is the union of V (H), E(H) and four new elements he,1,
he,2, he,3, he,4 for every e ∈ E(H).

• The edge set E(H̃) consists of all edges {v, e} for all e ∈ E(H), v ∈ V (H) with
v ∈ e, together with all edges of the form {he,i, e} for e ∈ E(H), i = 1, 2, 3, 4,
and all hyperedges {he,1, he,2, he,3, he,4, e} for e ∈ E(H).

We define a function f : V (H̃) → Z≥0 by f(v) = 1 = f(he,i) for all v ∈ V (H),
e ∈ E(H), i = 1, 2, 3, 4, and f(e) := 4 for all e ∈ E(H).
The hypergraph H̃ defined in this way is balanced because a strong odd cycle can-

not contain any hyperedge of size 5, and the remaining hyperedges form a bipartite
graph. It remains to show that H has an f -factor if and only if the 3-dimensional
matching instance is a ‘Yes‘ instance.
Suppose that there exists a perfect matching M ⊆ E(H) of H. We define an

f -factor F ⊆ E(H̃) of H̃ by

F :={{v, e} : e ∈M,v ∈ e} ∪ {{he,1, he,2, he,3, he,4, e} : e ∈M}
∪ {{he,i, e} : e /∈M, i = 1, 2, 3, 4},

i.e., for e ∈ M take the blue edges and for e /∈ M the red ones in Figure 3.4. The
degree of every vertex e ∈ E(H) in H̃[F ] is four and the degree of the vertices in
V (H̃) \ E(H) is one, therefore F is an f -factor of H̃.
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4

1111

1 1 1

e

he,1he,2he,3he,4

v1 ∈ e ∩ V1 v2 ∈ e ∩ V2 v3 ∈ e ∩ V3

Figure 3.4: The gadget of the complexity reduction.

On the other hand, let F ⊆ E(H̃) be an f -factor of H̃. By the construction of H̃
and f , for every e ∈ E(H) we have either {he,1, he,2, he,3, he,4, e} ∈ F or {he,1, e},
{he,2, e}, {he,3, e}, {he,4, e} ∈ F but not both. We define a perfect matching M of
H by

M := {e ∈ E(H) : {he,1, he,2, he,3, he,4, e} ∈ F}.

For every v ∈ V (H) there exists e ∈ E(H) such that {v, e} ∈ F . This implies that
the edge {he,1, he,2, he,3, he,4, e} lies in F . In particular, every v ∈ V (H) is covered
by some e ∈ M in H. Suppose that there exist two distinct e, e′ ∈ M covering the
same vertex v ∈ V (H) in H. Looking at H̃ this means that {he,1, he,2, he,3, he,4, e},
{he′,1, he′,2, he′,3, he′,4, e′} ∈ F , which implies {v, e}, {v, e′} ∈ F . However, the
degree of v in H̃[F ] is exactly one. Thus, M is a perfect matching of H.

The proof of the previous theorem shows that the f -factor and the perfect f -
matching problem are NP-complete for non-uniform balanced hypergraphs of rank
at least five. A balanced hypergraph of rank at most three has a totally unimodular
incidence matrix, and therefore the f -factor and the perfect f -matching problem
can be solved in polynomial time by linear programming. So the only open case is
rank four. As there are balanced hypergraphs of rank four such that the system
Ax = f, x ≥ 0 has fractional but no integral solutions, it is likely that both problems
remain NP-complete for non-uniform balanced hypergraphs of rank four.

The perfect f -matching problem can be solved in polynomial time on uniform
Mengerian hypergraphs because an r-uniform Mengerian hypergraph has a perfect
f -matching if and only if νE(Hf ) = f(V (H))/r. In this case a perfect f -matching
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can be calculated by solving a linear program. In the non-uniform case even the
perfect matching problem (f ≡ 1) is NP-hard as the following corollary shows.

Corollary 3.27. Deciding whether a Mengerian hypergraph has a perfect matching
is NP-complete.

Proof. The problem is clearly inNP. We show that the perfect f -matching problem
in balanced hypergraphs can be reduced to it.
If H is a balanced hypergraph, and f : V (H) → Z≥0 a function, then H has a

perfect f -matching if and only if Hf has a perfect matching. Furthermore, Hf is
Mengerian because for every function g : V (Hf )→ Z≥0 it holds that (Hf )g = Hh,
where h : V (H) → Z≥0 is defined by h(v) =

∑
i=1,...,f(v) g(vi) for all v ∈ V (H).

Thus, νE((Hf )g) = τE((Hf )g) for all g : V (Hf ) → Z≥0. Of course, the number
of vertices and edges of Hf depend on the values of f but the perfect f -matching
problem in balanced hypergraphs remains NP-complete for functions f such that
f(v) ≤ 4 for all vertices v ∈ V (H).

We have also seen that we can decide whether a uniform perfect hypergraph has
a perfect f -matching in polynomial time. Again, we show that the perfect matching
problem is NP-hard in the non-uniform case.

Theorem 3.28. It is NP-complete to decide whether or not a perfect hypergraph
has a perfect matching.

Proof. The problem of deciding whether a perfect hypergraph has a perfect match-
ing lies clearly in NP. To show that this problem is NP-complete, we reduce the
3-dimensional matching problem to it.

Let H be a 3-partite hypergraph. For every hyperedge e∗ of H we construct a
hypergraph H(e∗) on the vertex set V (H) ∪ {ve : e ∈ E(H)}, where ve is a new
vertex representing e ∈ E(H). The hypergraph H(e∗) has a hyperedge containing
all vertices of V (H), for every e ∈ E(H) is has a hyperedge {ve, vi, vj , vk}, where
e = {vi, vj , vk}, and for every e ∈ E(H) \ {e∗} it has a hyperedge {ve} of size one.
In this way, every vertex ve for e ∈ E(H) \ {e∗} has degree two, and ve∗ has degree
one.

First, we observe that H(e∗) is a perfect hypergraph. Therefore, let G(H(e∗))
be the graph obtained from H(e∗) be replacing every hyperedge by a clique. The
vertices of V (H) form a clique in G(H(e∗)) and {ve : e ∈ E(H)} a stable set.
Graphs with the property that their vertex set can be partitioned into a stable set
and a clique are called split graph. It is known that every split graph is chordal and
thus perfect, see for example [Brandstädt et al., 1999]. In particular, G(H(e∗)) is
a perfect graph. As the maximal cliques of G(H(e∗)) correspond to the maximal
hyperedges of H(e∗), the hypergraph H(e∗) is perfect.
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Next, we show that H(e∗) has a perfect matching if and only if H has a perfect
matching containing e∗. If M is a perfect matching of H(e∗), then we define a
set M ′ by M ′ := {e ∈ E(H) : {ve} /∈ M}. The hyperedge e∗ lies in M ′ because
{ve∗} /∈ E(H(e∗)). We claim that M ′ is a perfect matching of H. Suppose that
there exist two distinct hyperedges e, f ∈M ′ with e∩ f 6= ∅. As e, f ∈M ′, we have
{ve}, {vf} /∈M . This implies thatM contains the hyperedges {ve}∪e and {vf}∪f .
But then ({ve} ∪ e) ∩ ({vf} ∪ f) 6= ∅, contradicting that M is a matching. Thus,
M ′ is a matching in H. It remains to show that M ′ covers all vertices of H. Let
v be any vertex of H, and e ∈ M the hyperedge of M covering v, which exists as
M is a perfect matching of H(e∗). Thy hyperedge e cannot contain all vertices of
V (H), because in this case M would expose ve∗ . Thus e is of the form {ve′} ∪ e′
for some e′ ∈ E(H). This implies that e′ ∈M ′ and v ∈ e′. In total, we have shown
that M ′ is a perfect matching of H.

On the other hand, let M ′ be a perfect matching of H containing e∗. If we set
M := {{ve} ∪ e : e ∈ M} ∪ {{ve} : e /∈ M}, then M is a matching of H(e∗).
Furthermore, M covers every vertex v ∈ V (H), and by construction it also covers
every vertex ve for e ∈ E(H). Thus, M is a perfect matching of H(e∗).
Now, H has a perfect matching if and only if one of the hypergraphs H(e) for

e ∈ E(H) has a perfect matching.

The perfect matching problem is a special case of the perfect f -matching, the
f -factor, and the (g, f)-matching problem. Therefore, Corollary 3.27 and The-
orem 3.28 imply that these three problems are NP-complete on Mengerian and
perfect hypergraphs in general. The perfect f -matching problem is polynomial
time solvable if we restrict both classes to uniform hypergraphs. In contrast, we
show that the (g, f)-matching problem remains NP-complete on uniform perfect or
balanced hypergraphs, and thus also on uniform Mengerian hypergraphs.

Corollary 3.29. Let H be a uniform hypergraph that is balanced or perfect, and
f, g : V (H)→ Z≥0 be given functions. It is NP-complete to decide whether H has
a (g, f)-matching.

Proof. Let H be a non-uniform hypergraph and f : V (H) → Z≥0 be a given func-
tion. We define an auxiliary hypergraph H ′ as follows. The vertex set of H ′ consists
of V (H) and new vertices v1

e , . . . , v
r(H)−|e|
e for every hyperedge e ∈ E(H) of size less

than the rank of H. The hypergraph H ′ contains all hyperedges e ∈ E(H) of size
r(H) and the new hyperedges e ∪ {v1

e , . . . , v
r(H)−|e|
e } for all hyperedges e ∈ E(H)

with |e| < r(H). By construction, H ′ is uniform. Furthermore, if H is balanced,
then H ′ is balanced, and if H is perfect, then H ′ is perfect.
We define functions g′, f ′ : V (H ′) → Z≥0 such that H ′ has a (g′, f ′)-matching

if and only if H has a perfect f -matching. For every v ∈ V (H ′) ∩ V (H) we set
g′(v) := f(v) and f ′(v) := f(v). For v ∈ V (H ′) \ V (H) we define g′(v) := 0 and
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f ′(v) := ∞. With this definition it is clear that H ′ has a (g′, f ′)-matching if and
only if H has a perfect f -matching.

We can decide in polynomial time whether or not an r-uniform balanced hyper-
graph has an f -factor by solving the linear program

min
∑

e∈E(H)
x(e)

∑
e∈δH(v)

x(e) ≥ f(v) for all v ∈ V (H)

0 ≤x(e) ≤ 1 for all e ∈ E(H).

Its optimal value is f(V (H))/r if and only if H has an f -factor. We do not know the
complexity status of the f -factor problem on uniform Mengerian or uniform perfect
hypergraphs. We cannot use the linear program above as it might not be integral.

In Chapter 2 we give a Hall-type theorem for the existence of perfect matchings
in normal hypergraphs. However, in this chapter we have not considered normal
hypergraphs so far. As normal hypergraphs are balanced, Theorem 3.26 implies that
the f -factor and the perfect f -matching problem are NP-complete on non-uniform
normal hypergraphs. In contrast to balanced hypergraphs both problems remain
hard in the uniform case.

Theorem 3.30. Let H be a uniform normal hypergraph, and f : V (H) → Z≥0 be
a function. Deciding whether H has an f -factor as well as deciding whether it has
a perfect f -matching is NP-complete.

Proof. Both problems are clearly in NP as we can decide in polynomial time
whether x : E(H)→ Z≥0 is a perfect f -matching or an f -factor.

We show that the perfect matching problem on an arbitrary uniform hypergraph
can be reduced to the f -factor problem and the perfect f -matching problem on
a uniform normal hypergraph. Given an r-uniform hypergraph H we define an
(r+1)-uniform hypergraph H ′ by adding one vertex v∗ and putting this vertex into
all hyperedges, i.e., V (H ′) := V (H) ∪ {v∗} and E(H ′) := {e ∪ {v∗} : e ∈ E(H)}.
We observe that all hyperedges of any non-empty partial hypergraph H ′[F ] of H ′
intersect in vertex v∗ and therefore H ′[F ] can be partitioned into ∆(H ′[F ]) match-
ings. Thus, H ′ is an (r + 1)-uniform normal hypergraph. We define a function
f : V (H) → Z≥0 by f(v) = 1 for all v ∈ V (H) and f(v∗) = |V (H)|/r. With this
definition H ′ has an f -factor if and only if H has a perfect matching. Furthermore,
by the definition of f , H ′ has an f -factor if and only if it has a perfect f -matching.
Therefore, the perfect f -matching and the f -factor problem are NP-hard on uni-
form normal hypergraphs.
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We conclude this section with an overview about our complexity results for the
perfect matching problem and its generalization on different classes of hypergraphs
generalizing bipartite graphs in Table 3.1. We distinguish the uniform case, where all
hyperedges have the same size, from the general one, where hyperedges of different
sizes are allowed. P means that the corresponding decision problem is polynomial
time solvable, and NP that it is NP-complete. There are two open cases, namely
the complexity of the f -factor problem on uniform hypergraphs that are Mengerian
or perfect.
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om

plexity
R
esults

Hypergraph Class Perfect Matching Perfect f -Matching f -Factor (g, f)-Matching

unimodular P P P P

uniform P P P NP
balanced

non-uniform P NP NP NP

uniform P P ? NP
Mengerian

non-uniform NP NP NP NP

uniform P NP NP NP
normal

non-uniform P NP NP NP

uniform P P ? NP
perfect

non-uniform NP NP NP NP

Table 3.1: Complexity of the perfect matching problem and its generalizations in different hypergraph classes.
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Chapter 4

Hypergraphs with a Perfect Matching

In Chapter 2 and 3 we give conditions for the existence of (generalized) perfect
matchings on hypergraphs with some special structure generalizing bipartite graphs.
In this chapter we follow a different approach. Namely, we look at the structure of
connected hypergraphs in which every hyperedge is contained in a perfect match-
ing. Graphs with this property are called matching covered. Their study emerged
among others from the investigation of the perfect matching polytope. Edmonds
obtained a full description of this polytope in [Edmonds, 1965a]. As it is not full-
dimensional it is difficult to give a non-redundant system of linear equations and
inequalities describing it. Clearly, edges not contained in any perfect matching play
no role, thus only matching covered graphs are considered. Edmonds, Pulleyblank,
and Lovász give in [Edmonds et al., 1982] a formula for the dimension of the perfect
matching polytope of a matching covered graph in terms of the number of its ver-
tices, its edges, and the number of so-called bricks in a tight cut decomposition. A
tight cut in a matching covered graph is a cut containing exactly one edge of every
perfect matching. Contracting the shores of a tight cut gives two new matching
covered graphs, if they have a non-trivial tight cut, then we contract again. In this
way a matching covered graph is decomposed into smaller matching covered graphs
that have only trivial tight cuts where a cut is trivial if it is equal to the set of
edges incident to a vertex. Such a decomposition is called a tight cut decomposi-
tion, and bricks are exactly the non-bipartite graphs without non-trivial tight cuts.
Every tight cut decomposition also yields a decomposition of the perfect matching
polytope, which can be used to give a minimal set of equations and inequalities
describing the perfect matching polytope. This was done explicitly by Edmonds,
Pulleyblank, and Lovász.
Of course, a tight cut decomposition depends on the chosen tight cuts, and it is not

clear that two different decompositions yield the same list of indecomposable graphs.
The result on the formula for the dimension of the perfect matching polytope implies
that at least the number of bricks is always the same. Lovász proves in [Lovász, 1987]
that up to multiple edges the list of resulting indecomposable graphs is always the
same. We show in Section 4.4 that this remarkable result carries over to hypergraphs
that can be made uniform by vertex multiplication, and give a counterexample for
the general case.
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We start this chapter with an overview about matching covered graphs and their
tight cut decomposition in Section 4.1. Furthermore, we review known results about
cuts in hypergraphs.
In Section 4.2 we look at the problem when some specific matchings can be

extended to a perfect matching. First, we consider hypergraphs in which every
matching of size k for some fixed k can be extended to a perfect matching. Such
hypergraphs are called k-extendable. We show that a k-extendable hypergraph is
also (k− 1)-extendable if it has enough vertices, where the bound on the minimum
number of vertices depends only on k and the rank of the hypergraph. Furthermore,
we look at the connection between extendability and connectivity. It is known that
every k-extendable graph is (k + 1)-connected. We show that every 1-extendable
uniform hypergraph is 2-connected. For k ≥ 2 we construct k-extendable uniform
hypergraphs that are not 3-connected. Afterwards, we characterize when a balanced
uniform hypergraph is k-extendable. Finally, we look at hypergraphs with the
property that every matching lies in a perfect matching, which we call greedily
matchable. We give a polynomial time algorithm for recognizing greedily matchable
hypergraphs on hypergraphs whose maximum degree is bounded by some constant.
In Section 4.3, we define tight cuts and tight cut contractions in hypergraphs

and give some basic properties. To the best of our knowledge these concepts have
not been considered before in hypergraphs. Our main results are that the tight
cut contractions of a hypergraph induce a decomposition of its perfect matching
polytope, and the uniqueness of the tight cut decomposition for hypergraphs that
have a vertex multiplication that is uniform. The latter statement is proven in
Section 4.4.
We conclude this chapter with some algorithmic results concerning tight cuts in

Section 4.5, where we develop a polynomial time algorithm that finds a non-trivial
tight cut (or decide that non exists) in a uniform balanced hypergraph.
The results of Section 4.3 and 4.4 are joint work with Meike Hatzel and Sebastian

Wiederrecht.

4.1 Literature Overview

There exists a lot of literature investigating matching covered graphs and questions
concerning them. We only summarize the main results and refer the interested
reader to the surveys by Plummer, see [Plummer, 1994] and [Plummer, 2008].
To the best of our knowledge tight cuts have not been considered before in hyper-

graphs. However, there are some results on minimum cuts including a "canonical
decomposition" along minimum cuts, which we summarize in the second subsection.
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4.1.1 Matching Covered Graphs
A matching covered graph is a connected graph such that every edge is contained
in a perfect matching. If k is a natural number and G is a graph with a perfect
matching and at least 2k vertices, then G is called k-extendable if every matching
of size k is contained in a perfect matching.
According to our definition k-extendable graphs need not be connected whereas

in the literature k-extendable graphs are sometimes assumed to be connected (for
example in [Plummer, 1980]).

The class of k-extendable graphs is nested with respect to increasing k. An
exception occurs when k is equal to half the number of vertices of a graph because
in this case k-extendability is just equivalent to the existence of a perfect matching.

Theorem 4.1. [Plummer, 1980] If G is a connected, k-extendable graph for some
positive integer k < |V (G)|/2, then G is (k − 1)-extendable.

Plummer also shows that every connected graph that is k-extendable is highly
connected, except for the degenerate case that k equals half the number of vertices
of a graph.

Theorem 4.2. [Plummer, 1980] Let G be a connected graph and k be some positive
integer less than |V (G)|/2. If G is k-extendable, then G is (k + 1)-connected.

In contrast to connectivity it is not easy to calculate the largest k such that
a graph is k-extendable. Indeed, Koster and Hackfeld showed recently that this
problem is co-NP-hard, see [Hackfeld and Koster, 2018]. However, in bipartite
graphs there exists a polynomial time algorithm to find the largest k such that
the input graph is k-extendable. The first one was given by Lakhal and Lit-
zler [Lakhal and Litzler, 1998] and the currently fastest one with a running time
of O(|V (G)| · |E(G)|) by Zhang and Zhang [Zhang and Zhang, 2006].

For fixed k there is a good characterization of k-extendability building upon
Tutte’s theorem on the existence of perfect matchings in graphs.

Theorem 4.3. [Qinglin, 1993] A connected graph G is k-extendable if and only if
for every S ⊆ V (G) the number of odd components of G− S is at most |S| and the
maximum size of a matching in G[S] is at most i, where i is such that G − S has
exactly |S| − 2i odd components.

For bipartite graphs there exists a simpler characterization of k-extendability
generalizing Hall’s theorem.

Theorem 4.4. [McCuaig, 2001] Let G be a connected, bipartite graph with a perfect
matching, and color classes A,B of the same size. If k ∈ {1, . . . , |A| − 1}, then
G is k-extendable if and only if it is connected and for every set X ⊆ A with
1 ≤ |X| ≤ |A| − k, we have |N(X)| ≥ |X|+ k.
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A graph G that is k-extendable for every k = 1, . . . , |V (G)|/2 is called greedily
matchable or sometimes also randomly matchable. In other words, a graph is greedily
matchable if and only if every matching lies in a perfect matching, which is the
case if and only if every maximal matching is perfect. A disconnected graph is
greedily matchable if and only if every connected component is greedily matchable.
Thus, it suffices to characterize all connected, greedily matchable graphs. It is
easy to see that the complete bipartite graph Kn,n and the complete graph K2n on
an even number of vertices are greedily matchable for n ≥ 1. Sumner proved in
[Sumner, 1979] that there are no other connected, greedily matchable graphs. His
result was published in 1979 before Theorem 4.1 and Theorem 4.4 were known.

Theorem 4.5. [Sumner, 1979] A connected graph G is greedily matchable if and
only if G is isomorphic to Kn,n or K2n for some n ≥ 1.

Though we have not found any reference about k-extendability in hypergraphs,
greedily matchable hypergraphs have been considered by Caro, Sebő, and Tarsi in
[Caro et al., 1996]. They give a polynomial time algorithm to decide whether a
hypergraph is greedily matchable if all hyperedges have size at most r for some
constant r. The algorithm uses the following characterization of greedily matchable
hypergraphs.

Theorem 4.6. [Caro et al., 1996] A hypergraph H is greedily matchable if and only
if it does not contain an induced subhypergraph H[S] such that

• H[S] has a perfect matching, and

• there exists a hyperedge e∗ ∈ E(H[S]) with e∗ 6= S and the property that for
every perfect matching M of H[S] we have e ∩ e∗ 6= ∅ for all e ∈M .

If all hyperedges have size at most r, then an induced hypergraph satisfying the
second condition of the previous theorem has at most r2 vertices. We enumerate
all subhypergraphs induced by sets of size at most r2 and test whether they satisfy
the two conditions of Theorem 4.6. If r is constant this gives a polynomial time
algorithm that decides whether a hypergraph of rank at most r is greedily matchable.
The complexity status of the recognition problem of greedily matchable hypergraphs
is open if r is part of the input. We show in Section 4.2.3 that one can also decide in
polynomial time whether or not a hypergraph is greedily matchable if its maximum
degree is bounded by some constant that is not part of the input.
Greedily matchable hypergraphs have also been studied in terms of their line

graph. A graph G is called a general partition graph if it is the line graph of a
greedily matchable hypergraph, and it is a partition graph if it is the line graph of
a greedily matchable hypergraph that has no parallel hyperedges. Partition graphs
were introduced by DeTemble, Harary, and Robertson in [DeTemple et al., 1987],
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Figure 4.1: Two hypergraph with the same line graphs, where the hypergraph on
the left is greedily matchable but the one on the right not.

where they also gave some necessary and sufficient conditions for a graph to be a gen-
eral partition graph. More such conditions can be found in [McAvaney et al., 1993].
In particular, it is known that triangle free general partition graphs have a particular
simple structure.

Theorem 4.7 ([DeTemple et al., 1987]). A connected triangle free graph is a gen-
eral partition graph if and only if it is isomorphic to Km,n for m,n ∈ N.

In particular, a bipartite general partition graph is isomorphic to a complete
bipartite graphs. This fact is used to characterize 2-regular greedily matchable
hypergraphs in Subsection 4.2.3.
The complexity of deciding whether a graph is a general partition graph is open.

Polynomial time algorithm for the following restricted graph classes are known:
chordal graphs ([Anbeek et al., 1997]), line graphs ([Levit and Milanič, 2014]), and
their complements, as well as graphs of bounded maximum clique size (for the last
two classes see [Hujdurović et al., 2018]). For an overview about the relation of gen-
eral partition graphs to various other graph classes we refer to [Boros et al., 2017].
If a hypergraph H is greedily matchable, then its line graph L(H) is a general

partition graph. However, it is possible that H is not greedily matchable but L(H)
is a general partition graph. Namely, there might exist a hypergraph H ′ such
that L(H ′) and L(H) are isomorphic and H ′ is greedily matchable but H is not.
Figure 4.1 displays two hypergraphs that both have K3,3 as their line graph. The
hypergraph depicted on the left is greedily matchable, whereas the one on the right
is not greedily matchable, as the blue hyperedges form a maximal matching that
is not perfect. Thus, one cannot only use the line graph of a hypergraph to decide
whether it is greedily matchable or not. This justifies that we look at greedily
matchable hypergraphs from a hypergraphic point of view and not only at their line
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graphs.
Another graph class related to greedily matchable hypergraphs are so-called well-

covered graphs, which were introduced in [Plummer, 1970].

Definition 4.8. A graph is well-covered if all maximal stable sets have the same
size.

Maximal matchings in a hypergraph H correspond one-to-one to maximal inde-
pendent sets in its line graph L(H). Thus, L(H) is well-covered if and only if all
maximal matchings of H have the same size. For r-uniform hypergraphs we obtain
the following relation:

Observation 4.9. An r-uniform hypergraph H with a perfect matching is greedily-
matchable if and only if L(H) is well-covered.

However, if H is not uniform, then it is possible that H is greedily matchable but
L(H) is not well-covered. This is the case if H has two perfect matchings of different
sizes. It can also happen that L(H) is well-covered and H has a perfect matching
butH is not greedily matchable. Thus, in general hypergraphs we cannot reduce the
characterization of greedily matchable hypergraphs to that of well-covered graphs.
Deciding whether a graph is not well-covered lies in NP because two max-

imal independent sets of different sizes are a polynomial time verifiable certifi-
cate. Indeed, the problem is NP-complete, which was independently proven by
Chvátal, and Slater in [Chvátal and Slater, 1993], and Sankaranarayana and Stew-
art [Sankaranarayana and Stewart, 1992], where both use a reduction from 3-SAT.
Their result even holds for perfect graphs as the graphs they construct in the re-
duction are perfect.

Theorem 4.10. [Chvátal and Slater, 1993][Sankaranarayana and Stewart, 1992] It
is co-NP-complete to decide whether a graph is well-covered even for perfect graphs.

There exist characterizations of well-covered graphs in various graph classes. In
particular, Dean and Zito show that there exists a polynomial time algorithm to
decide whether graphs from the following classes are well-covered: trees, bipar-
tite graphs, graphs in which the maximum size of a matching equals the minimum
size of a clique cover and, additionally, no cycle of length four exists, etc. (see
[Dean and Zito, 1994]). For more results on well-covered graphs we refer the inter-
ested reader to the survey [Plummer, 1993].
Now, we turn to the structure of matching covered or connected, 1-extendable

graphs. Such graphs can be decomposed along tight cuts where a cut is tight if it
intersects every perfect matching in exactly one edge. If a cut C in a graph G is
given by a set of vertices S, i.e., C = {e ∈ E(G) : e = {v, w} with v ∈ S,w /∈ S},
then S and V (G) \ S are called the shores of C. A non-trivial tight cut is one
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for which both shores have size at least two. Any tight cut yields two tight cut
contractions, which are the graphs obtained by contracting one shore of the cut.
We then can look for non-trivial tight cuts in the contractions and contract the
shores of these cuts again. Repeating this procedure results in a list of graphs
without non-trivial tight cuts, which is called a tight cut decomposition. A graph
without non-trivial tight cuts is called a brace if it is bipartite, and a brick if it is
non-bipartite. The distinction between bipartite and non-bipartite graphs without
non-trivial tight cuts makes sense as bricks and braces have different properties.
It seems like it plays a huge role which cuts we choose in which order during the

tight cut decomposition. This is not the case as Lovász showed.

Theorem 4.11. [Lovász, 1987] Any two tight cut decompositions of a graph G yield
the same list of bricks and braces up to parallel edges.

The tight cut decomposition of a graph helps to analyze the perfect matching
polytope, which is the convex hull of the incidence vectors of perfect matchings.
Edmonds gives in [Edmonds, 1965a] a complete description of the perfect matching
polytope of a graph G in terms of linear equations and inequalities, namely, it is
given by

xe ≥ 0 ∀e ∈ E(G)(4.1)
x(δG(v)) = 1 ∀v ∈ V (G)(4.2)
x(δG(S)) ≥ 1 ∀S ⊆ V (G), |S| ≥ 3, |S| is odd.(4.3)

The inequalities of type (4.1) are called non-negativity constraints, that of type (4.3)
odd-set constraints, and the equations (4.2) are called degree constraints. Tight cuts
correspond exactly to odd-set constraints that are satisfied with equality for every
vector in the perfect matching polytope. Furthermore, every tight cut decomposi-
tion induces a decomposition of the perfect matching polytope.
Edmonds, Pulleyblank, and Lovász use in [Edmonds et al., 1982] a special tight

cut decomposition, which they call brick decomposition, to determine the dimen-
sion of the perfect matching polytope and to give a minimal set of equations and
inequalities describing it.

Theorem 4.12. [Edmonds et al., 1982] Let G be a matching covered graph, and
β(G) be the number of bricks in any tight cut decomposition. The dimension of the
perfect matching polytope of G is equal to |E(G)| − |V (G)| − β(G) + 1.

Theorem 4.12 also yields a lower bound on the number of perfect matchings in
a graph. Namely, as the perfect matching polytope of a graph G has dimension
|E(G)| − |V (G)| − β(G) + 1, we find |E(G)| − |V (G)| − β(G) + 2 perfect matchings
whose incidence vectors are linearly independent. It is hard to find the exact number
of perfect matchings of a graph, even in the bipartite case, see [Valiant, 1979].
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Another interesting problem is to characterize the graphs for which the perfect
matching polytope is given by the non-negativity and degree constraints. It is
well known that this is the case for bipartite graphs. However, there are also
non-bipartite graphs with this property, for example Kőnig-Egerváry graphs, see
[Kayll, 2010]. De Carvalho, Lucchesi, and Murty characterize those graphs for which
the perfect matching polytope is given by the inequalities (4.1) and equations (4.2),
see [de Carvalho et al., 2004]. They consider another type of cuts, which they call
separating cuts. A separating cut in a matching covered graph G is a cut δG(S)
such that the graphs obtained by contracting S and V (G)\S are matching covered.
It follows that δG(S) is a separating cut if and only if for every edge e ∈ E(G) there
exists a perfect matching Me with |δG(S) ∩Me| = 1. This implies that every tight
cut is separating. The reverse implication is true for bipartite graphs but false in
general. In particular, it is possible that a brick has a non-trivial separating cut, in
which case the brick is called non-solid. A brick without a non-trivial separating cut
is called a solid brick. De Carvalho, Lucchesi, and Murty first show that the perfect
matching polytope of a brick is given by the non-negativity and degree constraints
if and only if it is solid. They use this result together with the characterization
of the facets of the perfect matching polytope given in [Edmonds et al., 1982] to
obtain the following theorem.

Theorem 4.13. The perfect matching polytope of a matching covered graph G is
given by the non-negativity and degree constraints if and only if a tight cut decom-
position of G has at most one brick and this brick is solid.

It is not known whether the problem of deciding if a brick is solid or not can
be solved in polynomial time. The only planar solid bricks are the odd wheels,
where an odd wheel is an odd cycle together with one new vertex joined to all the
vertices of that cycle, see [de Carvalho et al., 2006]. The characterization of non-
planar solid bricks is an open problem, see [Lucchesi et al., 2018] for recent progress
on this topic.

4.1.2 Cuts in Hypergraphs

In this subsection we review known results on the minimum cut problem in hyper-
graphs. Given a hypergraph H with non-negative weights w ∈ QE(H)

≥0 a minimum
cut is a cut δH(S) of H such that

∑
e∈δH(S)we is as small as possible. The problem

of finding a minimum cut in a hypergraph can be reduced to a minimum cut com-
putation on an auxiliary directed graph, and is thus solvable in polynomial time.
However, there are also fast algorithms working directly on the hypergraph. Fur-
thermore, there exists a decomposition along minimum cuts, which gives rise to a
compact representation of all minimum cuts.
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The minimum cut problem in hypergraphs occurs probably for the first time in
[Lawler, 1973], where it is solved by a reduction to the minimum cut problem in
directed graphs. In this article, minimum cuts in hypergraphs are used to compute
an optimal partition of the vertex set into k subsets where optimality is measured in
terms of different functions on the set of hyperedges intersecting at least two parts.
In [Klimmek and Wagner, 1996] a combinatorial algorithm with running time
O(|V (H)|2 log(|V (H)|)+|V (H)|·

∑
e∈E(H) |e|) for the minimum cut problem is given

that works directly on the hypergraph. Furthermore, it is shown that the function
w̃ : 2V (H) → Q≥0 defined by w̃(S) := w(δH(S)) for all S ⊆ V (H) is submodular. In
particular, all submodular function minimization algorithms can be used to com-
pute a minimum cut in a hypergraph. Another hypergraph minimum cut algorithm
with the same asymptotic running time as that of Klimmek and Wagner is given in
[Mak and Wong, 2000].
There are not many other results on cuts in hypergraphs. Aissi, Mahjoub, Mc-

Cormick, and Queyranne show in [Aissi et al., 2014] that the bicriteria minimum
cut problem can be solved in polynomial time on graphs and hypergraphs of fixed
rank. Furthermore, there are results on hypergraph k-cuts. A k-cut in a hypergraph
is a set of hyperedges C ⊆ E(H) such that H[E(H) \ C] has at least k connected
components. If k is part of the input, then it is NP-hard to find a minimum hyper-
graph k-cut. Namely, Goldschmidt and Hochbaum show that the minimum k-cut
problem in graphs is already NP-hard if k is part of the input, and give a poly-
nomial time algorithm for fixed k in [Goldschmidt and Hochbaum, 1994]. There
exists a randomized polynomial time algorithm for the minimum k-cut problem in
hypergraphs for constant k (see [Chandrasekaran et al., 2018]) but no deterministic
polynomial time algorithm is known.
We conclude this subsection by mentioning a decomposition for hypergraphs

based on contractions along minimum cuts. Cunningham and Edmonds devel-
oped a general decomposition theory for combinatorial structures, which includes
for example the decomposition of graphs into 3-connected graphs. Cunningham
generalizes this result in [Cunningham, 1983] to submodular functions. Namely,
a submodular function f defined on subsets of a finite set E can be decomposed
along so-called splits. A split is a partition E1 ∪ E2 of E such that |E1|, |E2| ≥ 2
and f(E1) + f(E2) − f(E) is minimized. Both subsets of a split are contracted
to obtain two new functions f1, f2. If f1 or f2 contain a split, then one continues
the decomposition for f1 and f2 until no split exists or the functions f1, f2 are
"highly decomposable". Cunningham uses a very restrictive notion of equivalence
that is stronger than demanding the base elements to be isomorphic. He shows
that there exists a unique decomposition into prime functions, which are functions
without splits, and so-called brittle and semi-brittle functions, which are intuitively
highly decomposable functions. Formally, a submodular function f on the subsets
of E is brittle if every partition of E into two subsets of size at least two is a split,
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and it is called semi-brittle if there exists an ordering e1, . . . , en of the elements of
E such that the splits of f are exactly the partitions of the form {ei, . . . , ei+j−1},
{ei+j , . . . , ei−1} for i ∈ [n], j ∈ {2, . . . , n − 2}, n ≥ 4 and indices are taken modulo
n.
Chekuri and Xu give in [Chekuri and Xu, 2017] a comprehensive overview of Cun-

ningham’s result applied to the minimum cut problem on hypergraphs. It gives a
compact representation of all minimum cuts and can be computed in polynomial
time. However, Cunningham’s decomposition theory does not include our main re-
sult on the uniqueness of the tight cut decomposition stated in Theorem 4.63. It
even does not imply the corresponding result for graphs by Lovász because Cun-
ningham uses a stronger notion of equivalence than we and Lovász do. In particular,
two distinct tight cut decomposition of the same graph might be non-equivalent due
to Cunningham’s notion.

4.2 Extendability in Hypergraphs

In this section we look at extendability problems in hypergraphs. First, we in-
vestigate k-extendable hypergraphs, where a hypergraph is k-extendable if every
matching of size k can be extended to a perfect matching. In particular, we want
to know when k-extendability implies (k − 1)-extendability. Afterwards, we inves-
tigate k-extendability in balanced hypergraphs where we mainly focus on uniform
hypergraphs. We give several equivalent conditions for 1-extendability generalizing
known ones for 1-extendability in bipartite graphs.
In the last subsection, we consider greedily matchable hypergraphs. We show that

their structure is more difficult as in the graph case, and give constructions that
preserve the property of being greedily matchable. Furthermore, for every constant
d ∈ N we give a polynomial time algorithm that decides whether a hypergraph of
maximum degree at most d is greedily matchable.

4.2.1 k-extendable Hypergraphs

In this subsection we are looking at the question when k-extendability implies (k−1)-
extendability, and show that a high extendability does not necessarily imply a high
connectivity.
Formally, a k-extendable hypergraph is defined in the same way as a k-extendable

graph.

Definition 4.14 (k-extendable hypergraph). A hypergraphH is called k-extendable
for some natural number k, if it has a matching of size k and every such matching
is contained in a perfect matching.
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Clearly, ifH is an r-uniform hypergraph, then it can be k-extendable for k at most
|V (H)|/r. The case k = |V (H)|/r is kind of degenerate as for this value k-extendability
is just equivalent to the existence of a perfect matching, thus we gain not much
information in this case.
Plummer shows in [Plummer, 1980] that k-extendability in graphs implies (k−1)-

extendability except for the degenerate case that k equals half the number of ver-
tices. One might conjecture that a similar result also holds for r-uniform hyper-
graphs: If H is an r-uniform, connected, k-extendable hypergraph on more than
r ·k vertices, then H is also (k−1)-extendable. This is not the case as the following
counterexample shows.

e∗

Figure 4.2: A 3-uniform, 2-extendable hypergraph that is not 1-extendable.

Example 4.15. Let H be the r-uniform hypergraph on the vertex set {v1, . . . , vr2}
with hyperedges e∗ = {v1, vr+1, v2r+1, . . . , v(r−1)r+1}, ei = {vir+1, vir+2, . . . , vir+r}
for i = 0, . . . , r − 1, see Figure 4.2 for r = 3. This hypergraph has r2 vertices and
is k-extendable for k = 2, . . . , r because it contains exactly one perfect matching
(namely, {e0, . . . , er−1}) and every matching of size at least two is a subset of it.
However, the hyperedge e∗ is not contained in a perfect matching. Thus, H is not
1-extendable although it is 2-extendable and has more than 2r vertices.
In order to prove that k-extendability implies (k − 1)-extendability in the graph

case, Plummer shows that every matching of size k−1 can be extended to a matching
of size k by adding one edge. Intuitively, this should also be possible for hypergraphs
of bounded rank with sufficiently many vertices, and this is indeed the case.
Theorem 4.16. If H is a k-extendable hypergraph for some k ≥ 2 and H has more
than r(H) · (r(H) + k − 2) vertices, then H is (k − 1)-extendable.
Proof. Suppose that H is k-extendable but not (k − 1)-extendable. We show that
H has at most r(H) · (r(H) + k − 2) vertices.
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Figure 4.3: Hypergraph H3,4 as constructed in Example 4.17.

Let F = {f1, . . . , fk−1} be a matching of size k − 1 that does not lie in a perfect
matching of H. Choose a perfect matchingM intersecting F in as many hyperedges
as possible. By the choice of F we have |M ∩F | ≤ k− 2. Without loss of generality
we assume that f1 /∈ M . Suppose that there exist hyperedges e1, . . . , et ∈ M \ F
not intersecting f1 with t = k − 1− |M ∩ F |. The set {f1, e1, . . . , et} ∪ (M ∩ F ) is
a matching of size 1 + t + |M ∩ F | = k. Thus, there exists a perfect matching M ′
containing this set. As |M ′ ∩F | = |M ∩F |+ 1, we get a contradiction to the choice
of M .
We have shown that there are at most k − 2 − |M ∩ F | hyperedges in M \ F

disjoint from f1. Therefore, M contains at most |f1| + k − 2 hyperedges. As the
size of every hyperedge of H is at most r(H), we obtain

|V (H)| ≤ r(H) · |M | ≤ r(H) · (r(H) + k − 2) .

An interesting question is whether the bound on the number of vertices in The-
orem 4.16 is best possible. For graphs (r(H) = 2) we get a bound of 2k, which
equals Plummer’s result. For k = 2 we get r(H)2, which is best possible by Exam-
ple 4.15. In general, we do not know whether the bound on the number of vertices
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in Theorem 4.16 can be improved. The following example shows that this is not
possible if r(H) ≥ k − 1. Namely, we construct a k-extendable hypergraph on
r(H) · (r(H) + k − 2) vertices that is not (k − 1)-extendable for every k ≥ 3 and
r(H) ≥ k − 1.

Example 4.17. Given integers r, k with k ≥ 3 and r ≥ k − 1 we define the hyper-
graph Hr,k as follows. Its vertex set consists of the vertices vi,j for i ∈ [k − 1],
j ∈ [2r − 1]. If r ≥ k we additionally add the vertices wi,j for i ∈ [r − 1],
j ∈ [r−k+1] to Hr,k. The hyperedge set is the disjoint union of a perfect matching
M = {e1, . . . , er−1, e

′
1, . . . , e

′
k−1} and a matching F = {f1, . . . , fk−1} of size k − 1.

The hyperedges of F are given by fi = {vi,1, . . . , vi,r} for i ∈ [k−1], and those of M
by ei = {v1,i, . . . , vk−1,i, wi,1, . . . , wi,r−k+1} for i ∈ [r− 1] and e′i = {vi,r, . . . , vi,2r−1}
for i ∈ [k − 1]. Figure 4.3 shows the hypergraph H3,4.

The resulting hypergraph Hr,k has r · |M | = r2 + rk − 2r vertices and is not
(k−1)-extendable as F is a matching of size k−1 that is not contained in a perfect
matching. We claim that H is k-extendable. Let M ′ be a matching of size k. Let
fj1 , . . . , fjt be the hyperedges in M ′ ∩ F . If t = 0, then M ′ ⊆ M . Otherwise, the
hyperedges e1, . . . , er−1, and e′j1 , . . . , e

′
′jt

have a non-empty intersection with one of
the hyperedges in M ′ ∩ F . It follows that

|M ′| = |M ′ ∩ F |+ |M ′ \ F | ≤ t+ (r + k − 2)− ((r − 1) + t) = k − 1,

contradicting |M ′| = k. Thus, M ′ ⊆M and H is k-extendable.

Next, we investigate the relationship between extendability and connectivity in
hypergraphs. A connected, k-extendable graph G on at least 2k + 2 vertices is
(k + 1)-connected. In particular, every 1-extendable graph on at least four vertices
is 2-connected. For hypergraphs this is not always the case as the example depicted
in Figure 4.4 shows. This hypergraph is balanced, connected, and 1-extendable but
not 2-vertex connected.
However, we show that uniform, 1-extendable hypergraphs are 2-vertex con-

nected. First, we consider what happens if we remove together with a vertex v
all hyperedges containing v, which means that we look at H − v. The following
lemma tells us that δH(v) has a special structure if H − v is not connected.

Lemma 4.18. Let H be a 1-extendable, r-uniform, connected hypergraph. If v is a
vertex such that H − v is not connected, and C is a connected component of H − v,
then δH(v) = δH(V (C)).

Proof. Let C be a connected component of H − v. As H is connected and H − v
not, there exists a hyperedge eC ∈ δH(v) with eC ∩ V (C) 6= ∅. If MC is a perfect
matching containing eC , then MC ∩ E(C) is a maximum matching of C covering
V (C) \ eC . It follows that |V (C)| ≡ |V (C) ∩ eC | mod r and |V (C) ∩ eC | ≥ 1. Now,
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v

Figure 4.4: A connected, 1-extendable hypergraph and a vertex v such that H \ v
is not connected.

let f ∈ δH(v) be any other hyperedge incident to v, and M a perfect matching
containing f . The set M ∩ E(C) is again a matching of C covering V (C) \ f . It
follows that |V (C) ∩ f | = |V (C) ∩ eC | ≥ 1. This shows that δH(v) ⊆ δH(V (C)).
On the other hand, every hyperedge e ∈ δH(V (C)) contains v because C is a

connected component of H − v, thus δH(V (C)) = δH(v).

Using the previous lemma we prove that every 1-extendable, uniform, connected
hypergraph is 2-connected. Recall, that H \ v is the hypergraph obtained from H
by deleting v and replacing all hyperedges e ∈ E(H) by e \ {v} if this set is non-
empty. In the hypergraph H − v we consider a "stronger" form of deletion, namely,
we remove not only the vertex v from V (H) but also all hyperedges e containing v
from E(H). In particular, if H \ v is disconnected, then H − v is also disconnected.
However, it is possible that H − v is not connected and H \ v is connected.

Theorem 4.19. Every 1-extendable, r-uniform, connected hypergraph is 2-vertex
connected.

Proof. Suppose there exists a vertex v such thatH\v and thusH−v is disconnected.
Let C1, . . . , Ct be the connected components of H − v. All hyperedges e ∈ δH(v)
intersect each Ci in at least one vertex by Lemma 4.18. Now, let s, t ∈ V (H) be
two distinct vertices. If s, t are contained in the same component Ci of H − v, then
there exists a path connecting s to t in H(V (H)\{v}). Suppose that s ∈ V (Ci) and
t ∈ V (Cj) for j 6= i, and let e ∈ δH(v) arbitrary. In H − v there exists a path from
s to a vertex w ∈ e ∩ V (Ci) and a path from some w′ ∈ e ∩ V (Cj) to t. Together
with e these two paths form a path from s to t not using v. Thus, we have shown
that there exists a path between every pair of distinct vertices in H \ v. Therefore,
H \ v is connected.

102



4.2 Extendability in Hypergraphs

z1

z2

v1

v2

v3k+2

w1

w3k+2

w2

Figure 4.5: Illustration of the construction described in Example 4.20.

In view of Theorem 4.19 one might expect that at least for uniform, connected
hypergraphs k-extendability implies (k+1)-vertex connectivity. This is not the case
as the following counterexample shows.

Example 4.20. Given an integer k ≥ 1 we consider the 3-uniform hypergraph H
on the vertex set V (H) := {v1, . . . , v3k+2} ∪ {w1, . . . , w3k+2} ∪ {z1, z2} that has the
following hyperedges:

(a) All three element subsets of {v2, . . . , v3k+2} and {w2, . . . , w3k+2},

(b) all subsets of the form {zi, v1, vj} and {zi, w1, wj} for j = 2, . . . , 3k + 2 and
i = 1, 2.

Figure 4.5 illustrates the construction of H.
The vertices {z1, z2} are a separator of size two, i.e., H \{z1, z2} is not connected.

However, every maximal matching of H is perfect. In particular, H is k′-extendable
for k′ = 1, . . . , |V (H)|/3 but not 2-vertex connected.

All in all, it seems that the structure of k-extendable hypergraphs is not as nice
as the structure of k-extendable graphs. Therefore, we look at hypergraphs that are
k-extendable and balanced in the following subsection.

4.2.2 Balanced Hypergraphs

In this subsection we restrict our attention to balanced uniform hypergraphs. We
first consider 1-extendable hypergraphs. Afterwards, we show that the extendability
of a balanced hypergraph is related to that of its dual.
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Lovász and Plummer state in [Lovász and Plummer, 1986] a theorem that sum-
marizes several known characterizations of matching covered graphs. We restate it
using our notation.

Theorem 4.21 (Thm. 4.1.1 in [Lovász and Plummer, 1986]). The following state-
ments are equivalent for a connected, bipartite graph with vertex classes U,W .

(i) G is 1-extendable.

(ii) The only minimum vertex covers of G are U and W .

(iii) |U | = |W | and |N(X)| ≥ |X|+ 1 for every non-empty set X ( U .

(iv) G = K2, or |V (G)| ≥ 4, and for any u ∈ U , w ∈ W the subgraph G − u − w
has a perfect matching.

(v) If F ⊆ E(G) is the set of edges that are contained in some perfect matching
of G, then G[F ] is a connected subgraph of G.

We generalize the first four statements of this theorem to ones about hypergraphs,
and show that they are equivalent on uniform, balanced hypergraphs, where we use
the hypergraphic neighborhood defined in Definition 3.17 and the fact that every
r-uniform, balanced hypergraph is r-partite by Theorem 1.30.

Theorem 4.22. Let H be a connected, balanced, r-uniform hypergraph with r-
partition V1, . . . , Vr. The following statements are equivalent.

(a) H is 1-extendable.

(b) Every minimum E-vertex cover is a maximum stable set.

(c) Every maximum stable set is a minimum E-vertex cover.

(d) (1) |Vi| = |Vj | for all i, j ∈ {1, . . . , r},

(2) |X| ≤ |Y | for all X ⊆ V1, Y ⊆ V (H) \ V1, Y ∈ N (X) with (V1 \X) ∪ Y
a stable set, and

(3) |X|+1 ≤ |Y | for all X ⊆ V1, Y ⊆ V (H)\V1, Y ∈ N (X) with (V1\X)∪Y
not a stable set.

(e) Either H consists of r vertices and all hyperedges are of the form e = V (H),
or H−F has a perfect matching for every F ⊆ V (H) of size r with |F ∩T | = 1
for all stable, E-vertex covers T of H.
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4.2 Extendability in Hypergraphs

Figure 4.6: A 3-partite, balanced hypergraph with two distinct 3-partition where
the vertex classes V1, V2, V3 are indicated by different shapes and colors
of the vertices.

The conditions (b) and (c) of Theorem 4.22 are a hypergraphic generalization of
condition (ii) of Theorem 4.21 because in a connected bipartite graph G its color
classes are the only minimum E-vertex covers that are also maximum stable sets.
The statement (d) applied on a connected bipartite graph gives (iii) of Theorem 4.21
as in this case (V1 \X) ∪ Y is stable if and only if X = V1 or X = ∅.

When generalizing (iv) one has to be careful. In contrast to bipartite graphs, an
r-uniform, connected, balanced hypergraph might have distinct r-partitions of its
vertex set, see for example Figure 4.6. Thus, we are only allowed to remove sets
of vertices of size r that intersect every possible vertex class in exactly one vertex.
Every vertex class is a stable E-vertex cover. On the other hand, if T is a stable E-
vertex cover in an r-partite hypergraph H, then T together with an (r−1)-partition
of H(V (H) \ T ) is an r-partition of H. Thus, we can equivalently look at sets that
intersect every stable E-vertex cover in exactly one vertex. This gives an intuition
why (e) is a suitable hypergraphic generalization for (iv). On the other hand, (e)
applied to a connected bipartite graph with vertex classes U and W gives condition
(iv) of Theorem 4.21 as U and W are the only stable, E-vertex covers, and thus
every set F as in (e) contains exactly one vertex from U and one from W .
Regarding condition (v), we do not know whether a connected, uniform, bal-

anced hypergraph H is 1-extendable, if the partial hypergraph of H induced by the
hyperedges {e ∈ E(H) : e lies in some perfect matching of H} is connected.

We split the proof of Theorem 4.22 into several parts. The equivalence of (a),
(b) and (c) follows from results in [Scheidweiler, 2011], the equivalence of the other
statements is new to the best of our knowledge. We first explain how "(a) ⇐⇒
(b)⇐⇒ (c) follows from results stated in [Scheidweiler, 2011]. Those are formulated
in terms of d-maximum matchings and minimum d-vertex cover. As we only need
the E-maximum case, we reformulate them as follows.
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Corollary 4.23 (implied by Corollary 2.26 and 2.33 of [Scheidweiler, 2011]). If e
is a hyperedge in a balanced hypergraph H, then e is contained in an E-maximum
matching if and only if |e ∩ T | = 1 for every minimum E-vertex cover T of H.

Corollary 4.24 (implied by Corollary 2.29 and 2.32 of [Scheidweiler, 2011]). If
e is a hyperedge in a balanced hypergraph H, then e is contained in a minimum
hyperedge cover if and only if e ∩ S 6= ∅ for every maximum stable set S of H.

The two corollaries above imply the equivalence of (a), (b) and (c).

Corollary 4.25. If H is a balanced, r-uniform hypergraph, then H is 1-extendable
if and only if every minimum E-vertex cover is a maximum stable set, which is the
case if and only if every maximum stable set is a minimum E-vertex cover.

Proof. If H is matching covered and r-uniform, then the maximum size of a match-
ing, the minimum size of an E-vertex cover, the minimum size of a hyperedge cover,
and the maximum size of a stable set are all equal to |V (H)|/r. Furthermore, every
maximum size matching is a minimum size hyperedge cover, and vice versa. For all
e ∈ E(H) we have |e ∩ T | = 1 for every minimum E-vertex cover T of H by Corol-
lary 4.23, and e ∩ S 6= ∅ for every maximum stable set S of H by Corollary 4.24.
Thus, every minimum E-vertex cover is a maximum stable set, and every maximum
stable set is a minimum E-vertex cover.
Now, suppose every minimum E-vertex cover is a maximum size stable set. The

size of a minimum E-vertex cover equals the maximum size of a matching in H,
which is at most |V (H)|/r. On the other hand, the size of a maximum stable set is
equal to the minimum size of a hyperedge cover, which is at least |V (H)|/r. Thus,
the minimum size of an E-vertex cover is equal to |V (H)|/r. By Corollary 4.23
and the assumption that every minimum E-vertex cover is stable, every hyperedge
is contained in an E-maximum matching. Every E-maximum matching has size
|V (H)|/r and is therefore a perfect matching. Thus, H is matching covered.

Finally, suppose every maximum stable set is a minimum E-vertex cover. As
above, we get that the size of a maximum stable set is equal to |V (H)|/r. By du-
ality, also the size of a minimum hyperedge cover is |V (H)|/r, which implies that
every hyperedge cover is a perfect matching. By Corollary 4.24, every hyperedge is
contained in a perfect matching.

As a next step we prove a Hall-type theorem for 1-extendability, namely, we show
that (a) and (d) are equivalent. Note that the first two conditions of (d) are similar
to that of Theorem 3.18 in the case f(v) = 1 for all vertices v.

Lemma 4.26. Let H be a balanced, r-uniform hypergraph, and V1, . . . , Vr be an
r-partition of V (H). The hypergraph H is 1-extendable if and only if

(1) |Vi| = |Vj | for all i, j ∈ {1, . . . , r},
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(2) |X| ≤ |Y | for all X ⊆ V1, Y ⊆ V (H) \ V1, Y ∈ N (X) with (V1 \ X) ∪ Y a
stable set, and

(3) |X| + 1 ≤ |Y | for all X ⊆ V1, Y ⊆ V (H) \ V1, Y ∈ N (X) with (V1 \X) ∪ Y
not a stable set.

Proof. If H is matching covered, then it has a perfect matching and the first two
statements follow from Theorem 3.18. Let X ⊆ V1, Y ⊆ V (H) \ V1, Y ∈ N (X)
with (V1 \ X) ∪ Y not a stable set. We have to show that |X| + 1 ≤ |Y |. As
(V1 \X) ∪ Y is not stable, there exists a hyperedge e∗ ∈ E(H) intersecting this set
in at least two vertices. Let M be a perfect matching containing e∗, which must
exist as H is matching covered. First, we consider the case |e∗ ∩ (V1 \X)| = 0 and
|e∗ ∩ Y | ≥ 2. This means that |e∗ ∩X| = 1 ≤ |e∗ ∩ Y | − 1. For all other e ∈ M we
have |e ∩X| ≤ |e ∩ Y | because Y ∈ N (X) and X ⊆ V1. If |e∗ ∩ (V1 \X)| = 1 and
|e∗ ∩ Y | ≥ 1, then |e∗ ∩X| = 0, and thus |e∗ ∩X| ≤ |e∗ ∩ Y | − 1. In both cases we
obtain

|X| =
∑
e∈M
|e ∩X| ≤

∑
e∈M
|e ∩ Y | − 1 = |Y | − 1.

Now, assume that the three conditions stated above hold. By Theorem 3.18,
H has a perfect matching. Suppose that there exists a hyperedge e∗ ∈ E(H) not
contained in a perfect matching. By Corollary 3.6 in [Scheidweiler, 2011] there
exists a minimum E-vertex cover T of H intersecting e∗ in more than one vertex.
We set X = V1 \ T and Y = T \ V1. For every hyperedge e ∈ E(H) with e ∩X 6= ∅
we have e∩ (T ∩ V1) = ∅, and thus e∩ (T \ V1) 6= ∅ as T is an E-vertex cover. This
implies that there exists Y ′ ⊆ Y with Y ′ ∈ N (X). If Y ′ is a strict subset of Y , then
(V1 ∩ T ) ∪ Y ′ is an E-vertex cover of smaller size than T . This is impossible as T
is a minimum E-vertex cover. Thus, Y ∈ N (X). Observe that (V1 \X) ∪ Y = T is
not a stable set, so by the third condition of the lemma we get |X|+ 1 ≤ |Y |, which
is equivalent to |V1| + 1 ≤ |T |. But V1 and T are both minimum E-vertex covers,
and thus we obtain a contradiction.

Finally, we show that (e) and (a) are equivalent. This completes our proof of the
various characterizations of 1-extendable, uniform, balanced hypergraphs given in
Theorem 4.22.

Lemma 4.27. A balanced, r-uniform hypergraph H on more than r vertices is
matching covered if and only if H − F has a perfect matching for every F ⊆ V (H)
of size r with |F ∩ T | = 1 for all stable E-vertex covers T .

Proof. First, we assume that the "only if"-condition holds. For every hyperedge
e ∈ E(H) we have |e| = r, and |e ∩ T | = 1 for all stable E-vertex covers T of H.
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Thus, H[V (H) \ e] has a perfect matching Me for every e ∈ E(H), and Me ∪ {e} is
a perfect matching of H containing e.
Now, assume H is matching covered, and let F ⊆ V (H) be as stated above.

We look at the hypergraph H \ F , which is the subhypergraph of H restricted to
V (H) \ F . Every stable set S of H \ F is a stable set of H with S ∩ F = ∅.
Every maximum stable set of H is an E-vertex cover and therefore has a non-empty
intersection with F . This implies that the maximum size of a stable set in H \F is
less than the maximum size of a stable set in H, which is |V (H)|/r.
Now, let R ⊆ E(H) be a minimum size hyperedge cover of H \F . A trivial lower

bound on the size of R is |V (H\F )|/r, which is equal to |V (H)|/r − 1. On the other
hand, the minimum size of a hyperedge cover in H \ F is equal to the maximum
size of a stable set in H \ F because H \ F is a balanced hypergraph. Together,
it follows that R contains exactly |V (H)\F |/r hyperedges. The hyperedges of H \ F
are of the form e \ F . As |R| = |V (H\F )|/r, the set R uses only hyperedges of size r
and those hyperedges are pairwise disjoint. Therefore, R contains only hyperedges
e ∈ E(H) with e ∩ F = ∅, and R forms a perfect matching of H \ F . In particular,
R is also a perfect matching of H − F .

Now, we turn to the relation between k-extendability and duality in balanced
hypergraphs. If H is a balanced, r-uniform hypergraph, then its dual H∗ is balanced
and every vertex has degree r. This implies that the hyperedge set of H∗ is the
disjoint union of r perfect matchings because a balanced hypergraph is normal. In
particular, H∗ is matching covered. If we further assume that H has a perfect
matching, we are able to characterize when H is k-extendable in terms of its dual
hypergraph.

Lemma 4.28. Let H be a balanced, r-uniform, 1-extendable hypergraph, and k be
a natural number with 2 ≤ k ≤ |V (H)|/r. If H is k-extendable, then H∗ has no
maximal matching of size |V (H)|/r − k + 1.

Proof. Suppose that H∗ has a maximal matching of size |V (H)|/r − k + 1, then this
matching corresponds to a maximal stable set S in H. The set S is not a vertex
cover ofH because the minimum size of a vertex cover inH is equal to the maximum
size of a matching, which is |V (H)|/r as H is an r-uniform hypergraph with a perfect
matching. Let F := {e ∈ E(H) : e ∩ S = ∅} be the set of hyperedges of H not
covered by S.
First, we consider the case that H[F ] has a matching M ′ of size k. Let M be a

perfect matching of H containing M ′, which exists as H is k-extendable. It follows
that

|S| =
∑
e∈M
|e ∩ S| = |M | − |M ′ ∩M | = |V (H)|

r
− k,

contradicting |S| = |V (H)|/r − k + 1.
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Next, we consider the case νE(H[F ]) ≤ k − 1. For any perfect matching M we
have |S| = |M |−|M ∩F |, in particular, |M ∩F | = k−1 for any perfect matchingM
of H, and thus νE(H[F ]) = k−1. As the partial hypergraph H[F ] is also balanced,
it has a minimum E-vertex cover T of size k − 1. We claim that F =

⋃
v∈T δH(v).

Otherwise, there exists a vertex w ∈ T , and a hyperedge ẽ ∈ δH(w) \ F . Let M̃
be a perfect matching containing ẽ. We know that |M̃ ∩ F | = k − 1, and every
f ∈ M̃ ∩ F is covered by some v ∈ T . But then T covers k disjoint hyperedges,
namely

(
M̃ ∩ F

)
∪ {ẽ}. This is not possible because |T | = k− 1. Thus, δH(v) ⊆ F

for all v ∈ T .
The set S′ := S∪{w} for any w ∈ T is a stable set ofH because |e∩S′| = |e∩S| = 1

for all e ∈ E(H) \ F and |e ∩ S′| = |e ∩ {w}| ≤ 1 for all e ∈ F . Thus, S is not a
maximal stable set.

One problem that arises when trying to prove a converse of Lemma 4.28 is that a k-
extendable hypergraph might not be (k−1)-extendable. Thus, we only characterize
when a hypergraph is simultaneously 1-extendable, 2-extendable, . . ., k-extendable.

Lemma 4.29. Let H be a balanced, r-uniform, 1-extendable hypergraph, and k
be a natural number with 2 ≤ k ≤ |V (H)|

r . The hypergraph H is k′-extendable
for every k′ = 2, . . . , k if and only if H∗ has no maximal matching S such that
|V (H)|/r − k + 1 ≤ |S| ≤ |V (H)|/r − 1.

Proof. By Lemma 4.28, H∗ has no maximal matching of size |V (H)|/r − k′ + 1 if H
is k′-extendable. It remains to show that if H∗ has no maximal matching S with
|V (H)|/r − k + 1 ≤ |S| ≤ |V (H)|/r − 1, then H is k′-extendable for every number
k′ = 2, . . . , k. Suppose that H has a matching of size at most k not contained
in any perfect matching, and let M ′ be the smallest such matching. Let f ∈ M ′
be a fixed hyperedge of M ′, and consider the hypergraph H ′ := H −

⋃
e∈M ′\{f} e.

This hypergraph has a perfect matching because M ′ \{f} is extendable to a perfect
matching in H by the choice ofM ′. However, H ′ has no perfect matching containing
f . Otherwise, such a perfect matching together with M ′ \ {f} would form a perfect
matching of H containingM ′. By Corollary 4.24, there exists a maximum stable set
S′ of H ′ with f ∩ S′ = ∅. Let S be a maximal stable set of H containing S′. Every
vertex v ∈ S\S′ is contained in a hyperedge e ∈M ′\{f}. Thus, S does not intersect
f , and therefore it is not an E-vertex cover. Thus, |S| ≤ |V (H)|/r − 1. On the other
hand, |S| ≥ |S′| = νE(H ′) = |V (H ′)|/r = |V (H)|/r− |M ′|+ 1 ≥ |V (H)|/r− k+ 1. This
implies that S corresponds to a maximal matching in the dual hypergraph H∗ such
that |V (H)|/r − k + 1 ≤ |S| ≤ |V (H)|/r − 1.

Now, we generalize Lemma 4.27 to the k-extendable case.

Corollary 4.30. Let H be an r-uniform, balanced, and 1-extendable hypergraph.
The following statements are equivalent for any k ∈ N with 2 ≤ k ≤ |V (H)|/r.
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(a) H is k′-extendable for k′ = 2, . . . , k.

(b) For every k′ ∈ {2, . . . , k} we have that H−F has a perfect matching for every
set F ⊆ V (H) of size r · k′ with |F ∩ T | = k′ for all stable E-vertex covers T
of H.

(c) For every k′ ∈ {2, . . . , k} we have that H − (F1 ∪ . . . ∪ Fk′) has a perfect
matching for every choice of k′ pairwise disjoint sets F1, . . . , Fk′ ⊆ V (H),
where each set has size r and |Fi ∩ T | = 1 for all stable E-vertex covers T of
H and all i ∈ [k′].

Proof. (b) implies (c): If F1, . . . , Fk′ are disjoint sets of size r with |Fi ∩ T | = 1 for
all stable E-vertex covers T of H and all i ∈ [k′], then F = F1 ∪ . . . ∪ Fk′ has size
r · k′ and satisfies |F ∩ T | = k′ for all stable E-vertex covers T .

(c) implies (a): If {e1, . . . , ek′} is a matching of size k′ with 2 ≤ k′ ≤ k, then
|ei ∩ T | = 1 for every stable E-vertex cover T , and thus H − (e1 ∪ . . . ∪ ek′) has a
perfect matching M . Then, M ∪ {e1, . . . , ek′} is a perfect matching of H. Thus,
every matching of size at most k in H can be extended to a perfect matching.
(a) implies (b): Let H be a hypergraph that is k′-extendable for k′ = 1, . . . , k,

and F ⊆ V (H) a set of size r ·k′ with |F ∩T | = k′ for all stable E-vertex covers T of
H. We consider the hypergraph H \F , which consists of all hyperedges of the form
e\F if e * F . Let S be a maximum stable set of H \F . The set S is also a stable set
of H that might not be maximal. Let S′ be a maximal stable set of H containing S.
If |S′ \S| ≥ k′, then |S| ≤ |V (H)|/r−k′. Otherwise, |S′∩F | = | (S′ \ S)∩F | < k′ and
S′ is not a stable E-vertex cover of H because every stable E-vertex cover intersects
F in exactly k vertices by assumption. By Lemma 4.29, |S′| ≤ |V (H)|/r − k′, and
thus |S| ≤ |V (H)|/r− k′ + k′ − 1 = |V (H)|/r− 1. Again by Lemma 4.29 it follows that
|S| ≤ |V (H)|/r − k.

As H \F is balanced, the size of S gives an upper bound on the size of a minimum
hyperedge cover. A trivial lower bound is |V (H\F )|/r, which is equal to |V (H)|/r − k′.
This implies that a minimum hyperedge cover of H \ F has size |V (H\F )|/r, and
is therefore a perfect matching of H \ F using only hyperedges of size r. Such a
hyperedge cover forms also a perfect matching of H − F .

An open question is whether one can decide in polynomial time if a balanced
hypergraph is k-extendable. For constant k this is clearly possible. Given a balanced
hypergraph H, and a constant k with 1 ≤ k ≤ νE(H), we first test whether H has a
perfect matching, which can be done in polynomial time using linear programming.
If H has no perfect matching it is not k-extendable. Otherwise, we look at all
k-element subsets F of E(H). If F is a matching in H, we test whether H − F
has a perfect matching. If H − F has a perfect matching for all k-element subsets
F of E(H), then H is k-extendable, otherwise it is not k-extendable. We can test

110



4.2 Extendability in Hypergraphs

in polynomial time whether a set F of hyperedges forms a matching and whether
H−F has a perfect matching because H−F is balanced. The number of k-element
subsets of E(H) is O(|E(H)|k). In total, we get a polynomial time algorithm to
decide whether a balanced hypergraph is k-extendable or not if k is constant. We
do not know the complexity of this problem when k is part of the input.

4.2.3 Greedily Matchable Hypergraphs
Recall that a hypergraph is called greedily matchable if every matching can be ex-
tended to a perfect matching. Caro, Sebő, and Tarsi give with Theorem 4.6 a
characterization of greedily matchable hypergraphs in terms of forbidden induced
subhypergraphs. However, the concrete structure of greedily matchable hypergraphs
is not known. It seems that it is much more difficult to characterize them than
greedily matchable graphs. Namely, a graph G with a perfect matching is greed-
ily matchable if and only if it is (|V (G)|/2 − 1)-extendable by Theorem 4.1. This
means that the question whether a graph is greedily matchable reduces to the prob-
lem whether it is k-extendable for one specific value of k. This result does not carry
over to hypergraphs. There are r-uniform hypergraphs H that are (|V (H)|/r − 1)-
extendable but not greedily matchable, for example the hypergraphs Hr,k described
in Example 4.17. In this subsection we give some examples of greedily matchable hy-
pergraphs, describe constructions that build new greedily matchable hypergraphs
from old ones, characterize 2-regular greedily matchable hypergraphs, and show
that one can decide in polynomial time whether a hypergraph of maximum degree
bounded by some constant is greedily matchable.
The only greedily matchable graphs are the complete bipartite graph and the

complete graph on an even number of vertices. We give two classes of hypergraphs
generalizing these graphs.

Definition 4.31 (complete r-partite, complete r-uniform hypergraph). Given in-
tegers n, r ∈ N the complete r-partite hypergraph Knr has vertex set V1 ∪ . . . ∪ Vr
where Vi = {vi,1, . . . , vi,n} for i ∈ [r], and hyperedges {v1,j1 , . . . , vr,jr} for every
vi,ji ∈ Vi, i ∈ [r]. The complete r-uniform hypergraph Kr

n on n vertices has vertex
set {v1, . . . , vn} and its hyperedge set consists of all r-element subsets of V (Kr

n).

Clearly, all maximal matchings of Knr and Kr
n have size n and bnr c, respectively.

In particular, Knr is always greedily matchable, and Kr
n is greedily matchable if n

is divisible by r.

Observation 4.32. The hypergraphs Knr and Kr
rn are greedily matchable for all

r, n ∈ N.

In the case r = 2 the hypergraphs Knr and Kr
rn are the only connected, greedily

matchable instances. However, for higher ranks there are more classes of greedily
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matchable hypergraphs. For example, using the vertex multiplication operation (see
Definition 2.33) from Chapter 2 we can construct new greedily matchable hyper-
graphs from known ones.

Observation 4.33. Let H be a hypergraph and c : V (H)→ N be a function on its
vertex set. The hypergraph H is greedily matchable if and only if H(c) is greedily
matchable.

Proof. Every hyperedge of E(H(c)) corresponds to a hyperedge of E(H), and vice
versa. If we denote the hyperedges of E(H(c)) by e(c), where e ∈ E(H) is such that
e(c) = {v(i) : v ∈ e, 1 ≤ i ≤ c(v)}, then two hyperedges e(c) and f (c) in H(c) have a
non-empty intersection if and only if e, f ∈ E(H) have a non-empty intersection as
c(v) ≥ 1 for all v ∈ V (H). Thus, the matchings in H(c) correspond one to one to the
matchings in H, and a matching in H(c) is perfect if and only if the corresponding
matching in H is perfect. This implies that H(c) is greedily matchable if and only
if H is greedily matchable.

Using the previous observation we can construct connected, greedily matchable
hypergraphs that are not isomorphic toKnr orKr

rn. For example, K(2)
2,2 (every vertex

of K2,2 gets doubled) is a connected, 4-partite, greedily matchable hypergraph with
eight vertices and four hyperedges, thus it cannot be isomorphic to a complete
4-partite hypergraph.

One might conjecture that all connected, greedily matchable hypergraphs are
multiplications of Knr or Kr

rn for some r, n ∈ N. This is not true. There is another
construction that preserves the property of being greedily matchable. It works as
follows:
Let H1, H2 be two greedily matchable hypergraphs with V (H1)∩V (H2) = ∅, and

v∗1 ∈ V (H1), v∗2 ∈ V (H2) be two fixed vertices. We defineH = H1⊕H2 as follows. Its
vertex set is V (H) = V (H1)∪V (H2)∪{z1, z2}, where z1, z2 /∈ V (H1)∪V (H2) are two
new vertices. It contains all hyperedges e ∈ E(H1)\δH1(v∗1), all e ∈ E(H2)\δH2(v∗2),
and for each e ∈ δH1(v∗1)∪δH2(v∗2) it contains the two hyperedges e∪{z1} and e∪{z2}.

Lemma 4.34. If H1, H2 are greedily matchable, then H = H1 ⊕ H2 is greedily
matchable.

Proof. If M is a matching of H, then M1 = M ∩ E(H1) is a matching of H1
and M2 = M ∩ E(H2) one of H2. If M covers v∗1, then it contains a hyperedge
m1 = e1 ∪ {zi} with i = 1 or i = 2, e1 ∈ E(H1) and v∗1 ∈ e1. In this case,
also M1 ∪ {e1} is a matching of H1 and we replace M1 by M1 ∪ {e1}. Similar, if
M covers v∗2, then it contains a hyperedge m2 = e2 ∪ {zi} with i = 1 or i = 2,
e2 ∈ E(H2), v∗2 ∈ e2, and we replace M2 by M2 ∪ {e2}. As H1 and H2 are greedily
matchable, there exist a perfect matching M̃1 of H1 and a perfect matching M̃2
of H2 with M1 ⊆ M̃1 and M2 ⊆ M̃2. If M does not cover v∗1, then at least one
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Figure 4.7: The hypergrid D3,4, where the two disjoint perfect matchings are drawn
in orange and blue.

of z1, z2 is missed by M . Let e1 ∈ M̃1 be the hyperedge of M̃1 covering v∗1, then
m1 = e1 ∪ {z1} or m1 = e2 ∪ {z2} is a hyperedge disjoint from the hyperedges of
M . We define m2 similarly if M did not already cover v∗2. In total, we get that
M̃ = {e ∈ M1 : v∗1 /∈ e} ∪ {e ∈ M2 : v∗2 /∈ e} ∪ {m1,m2} is a perfect matching of H
containing M .

The previous lemma implies that there are arbitrarily large greedily matchable
hypergraphs that are not 3-vertex connected. This is a sharp contrast to the graph
case where only K2 and K2,2 are not 3-connected. Every greedily matchable graph
on 2n vertices is at least n-vertex connected, i.e., greedily matchable graphs are
highly connected.
Now, we characterize greedily matchable, 2-regular hypergraphs. If a greedily

matchable, connected hypergraph H has a vertex of degree one, then |E(H)| = 1
because H is connected and every hyperedge is contained in a perfect matching.
Thus, every 1-regular greedily matchable hypergraph consists just of one hyper-
edge, and greedily matchable, 2-regular hypergraphs are the first non-trivial class
of greedily matchable hypergraphs. A class of greedily matchable, 2-regular hyper-
graphs is given in the following definition.

Definition 4.35 (Hypergrid). The hypergrid Dr,s of size r · s for integers r, s ∈ N
is the hypergraph on the vertex set {vij : i ∈ [r], j ∈ [s]} with hyperedges defined
by e(i, ·) := {vi1, . . . , vis} for i ∈ [r], as well as e(·, j) := {v1j , . . . , vrj} for j ∈ [s].

Every hypergrid Dr,s has exactly two perfect matchings M1 := {e(i, ·) : i ∈ [r]}
and M2 := {e(·, j) : j ∈ [s]}. Every hyperedge of M1 intersects all hyperedges of
M2 and vice versa, thus every non-empty matching is a subset of either M1 or M2.
This implies that Dr,s is greedily matchable.
Figure 4.7 shows the hypergrid D3,4, where the perfect matching M1 is drawn in

orange and M2 in blue.
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We show that greedily matchable, 2-regular hypergraphs are multiplications of
hypergrids. Therefore, we use Theorem 4.7, which implies that a bipartite graph is
a general partition graph if and only if it is a complete bipartite graph.

Theorem 4.36. If H is a greedily matchable, 2-regular hypergraph, then there exist
integer r, s ∈ N such that H is isomorphic to D(c)

r,s for some c : V (Dr,s)→ N.

Proof. If H is greedily matchable and 2-regular, then E(H) is the disjoint union
of two perfect matchings M1 and M2. This implies that the line graph L(H) is
a bipartite, general partition graph. By Theorem 4.7, L(H) is isomorphic to Kr,s

where r is the size of M1 and s the size of M2. In particular, every hyperedge of M1
has a non-empty intersection with every hyperedge of M2. Set M1 = {e1, . . . , er}
and M2 = {f1, . . . , fs}. For each i ∈ [r] and j ∈ [s] we have |ei ∩ fj | ≥ 1. In total,
H is isomorphic to a multiplication of Dr,s where vij is multiplied |ei ∩ fj |-times for
i ∈ [r], j ∈ [s].

If H is a hypergraph with hyperedges of size at most some constant, then one can
decide in polynomial time whether H is greedily matchable using Theorem 4.6. We
show that one can also decide in polynomial time whether a hypergraph of bounded
maximum degree is greedily matchable. First, we prove that it suffices to check
whether a hypergraph is k-extendable for k up to the maximum degree in order to
decide whether a hypergraph is greedily matchable.

Lemma 4.37. A hypergraph H is greedily matchable if and only if it is k-extendable
for all k ∈ N with 1 ≤ k ≤ min (∆(H), νE(H)).

Proof. If H is greedily matchable, then it is k-extendable for every natural number
k where 1 ≤ k ≤ νE(H).
For the other direction, suppose that H is not greedily matchable. Let M be

any maximal matching that is not perfect. If |M | ≤ min (∆(H), νE(H)), then H is
not k-extendable for k = |M |. Otherwise, let w be a vertex of H exposed by M .
For every e ∈ δH(w) there exists a hyperedge me ∈ M with me ∩ e 6= ∅. The set
{me : e ∈ δH(w)} is a matching of size at most |δH(w)| not contained in any perfect
matching. Thus, H is not k-extendable for some k ∈ {1, . . . ,∆(H)}.

Using similar arguments as in the previous lemma, we show how to decide in
polynomial time whether or not a hypergraph is greedily matchable if its maximum
degree is bounded by some constant.

Theorem 4.38. For every fixed d ∈ N there exists a polynomial time algorithm that
decides whether a hypergraph of maximum degree at most d is greedily matchable.

Proof. We claim that a hypergraph H of maximum degree at most d is not greedily
matchable if and only if one can find a vertex w ∈ V (H) and a matching M of size
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at most d such that for every e ∈ δH(w) there exists me ∈ M with e ∩me 6= ∅ and
M does not cover w. If such a matching M exists, then M cannot be contained in
a matching covering w, and thus M is not contained in a perfect matching. On the
other hand, if H is not greedily matchable, then there exists a maximal matching
M that is not perfect. Let w be a vertex not covered by M . For every e ∈ δH(w)
there exists a hyperedge me ∈ M with e ∩me 6= ∅. Now, the set {me : e ∈ δH(w)}
is a matching of size at most d with the desired properties.
As a next step we show that we can test in polynomial time whether H has a

vertex w and a matching M of size at most d with the properties that w is not
covered by M , and for every e ∈ δH(w) there exists me ∈ M with e ∩ me 6= ∅.
For a fixed vertex w ∈ V (H) and a matching M of size at most d we can check
these two properties in constant time as δH(w) ≤ d and d is constant. As we can
enumerate all matchings of size at most d in O(|E(H)|d)-time, we can decide in
O(|V (H)| · |E(H)|d)-time whether or not H is greedily matchable.

The complexity of deciding whether a hypergraph is greedily matchable remains
open if neither its maximum degree nor its rank is bounded by some constant. It
might be that the problem becomes easier on balanced hypergraphs by utilizing the
connection between extendability in a hypergraph and maximal matchings in its
dual given in Lemma 4.29.

4.3 Matching Covered Hypergraphs and Tight Cuts
In this section we define tight cuts and tight cut contractions in hypergraphs and
investigate their properties. In particular, we show that there is a one-to-one corre-
spondence between perfect matchings in a hypergraph and pairs of perfect matchings
in the two hypergraphs obtained by contracting the shores of a tight cut. Addition-
ally, we investigate basic properties of tight cuts and tight cut contractions in the
first subsection.
In the second subsection we look at the relation between tight cuts and the perfect

matching polytope. As in the graph case, every tight cut yields a decomposition of
the perfect matching polytope of a hypergraph. This result is used to prove that the
tight cut contractions of a balanced uniform hypergraph remain balanced. Further-
more, we investigate separating cuts in hypergraphs and show that the existence of
a non-tight separating cut implies that the perfect matching polytope is not given
by the degree and non-negativity constraints.

4.3.1 Basic Properties

We start with a formal definition of tight cuts in hypergraphs, which is literally the
same as for graphs.
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Definition 4.39 (Tight cut). Let H by a hypergraph with a perfect matching and
A ⊆ V (H) be a set of vertices. The cut δH(A) is tight if every perfect matching
contains exactly one hyperedge of it. A tight cut δH(A) is called trivial if |A| = 1
or |V (H) \A| = 1, otherwise it is called non-trivial.

In contrast to the graph case we have to remember the set of vertices defining a
cut and cannot only consider a cut as a set of edges. In a connected graph a cut
is defined by a set of vertices and its complement but not by any other set. For
connected hypergraphs this is not true anymore. Namely, it is possible that δH(S)
and δH(T ) coincide even if T 6= S and T 6= V (H) \ S. It even might happen that a
set A and a vertex v define the same cut for some v ∈ V (H) and A ⊆ V (H) with
|A| > 1 and |V (H) \A| > 1.

Tight cuts can be used to decompose a hypergraph into smaller ones as this is
done in the graph case. We denote by A the complement of a set A if the ground
set is clear from the context.

Definition 4.40 (Tight cut contraction). Let H be a hypergraph with a tight
cut δH(A). We introduce two new vertices a and a not contained in V (H), and
define for every hyperedge e ∈ δH(A) two new hyperedges ea := (e \A) ∪ {a} and
ea = (e ∩A) ∪ {a}.
The tight cut contractions of H with respect to A and A are the hypergraphs HA

and HA with vertex sets V (HA) := {a} ∪ A, V (HA) := {a} ∪ A, and hyperedge
sets E(HA) := {e ∈ E(H) : e ⊆ A} ∪ {ea : e ∈ δH(A)}, E(HA) := {e ∈ E(H) : e ⊆
A} ∪ {ea : e ∈ δH(A)}.

Loosely speaking, HA and HA are the hypergraphs obtained from H by contract-
ing A and A. Figure 4.8 shows a non-trivial tight cut in a 3-uniform hypergraph
and the associated tight cut contractions. Observe, that one of the two contractions
is not 3-uniform.
When considering tight cuts in graphs, parity arguments play a huge role. In

general hypergraphs we cannot use such arguments. Therefore, we consider hyper-
graphs that can be made uniform by vertex multiplication (see Definition 2.33).
Formally, we look at hypergraphs with the following property.

Definition 4.41 (Uniformizable hypergraph). A hypergraph H is called uniformiz-
able if there exists a function m : V (H) → N with the property that the multipli-
cation H(m) is r-uniform for some r ∈ N.

We show how to decide in polynomial time whether a hypergraph H is uniformiz-
able, and, if it is, find a function m : V (H) → N, and an integer r ∈ N such that
H(m) is r-uniform.
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δ(A)

A A

a

HA

a

HA

Figure 4.8: A tight cut δH(A) in a hypergraph H, and its tight cut contractions HA

and HA.

For a given hypergraph H we look at the system∑
v∈e

mv = r ∀e ∈ E(H),(4.4)

mv ≥ 1 ∀v ∈ V (H),(4.5)
r ≥ 1.(4.6)

It has an integral solution if and only ifH(m) is r-uniform. Finding integral solutions
of a system of linear inequalities is in general NP-hard. In this special case one
can find an integral solution in polynomial time. First, we compute m∗ ∈ QV (H),
r∗ ∈ Q satisfying (4.4)-(4.6), which can be done in polynomial time. Let d ∈ N be
the least common multiple of the denominators of mv for v ∈ V (H). The number d
can also be computed in polynomial time using the Euclidean Algorithm. Finally,
we define a function m : V (H) → N by m(v) := d · mv for all v ∈ V (H). With
this definition we have

∑
v∈em(v) = d · r∗ for all e ∈ E(H), and m(v) ≥ d ≥ 1 for

all v ∈ V (H). This means that the system (4.4)-(4.6) has an integral solution if
and only if it has a fractional solution. In total, we can decide in polynomial time
whether H is uniformizable.

Clearly, every uniform hypergraph is uniformizable (set m ≡ 1). We do not
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claim that uniformizable hypergraphs have a much richer structure than uniform
hypergraphs; on the contrary, uniformizable hypergraphs seem to be very similar
to uniform ones. The reason why we work with uniformizable hypergraphs is that
the tight cut contractions of a uniform hypergraph are only uniformizable and not
uniform. To prove this we need the following lemma.

Lemma 4.42. Let H be a matching covered, uniformizable hypergraph with a func-
tion m : V (H)→ N such that H(m) is r-uniform for some r ∈ N.

(i) If δH(A) is a tight cut, then m(e ∩ A) = k for all e ∈ δH(A), where k is the
unique integer in {1, . . . , r − 1} with k ≡ m(A) mod r.

(ii) If A ⊆ V (H) is a set with m(A) ≡ 0 mod r, then |M ∩ δH(A)| ≥ 2 or
|M ∩ δH(A)| = 0 for all perfect matchings M of H. If A /∈ {∅, V (H)} and
m(A) ≡ 0 mod r, then there exists a perfect matchingM with |M∩δH(A)| ≥ 2.

Proof. Let δH(A) be a tight cut, e′ ∈ δH(A) arbitrary, and M a perfect matching
containing e′. The setMA := {e ⊆ A : e ∈M} is a matching of H[A] covering A\e′.
If we sum up the function m over all v ∈ V (MA), then we obtain m(V (MA)) =
m(A)−m(e′ ∩A). On the other hand, m(V (MA)) =

∑
e∈MA

∑
v∈em(v) = |MA| · r.

Together, we get m(A) ≡ m(e′ ∩ A) mod r. As 1 ≤ m(e′ ∩ A) ≤ r − 1 the claim
follows.
For the second part of the observation, let A ⊆ V (H). If there exists a per-

fect matching M intersecting the cut δH(A) in exactly one hyperedge e′, then∑
v∈e′∩Am(v) ≡

∑
v∈Am(v) ≡ 0 mod r follows. As m ≥ 1 and

∑
v∈e′m(v) = r,

this implies that e′ ∩ A = ∅, contradicting e′ ∈ δH(A). Thus, if M is a perfect
matching intersecting δH(A), then |M ∩ δH(A)| ≥ 2. Now, if A /∈ {∅, V (H)},
then δH(A) 6= ∅ as H is assumed to be connected. The hypergraph H is matching
covered, which implies that for every e′ ∈ δH(A) there exists a perfect matching con-
taining e′. Every such perfect matching M intersects δH(A) and therefore satisfies
|M ∩ δH(A)| ≥ 2.

The first observation of Lemma 4.42 implies that tight cut contractions of a
uniformizable hypergraph are uniformizable.

Observation 4.43. If H is a matching covered, uniformizable hypergraph with a
tight cut δH(A), then HA and HA are uniformizable.

Proof. Let m : V (H)→ N be a function such that H(m) is r-uniform.
By Lemma 4.42, m(e ∩ A) = k for all e ∈ δH(A) where k ∈ {1, . . . , r − 1}

with k ≡ m(A) mod r. If we define mA : V (HA) → N by mA(v) = m(v) for all
v ∈ A, and mA(a) = r − k, then

∑
v∈emA(v) = r for all hyperedges e ⊆ A, and∑

v∈ea
mA(v) =

∑
v∈e∩Am(v) + r − k = r. This shows that H(m

A
)

A
is r-uniform.
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Similarly, if we define mA : V (HA) → N by mA(v) = m(v) for all v ∈ V (H) \ A
and mA(a) = k, then H(mA)

A is r-uniform.

Tight cut contractions are useful as there is a correspondence between perfect
matchings in a hypergraph and certain pairs of perfect matchings in its tight cut
contractions. In particular, the property of being matching covered is preserved
under tight cut contractions. Here, we do not need our hypergraphs to be uni-
formizable.

Theorem 4.44. If H is a hypergraph with a perfect matching and A ⊆ V (H) is a
set of vertices defining a tight cut δH(A), then H is matching covered if and only if
HA and HA are matching covered.

Proof. We say that a perfect matchingMA ofHA agrees with a perfect matchingMA
of HA on δH(A) if there exists a hyperedge m ∈ δH(A) such that ma is the unique
hyperedge in MA∩ δHA

(A) and ma is the unique hyperedge in MA∩ δHA
(a). In this

case, M := MA∪MA∪{m}\{ma,ma} is a perfect matching of H because it covers
the vertices V (MA \ {ma})∪V (MA \ {ma})∪m =

(
A \m

)
∪ (A \m)∪m = V (H).

On the other hand, let M be a perfect matching in H, we define two sets MA :=
{e ∈ M : e ⊆ A} ∪ {ma}, and MA := {e ∈ M : e ⊆ A} ∪ {ma}, where m is the
unique hyperedge in M ∩ δH(A). It is straightforward to verify that MA and MA
are perfect matchings of HA and HA agreeing on δH(A).

The correspondence between perfect matchings in H and pairs of perfect match-
ings in HA, HA agreeing on δH(A) implies that H is matching covered if and only
if HA and HA are matching covered.

4.3.2 Tight Cuts and the Perfect Matching Polytope
In this subsection we compare the perfect matching polytopes of matching covered
hypergraphs and their tight cut contractions. Loosely speaking, every tight cut
of a hypergraph decomposes the perfect matching polytope of a hypergraph into
those of the corresponding tight cut contractions. Using this connection, we prove
that tight cut contractions of balanced uniformizable hypergraphs remain balanced.
Furthermore, we consider another class of cuts: the so-called separating cuts. We
show that the existence of a separating cut that is not tight in a uniformizable
hypergraph implies that the fractional perfect matching polytope is not integral.
For a hypergraph H we denote by PPM(H) its perfect matching polytope, i.e., the

convex hull of the incidence vectors of perfect matchings. To describe the relation
between the perfect matching polytope of a hypergraph H and the perfect matching
polytopes of its tight cut contractions HA and HA we show how to decompose
a vector in QE(H) into a pair of vectors in QE(HA) and QE(H

A
). Namely, every

e ∈ δH(A) corresponds to a hyperedge ea ∈ E(HA) and a hyperedge ea ∈ E(HA).
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Thus, every x ∈ QE(H) corresponds to vectors xA ∈ QE(HA) and xA ∈ QE(H
A

) via
xA(ea) = xA(ea) = x(e) for all e ∈ δH(A) and xA(e) = x(e), xA(e′) = x(e′) for
e ⊆ A and e′ ⊆ A. On the other hand, if y ∈ QE(HA) and z ∈ QE(H

A
) are given

with y(ea) = z(ea) for all e ∈ δH(A), then we say that y and z agree on δH(A). In
this case, we define a vector y ⊕ z ∈ QE(H) by

(y ⊕ z) (e) :=


y(e) if e ⊆ A
z(e) if e ⊆ A
y(ea) if e ∈ δH(A)

.

There is a one-to-one correspondence between vectors x ∈ QE(H) and pairs of vectors
y ∈ QE(HA), z ∈ QE(H

A
) agreeing on δH(A).

Theorem 4.45. If δH(A) is a tight cut in a matching covered hypergraph H and
x ∈ QE(H), then x lies in the perfect matching polytope of H if and only if xA lies
in the perfect matching polytope of HA and xA in the perfect matching polytope of
HA.

Proof. First, suppose x lies in the perfect matching polytope of H. This means
that there exist perfect matchings M1, . . . ,Mk and scalars λ1, . . . , λk ≥ 0 with
x =

∑k
i=1 λiχ

Mi and
∑k
i=1 λi = 1. Every perfect matching Mi corresponds to a pair

of perfect matchings Mi,1,Mi,2 in HA and HA agreeing on δH(A). So the unique
hyperedge e ∈Mi ∩ δH(A) corresponds to the hyperedges ea ∈Mi,1 and ea ∈Mi,2.
Furthermore, since δH(A) is a tight cut, it contains no other hyperedge ofMi. These
observations imply that the vectors xA and xA can be written as xA =

∑k
i=1 λiχ

Mi,1

and xA =
∑k
i=1 λiχ

Mi,2 . Thus, xA lies in the perfect matching polytope of HA, and
xA in the perfect matching polytope of HA.

For the other direction, write xA and xA as a convex combination of characteristic
vectors of perfect matchings: xA =

∑k
i=1 λiχ

Mi and xA =
∑k′
i=1 λ

′
iχ
M ′i . We show

that x lies in the perfect matching polytope of H by induction on max(k, k′).
If k = k′ = 1, then xA = χM1 , xA = χM

′
1 , and M1 and M ′1 agree on δH(A) as

xA(ea) = xA(ea) for all e ∈ δH(A). This means that x = χM where M is the unique
perfect matching in H corresponding to M1,M

′
1.

Now, suppose x lies in the perfect matching polytope of H if max(k, k′) ≤ t.
For the induction step we assume that k = max(k, k′) = t + 1. Let e∗ ∈ δH(A)

be any hyperedge with xA(e∗a) > 0. We define sets IA := {i ∈ [k] : e∗a ∈ Mi},
and IA := {i ∈ [k′] : e∗a ∈ M ′i}. Because of xA(e∗a) = xA(e∗a), we know that∑
i∈IA

λi =
∑
i∈I

A
λ′i. We denote this value by Λ. If Λ = 1, then IA = [k], IA = [k′],

and every pair of perfect matchings Mi and M ′j for i ∈ [k], j ∈ [k′] agree on
δH(A), which means that they correspond to a unique perfect matching in H. We
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denote this perfect matching by Mi,j . The following procedure writes x as a convex
combination of perfect matchings in H:
While not all λi = 0 choose i ∈ [k], j ∈ [k′] with λi > 0 and λ′j > 0, set

µi,j := min{λi, λ′j}, and decrease λi and λ′j by µi,j .
After every step of this construction

∑k
i=1 λi and

∑k′
i=1 λ

′
k decrease by the same

positive amount and at least one of λi or λ′j becomes zero. Thus, the proce-
dure will eventually stop with all λi and λ′j equal to zero. Furthermore, we have∑
i,j µi,jχ

Mi,j = x and
∑
i,j µi,j = 1.

If Λ < 1, then we look at the two vectors yA :=
(∑

i∈[k]\IA
λiχ

Mi

)
/(1 − Λ)

and yA =
(∑

i∈[k′]\I
A
λ′iχ

M ′i
)
/(1 − Λ). The vector yA lies in the perfect matching

polytope of HA, yA lies in the perfect matching polytope of HA, and they are
written as a convex combination of less than t + 1 characteristic vectors of perfect
matchings. Furthermore, for every e ∈ δH(A) \ {e∗} we have yA(ea) = xA(ea) =
xA(ea) = yA(ea), and yA(e∗a) = 0 = yA(e∗a). By the induction hypothesis, the vector
y = yA ⊕ yA lies in the perfect matching polytope of H. On the other hand, also
zA =

(∑
i∈IA

λiχ
Mi

)
/Λ, and zA =

(∑
i∈I

A
λ′iχ

M ′i
)
/Λ define vectors of the perfect

matching polytopes of HA and HA agreeing on δH(A) with less than t+1 summands
in each convex combination. Thus, also z = zA ⊕ zA lies in the perfect matching
polytope of H. This implies that x is an element of the perfect matching polytope
of H as x = (1− Λ)y + Λz.

There is no full description known of the perfect matching polytope of a general
hypergraph in terms of linear equalities and inequalities. A relaxation is given by
the fractional perfect matching polytope defined as

FPPM(H) := {x ∈ QE(H) : x(δH(v)) = 1 ∀v ∈ V (H), x ≥ 0}.

The perfect matching polytope of a hypergraph is a subset of its fractional perfect
matching polytope, and both polytopes are equal if and only if the fractional perfect
matching polytope is integral. This is for example the case for all hypergraphs
generalizing bipartite graphs we considered in Chapter 1 except for partitioned
hypergraphs. As a corollary of Theorem 4.45 we obtain that tight cut contractions
preserve the property of having an integral fractional perfect matching polytope.

Corollary 4.46. Let H be a matching covered hypergraph with a tight cut δH(A). If
the fractional perfect matching polytope of H is integral, then the fractional perfect
matching polytopes of the two contractions HA and HA are integral.

Proof. We show that the fractional matching polytope of HA is integral, the proof
for HA is symmetric. For an arbitrary vector y ∈ FPPM(HA) we construct a vector
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Chapter 4 Hypergraphs with a Perfect Matching

x lying in the perfect matching polytope of H such that x(e) = y(e) for all e ∈ E(H)
with e ⊆ A, and x(e) = y(ea) for all e ∈ δH(A). This implies that y lies in the
perfect matching polytope of HA by Theorem 4.45.
For every e ∈ δH(A) there exists a perfect matching Me in HA containing ea.

The vector z =
∑
e∈δH(A) y(ea)χMe lies in the perfect matching polytope of HA

because
∑
e∈δH(A) y(ea) = y(δHA

(a)) = 1. Furthermore, y and z agree on δH(A)
because z(ea) = y(ea) for every e ∈ δH(A). Thus, x = y ⊕ z satisfies all degree
constraints for v ∈ V (H). This means that it lies in the fractional perfect matching
polytope of H and thus in its perfect matching polytope. We can write x as a
convex combination of incidence vectors of perfect matchings M1, . . . ,Mk:

x =
k∑
i=1

λiχ
Mi , λi ≥ 0 ∀i ∈ [k],

k∑
i=1

λi = 1.

If M ′i is the perfect matching of HA corresponding to Mi, then y =
∑k
i=1 λiχ

M ′i

holds, and thus y lies in the perfect matching polytope of HA.

In order to show that tight cut contractions of a uniformizable balanced hyper-
graph are balanced we give a characterization of balanced hypergraphs in terms of
their fractional perfect matching polytopes. It seems that this characterization has
not been published before though it follows easily from existing results on balanced
hypergraphs.

Lemma 4.47. A hypergraph H is balanced if and only if the fractional perfect
matching polytope of each subhypergraph H(S) for S ⊆ V (H) is empty or integral.

Proof. If H is balanced, then H(S) is balanced for every S ⊆ V (H), and its frac-
tional matching polytope is integral, thus the matching polytope of H is given by

{x ∈ QE(H(S)) : x(δH(v)) ≤ 1 ∀v ∈ S, x ≥ 0},

see for example [Berge, 1984]. As the perfect matching polytope is a face of the
matching polytope, the claim follows.
On the other hand, suppose H is not balanced. In this case H has a strong

odd cycle. If S is the vertex set of such a cycle, then H(S) contains an odd cycle
(using hyperedges of size two) spanning S. The vector x defined by xe = 0.5 for all
hyperedges of size two of this odd cycle and xe = 0 otherwise lies in the fractional
perfect matching polytope ofH(S) but it cannot be written as a convex combination
of incidence vectors of perfect matchings.

Now, we prove that the tight cut contractions of balanced uniformizable hyper-
graphs are balanced.
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4.3 Matching Covered Hypergraphs and Tight Cuts

Theorem 4.48. Let H be a uniformizable balanced and matching covered hyper-
graph. If A ⊆ V (H) is a set of vertices such that δH(A) is a tight cut, then the two
contractions HA and HA are balanced.

Proof. We show that HA is balanced. The proof for HA is symmetric.
Without loss of generality we assume that H is already uniform. If not, then

there exists a function m : V (H) → Z≥0 such that H(m) is uniform. The set
A(m) := {v(1), . . . , v(m(v)) : v ∈ A} defines a tight cut in H(m), and HA is balanced
if and only if H(m)

A(m) is balanced.
By Lemma 4.47, the hypergraph HA is balanced if the fractional perfect matching

polytope of HA(S) is integral or empty for every S ⊆ V (HA). Let S ⊆ V (HA) such
that the fractional perfect matching polytope of HA(S) is non-empty. If a /∈ S, then
HA(S) = H(S) and the claim follows as H is balanced. Thus, we assume a ∈ S
and set T = (S \ {a}) ∪ A. Contracting A in the subhypergraph H(T ) of H gives
a hypergraph that is isomorphic to HA(S). Let x ∈ QE(HA(S)) be a non-negative
vector satisfying all degree constraints. For every e ∈ δH(A) let Me be a perfect
matching of H containing e. Every perfect matchingMe induces a perfect matching
of H(T ) containing e ∩ T . Set Ne := {f ∈ Me : f ⊆ A} ∪ {e ∩ T} and look at the
vector z ∈ QE(H(T )) defined by z(f) = x(f) for f ∈ E(HA(S)) ∩ E(H(T )), and
z(e) = 0 for all other e ∈ E(H(T )). Add x(ea ∩ S)χNe to z for every e ∈ δH(A).
Clearly, the resulting z is non-negative.
We show that z satisfies the degree constraints for all vertices v ∈ T . First, let

v ∈ S\{a} = T \A. A hyperedge e ∈ E(H(T )) containing v lies either completely in
A or it intersects both of A and A. In the first case, e ∈ E(HA(S)) and z(e) = x(e).
In the second case, the hyperedge is of the form e′ ∩ T for some e′ ∈ δH(A) and
z(e′ ∩ T ) = x(e′a ∩ S). In total we get that z(δH(T )(v)) = x(δHA(S)(v)) = 1 for
v ∈ S \ {a}. Now, consider a vertex v ∈ A. This vertex is incident to exactly
one hyperedge in Ne for every e ∈ δH(A), and it is not incident to any hyperedge
f ∈ E(HA(S)) ∩ E(H(T )). Thus,

z(δH(T )(v)) =
∑

e∈δH(A)
x(ea ∩ S) = x(δHA(S)(a)) = 1.

As H is balanced, it follows that z lies in the perfect matching polytope of H(T ).
Write z as a convex combination of incidence vectors of perfect matchings:
z =

∑k
i=1 λiχ

Mi , where Mi is a perfect matching of H(T ).
For every i ∈ [k] we set

M ′i := {f ∈Mi : f ⊆ S \ {a}} ∪ {ea ∩ S : e ∈ δH(A), e ∩ T ∈Mi}.

As x(e) = z(e) for all e ∈ E(HA(S)) ∩ E(H(T )) and x(ea ∩ S) = z(e ∩ T ) for
all e ∈ δH(A), we get x =

∑k
i=1 λiχ

M ′i . It remains to show that each M ′i is a
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Chapter 4 Hypergraphs with a Perfect Matching

perfect matching in HA(S). Every v ∈ S \ {a} is covered exactly once by each
Mi. Furthermore, the vertex a is contained in at least one of the hyperedges of Mi.
Otherwise, no e ∈ δH(A) with e ∩ T ∈Mi exists, implying that e ⊆ A or e ⊆ A for
e∩T ∈Mi, and the hyperedges e ⊆ A of Mi form a matching covering A. But then
|A| is divisible by r, which is impossible as A defines a tight cut.
We show that a is covered by exactly one hyperedge of Mi. We get

1 =
∑

e∈δH(A)
x(ea ∩ S) =

k∑
i=1

λiχ
Mi(δHA

(a)) ≥
k∑
i=1

λi = 1.

It follows that χMi(δHA
(a)) = 1 and Mi is a perfect matching in HA. In total, we

have shown that x can be written as a convex combination of incidence vectors of
perfect matchings.

We have seen that if δH(A) is a tight cut in a hypergraph H, then H is matching
covered if and only if HA and HA are matching covered. In the graph case there
is a larger class of cuts with this property, namely separating cuts. They can also
defined for hypergraphs.

Definition 4.49. A cut δH(A) in a matching covered hypergraph H is called sep-
arating if HA and HA are matching covered.

Theorem 4.44 implies that every tight cut is separating. If a graph has a non-
tight separating cut, then the non-negativity and degree constraints do not suffice
to describe the perfect matching polytope or in other words the fractional perfect
matching polytope of this graph is not integral.
If δH(A) is a separating cut in a hypergraph H, then the inequality x(δH(A)) ≥ 1

might not be valid for the perfect matching polytope. However, if H is uniformiz-
able, then by similar arguments as in Lemma 4.42 we can show that |M∩δH(A)| ≥ 1
holds for all perfect matchings M . Thus, x(δH(A)) ≥ 1 is a valid inequality for all
vectors x ∈ PPM(H). As in the graph case, we use a separating cut that is not tight
in a uniformizable hypergraph to construct a non-negative vector that satisfies all
degree constraints but does not lie in the perfect matching polytope.

Theorem 4.50. If H is a matching covered, uniformizable hypergraph with a sep-
arating cut δH(A) that is not tight, then the fractional perfect matching polytope is
not integral.

Proof. Suppose that H has a separating cut δH(A) that is not tight. We proceed
as in the graph case, see [de Carvalho et al., 2004], by constructing a vector x lying
in the fractional perfect matching polytope with x(δH(A)) < 1.

Let M0 be a perfect matching of H with |M0 ∩ δH(A)| ≥ 2. For every e ∈ M0
let Me be a perfect matching containing e and intersecting δH(A) in exactly one
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S S̄

Figure 4.9: A unimodular hypergraph with a separating cut that is not tight.

hyperedge. These matchings exists because δH(A) is assumed to be a separating
cut that is not tight. The vector x ∈ QE(H) defined by

x = 1
|M0| − 1

 ∑
e∈M0

χMe − χM0


is non-negative and satisfies x(δH(v)) = 1 for all v ∈ V (H) but

x(δH(A)) = |M0| − |M0 ∩ δH(A)|
|M0| − 1 < 1.

Thus, x /∈ PPM(H), which implies that the fractional perfect matching polytope of
H is not integral.

The previous theorem implies that uniformizable hypergraphs for which the non-
negativity and degree constraints describe an integral polytope have no non-tight
separating cuts. This holds in particular for unimodular, balanced, normal, and
Mengerian hypergraphs.

Corollary 4.51. If H is a uniformizable matching covered hypergraph with an in-
tegral fractional perfect matching polytope, then every separating cut of H is tight.

If we consider hypergraphs that are not uniformizable, then it is possible that the
fractional perfect matching polytope is integral but the hypergraph has a separating
cut that is not tight. For example, if we take H to be the complete bipartite graph
K2,2 together with singleton hyperedges {v} for every vertex v, then we obtain a
unimodular hypergraph with a non-tight separating cut, see Figure 4.9.
Corollary 4.51 generalizes the fact that a bipartite graph has no non-tight sepa-

rating cut, which can also be proven without polyhedral methods, see for example
[de Carvalho et al., 2002]. Namely, if δG(A) is a non-tight separating cut in a graph
G, then the subgraphs G[A] and G[A] are non-bipartite. For hypergraphs we show
that the shores of a non-tight separating cut cannot induce r-partite subhyper-
graphs.
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Chapter 4 Hypergraphs with a Perfect Matching

Theorem 4.52. Let H be a matching covered, r-uniform hypergraph and A ⊆ V (H)
be a set of vertices such that δH(A) is a non-tight separating cut. The subhypergraphs
H[A] and H[A] of H induced by A and A are not r-partite.

Proof. We only show that H[A] is not r-partite. The proof for H[A] is similar.
Suppose that there exists a partition A1 ∪ A2 ∪ . . . ∪ Ar of A into r sets such

that |e ∩ A1| = . . . = |e ∩ Ar| = 1 for all e ∈ E(H[A]). We choose any hyperedge
f ∈ δH(A) and let Mf be a perfect matching of H with Mf ∩ δH(A) = {f}. The
set M ′f := {e ∈Mf : e ⊆ A} is a matching of H[A] covering A \ f . Without loss of
generality we assume that there exists an index k with 1 ≤ k ≤ r − 1 such that f
intersects A1, . . . , Ak and f has an empty intersection with Ak+1, . . . , Ar. It follows
that |A1 \f | = . . . = |Ak \f | = |Ak+1| = . . . = |Ar|. Furthermore, as we have chosen
f arbitrarily we get that |A1 \ e| = . . . = |Ak \ e| = |Ak+1| = . . . = |Ar| for every
e ∈ δH(A). Now, letM be a perfect matching of H intersecting δH(A) in more than
one vertex. Again, the set M ′ := {e ∈ M : e ⊆ A} forms a matching of H[A]. If
{m1, . . . ,ms} = M ′∩δH(A), thenM ′ covers the vertex set A\(m1 ∪ . . . ∪ms). This
implies that |A1\(m1 ∪ . . . ∪ms) | = . . . = |Ar\(m1 ∪ . . . ∪ms) |, which is impossible
as |A1 \ (m1 ∪ . . . ∪ms) | = |A1|− s · |A1∩ f | < |Ar| = |Ar \ (m1 ∪ . . . ∪ms) |. Thus,
H[A] is not r-partite.

As a corollary, we directly obtain that an r-partite hypergraph cannot have a
non-tight, separating cut.

Corollary 4.53. If H is an r-partite matching covered hypergraph, then every sep-
arating cut is tight.

Carvalho, Lucchesi, and Murty proved that also the reverse implication of Theo-
rem 4.50 holds in the graph case. Namely, every graph with a non-integral fractional
matching polytope contains a separating cut that is not tight. This is not true for
hypergraphs of rank at least three. No 3-partite hypergraph has a non-tight, sepa-
rating cut but there are 3-partite hypergraphs with a non-integral fractional perfect
matching polytope, for example a complete 3-partite hypergraph.

4.4 Tight Cut Decomposition of Hypergraphs

In this section we generalize the tight cut decomposition from graphs to hyper-
graphs. We give an example of a hypergraph with two non-equivalent tight cut
decompositions. However, for uniformizable hypergraphs we prove that the result
of a tight cut decomposition is unique. Our proof goes along the lines of the one
for graphs in [Lovász, 1987] using the fact that two crossing tight cuts can be "un-
crossed".
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Algorithm 1 Tight Cut Decomposition Procedure
1: procedure Tight Cut Decomposition(H)
2: H ← {H}
3: while ∃H ′ ∈ H s.t. H ′ has a non-trivial tight cut do
4: Choose any such H ′ and S ⊆ V (H ′) defining a non-trivial tight cut,
5: H ← H \ {H ′} ∪ {H ′S , H ′S}
6: end while
7: return H
8: end procedure

First, we define formally what we mean by a tight cut decomposition by con-
sidering Algorithm 1. It takes a matching covered hypergraph as an input and
decomposes it along a non-trivial tight cut if any exists. In this way, two new
matching covered hypergraphs arise. If at least one of them has a non-trivial tight
cut, then the algorithm contracts again both shores of this cut. In each execution of
the while loop the number of hypergraphs increases by one. As we always choose a
non-trivial tight cut in Step 4, the hypergraphs H ′S and H ′

S
have less vertices than

H ′. This implies that the algorithm will eventually terminate because a hypergraph
with less than four vertices has no non-trivial tight cuts.
A tight cut decomposition of a matching covered hypergraph H is the output

obtained by an execution of Algorithm 1. This means that a tight cut decomposition
consists of a set of matching covered hypergraphs without non-trivial tight cuts that
were obtained from H by successive tight cut contractions, see Figure 4.10.

We do not specify the concrete choice of the tight cut in Step 4 of Algorithm 1.
Thus, different runs might give different outputs. We say that two tight cut decom-
positions H and H′ are equivalent if there exists a bijection φ : H → H′ such that
for every H ∈ H the hypergraphs H and φ(H) are isomorphic after deleting all but
one copy of each set of parallel hyperedges. Any two tight cut decompositions of
a graph are equivalent in this sense, which was shown in [Lovász, 1987]. This im-
portant result does not hold for general hypergraphs. A counterexample is depicted
in Figure 4.11. In its center it shows a matching covered hypergraph H and two
tight cuts δH(S), δH(T ). The two hypergraphs obtained by contracting S and S are
depicted to the left of H and the ones obtained by contracting T and T right of H.
The resulting hypergraphs HS , and HS , as well as, HT , and HT have only trivial
tight cuts. Thus, {HS , HS} and {HT , HT } are two tight cut decompositions of H.
As HS is neither isomorphic to HT , nor HT , the two tight cut decompositions are
not equivalent.
However, we show that things work out well on uniformizable hypergraphs. Many

proofs in the area of matching covered graphs depend on parity arguments utilizing
the fact that every edge in a graph contains exactly two vertices. These arguments
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Figure 4.10: A Tight Cut Decomposition of a matching covered hypergraph.

can be generalized to uniformizable hypergraphs. In the remainder of this section
we prove that uniformizable hypergraphs have a unique tight cut decomposition.
Therefore, we describe tight cut decompositions in terms of families of non-trivial
tight cuts with some additional properties. First, we show that a tight cut in a tight
cut contraction corresponds to a tight cut in the original hypergraph.

Lemma 4.54. Let H be a matching covered hypergraph with a non-trivial tight cut
δH(S) defined by S ⊆ V (H). A set T ⊆ S defines a tight cut δH(T ) in H if and
only if it defines a tight cut δH

S
(T ) in HS. Similar, T ⊆ S defines a tight cut in H

if and only if it defines a tight cut in HS.

Proof. We only prove the claim for T ⊆ S the other case is symmetric by inter-
changing S with S.
The hypergraph HS contains all e ∈ E(H) with e ⊆ S and for every e ∈ δH(S) it

contains the hyperedge es = (e ∩ S) ∪ {s}, where s is a new vertex representing S.
For T ⊆ S we get

δH
S
(T ) = {e ∈ E(H) : e ⊆ S, e ∩ T 6= ∅, e \ T 6= ∅} ∪ {es : e ∈ δH(S), e ∩ T 6= ∅}.

Every perfect matching MS of HS corresponds to a unique perfect matching M of
H such that MS = {e ∈ M : e ⊆ S} ∪ {e∗s}, where e∗ is the unique hyperedge in
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Figure 4.11: A non-uniform hypergraph with two non-equivalent tight cut decom-
positions.

δH(S) ∩M , and vice versa. We show that |δH
S
(T ) ∩MS | = |δH(T ) ∩M |. Thus,

δH
S
(T ) is tight if and only if δH(T ) is tight.

Every hyperedge e ∈ δH(T ) ∩M has a non-empty intersection with S because
T ⊆ S and T ∩ e 6= ∅. Thus, e is either a subset of S or it lies in the cut δH(S). In
the first case, e is a hyperedge of HS with e ∈ δH

S
(T ) ∩MS , and in the latter case

es = e∗s ∈ δHS
(T ) ∩MS . Thus, |δHS

(T ) ∩MS | ≥ |δH(S) ∩ T | holds.
On the other hand, if e ∈ δH

S
(T )∩MS , then either e ⊆ S and e ∈ δH(T )∩M or

e = e∗s and e∗ ∈ δH(T ). In total we get |δH
S
(T ) ∩MS | = |δH(T ) ∩M |.

We say that two sets S, T cross if all four of S∩T, S∩T , S∩T, S∩T are non-empty,
otherwise S, T are called non-crossing.

Observe that a set S and its complement S define the same cut and the same tight
cut contractions if δH(S) is tight. Thus, replacing S by S in Step 4 does not change
the resulting tight cut decomposition. Now, two sets S and T are non-crossing if
and only if one is contained in the other after possibly replacing one or both sets
by their complements.
With the help of Lemma 4.54 we show that every tight cut decomposition of a

hypergraph corresponds to a maximal family of pairwise non-crossing, non-trivial
tight cuts.

Corollary 4.55. Let H be a matching covered hypergraph. Every tight cut decom-
position of H corresponds to a maximal family

F ⊆ {S ⊆ V (H) : δH(S) is a non-trivial tight cut}
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such that S and T are non-crossing and S 6= T for any two distinct sets S, T ∈ F .
On the other hand, every such family F defines a tight cut decomposition of H.

Proof. We prove the first claim by induction on |H|.
If |H| = 1, then H has no non-trivial tight cut, and H = {H} is its unique tight

cut decomposition. This tight cut decomposition corresponds to F = ∅, which is
the unique maximal family of pairwise non-crossing, non-trivial tight cuts.
Suppose that the claim is true for every tight cut decomposition of size at most

k − 1 and let H be a tight cut decomposition of size k for some matching covered
hypergraph H.
We associate to H a binary tree T in the following way. We start with a one

vertex graph, which we call the root and we label it with H. At each execution of
step 4 we add two new vertices labeled by H ′S and H ′

S
and connect them to the

vertex representing H ′. In this way, the leaves of T correspond to the elements of
H. Let δH(S) be the cut chosen in the first execution of the while loop. The unique
path of a leaf of T to its root passes either through the vertex labeled by HS or the
one labeled by HS . Let H1 ⊆ H be the set of hypergraphs corresponding to leaves
that fall into the first category and set H2 := H \H1.

The family H1 forms a tight cut decomposition of HS and H2 a tight cut de-
composition of HS . By the induction hypothesis, H1 corresponds to a maximal
family F1 of pairwise non-crossing, non-trivial tight cuts of HS , and H2 to a max-
imal family F2 of pairwise non-crossing, non-trivial tight cuts of HS . Lemma 4.54
implies that each T ∈ F1 ∪ F2 defines a non-trivial tight cut in H. As T ⊆ S for
all T ∈ F1, and T ⊆ S for all T ∈ F2, the family F := F1 ∪ F2 ∪ {S} consists of
pairwise non-crossing sets. If F is not maximal, there exists a non-trivial tight cut
δH(T ) such that T /∈ F and T is non-crossing to all sets of F . In particular, T is
non-crossing to S, and thus T ⊆ S, T ⊆ S, T ⊆ S, or T ⊆ S. We can assume that
T ⊆ S, the other cases are similar. In this case, T defines a non-trivial tight cut of
HS that is non-crossing to all elements of F2. This contradicts the maximality of
F2. Thus, F is maximal.

For the second claim we use induction on |F|.
If |F| = 0, then H has no non-trivial tight cut, and thus {H} is the unique tight

cut decomposition of H.
Now, suppose the second claim is true if |F| ≤ k − 1 and let F be a maximal

family of pairwise non-crossing, non-trivial tight cuts of H of size k. Choose S ∈ F
arbitrarily, and let HS , HS be the tight cut contractions of H with respect to
δH(S). For every T ∈ F we have either T ⊆ S, T ⊆ S, T ⊆ S, or T ⊆ S.
By Lemma 4.54, T or T define a tight cut of HS in the first case and HS in
the second case. Set F1 := {T : T ∈ F , T ⊆ S} ∪ {T : T ∈ F , T ⊆ S}, and
F2 := {T : T ∈ F , T ⊆ S} ∪ {T : T ∈ F , T ⊆ S}. Then, F1 is a family of pairwise
non-crossing, non-trivial tight cuts of HS . If F1 is not maximal, then there exists
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a non-trivial tight cut A /∈ F1 of HS that does not cross any T ′ ∈ F1. But A does
not cross any T ′ ∈ F2 and S, thus A and every element of F are non-crossing.
This contradicts the maximality of F . Thus, F1 is a maximal family of pairwise
non-crossing, non-trivial tight cuts of HS . As |F1| < |F|, the family F1 corresponds
to a tight cut decomposition H1 of HS . By the same arguments, F2 corresponds
to a tight cut decomposition H2 of HS . Since we can choose S as the first cut in
Algorithm 1, H1 ∪H2 is a tight cut decomposition of H corresponding to F .

An important property of tight cuts in graphs, which is the main ingredient of
Lovász’ uniqueness proof of the tight cut decomposition procedure, is the possibility
to uncross two crossing tight cuts. That is, if S and T are crossing sets defining
tight cuts in a graph G with S ∩T of odd cardinality, then δG(S ∪T ) and δG(S ∩T )
are also tight. We show that a similar result holds for uniformizable hypergraphs.

Lemma 4.56. Let H be a matching covered, uniformizable hypergraph, S, T ⊆
V (H) be crossing sets such that δH(S) and δH(T ) are tight. The cut δH(S ∩ T ) is
tight if and only if δH(S ∪ T ) is tight.

Proof. Suppose that δH(S ∩ T ) is tight but δH(S ∪ T ) is not tight. Furthermore,
let H(m) be a multiplication of H that is r-uniform for some r ∈ N. First, we show
that there exists a perfect matching M with |M ∩ δH(S ∪ T )| ≥ 2. Let M ′ be a
perfect matching with |M ′∩δH(S∪T )| 6= 1. If |M ′∩δH(S∪T )| ≥ 2, then we choose
M = M ′. Otherwise, M ′ ∩ δH(S ∪ T ) = ∅. In this case, {e ⊆ S ∪ T : e ∈ M ′} is
a perfect matching of H[S ∪ T ], thus m(S ∪ T ) ≡ 0 mod r. By Lemma 4.42, there
exists a perfect matching M with |M ∩ δH(S ∪ T )| ≥ 2.
Every hyperedge e ∈ δH(S ∪ T ) lies either in exactly one of the two cuts δH(S),

δH(T ), or in both. Thus, |M ∩δH(S∪T )| = 2 and if e1, e2 are the two hyperedges in
the intersection of M with δH(S ∪ T ), then we can assume that e1 ∈ δH(S) \ δH(T )
and e2 ∈ δH(T )\δH(S). It follows that e1∩S 6= ∅, e1∩(S∩T ) 6= ∅, e1 ⊆ T or e1 ⊆ T ,
thus e1 ⊆ T and e1 /∈ δH(S ∩T ). Similar, for e2 we get e2 ∩T 6= ∅, e2 ∩ (S ∩T ) 6= ∅,
e2 ⊆ S, and thus e2 /∈ δH(S∩T ). This is a contradiction to the tightness of δH(S∩T )
because M ∩ δH(S ∩ T ) ⊆ (M ∩ δH(S)) ∪ (M ∩ δH(T )) = {e1, e2}, and therefore
M ∩ δH(S ∩ T ) = ∅.

The other direction follows from δH(S) = δH(S), δH(T ) = δH(T ), δH(S ∩ T ) =
δH(S ∪ T ), and δH(S ∪ T ) = δH(S ∩ T ).

If we apply this lemma to S and T and observe that S ∪ T = S ∩ T we get the
following corollary.

Corollary 4.57. Let H be a matching covered uniformizable hypergraph, and S, T ⊆
V (H) be crossing sets such that δH(S) and δH(T ) are tight. The cut δH(S ∩ T ) is
tight if and only if δH(S ∩ T ) is tight.
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Lemma 4.58. Let H be a matching covered uniformizable hypergraph, and S, T ⊆
V (H) be crossing sets such that δH(S) and δH(T ) are tight. If δH(S ∩ T ) is not
tight, then δH(S ∩ T ) is tight.

Proof. If δH(S ∩ T ) is not tight, then also δH(S ∪ T ) is not tight. Using the same
arguments as in the proof of Lemma 4.56 we can find a perfect matching M with
|M∩δH(S∪T )| = 2. We have seen that such a matching does not intersect δH(S∩T ).
This implies that m(S ∩ T ) ≡ 0 mod r where H(m) is an r-uniform multiplication
of H.
Suppose that δH(S ∩T ) is not tight. By a symmetric argument, we find a perfect

matching M ′ with |M ′ ∩ δH(S ∩ T )| = 0, which implies that m(S ∩ T ) ≡ 0 mod r.
Now, m(S) = m(S ∩ T ) +m(S ∩ T ) ≡ 0 mod r contradicting Lemma 4.42.

We sum up the previous results in the following corollary.

Corollary 4.59. If H is a matching covered uniformizable hypergraph, and S, T ⊆
V (H) are crossing sets such that δH(S) and δH(T ) are tight, then δH(S ∩ T ) and
δH(S ∪ T ), or δH(S ∩ T ) and δH(S ∩ T ) are tight.

If S, T are crossing sets defining tight cuts in a uniformizable hypergraph, then
we can always assume that S∩T and S∪T define tight cuts after possibly replacing
T by T . In the graph case, all four sets S, T, S ∩T , and S ∪T would be of odd size.
If δH(S) 6= δH(T ), then we show a similar result for uniformizable hypergraphs.
Therefore, we need the following observation concerning tight cuts.

Observation 4.60. If S defines a tight cut in a uniformizable matching covered
hypergraph H and δH(A) is a non-empty cut with δH(A) ⊆ δH(S), then δH(A) =
δH(S).

Proof. Suppose there exists a hyperedge e∗ ∈ δH(S) \ δH(A). Let M be a perfect
matching of H containing e∗. As |M ∩ δH(S)| = 1, it follows that M ∩ δH(A) = ∅.
This implies that m(A) ≡ 0 mod r for any function m : V (H)→ N and r ∈ N such
that H(m) is r-uniform. By Lemma 4.42, there exists a perfect matching M ′ with
|M ′ ∩ δH(A)| ≥ 2. Thus, |M ′ ∩ δH(S)| ≥ 2, contradicting that δH(S) is tight.

Lemma 4.61. Let H be a matching covered, uniformizable hypergraph together
with a function m : V (H) → N such that H(m) is r-uniform for some r ∈ Z, and
S, T ⊆ V (H) be two crossing sets such that S, T and S ∪ T define tight cuts in H.
If δH(S) 6= δH(T ), then m(S) ≡ m(S ∩ T ) ≡ m(S ∪ T ) ≡ m(T ) mod r.

Proof. We first show that δH(S) 6= δH(T ) implies δH(S) 6= δH(S ∩ T ) and δH(S) 6=
δH(S ∪ T ). Suppose that δH(S) = δH(S ∩ T ). As S and T are crossing, the set
S ∩ T is non-empty and because H is connected δH(S ∩ T ) 6= ∅. Let e ∈ δH(S ∩ T ).
If e /∈ δH(S), then e ⊆ S or e ⊆ S. Because of e ∈ δH(S ∩ T ) we have e ⊆ S and
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e∩ (S ∩T ) 6= ∅. But then e ∈ δH(S ∩T ) \ δH(S). Thus, δH(S ∩T ) ⊆ δH(S), and by
Observation 4.60 equality holds. Now, e ∈ δH(S) implies e ∈ δH(S∩T ) = δH(S∩T ),
and thus e ∩ (S ∩ T ) 6= ∅ and e ∩ (S ∩ T ) 6= ∅, implying that e ∈ δH(T ). Together
with Observation 4.60 it follows that δH(S) and δH(T ) coincide, a contradiction.

If we replace S and T by their complements, then the argument above shows that
δH(S) = δH(S) 6= δH(S ∩ T ) = δH(S ∪ T ).

Now, let e1 ∈ δH(S)\ δH(S ∩T ), and choose a perfect matching M containing e1.
Let e2 ∈ M ∩ δH(S ∩ T ). It follows that e2 ∈ δH(T ), e2 /∈ δH(S), e2 /∈ δH(S ∪ T ),
e1 /∈ δH(T ), e1 ∈ δH(S ∪ T ). Thus, e1 ∩ (S ∩ T ) 6= ∅ and e1 ⊆ T , which implies∑

v∈S
m(v) ≡

∑
v∈e1∩S

m(v) =
∑

v∈e1∩(S∪T )
m(v) ≡

∑
v∈S∪T

m(v) mod r.

For e2 we get e2 ∩ (S ∩ T ) 6= ∅ and e2 ⊆ S, thus∑
v∈T

m(v) ≡
∑

v∈e2∩T
m(v) =

∑
v∈e2∩(S∩T )

m(v) ≡
∑

v∈S∩T
m(v) mod r.

Starting the same argument with e1 ∈ δH(S) \ δH(S ∪ T ) gives m(S) ≡ m(S ∩ T )
mod r and m(T ) ≡ m(S ∪ T ) mod r.

By Corollary 4.55, every tight cut decomposition is determined by a maximal
family of pairwise non-crossing, non-trivial tight cuts. We show that each of these
families gives rise to the same list of hypergraphs in a tight cut decomposition. The
proof works along the lines of the one for graphs by Lovász. Its main ingredient is
Corollary 4.59, which implies that for two crossing cuts δH(S), δH(T ) we can find
two cuts δH(U1), δH(U2) such that U1, S and T , as well as U2, S and T are pairwise
non-crossing. If one of U1, U2 is non-trivial, then we use induction. A problem
occurs if U1 and U2 are both trivial. We can assume without loss of generality
that U1 = S ∩ T and U2 = S ∪ T . In this case, U1 and U2 are trivial if and only
if |S ∩ T | = 1 and |V (H) \ (S ∪ T ) | = 1. Figure 4.12 shows an example for this
case, where also the tight cut contractions with respect to δH(S) and δH(T ) are
drawn. In this example HS is isomorphic to HT , and HS is isomorphic to HT . In
the following lemma we prove that this is always the case.

Lemma 4.62. Let H be a matching covered, uniformizable hypergraph, δH(S), δH(T )
be crossing tight cuts with δH(S) 6= δH(T ). If δH(S ∩ T ) and δH(S ∪ T ) are trivial
tight cuts, then HS and HT as well as HS and HT are isomorphic up to parallel
hyperedges.

Proof. First, we show that if e ∈ δH(S)∩ δH(T ), then e = (S ∩ T )∪ (S ∩ T ). As H
is uniformizable there exists a function m : V (H)→ N such that H(m) is r-uniform
for some r ∈ Z. Let v∗ be the unique vertex in S ∩ T and w∗ be the unique vertex
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H

S

S

T T

v∗

w∗

v∗

s

HS

s

w∗

HS

t

w∗

HT

v∗

t

HT

Figure 4.12: Two tight cuts δH(S), δH(T ) such that δH(S ∩ T ) and δH(S ∪ T ) are
trivial cuts. The tight cut contractions with respect to δH(S) are drawn
above H, and the tight cut contractions with respect to δH(T ) below
H.
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in S ∩ T . If e ∈ δH(S) ∩ δH(T ), then e ∈ δH(S ∩ T ) ∩ δH(S ∪ T ). Thus, v∗ ∈ e
and w∗ ∈ e. By Lemma 4.61, m(v∗) = m(S) = m(T ) and m(w∗) = r −m(v∗), and
therefore e = {v∗, w∗}.

Now, we show that HS and HT are equivalent up to multiple hyperedges. We
define a function φ : V (HT )→ V (HS) by

φ(v) :=


v, v ∈ S ∩ T
s, v = v∗ ∈ S ∩ T
w∗, v = t ∈ V (HT ) \ T

.

Observe, that V (HT ) = (S ∩ T ) ∪ {v∗} ∪ {t} and V (HS) = (S ∩ T ) ∪ {w∗} ∪ {s}.
Thus, φ is well-defined and bijective. We claim that φ extends to a function from
E(HT ) to E(HS) via φ(e) = {φ(v) : v ∈ e} for all e ∈ E(HT ). First, we show that
φ is well-defined.

• If e ⊆ S ∩ T , then φ(e) = e ∈ E(HS).

• If e ⊆ T and v∗ ∈ e, then φ(e) =
(
e ∩ S

)
∪ {s} ∈ E(HS).

• If t ∈ e, then there exists a hyperedge ẽ ∈ E(H) with (ẽ ∩ T ) ∪ {t} = e. If
ẽ = {v∗, w∗}, then e = {v∗, t}, and φ(e) = {s, w∗} = (ẽ ∩ S) ∪ {s} ∈ E(HS).
Next, we consider the case ẽ∩{v∗, w∗} = {w∗}. In this case, ẽ ∈ δH(T )\δH(S)
and thus ẽ ⊆ S. We get φ(e) = (ẽ∩S∩T )∪{w∗} = e\{t}∪{w∗} = ẽ ∈ E(HS).
It remains to consider the case ẽ ∩ {v∗, w∗} = {v∗}. Now, ẽ ∈ δH(T ) \ δH(S)
and v∗ ∈ ẽ implies e ⊆ S. Let M̃ be a perfect matching containing ẽ and
e′ ∈ M̃ ∩ δH(S). It follows that w∗ ∈ e′, and e′ ∈ δH(S) \ δH(T ) thus
e′ ⊆ T . Furthermore,

(
e′ ∩ S

)
∪ {s} = {w∗, s} implies {w∗, s} ∈ E(HS).

Now, φ(e) = (ẽ ∩ S ∩ T ) ∪ {s} ∪ {w∗} = {s, w∗} ∈ E(HS).

Next, we show that φ : E(HT ) → E(HS) is surjective, i.e., for every e ∈ E(HS)
there exists f ∈ E(HT ) such that φ(f) = e.

• If e ⊆ S ∩ T , then e ∈ E(HT ) and φ(e) = e.

• If e ⊆ S and w∗ ∈ e, then e ∈ δH(T ), thus (e ∩ T ) ∪ {t} ∈ E(HT ), and
φ((e ∩ T ) ∪ {t}) = e.

• If s ∈ e, w∗ /∈ e, then e = ẽ∩S ∪{s} where ẽ ∈ δH(S) with v∗ ∈ ẽ and w∗ /∈ ẽ.
It follows that ẽ /∈ δH(T ) and as v∗ ∈ ẽ this means ẽ ⊆ T . Thus, ẽ ∈ E(HT )
and φ(ẽ) =

(
ẽ ∩ S ∩ T

)
∪ {s} =

(
ẽ ∩ S

)
∪ {s} = e.
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• If s, w∗ ∈ e, then e =
(
ẽ ∩ S

)
∪ {s} where ẽ ∈ δH(S) with w∗ ∈ ẽ. If also

v∗ ∈ ẽ, then ẽ = {v∗, w∗} and {v∗, t} ∈ E(HT ) with φ({v∗, t}) = {s, w∗} = e.
If v∗ /∈ ẽ, we know that ẽ /∈ δH(T ) and as w∗ ∈ ẽ we get ẽ ⊆ T . This
means that e = {s, w∗}. Now, let M̃ be a perfect matching containing ẽ and
f̃ ∈ M ∩ δH(T ). We get f̃ ⊆ S because v∗ ∈ f̃ and f̃ /∈ δH(S). Therefore,
{v∗, t} = (f̃ ∩ T ) ∪ {t} ∈ E(HS) and φ({v∗, t}) = {s, w∗} = e.

It remains to show that φ(f) = φ(f ′) implies that f and f ′ are parallel. This is
clear if φ(f) ⊆ S ∩ T as φ is the identity on S ∩ T . If φ(f) ⊆ S and w∗ ∈ φ(f),
then t ∈ f ∩ f ′ and f ∩ T = f ′ ∩ T , i.e., f and f ′ are parallel. Now, if s ∈ φ(f) and
w∗ /∈ φ(f), then v∗ ∈ f ∩ f ′, and t /∈ f , t /∈ f ′. This implies that f, f ′ ⊆ T and thus
f \ {v∗} = f ′ \ {v∗}. In total, f and f ′ contain the same vertices and are therefore
parallel. If both s and w∗ lie in φ(f), then φ(f) = {s, w∗} and f = {v∗, t} = f ′.
In total, we have shown that HT and HS are isomorphic via φ up to parallel

hyperedges.
By similar arguments, we can show that HT and HS are isomorphic up to parallel

hyperedges using the function φ : V (HT )→ V (HS) defined by

φ(v) :=


v, v ∈ S ∩ T
s, v = w∗ ∈ S ∩ T
v∗, v = t ∈ V (HT ) \ T

.

Using the previous lemmata and corollaries we prove our main result; the unique-
ness of the tight cut decomposition in matching covered, uniformizable hypergraphs.

Theorem 4.63. Any two tight cut decomposition procedures of a matching covered,
uniformizable hypergraph yield the same list of indecomposable hypergraphs up to
multiplicity of parallel hyperedges.

Proof. As in the graph case, we use induction on the number of vertices of H. If H
has at most three vertices, then H has no non-trivial tight cut. Now, suppose the
theorem holds for all hypergraphs H with |V (H)| ≤ l. Let H be a hypergraph on
(l + 1) vertices and F ,F ′ be two maximal families of pairwise non-crossing, non-
trivial tight cuts. If H has no non-trivial tight cut, then F = F ′ = ∅. Otherwise,
we distinguish the following cases where the first and second one are identical to
the ones in the graph case.

1. F and F ′ have a common member S. We can start a tight cut decomposition
procedure with S resulting in the matching covered, uniformizable hypergraphs
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HS and HS with at most l vertices. By induction hypothesis, the families

F1 := {T : T ∈ F , T ⊆ S} ∪ {T : T ∈ F , T ⊆ S},
F ′1 := {T : T ∈ F ′, T ⊆ S} ∪ {T : T ∈ F ′, T ⊆ S}

induce equivalent tight cut decompositions of HS , and

F2 := {T : T ∈ F , T ⊆ S} ∪ {T : T ∈ F , T ⊆ S},
F ′2 := {T : T ∈ F ′, T ⊆ S} ∪ {T : T ∈ F ′, T ⊆ S}

induce equivalent tight cut decompositions of HS . Thus, the decomposition
procedures associated to F and F ′ yield the same list of indecomposable hyper-
graphs.

2. There exist S ∈ F , T ∈ F ′ such that S and T are non-crossing. Let F ′′ be any
maximal family of pairwise non-crossing, non-trivial tight cuts containing both
S and T . By the first case, every tight cut decomposition associated to F and
F ′′, as well as F ′ and F ′′ yield the same list of indecomposable hypergraphs.

3. Suppose that there exists S ∈ F , T ∈ F ′ such that S and T are crossing and
δH(S) = δH(T ). Then, δH(S∩T ) = δH(S∩T ) = δH(S∩T ) = δH(S∩T ) = δH(S).
If one of the four sets S∩T, S∩T , S∩T, S∩T has size at least two, then it defines
a non-trivial tight cut non-crossing to S and T . We consider any maximal family
of pairwise non-crossing, non-trivial tight cuts containing this cut. By the first
case, F ′′ and F , as well as F ′′ and F ′ induce equivalent tight cut decompositions.
If all four of the sets S ∩T, S ∩T , S ∩T, S ∩T have size one, then |S| = |T | = 2,
|V (H)| = 4, and H consists of hyperedges of the form e = V (H). In this
case, each of HS , HS , HT , HT has three vertices and some parallel hyperedges
containing all three vertices. As a hypergraph with at most three vertices has
only trivial cuts, we have F = {S} and F ′ = {T} and the tight cut contractions
with respect to δH(S) and δH(T ) are isomorphic.

4. Now, we consider the case δH(S) 6= δH(T ), and S, T are crossing sets for all
S ∈ F , T ∈ F ′. By Corollary 4.59, we can assume S ∩ T and S ∪ T define tight
cuts. If |S∩T | > 1 or |V (H)\ (S∪T )| > 1, then U = S∩T or U = S∪T defines
a non-trivial tight cut that neither crosses S nor T . Let F ′′ be a maximal family
of pairwise non-crossing, non-trivial tight cuts containing U . By the second case,
F ′′ and F , as well as F ′′ and F ′ yield equivalent tight cut decompositions.
Next, we assume that |S∩T | = 1 and |S∩T | = 1. If F and F ′ consist just of one
cut, then by Lemma 4.62 the tight cut contractions with respect to δH(S) and
δH(T ) yield isomorphic hypergraphs. Otherwise, we may assume by symmetry
that F contains another tight cut S′ /∈ {S, S}. As S′ and S are non-crossing, we
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can assume S′ ∩ S = ∅, i.e., S′ ⊆ S. If S′ and T are non-crossing, then we are
in the second case. If both sets are crossing but δH(S′) = δH(T ), then we are in
the third case.

In the remainder of the proof, we assume that S′ and T are crossing sets defining
different cuts. We know that S′ ∩ T 6= ∅ and S′ ∩ T 6= ∅. It follows that
S′ ∩ T = S′ ∩ S ∩ T = S ∩ T because |S ∩ T | = 1. Let w∗ ∈ S ∩ T . We
can write S′ as S′ = {w∗} ∪ (S′ ∩ T ). Suppose that δH(S′ ∩ T ) is a tight
cut, and let m : V (H) → N be a function such that H(m) is r-uniform for
some r ∈ N. By Lemma 4.61 and the assumption δH(S′) 6= δH(T ), we have
m(S′) ≡ m(S′ ∩ T ) ≡ m(T ) ≡ m(S ∩ T ) mod r. On the other hand,

m(S′) = m(S′ ∩ T ) +m(S′ ∩ T ) = m(S′ ∩ T ) +m(S ∩ T )
≡ m(T )−m(S ∩ T ) ≡ 0 mod r.

However, as δH(S′) is a tight cutm(S′) cannot be divisible by r. Thus, δH(S′∩T )
is not tight and therefore δH(S′ ∩ T ) is a tight cut by Corollary 4.59. This cut
is non-trivial because otherwise S′ ∩ T = S ∩ T would follows, which implies
that S′ = {w∗} ∪ (S′ ∩ T ) = S, contradicting the choice of S′. This means that
U = S

′ ∩ T defines a non-trivial tight cut that does not cross any cut of F or
F ′. Again, by considering a maximal family F ′′ of pairwise non-trivial tight cuts
containing U and using the second case, we get that F and F ′ yield equivalent
tight cut decompositions.

4.5 Complexity Results

Though it is NP-hard to find a perfect matching of maximum weight in a hyper-
graph, it can be solved quite efficiently in practice within a branch-and-cut frame-
work in an integer programming solver. However, the performance heavily depends
on the size of the input hypergraph. Therefore, it is of great use if one can decom-
pose the perfect matching problem into smaller ones. By Theorem 4.45, every tight
cut yields such a decomposition. In graphs one can find a tight cut decomposition
in polynomial time as described for example in Section 2 of [Edmonds et al., 1982].
For hypergraphs it is not clear how to generalize this result even in the uniform
case. In the case of balanced uniformizable hypergraphs, we give a polynomial time
algorithm to find a non-trivial tight cut based on submodular function minimization.
First, we observe that the problem to decide whether a cut is tight in a uniformiz-

able hypergraph can be reduced to the uniform case. Let H be a uniformizable
hypergraph, and S ⊆ V (H). The cut δH(S) defined by S is tight if and only if the
set S(m) := {v(1), . . . , v(m(v)) : v ∈ S} defines a tight cut in H(m), where H(m) is a
uniform multiplication of H. We assume that H is uniform in the remainder of this
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section and give a polynomial time algorithm that finds a non-trivial tight cut in a
uniform, balanced, matching covered hypergraph.
In such a hypergraph every separating cut, which is a cut δH(S) such that HS

and HS are matching covered, is tight by Corollary 4.51. We can exploit this fact
to compute tight cuts on uniform balanced hypergraphs as follows:
For every e ∈ E(H) we compute a perfect matchingMe containing e. This can be

done in polynomial time by linear programming as the fractional perfect matching
polytope of a balanced hypergraph is integral. Now, if δH(S) is a tight cut, then
|Me ∩ δH(S)| = 1 for all e ∈ E(H). On the other hand, if δH(S) is a cut such that
|Me ∩ δH(S)| = 1 for all e ∈ E(H), then δH(S) is a separating cut and also a tight
cut as H is a uniform balanced hypergraph. In total, δH(S) is tight if and only if
|Me ∩ δH(S)| = 1 for all e ∈ E(H), where {Me : e ∈ E(H)} is an arbitrary set of
perfect matchings such that Me contains e for every e ∈ E(H).
For every e ∈ E(H) we choose a perfect matching Me such that e ∈ Me, and

define a weight function w : E(H) → Z by w(f) := |{e ∈ E(H) : f ∈ Me}| for
every f ∈ E(H). The value w(f) of the function w at a hyperedge f is equal
to the number of perfect matchings in the set {Me : e ∈ E(H)} containing f . If
S ⊆ V (H) is such that its size is not divisible by r, then |M ∩ δH(S)| ≥ 1 for all
perfect matchings M of H. In particular, |Me ∩ δH(S)| = 1 for all e ∈ E(H) if and
only if w(δH(S)) = |E(H)| holds. Thus, S ⊆ V (H) defines a tight cut if and only if
r - |S| and w(δH(S)) = |E(H)|. By Corollary 10.4.7 in [Grötschel et al., 1988], we
can solve min{w(δH(S)) : S ⊆ V (H), |S| 6≡ 0 mod r} in polynomial time. However,
we want to find a non-trivial tight cut, thus we have to demand that |S| ≥ 2 and
|S| ≤ |V (H)| − 2. We show that also the optimization problem

min{w(δH(S)) : S ⊆ V (H), 2 ≤ |S| ≤ |V (H)| − 2, |S| 6≡ 0 mod r}(4.7)

is polynomial-time solvable.
Therefore, let A,B ⊆ V (H) be disjoint sets of vertices. The family C(A,B) :=
{S ⊆ V (H) : A ⊆ S ⊆ V (H) \ B} has the property that for every S, T ∈ C(A,B)
also S ∩ T and S ∪ T lie in C(A,B). Such a family of sets is called a lattice family
in [Grötschel et al., 1988]. Again, by Corollary 10.4.7 in [Grötschel et al., 1988]
applied to C(A,B), we can solve min{w(δH(S)) : S ∈ C(A,B), |S| 6≡ 0 mod r} in
polynomial time for every pair of fixed sets A,B ⊆ V (H).

Now, problem (4.7) can be solved by calculating for all disjoint subsets A,B of
V (H) with |A| = |B| = 2 an optimal solution SA,B to the optimization problem
min{w(δH(S)) : S ∈ C(A,B), |S| 6≡ 0 mod r}, and choosing a set

S∗ := argmin{w(δH(SA,B)) : A,B ⊆ V (H), A ∩B = ∅, |A| = |B| = 2}.

If w(S∗) = |E(H)|, then δH(S∗) is a non-trivial tight cut in H. Otherwise,
w(S∗) > |E(H)|, and H contains only trivial tight cuts. As there are O(|V (H)|4)
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subsets A,B ⊆ V (H) with |A| = |B| = 2, this algorithm runs in polynomial time.
In total, we get the following result.

Theorem 4.64. Let H be an r-uniform, matching covered, balanced hypergraph.
There exists a polynomial time algorithm that either outputs a non-trivial tight cut
δH(S) or concludes that H has only trivial tight cuts.

It seems like the above method for finding non-trivial tight cuts in balanced
uniform hypergraphs might be generalized to the problem of finding non-trivial
separating cuts in uniform hypergraphs. This is not the case. The first problem
that arises is that it is NP-hard to find for some fixed hyperedge a perfect matching
containing it. Even if we assume that we have not only given a uniform hypergraph
H as input but also a set of perfect matchings {Me : e ∈ E(H)} with e ∈ Me for
all e ∈ E(H), it is not clear how to find a non-trivial separating cut or non-trivial
tight cut in H. Using the method described above we can find in polynomial time
a non-trivial cut δH(S) with |δH(S) ∩ Me| = 1 for all e ∈ E(H) or decide that
none exists. In the first case, we conclude that δH(S) is a separating cut. In the
latter case it is still possible that H has a non-trivial separating cut but we have
chosen the wrong perfect matchings. Indeed, it is not known if one can decide in
polynomial time whether or not a brick, which is a non-bipartite graph without
non-trivial tight cuts, has a separating cut.
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Flows in Directed Hypergraphs

Flow problems as the maximum s, t-flow or minimum cost flow problem in directed
graphs are one of the best studied objects in combinatorial optimization. Though
those types of problems can often be formulated as linear programs, and thus be
solved by any linear programming solver, their combinatorial properties are not
only of theoretical interest but also lead to various highly efficient algorithms. These
combinatorial algorithms outperform general purpose linear programming solvers on
large test instances, see [Kovács, 2015] for a current experimental study of various
minimum cost flow algorithms.
Network flows are successfully used in many applications. However, sometimes

it is more appropriate to use directed hypergraphs as a modeling tool. This is
the case in vehicle rotation planning of Intercity-Express trains in Germany, see
[Borndörfer et al., 2011] and [Borndörfer et al., 2012]. Building on the hypergraph
model in this application we give a network simplex type algorithm for the minimum
cost flow problem on directed hypergraphs in this chapter.
First, we give an overview about the literature on directed hypergraphs focusing

on flow and path problems. The relation between those two types of problems
is investigated in Section 5.2, where we look at two different integer programming
formulations for the maximum s, t-flow problem. One formulation with a variable for
every hyperarc and another one with a variable for every path. Both formulations
are equivalent in the case of directed graphs. The path-based formulation was
considered in a more general setting by Hoffman in [Hoffman, 1974], where he proves
that it leads to an integral primal-dual pair of linear programs. In contrast to this
result, the linear programming relaxation of the hyperarc-based integer program is
not integral in general. We conclude Section 5.2 by giving optimality conditions for
maximum s, t-flows and minimum cost flows in directed hypergraphs based on the
idea of residual networks, which plays an important role in network flow problems
on directed graphs.

In Section 5.3 we state the main result of this chapter, which is a combinatorial
algorithm for the minimum cost flow problem on directed hypergraphs, where we
use the hypergraph model of [Borndörfer et al., 2011]. This algorithm can be seen
as a generalization of the network simplex algorithm. Using the directed hypergraph
notion of [Borndörfer et al., 2011] has the advantage that it is possible to generalize
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a lot of the combinatorial steps in the network simplex algorithm to the hypergraphic
setting. A short preliminary version of the results presented in Section 5.3 appeared
in [Beckenbach, 2018].

5.1 Literature Overview
The literature on directed hypergraphs is diverse and there is no consistent definition
of a directed hypergraph. A widely accepted one was given by Gallo, Pallottino,
and Nguyen [Gallo et al., 1993].

Definition 5.1 (Directed hypergraph). A directed hypergraph H is a pair consisting
of a finite set of vertices V (H) and a family of hyperarcs E(H), where a hyperarc
is an ordered pair e = (t(e), h(e)) of disjoint subsets of V (H) such that not both
subsets are empty. For a hyperarc e we denote by t(e) the first element of e and call
it the tail of e, and we denote by h(e) the second element and call it the head of e.
If |t(e)| ≥ 2 or |h(e)| ≥ 2, we say that e is a proper hyperarc. If |t(e)| = |h(e)| = 1,

then we call e an arc and write e = (v, w) instead of e = ({v}, {w}). A hyperarc
is called a B-arc if the size of its head is one and an F -arc if the size of its tail is
one. A B-graph is a directed hypergraph with only B-arcs as hyperarcs. Similar,
an F -graph is a directed hypergraph with only F -arcs.

A hyperarc is allowed to have an empty tail or an empty head, however, at least
one of the two sets has to be non-empty. Furthermore, an arc is both a B-arc and
an F -arc, and a directed graph is both a B-graph and an F -graph.
Figure 5.1 shows an example of a directed hypergraph on six vertices with four

proper hyperarcs where two of them are F -arcs and one is a B-arc.
Directed hypergraphs are for example used in the analysis of metabolic networks.

A biochemical reaction transforming substrates A1, . . . , Ak into B1, . . . , Bl can be
modeled by an hyperarc whose tails are A1, . . . , Ak and whose heads are B1, . . . , Bl,
see [Klamt et al., 2009].
Another generalization of directed graphs to hypergraphs is motivated by an

application to railway vehicle rotation planning, see [Borndörfer et al., 2011].

Definition 5.2 (Graph-based directed hypergraph). LetD be a (standard) directed
graph. A directed hypergraph H based on the directed graph D has the same set
of vertices as D, and a set E(H) ⊆ 2E(D) of hyperarcs, where a hyperarc h consists
of a set of vertex disjoint arcs of D. A directed hypergraph is called graph-based if
it is based on some directed graph.

A graph-based hypergraph can be seen as a special kind of directed hypergraph
in which each hyperarc has the same number of vertices in its tail as in its head.
Namely, for a hyperarc e in a graph-based directed hypergraph we define its tail set
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Figure 5.1: A directed hypergraph with one B-arc and two F -arcs.

Figure 5.2: A graph-based directed hypergraph.

by t(e) := {v ∈ V (H) : ∃w ∈ V (H) with (v, w) ∈ e} and its set of head vertices by
h(e) := {v ∈ V (H) : ∃w ∈ V (H) with (w, v) ∈ e}. With this notation (t(e), h(e))
corresponds to a hyperarc according to Definition 5.1 with |t(e)| = |h(e)|. On the
other hand, if H is a directed hypergraph such that |t(e)| = |h(e)| holds for all
hyperarcs e, then H can be seen as a directed hypergraph based on the complete
directed graph on the vertex set V (H). It turns out that it has advantages to keep
the underlying digraph in mind when looking at flow problems.
Reuther shows in his dissertation [Reuther, 2017] the strength of graph-based

hypergraphs in practice. A lot of requirements in railway vehicle rotation planning
can be expressed by directed hyperarcs. Based on this hypergraph model Reuther
developed a software tool that was successfully used at DB Fernverkehr AG to
optimize Intercity-Express rotations for the German high-speed railway network.
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There are different notions of paths and connectivity in directed hypergraphs.
The simplest definition of a path is a straightforward generalization of the one for
directed graphs.

Definition 5.3 (Path). A path in a directed hypergraph H is an alternating se-
quence of vertices and hyperarcs (v1, e1, v2, e2, . . . , ek, vk+1) such that v1 ∈ t(e1),
vk+1 ∈ h(ek), and vi ∈ h(ei−1) ∩ t(ei) for i = 2, . . . , k. A path is called simple if all
vertices and hyperarcs are distinct. A vertex s is connected to a vertex t in H if
there is a path starting at s and ending at t.

This kind of connectivity reduces to the digraph case by adding an auxiliary
vertex ve for every hyperarc e and arcs (v, ve) and (ve, w) for all v ∈ t(e), w ∈ h(e).
In this way, a vertex s is connected to another vertex t in a directed hypergraph if
and only if there is a directed path from s to t in the auxiliary digraph.
There are other definitions of connectivity in directed hypergraphs. For example,

in B-graphs one usually demands that all tail vertices of a hyperarc have to be
visited before one can use this hyperarc to visit its head vertex. Formally, we have
the following definition, see for example [Thakur and Tripathi, 2009], where also
other variants of connectivity are discussed.

Definition 5.4 (B-hyperpath, B-connectivity). Given two vertices s and t in a
B-graph H, we say that t is B-connected to s if t = s or there exists a hyperarc e
such that h(e) = {t} and every v ∈ t(e) is B-connected to s. A B-hyperpath from s
to t is a minimal B-graph P with the properties that V (P ) ⊆ V (H), E(P ) ⊆ E(H),
and t is B-connected to s.

Gallo, Longo, Pallottino, and Nguyen give a polynomial time algorithm that
finds all vertices that are B-connected to some vertex s and show that it is pos-
sible to find a minimum weight B-hyperpath from s to t in polynomial time if
a special recursively defined weight function on the set of B-hyperpaths is used,
see [Gallo et al., 1993]. A formal definition of these kind of weight functions can be
found in [Ausiello et al., 2001]. On the other hand, finding a B-hyperpath from s to
t containing as few hyperarcs as possible isNP-hard, see [Ausiello and Laura, 2017].
There are also different possibilities to define a cut in a directed hypergraph. We

use the following one.

Definition 5.5 (Directed cut). Let H be a directed hypergraph, and S ⊆ V (H) be
a non-empty set of vertices. The out-cut induced by S is defined by

δoutH (S) := {e ∈ E(H) : t(e) ∩ S 6= ∅, h(e) \ S 6= ∅},

and the in-cut is defined by

δinH (S) := {e ∈ E(H) : h(e) ∩ S 6= ∅, t(e) \ S 6= ∅}.
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5.2 Paths and Flows in Directed Hypergraphs

For S = {v} we just write δoutH (v) and δinH (v). If no confusion might occur we drop
H from the index.

Now, we turn to the minimum cost flow problem on directed hypergraphs.

Definition 5.6 (Minimum cost hyperflow). Given a directed hypergraph H, costs
c : E(H) → Q, hyperarc capacities u : E(H) → Q≥0, and demands d : V (H) → Q
on the vertices, a minimum cost hyperflow is a solution to the following linear
program:

min
∑

e∈E(H)
c(e)ze

s.t.
∑

e∈δin
H (v)

ze −
∑

e∈δout
H (v)

ze = d(v) ∀v ∈ V (H)(5.1)

0 ≤ze ≤ u(e) ∀e ∈ E(H).

If u ≡ ∞ we call the minimum cost hyperflow problem uncapacitated.

There exists a polynomial time primal-dual algorithm for the uncapacitated min-
imum cost hyperflow problem on so-called gain-free B-graphs for non-negative de-
mands d ≥ 0, see [Jeroslow et al., 1992]. In this particular case the linear program
(5.1) is totally dual integral. In general, finding an integral minimum cost hyperflow
in a directed hypergraph is NP-hard. For example, every bounded integer program
can be transformed into a minimum cost hyperflow problem on an auxiliary B-graph
with capacities on the hyperarcs, see [Cambini et al., 1992] (the preprint version of
[Cambini et al., 1997]) for details.
Cambini, Gallo, and Scutellà give in [Cambini et al., 1997] a "network simplex"

algorithm for (5.1) by interpreting all simplex operations combinatorially. They
specify no simplex rule and there is none known requiring a polynomial number
of pivots, thus their method is not polynomial. The algorithm developed in Sec-
tion 5.3 is similar to this one. However, we heavily use that we work on graph-
based directed hypergraphs, which simplifies a lot of the steps in the algorithm of
[Cambini et al., 1997].
For more results on directed hypergraphs we refer to the recent survey by Ausiello

and Laura [Ausiello and Laura, 2017] and to [Gallo et al., 1993], where the latter
focuses on connectivity problems.

5.2 Paths and Flows in Directed Hypergraphs
In a directed graph an s, t-flow can either be seen as a flow along some arcs or along
directed s, t-paths leading to two different linear programming formulations of the
maximum s, t-flow problem. It turns out that these two approaches are equivalent
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and that the resulting linear programs are totally dual integral. In the hypergraph
setting this is not the case as we show in this section.
First, we consider a linear programming formulation based on paths. Hoffman

gives in [Hoffman, 1974] a general max-flow-min-cut theorem including the well
known result of Ford and Fulkerson [Ford and Fulkerson, 1956] stating that the
maximum value of an s, t-flow in a directed graph with arc capacities u is equal to the
minimum capacity of an s, t-cut. Hoffman’s theorem can be applied to the directed
hypergraph setting by assigning a variable to each simple s, t-path. Therefore, we
denote by Es,t the set of all simple paths from s to t.

Definition 5.7 (s, t-path flow). Given a directed graph H, two distinct vertices
s, t ∈ V (H), and capacities u : E(H)→ Z≥0 on the hyperarcs, an s, t-path flow is a
function y : Es,t → Z≥0 such that

∑
F3e yF ≤ u(e) for all e ∈ E(H). The value of

an s, t-path flow y is
∑
F∈Es,t

yF .

An s, t-path flow can be seen as a multi-set of s, t-paths such that every hyperarc
e is contained in at most u(e) paths. For these kind of s, t-flows a generalization of
the max-flow-min-cut theorem holds.

Theorem 5.8 ([Hoffman, 1974]). Given a directed hypergraph H, two distinct ver-
tices s, t ∈ V (H), and capacities u : E(H)→ Z≥0, the following two linear programs
have optimal solutions that are integral:

max
∑

F∈Es,t

yF(5.2)

s.t.
∑
F3e

yF ≤ u(e) ∀ e ∈ E(H)

yF ≥ 0 ∀F ∈ Es,t

min
∑
e∈E

u(e)xe(5.3)

s.t
∑
e∈F

xe ≥ 1 ∀F ∈ Es,t

xe ≥ 0 ∀e ∈ E(H)

An optimal solution to the linear program on the left hand side is an s, t-path
flow of maximum value. On the other hand, every integral optimal solution of the
linear program on the right hand side has entries in {0, 1}, and such a solution
corresponds to a set of hyperarcs intersecting every s, t-path.

Definition 5.9. Given a directed hypergraph H, and two distinct vertices s, t, a
set C ⊆ E(H) of hyperarcs is an s, t-path cut if C ∩ F 6= ∅ for all F ∈ Es,t.

With this notation we can restate Theorem 5.8:

The maximum value of an s, t-path flow is equal to the minimum capac-
ity of an s, t-path cut in a directed hypergraph.

Viewing s, t-flows as flows along hyperarcs leads to a different s, t-flow concept.
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s

v1

v2

v3

v4

t

Figure 5.3: A directed hypergraph with a maximum s, t-arc flow of value two and a
maximum s, t-path flow of value one.

Definition 5.10. Given a directed graph H, two distinct vertices s, t ∈ V (H), and
capacities u : E(H)→ Q≥0 on the hyperarcs, an s, t-arc flow is defined as a vector
z ∈ QE(H) such that∑

e∈δin(v)
ze −

∑
e∈δout(v)

ze = 0 ∀v ∈ V (H) \ {s, t},(5.4)

0 ≤ ze ≤ u(e).(5.5)

The value of z is
∑
e∈δin(t) ze −

∑
e∈δout(t) ze.

In the s, t-arc flow case no similar result to Theorem 5.8 holds. In particular, it is
not the case that there exists a maximum s, t-flow that is integral if the capacities
are integral.
If y is feasible to (5.2), then we define a vector x ∈ QE(H)

≥0 by xe :=
∑
F3e yF .

With this definition (5.5) is satisfied. In the graph case x satisfies also (5.4) and
the flow into t is equal to

∑
F∈Es,t

yF . However, in directed hypergraphs the vector
x defined as above does not satisfy the flow conservation constraints (5.4).

On the other hand, every feasible solution to (5.4)-(5.5) in the digraph case can
be written as the sum of incidence vectors of simple paths and directed cycles. As
directed cycles do not contribute to the flow into the sink t we can cancel them
and obtain a feasible solution to (5.2). Thus, (5.2) and (5.4)-(5.5) are equivalent on
directed graphs.
The following example shows that on general directed hypergraphs s, t-path flows

and s, t-arc flows are not equivalent. Furthermore, neither is dominated by the
other as it is possible that the maximum value of an s, t-path flow is larger than the
maximum value of an s, t-arc flow, or the other way around.
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Example 5.11. Let H be a directed hypergraph with vertex set {s, t, v1, v2, v3, v4}
and hyperarcs (s, v1), (s, v2), ({v1, v2}, {v3, v4}), (v3, t), (v4, t), compare Figure 5.3.
If all hyperarcs have capacity 1, then the optimal solution to (5.2) is one as every
s, t-path contains the hyperarc ({v1, v2}, {v3, v4}), while an optimal arc flow of value
two exists (one unit of flow on each hyperarc). Adjusting this example by adding a
new vertex s′ and an arc (s′, s) with capacity one shows the arc-based LP can have
a fractional optimal solution (in this case a flow of value 0.5 on all hyperarcs except
of (s′, s), which carries a flow of one unit).
On the other hand the hypergraph on {s, v1, v2, v3, t} with arcs (s, v1), (v1, v2),

(v1, v3), and hyperarc ({v2, v3}, {t}), all of capacity one, has an s, t-path flow of
value one whereas the maximum value of an s, t-arc flow is 0.5.

When considering arc flows in directed hypergraphs a result similar to the max-
flow-min-cut theorem does not hold. However, for graph-based directed hypergraphs
a minimum cut gives at least an upper bound on the maximum flow value.

Theorem 5.12. Let H be a graph-based directed hypergraph, s, t ∈ V (H) be two
distinct vertices, u : E(H) → Q≥0 be capacities on the hyperarcs, and S ⊆ V (H)
be a set of vertices with s ∈ S, t /∈ S. The maximum value of an s, t-arc flow is at
most

∑
e∈δout(S) |t(e) ∩ S|u(e).

Proof. Let z be an s, t-arc flow, and S ⊆ V (H) be a set of vertices with s ∈ S, t /∈ S.
We have to show that z(δin(t))− z(δout(t)) ≤

∑
e∈δout(S) |t(e) ∩ S|u(e) holds. As H

is graph-based we have |t(e)| = |h(e)| for all hyperarcs e ∈ E(H). This implies that∑
v∈V (H)

(
z(δin(v))− z(δout(v))

)
=

∑
e∈E(H)

(|h(e)| − |t(e)|) ze = 0,

which shows that the flow going into the sink t is equal to the flow going out of the
source s, i.e., the value of z is also equal to z(δout(s)) − z(δin(s)). Using this fact
and the flow conservation (5.4) for all v ∈ S \ {s} gives

z(δout(s))− z(δin(s)) =
∑
v∈S

(
z(δout(v))− z(δin(v))

)
=

∑
e∈E(H)

(|t(e) ∩ S| − |h(e) ∩ S|) ze

≤
∑

e:|t(e)∩S|>|h(e)∩S|
(|t(e) ∩ S| − |h(e) ∩ S|) ze

≤
∑

e:|t(e)∩S|>|h(e)∩S|
|t(e) ∩ S|ze ≤

∑
e∈δout(S)

|t(e) ∩ S|u(e).

For the last inequality we use z ≤ u and the fact that |t(e)∩S| > |h(e)∩S| implies
that t(e) ∩ S 6= ∅ and h(e) \ S 6= ∅, i.e., e ∈ δout(S).
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There are examples such that strict inequality holds in the previous theorem. If
the hyperarc (s, v1) in Figure 5.3 has capacity zero and all other (hyper)arcs capacity
one, then the maximum value of an s, t-arc flow is zero whereas the minimum of∑
e∈δout(S) |t(e) ∩ S|u(e) is one.
A key observation in the directed graph case is that an s, t-flow in a digraph is

optimal if and only if there exists no s, t-path in its residual graph. It is possible
to define a similar condition for directed hypergraphs. Given a feasible arc flow we
define a residual hypergraph in the same way as in the graph case.

Definition 5.13 (Residual hypergraph). Let H be a directed hypergraph with
capacities u : E(H) → Q≥0 on the hyperarcs, and z ∈ QE(H) be a vector with
0 ≤ ze ≤ u(e) for all e ∈ E(H). For every hyperarc e ∈ E(H) we define the
reverse hyperarc ←−e of e by ←−e := (h(e), t(e)). The residual capacity of a hyperarc
e ∈ E(H) with respect to z is uz(e) := u(e)−z(e) and that of its reverse hyperarc is
uz(←−e ) := z(e). The residual hypergraph Hz is the directed hypergraph with vertex
set V (H) and hyperarcs e ∈ E(H) with uz(e) > 0 as well as ←−e with uz(←−e ) > 0 for
e ∈ E(H).

We characterize the optimality of an s, t-arc flow in terms of its residual hyper-
graph. Namely, an s, t-arc flow z is optimal if and only if it is not possible to ship
a positive amount of flow from s to t in the residual hypergraph Hz such that flow
conservation holds at all other vertices. This result is not very deep and can be
proven similarly as in the graph case. We add it because we could not find any
reference for it, and it seems that it has not been published before.

Theorem 5.14. Let H be a directed hypergraph, s, t be two distinct vertices of H,
u : E(H) → Q≥0 be capacities on the hyperarcs. A vector z ∈ QE(H) is an optimal
s, t-arc flow if and only if

a) 0 ≤ ze ≤ u(e) for all e ∈ E(H), and

b) there does not exists a vector f ∈ ZE(Hz)
≥0 with f(δin(v)) = f(δout(v)) for all

v ∈ V (Hz) \ {s, t} and f(δin(t))− f(δout(t)) > 0.

Proof. First, let z ∈ QE(H) be a vector with 0 ≤ z ≤ u. We assume that a vector f
as above exists and show that z is not optimal in this case.
We set α := min{uz(e)

f(e) : f(e) > 0}, and define a new vector x ∈ QE(H) by
x(e) := z(e) + α · (f(e)− f(←−e )). By the choice of α we have

x(e) ≤ z(e) + αf(e) ≤ z(e) + uz(e) = u(e), and
x(e) ≥ z(e)− αf(←−e ) ≥ z(e)− uz(←−e ) = 0.
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For every vertex v ∈ V (H) \ {s, t} we get

x(δinH (v))− x(δoutH (v)) = z(δinH (v))− z(δoutH (v)) +
∑

e∈E(H),v∈h(e)
α (f(e)− f(←−e ))

−
∑

e∈E(H),v∈t(e)
α (f(e)− f(←−e ))

= α
(
f(δinHz

(v))− f(δoutHz
(v))

)
= 0

Similar, for v = t we get

x(δinH (t))− x(δoutH (t)) = z(δinH (t))− z(δoutH (t)) + α
(
f(δinHz

(t))− f(δoutHz
(t))

)
> z(δinH (t))− z(δoutH (t)).

Thus, x is an s, t-arc flow of larger value than z.
On the other hand, suppose z with 0 ≤ z ≤ u is not optimal and x is an s, t-

arc flow of larger value. We define a vector f ∈ QE(Hz)
≥0 by f(e) := x(e) − z(e) if

x(e) > z(e), f(←−e ) := z(e) − x(e) if x(e) < z(e), and otherwise f takes value zero.
Observe that f is well defined as x(e) > z(e) implies that uz(e) > 0 and x(e) < z(e)
implies uz(←−e ) > 0.
For every v ∈ V (H) we have

f(δinHz
(v))− f(δoutHz

(v)) =
∑

e:v∈h(e),
x(e)>z(e)

(x(e)− z(e)) +
∑

e:v∈t(e),
x(e)<z(e)

(z(e)− x(e))

−
∑

e:v∈t(e),
x(e)>z(e)

(x(e)− z(e))−
∑

e:v∈h(e),
x(e)<z(e)

(z(e)− x(e))

=
∑

e:v∈h(e)
(x(e)− z(e))−

∑
e:v∈t(e)

(x(e)− z(e))

= x(δinH (v))− x(δoutH (v))− z(δinH (v)) + z(δoutH (v)).

Thus, f(δinHz
(v)) − f(δoutHz

(v)) = 0 for v 6= s, t, and f(δinHz
(t)) − f(δouthz

(t)) > 0.
Multiplying f by some scaler such that every entry becomes an integer gives a
vector as desired.

A similar condition can be given for the optimality of a minimum cost flow in a
directed hypergraph. Therefore, we have to define a cost function on the residual
hypergraph. Given a vector z ∈ QE(H) with 0 ≤ z ≤ u, the residual cost of e ∈ E(H)
is cz(e) := c(e) and that of ←−e is cz(←−e ) = −c(e).

Theorem 5.15. Let H be a directed hypergraph, d : V (H) → Q be demands on
the vertices, u : E(H) → Q≥0 be capacities on the hyperarcs, and c : E(H) → Q
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be costs on the hyperarcs. A vector x ∈ QE(H) with 0 ≤ x ≤ u is a minimum cost
hyperflow if and only if

a) x(δin(v))− x(δout(v)) = d(v) for all v ∈ V (H), and

b) there does not exists a non-zero vector f ∈ ZE(Hz)
≥0 with f(δin(v)) = f(δout(v))

for all v ∈ V (Hz) and
∑
e∈E(Hz) cz(e)f(e) < 0.

Proof. If there exists a non-zero vector f ∈ ZE(Hz)
≥0 with f(δin(v)) = f(δout(v))

for all v ∈ V (Hz) we can show as in the previous proof that x ∈ QE(H) with
x(e) := z(e) +α · (f(e)− f(←−e )), where α := min{uz(e)

f(e) : f(e) > 0}, is a feasible flow
with respect to d and u. The cost of this flow is equal to∑

e∈E(H)
c(e)z(e) + α

∑
e∈E(H)

c(e) (f(e)− f(←−e ))

=
∑

e∈E(H)
c(e)z(e) + α

∑
e∈E(Hz)

cz(e)f(e)

<
∑

e∈E(H)
c(e)z(e)

On the other hand, if x is a feasible flow of smaller cost than z, then we can define
f as in the second part of the previous proof.

In the digraph case, the vectors f in Theorem 5.14 and Theorem 5.15 can be
restricted to incidence vectors of s, t-paths in the first case and cycles in the latter.
In general directed hypergraphs it is not easy to characterize the "minimal" elements
that we have to consider in both theorems. However, on graph-based hypergraphs
we can exploit the underlying digraph structure.

Definition 5.16. Let H be a graph-based directed hypergraph. A hypercircuit in
H is a function x : E(H)→ Z≥0 such that x(δinH (v)) = x(δoutH (v)) for all v ∈ V (H)
and x(e) > 0 for at least one e ∈ E(H). A hypercircuit is elementary if there does
not exist a hypercircuit x′ with x′(e) ≤ x(e) for all e ∈ E(H) and x′(e) < x(e) for
at least one e ∈ E(H).

Given two vertices s, t ∈ V (H), we call a function x : E(H) → Z≥0 with
x(δinH (v)) = x(δoutH (v)) for all v ∈ V (H) \ {s, t} and x(δinH (t)) − x(δoutH (t)) > 0
an s, t-hyperpath. An s, t-hyperpath x is elementary if there do not exist an s, t-
hyperpath x′ with x′(e) ≤ x(e) for all e ∈ E(H) and x′(e) < x(e) for at least one
e ∈ E(H).

An elementary hypercircuit in a directed graph is just a simple directed cycle
and an elementary s, t-hyperpath is a simple directed s, t-path. In the remainder
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of this section, if we speak of a cycle in a directed graph, we always mean a simple
directed cycle, and an s, t-path in a directed graph is a simple directed s, t-path.
Furthermore, we slightly abuse notation and write a ∈ E(H) if {a} ∈ E(H) for an
arc a of the underlying digraph of H.
Using the structure of the underlying digraph of a graph based directed hyper-

graph, we show that hypercircuits consist of a union of cycles "linked" by hyperarcs.

Theorem 5.17. Let H be a directed hypergraph based on a directed graph D. A
vector x ∈ ZE(H)

≥0 is a hypercircuit if and only if

x = χC1 + . . .+ χCl
+ z1 · (χh1 −

∑
a∈h1

χa) + . . .+ zk · (χhk
−
∑
a∈hk

χa),

where l ≥ 1, k ≥ 0 are integers, C1, . . . , Cl are cycles in D, h1, . . . , hk ∈ E(H) are
proper hyperarcs, and z1, . . . , zk ∈ N are natural numbers such that each a ∈ E(D)
is covered by at least

∑
i∈[k]:a∈hi

zi cycles of C1, . . . , Cl.

Proof. Let x be a hypercircuit in H and {h1, . . . , hk} be the set of proper hyperarcs
with positive x-value. For every a ∈ E(D) we set x(a) := x({a}) if {a} ∈ E(H) and
x(a) := 0 otherwise. We define a vector y ∈ ZE(D)

≥0 by y(a) := x(a) +
∑

i∈[k]:a∈hi

x(hi)

for all a ∈ E(D). The vector y satisfies y(δinD (v)) = y(δoutD (v)) for all v ∈ V (D), thus
it is a circulation of D, and there exist cycles C1, . . . , Cl such that y =

∑l
i=1 χCi .

Setting zi := x(hi) we can write x as

x = χC1 + . . .+ χCl
+ z1 · (χh1 −

∑
a∈h1

χa) + . . .+ zk · (χhk
−
∑
a∈hk

χa).

Using y(a) ≥
∑

i∈[k]:a∈hi

x(hi) we get that each a ∈ E(D) is covered by at least∑
i∈[k]:a∈hi

zi cycles of C1, . . . , Cl.

For the other direction, let C1, . . . , Cl be cycles, h1, . . . , hk ∈ E(H) be proper
hyperarcs, and z1, . . . , zk ∈ N be natural numbers with the property stated in the
theorem. For every v ∈ V (H) we have to show that x(δin(v)) = x(δout(v)). This
follows from the fact that χCi(δin(v)) = χCi(δout(v)) for i ∈ [l] and that each hj
is the disjoint union of the arcs a ∈ hj for j ∈ [k]. It remains to show that x is
non-negative. By construction, x(hj) = zj ≥ 1 for j ∈ [k]. For every a ∈ E(D) we
get that x(a) = m(a)−

∑
i∈[k]:a∈hi

zi, where m(a) is the number of times a is covered
by C1, . . . , Cl. By assumption, m(a) ≥

∑
i∈[k]:a∈hi

zi, and thus x(a) ≥ 0.

In a digraph the elementary hypercycles only take the values 0 and 1, thus they are
sets of arcs. If we have proper hyperarcs of size at least two, then there might exist
elementary hypercircuits that do not only take the values 0 and 1. An example of
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(a) An elementary hypercircuit.

(b) Cycle C1.

(c) Cycle C2.

(d) Cycle C3.

Figure 5.4: A decomposition of a hypercircuit into cycles.
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such a hypercircuit is depicted in Figure 5.4a. Figure 5.4 shows the cycles occurring
in a decomposition as in Theorem 5.17 where cycle C3 occurs two times.
Similar as in the case of hypercircuits, we show that s, t-hyperpaths correspond

to a set of s, t-paths and cycles linked by hyperarcs.

Theorem 5.18. Let H be a directed hypergraph based on a directed graph D, and
s, t be two distinct vertices of H. A vector x ∈ ZE(H)

≥0 is an s, t-hyperpath if and
only if

x = χP1 + . . .+χPl
+χC1 + . . .+χCm + z1 · (χh1 −

∑
a∈h1

χa) + . . .+ zk · (χhk
−
∑
a∈hk

χa)

where l ≥ 1, m, l ≥ 0 are integers, P1, . . . , Pl are s, t-paths in D, C1, . . . , Cm are
cycles in D, h1, . . . , hk ∈ E(H) are proper hyperarcs, and z1, . . . , zk ∈ N are natural
numbers such that each a ∈ E(D) is covered by at least

∑
i∈[k]:a∈hi

zi paths and
cycles of P1, . . . , Pl, C1, . . . , Cm.

Proof. Let x be an s, t-hyperpath in H and {h1, . . . , hk} be the set of proper hy-
perarcs with positive x-value. For every arc a ∈ E(D) we set x(a) := x({a})
if {a} ∈ E(H) and x(a) := 0 if {a} /∈ E(H). Then, we define a vector y ∈
ZE(D) by y(a) := x(a) +

∑
i∈[k]:a∈hi

x(hi) for all a ∈ E(D). The vector y satis-
fies y(δinD (v)) = y(δoutD (v)) for all v ∈ V (D) \ {s, t} and y(δinD (t)) − y(δoutD (t)) > 0.
This implies that there exist s, t-paths P1, . . . , Pl and cycles C1, . . . , Cm such that
y =

∑l
i=1 χPi +

∑m
i=1 χCi . Setting zi := x(hi) it follows that

x = χP1 + . . .+χPl
+χC1 + . . .+χCm +z1 · (χh1−

∑
a∈h1

χa)+ . . .+zk · (χhk
−
∑
a∈hk

χa).

As y(a) ≥
∑
i∈[k]:a∈hi

x(hi), each a ∈ E(D) is covered by at least
∑
i∈[k]:a∈hi

zi paths
and cycles of P1, . . . , Pl, C1, . . . , Cm.
On the other hand, let x be of the form stated in the theorem. By similar

arguments as in the proof of Theorem 5.17, the vector x is non-negative. It remains
to show that flow conservation holds at all vertices distinct from s and t, and that
there is a positive amount of flow going into t. For every vertex v ∈ V (H) we have
χCi(δin(v)) = χCi(δout(v)) for i ∈ [m], χhj

(δin(v)) −
∑
a∈hj

χa(δin(v)) = 0, and
χhj

(δout(v)) −
∑
a∈hj

χa(δout(v)) = 0 for j ∈ [k] as each proper hyperarc hj is the
disjoint union of its underlying arcs a ∈ hj . This implies that

x(δinH (v))− x(δoutH (v)) =
l∑

i=1

(
χPi

(
δin (v)

)
− χPi

(
δout (v)

))
,

which is zero for all v ∈ V (H) \ {s, t} and positive for v = t. Thus, x is an s, t-
hyperpath.
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5.3 The Min Cost Hyperflow Problem on Graph-Based
Directed Hypergraphs

In this section we describe a combinatorial algorithm for the minimum cost flow
problem on graph-based directed hypergraphs that is based on the network simplex
algorithm. In particular, it can be seen as a combinatorial variant of the primal sim-
plex algorithm. Informally speaking, the basic idea of the primal simplex method for
solving a linear program is to start with a feasible basic solution, which corresponds
to a vertex of the associated polyhedron, and then find an improving direction to
another basic solution, which is an adjacent vertex. In this way one goes from one
vertex to another until one finds an optimal solution.
The minimum cost flow problem on a directed graph can be formulated as a

linear program and thus be solved using the simplex algorithm. However, in this
special setting one can exploit the underlying network structure leading to the so-
called network simplex algorithm. It builds upon the fact that the basic solutions
of the minimum cost flow problem when formulated as a linear program corre-
spond to spanning trees. Starting with any spanning tree solution one can reach
an adjacent basic solution by augmenting flow along cycles. During the network
simplex algorithm one always maintains a spanning tree corresponding to a basic
solution. Using special kind of spanning trees ensures that the algorithm always ter-
minates in finite time with an optimal solution. For details we refer to Chapter 11
of [Ahuja et al., 1993]. There also exists a polynomial time variant of the network
simplex algorithm, see [Orlin, 1997], in contrast to the simplex algorithm, where it
is not known whether a simplex rule exists that leads to a polynomial running time.
In this section we develop a network simplex-type algorithm for the minimum

cost hyperflow problem on graph-based directed hypergraphs. First, we characterize
the basic solutions of the minimum cost hyperflow problem by showing that every
such solution corresponds to a spanning forest and a small set of proper hyperarcs
together with a special matrix describing the interaction between the trees of the
forest and the proper hyperarcs in the basis. Building upon this characterization
we develop a primal network simplex algorithm in the second subsection. We focus
on the uncapacitated case to simplify the presentation and keep the focus on the
main ideas. However, our algorithm can also be adapted to the capacitated case.

5.3.1 Basis Matrices of the Minimum Cost Hyperflow Problem

In this subsection we look at the structure of so-called basic solutions to the min-
imum cost hyperflow problem (5.1). First, we review what a basic solution in a
general linear program is and recall that the basic solutions to the minimum cost
flow problem correspond to spanning trees. Afterwards, we show that a basic solu-
tion to the minimum hyperflow problem correspond to a spanning forests together
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with a special matrix.
The main observation that leads to the development of the simplex algorithm is

that if a linear program of the form

max ctx
Ax = d

x ≥ 0

is feasible and bounded, then it has an optimal solution that is a vertex of the
polyhedron defined by Ax = d, x ≥ 0. For a matrix A ∈ Qm×n and a set B ⊆ [n] we
denote by AB the (m× |B|)-submatrix of A restricted to the columns with indices
in B. By slight abuse of notation, we denote for a column vector x ∈ Qn and a set
B ⊆ [n] by xB the vector in QB with (xB)i = xi for all i ∈ B, i.e., we restrict x to
the rows with indices in B.

If A has rank r, B ⊆ [n] has size r, and ABz = d has a unique solution, then
x∗ ∈ Qn defined by ABx∗B = d and x∗j = 0 for all j ∈ [n]\B is called a basic solution,
and AB a basis of the system Ax = d, x ≥ 0. Sometimes we also call B a basis if
the context is clear. Observe that B ⊆ [n] is a basis of Ax = d, x ≥ 0 if ABx = d
has a solution and the rank of AB is equal to r.

Every vertex of the polyhedron {x ∈ Qn : Ax = d, x ≥ 0} is a basic solution but
not the other way around because it is possible that a basic solution x∗ has negative
entries. A basic solution with only non-negative entries is called a feasible basic
solution. Thus, the vertices of the polyhedron defined by Ax = d, x ≥ 0 correspond
exactly to the feasible basic solutions of Ax = d, x ≥ 0.
We turn to the minimum cost flow problem and consider the basic solutions there.

The minimum cost flow problem on a digraph D with costs c ∈ QE(D) and demands
d ∈ QV (D) can be written as

min ctx
Ax = d

x ≥ 0,

where A ∈ {0,−1, 1}V (D)×E(D) is the vertex-arc incidence matrix of D, i.e.,

Av,e =


1, v = h(e)
−1, v = t(e)

0, v /∈ h(e) ∪ t(e).

We assume that D is weakly connected as we can solve the minimum cost flow
problem on each weakly connected component separately. Therefore, D has at least
|V (D)| − 1 arcs and one can show that A has rank |V (D)| − 1. Furthermore, we
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assume that all the demands sum up to zero as otherwise there exists no solution
to Ax = d. Now, the basic solutions to Ax = d have the following special form, see
for example Section 11.11 in [Ahuja et al., 1993].

Lemma 5.19. Given a directed graph D and d : V (D)→ Q with
∑
v∈V (D) d(v) = 0,

a set B ⊆ E(D) is a basis of Ax = d if and only if D[B] is a spanning tree of D
when seen as an undirected graph.

This lemma is the starting point of the network simplex algorithm as it gives a
combinatorial interpretation of the bases of the minimum cost flow problem. In
particular, we can decide whether a set B of arcs is a basis by just looking at the
subgraph induced by B and not considering any matrices.
In the remainder of this subsection we give a characterization of the bases of

the minimum cost hyperflow problem. Let H be a hypergraph based on a directed
graph D and let A ∈ {0, 1,−1}V (H)×E(H) be its vertex-hyperarc incidence matrix,
i.e.,

Av,e =


1, v ∈ h(e)
−1, v ∈ t(e)

0, v /∈ h(e) ∪ t(e).

With this definition, the inequalities of the form x(δin(v)) − x(δout(v)) = d(v) for
v ∈ V (H) can be written as Ax = d, where d : V (H)→ Q are given demands with∑
v∈V (H) d(v) = 0.
We assume without loss of generality that D is weakly connected and {e} ∈ E(H)

for all e ∈ E(D). This implies that the rank of A is the same as the rank of the
vertex-arc incidence matrix of D, which is |V (D)| − 1. Furthermore, there exists a
solution to Ax = d if and only if A(D)x = d has a solution, where A(D) denotes
the vertex-arc incidence matrix of D. It is well known that for a weakly connected
digraph D the system A(D)x = d is solvable if and only if the entries of d sum up
to zero. Therefore, Ax = d has a feasible solution if and only if

∑
v∈V (H) d(v) = 0.

In this case, B ⊆ E(H) is a basis of Ax = d if and only if |B| = |V (D)| − 1 and AB
has rank |V (H)| − 1.
For a set B ⊆ E(H) of size |V (H)| − 1 we denote by B1 = {e ∈ B : |e| = 1} the

set of all arcs and by B2 := B \ B1 the set of all proper hyperarcs of B. If B is a
basis, then D[{e ∈ E(D) : {e} ∈ B1}] does not contain any cycles, and is therefore
a forest having |B2| + 1 connected components. If B2 6= ∅, this condition is not
sufficient for B to be a basis.

Example 5.20. Figure 5.5 shows a subgraph of a directed hypergraph H restricted
to a set of hyperarcs B. This set consists of two proper hyperarcs and 13 arcs. The
arcs induce a forest with three connected components. However, B is not a basis
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r1
r2

r3

Figure 5.5: Set of hyperarcs B not forming a basis.

because the system ABx = d for

d(v) :=


−1, v = r1

1, v = r2

0, otherwise

has no solution.

If B is a set of hyperarcs of size |V (H)| − 1 such that D[B1] is a forest, then
we choose for each of the |B2| + 1 trees in D[B1] a root r, denote by R the set of
those roots, and by {Tr}r∈R the set of the trees in D[B1]. If B forms a basis, then
we can send one unit of flow from each root r1 to any other root r2 ∈ R \ {r1},
formally, the system ABx = d for d given by d(r1) = −1, d(r2) = 1 and d(v) = 0 for
all other vertices has a solution x ∈ QV (H). We show that this condition together
with the requirement that D[B1] is a forest consisting of |B2|+ 1 components gives
a characterization of the basis matrices in the minimum cost hyperflow problem.

Theorem 5.21. Let H be a hypergraph based on a weakly connected digraph D,
B ⊆ E(H) be a set of size |V (H)| − 1, B1 := {e ∈ B : |e| = 1}, and B2 := B \B1.
The matrix AB has rank |B| if and only if

(a) D[B1] (when seen as a undirected graph) is a forest with |B2|+ 1 components,
and
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(b) if {Tr}r∈R is the set of trees of this forest (each rooted at an arbitrary vertex),
then for every r1, r2 ∈ R with r1 6= r2 the system

f(δin(r1))− f(δout(r1)) = −1(5.6)
f(δin(r2))− f(δout(r2)) = 1(5.7)
f(δin(v))− f(δout(v)) = 0 ∀v ∈ V (H) \ {r1, r2}(5.8)

has a solution f ∈ QB.

Proof. If B is a basis, the linear system ABf = d has a solution for all d : V (H)→ Q
with

∑
v∈V d(v) = 0, thus (b) holds. For (a), suppose that D[B1] contains a cycle C.

Orient C in any direction and let −→C be the arcs of C that agree with the orientation
of C and ←−C all other arcs of C. Now,∑

e∈
−→
C

Ae −
∑
e∈
←−
C

Ae = 0,

where Ae denotes the column corresponding to e. In particular, AB has rank at
most |B| − 1. Thus, if AB has rank |B|, then D[B1] is a forest. The number of
connected components of D[B1] is equal to the number of its vertices minus the
number of its arcs, which is |V (H)| − |B1| = |V (H)| − (|B| − |B2|) = |B2| + 1 as
|B| = |V (H)| − 1.

Now, suppose B satisfies (a) and (b). The rank of AB is equal to the dimension
of the vector space generated by the columns of AB. We show that this vector space
has dimension |V (H)| − 1. A vector d ∈ QV (H) lies in the vector space generated
by the columns of AB if and only if ABx = d has a solution. We claim that this is
the case if and only if

∑
v∈V (H) d(v) = 0. As {d ∈ QV (H) :

∑
v∈V (H) d(v) = 0} has

dimension |V (H)| − 1, this proves our claim.
Let r1 ∈ R be a fixed root and denote by f r2 a solution to (5.6)-(5.8) for every

r2 ∈ R \ {r1}. For r ∈ R we set δ(r) :=
∑
v∈V (Tr) d(v). We define a vector y ∈ QB

by y(e) :=
∑
r∈R\{r1} δ(r)f

r(e) for e ∈ B2 and y(e) = 0 for e ∈ B1, and a new
demand function d′ by d′(v) = d(v)− y(δin(v)) + y(δout(v)). We show that d′ sums
up to zero on each tree Tr. For r ∈ R \ {r1} we get∑

v∈V (Tr)
d′(v) =

∑
v∈V (Tr)

d(v)−
∑

v∈V (Tr)

(
y
(
δin (v)

)
+ y

(
δout (v)

))

= δ(r)−
∑

v∈V (Tr)

 ∑
r′∈R\{r1}

δ(r′)
(
f r
′ (
δin (v)

)
− f r′

(
δout (v)

))
= δ(r)− δ(r) = 0,
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where we use that f r′(δin(v)) − f r′(δout(v)) = 0 except for v = r′ = r for which it
is equal to one. For r1 we get∑
v∈V (Tr1 )

d′(v) =
∑

v∈V (Tr1 )
d(v)−

∑
v∈V (Tr1 )

(
y
(
δin (v)

)
+ y

(
δout (v)

))

= δ(r1)−
∑

v∈V (Tr1 )

 ∑
r′∈R\{r1}

δ(r′)
(
f r
′ (
δin (v)

)
− f r′

(
δout (v)

))
= δ(r1) +

∑
r′∈R\{r1}

δ(r′) =
∑

v∈V (H)
d(v) = 0,

where we use that for every r′ ∈ R \ {r1} we have f r′(δin(r1))− f r′(δout(r1)) = −1
and f r′(δin(v))− f r′(δout(v)) = 0 for v ∈ V (Tr1) \ {r1}.
As

∑
v∈V (Tr) d

′(v) = 0, the system ATrx = d′V (Tr) has a solution, where ATr

denotes the vertex-arc incidence matrix of Tr. For every r ∈ R let xr be such a
solution. Then the vector x ∈ QB defined by

x(e) :=
{
y(e) e ∈ B2

xr(e) e ∈ E(Tr)

solves the system ABx = d. In total, we have shown that ABx = d has a solution
x ∈ QB for every d : V (H)→ Q with

∑
v∈V (H) d(v) = 0, which implies that AB has

rank |B|.

If B is a basis, there even exists a unique solution to (5.6)-(5.8), so the following
matrix is well defined.

Definition 5.22. Let H be a hypergraph based on a weakly connected directed
graph D, and B ⊆ E(H) be a basis with corresponding rooted trees {Tr}r∈R. For
some fixed root r1 we define the matrix TM ∈ QB×R\{r1} as follows:
The column corresponding to r ∈ R \ {r1} contains a solution to (5.6)-(5.8).
We call TM a treematrix of H corresponding to the basis B.

We show that every treematrix TM corresponding to a basis B has rank |B2|, and
the |B2| × |B2| submatrix of TM consisting of the rows indexed by B2 is invertible.

Lemma 5.23. Let H be a hypergraph based on a weakly connected directed graph
D, and B ⊆ E(H) be a basis with corresponding rooted trees {Tr}r∈R.
If TM ∈ QB×R\{r1} is a treematrix corresponding to B, then TM has rank |B2|.

Moreover, TM restricted to the rows of B2 is invertible, and its inverse is given by
(|h(e) ∩ V (Tr)| − |t(e) ∩ V (Tr)|)r∈R\{r1},e∈B2.
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Proof. Clearly, TM has rank at most |R \ {r1}| = |B2|. Therefore, the second
statement implies that TM has rank exactly |B2|.
It is enough to show that

∑
e∈B2 (|h(e) ∩ V (Tr)| − |t(e) ∩ V (Tr)|)TM(e, r′) is

equal to one if r′ = r and zero otherwise. For every r, r′ ∈ R \ {r1} we have

∑
v∈V (Tr)

(
TM(δin(v), r′)− TM(δout(v), r′)

)
=
∑
e∈B

(|h(e) ∩ V (Tr)| − |t(e) ∩ V (Tr)|) · TM(e, r′).

Observe, that |h(e)∩V (Tr)| − |t(e)∩V (Tr)∩ t(e)| = 0 for all e ∈ B1 because an arc
e lies either completely in V (Tr) or it does not intersect V (Tr). Thus, we get that

∑
e∈B2

(|h(e) ∩ V (Tr)| − |t(e) ∩ V (Tr)|)TM(e, r′)

=
∑

v∈V (Tr)

(
TM

(
δin (v) , r′

)
− TM

(
δout (v) , r′

))
=
{

1, r′ = r,

0, r′ ∈ R \ {r1, r}.

The proof of Theorem 5.21 contains already an algorithm to solve a system of
the form ABx = d, where first the flow on the proper hyperarcs is calculated using
the matrix TM , and then the flow on the arcs is calculated on each tree separately.
For the first part we only need the value of TM at e ∈ B2. However, we also need
the entries at e ∈ B1 when we "update" the treematrix TM . We do not compute
TM from scratch when we change our basis from B to B′ during a simplex step,
namely, there is a faster way to obtain a treematrix corresponding to B′ from one
corresponding to B. This is described in the next subsection.

We conclude with an example illustrating Theorem 5.21 and the definition of a
treematrix.

Example 5.24. Consider the set of hyperarcs depicted in Figure 5.6a, where we
fix root r1. If we want to send one unit of flow from r1 to r2 the hyperarcs have
to carry 1/2 and 1/4 unit of flow, and if we send one unit of flow from r1 to r3 the
hyperarcs carry a flow of 1/2 and −1/4, see Figure 5.6. Thus, B is a basis and its
treematrix restricted to the set of proper hyperarcs is equal to

(
1/2 1/2
1/4 −1/4

)
,

where the first column corresponds to r2 and the second to r3.
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(c) Sending one unit of flow
from r1 to r3.

Figure 5.6: Computation of the treematrix.

5.3.2 A Hypernetwork Simplex Algorithm

Now, we describe a network simplex type algorithm for the minimum cost hyperflow
problem on graph-based hypergraphs. Its basic form is the same as in the graph
case.
The idea of the network simplex algorithm is to start with a feasible basic solution,

then decide whether this solution is optimal, and if not go to a neighboring basic
solution. If x∗ is a basic solution, then we use linear programming duality to decide
whether x∗ is of minimum cost. More precisely, we obtain the following optimality
condition.

Theorem 5.25. Let H be a hypergraph based on a digraph D, d : V (H) → Q be
demands that sum up to zero, and c : E(H)→ Q be costs on the hyperarcs.
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A feasible basic solution x∗ to the minimum cost hyperflow problem with corre-
sponding basis B is of minimum cost with respect to c if and only if there exists a
vector π ∈ QV (H) such that c(e) =

∑
v∈h(e) π(v) −

∑
v∈t(e) π(v) for all e ∈ B, and

for every e ∈ E(H) \B the inequality c(e) ≥
∑
v∈h(e) π(v)−

∑
v∈t(e) π(v) holds.

Proof. The theorem follows directly from linear programming duality. However, we
give a self-contained proof to give an intuition for the stated optimality condition.
First, let x∗ be a basic feasible solution of minimum cost. Let π be a solution

to πTAB = cTB, which exists as AB has rank |B| = |V (H)| − 1. By the choice of
π we have c(e) =

∑
v∈h(e) π(v) −

∑
v∈t(e) π(v) for all e ∈ B. Suppose that there

exists a hyperarc ein ∈ E(H) \ B with c(ein) <
∑
v∈h(ein) π(v) −

∑
v∈t(ein) π(v).

The system ABf = −Aein has a unique solution f∗ because AB is a basis and∑
v∈V (H)(−Aein)v = −|h(ein)|+ |t(ein)| = 0. Let eout be the hyperarc attaining the

minimum of {x∗(e)/− f∗(e) : f∗(e) < 0, e ∈ B}, and set α := x∗(eout)/− f∗(eout).
We define a new vector x′ ∈ QE(H) by

(5.9) x′(e)←


α, e = ein

x∗(e) + α · f∗(e), e ∈ B
x∗(e), e ∈ E(H) \ (B ∪ {ein})

,

and set B′ := B ∪ {ein} \ {eout}. Then, x′(e) = 0 for all e /∈ B′ and AB′x
′ = d.

Furthermore, AB′ has rank |B′| = |V (H)| − 1. Thus, x′ is a basic solution, and by
the choice of α its entries are non-negative, i.e., it is a feasible basic solution. The
cost of x′ is∑

e∈B′
c(e)x′(e) =

∑
e∈B

c(e)x∗(e) + α ·
∑
e∈B

c(e)f∗(e) + α · c(ein)

<
∑
e∈B

c(e)x∗(e) + α ·
∑
e∈B

 ∑
v∈h(e)

π(v)−
∑
v∈t(e)

π(v)

 f∗(e)
+ α

 ∑
v∈h(ein)

π(v)−
∑

v∈t(ein)
π(v)


=
∑
e∈B

c(e)x∗(e) + α ·

 ∑
v∈V (H)

π(v)
∑
e∈B

Av,ef
∗(e)


+ α ·

∑
v∈V (H)

π(v)Av,ein

=
∑
e∈B

c(e)x∗(e),

where the last equation holds because of ABf∗ = −Aein . Thus, x′ has smaller cost
than x∗, contradicting the optimality of x∗.
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On the other hand, let x∗ be a basic feasible solution such that a function π with
the properties as stated above exists. We have

∑
v∈V (H)

d(v)π(v) =
∑

v∈V (H)
π(v) ·

 ∑
e∈E(H)

Av,ex
∗(e)


=

∑
v∈V (H)

π(v) ·
(∑
e∈B

Av,ex
∗(e)

)

=
∑
e∈B

x∗(e)

 ∑
v∈V (H)

Av,eπ(v)


=
∑
e∈B

x∗(e) ·

 ∑
v∈h(e)

π(v)−
∑
v∈t(e)

π(v)


=
∑
e∈B

x∗(e)c(e) =
∑

e∈E(H)
x∗(e)c(e).

Now, let x′ be any other feasible solution to Ax = d, x ≥ 0, then we obtain

∑
e∈E(H)

c(e)x′(e) ≥
∑

e∈E(H)
x′(e) ·

 ∑
v∈h(e)

π(v)−
∑
v∈t(e)

π(v)


=

∑
v∈V (H)

d(v)π(v).

Thus, x∗ has minimum cost with respect to c.

Now, we give a formal description of our network simplex algorithm for the min-
imum cost hyperflow problem, which we call hypernetwork simplex algorithm.

Input: A weakly connected digraph D, a hypergraph H based on D, d : V (H)→ Q
with

∑
v∈V (H) d(v) = 0, and c : E(H)→ Q.

Output: A minimum cost hyperflow x : E(H)→ Q≥0, or "Unbounded".

Initialization: Find a feasible basic flow x on D. Let B a basis corresponding to x,
and T = D[B] the spanning tree induced by B, choose a root r1 arbitrarily,
set Tr1 = T , R = {r1}.

1. Solve πTAB = cTB (Dual).

2. Compute the reduced cost cπ(e) = c(e)−
∑
v∈h(e) π(v) +

∑
v∈t(e) π(v) for all non-

basic hyperarcs e ∈ E(H)\B. If cπ ≥ 0, then output x. Else choose a hyperarc
ein with cπ(ein) < 0 as a hyperarc entering the basis.
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3. Solve the system ABf = −Aein (Primal).
If f(e) ≥ 0 for all e ∈ B, then output "Unbounded" and stop.
Otherwise, choose a hyperarc eout attaining the minimum of
{−x(e)/f(e) : f(e) < 0, e ∈ B}.

4. Set

(5.10) x(e)←


−x(eout)/f(eout), e = ein

x(e)− f(e) · x(eout)/f(eout), e ∈ B
x(e), e ∈ E(H) \ (B ∪ {ein})

,

and B ← B \ {eout} ∪ {ein}.
Update the spanning trees Tr, the set of roots R, and the treematrix TM .
Goto 1.

If the hypernetwork simplex algorithm terminates with a flow x, then it returns an
optimal minimum cost hyperflow by Theorem 5.25. We can always ensure termi-
nation using Bland’s pivot rule [Bland, 1977]. That is, we label the hyperarcs from
1 to |E(H)| and if there are several candidates for eout or ein we choose the one
with the smallest label. With this pivot rule the simplex method cannot cycle and
terminates after a finite number of steps.

Theorem 5.26. Let H be a hypergraph based on a weakly connected digraph D,
d : V (H) → Q be demands with

∑
v∈V (H) d(v) = 0 and c : E(H) → Q be costs

on the hyperarcs. If ein and eout are chosen according to Bland’s rule, then the
hypernetwork simplex algorithm will terminate after a finite number of steps. Fur-
thermore, if the minimum cost hyperflow problem on H, d, c is bounded, then the
hypernetwork simplex algorithm will return a minimum cost hyperflow, otherwise it
returns "Unbounded".

Proof. By Theorem 1.1 in [Bland, 1977] the hypernetwork simplex algorithm will
terminate after a finite number of steps if ein and eout are chosen according to
Bland’s rule.
As H is based on the digraph D, there exists a feasible hyperflow if and only if

there exists a feasible flow on D respecting the demands given by d. As D is weakly
connected and the demands sum up to zero, there exists a feasible basic flow x on
D. Such a flow corresponds to a spanning tree T of D. Thus, the initialization is
always possible.
We claim that during the execution of the algorithm x will always be a feasible

basic hyperflow. This is clear at the initialization step. If we update x, then x(δH(v))
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does not change, and x(e) remains non-negative by the choice of eout. Furthermore,
x(eout) becomes zero, and AB′xB′ = d for B′ = B \{eout}∪{ein}, i.e., x is a feasible
basic hyperflow.
We first consider the case that the minimum cost hyperflow problem is bounded. If

the hypernetwork simplex algorithm returns a hyperflow x, then x is a minimum cost
hyperflow by Theorem 5.25. Otherwise, the algorithm returns "Unbounded". In this
case, let x be the hyperflow of the final iteration, ein the chosen entering hyperarc,
and f the solution to ABf = −Aein . As the algorithm returns "Unbounded", we
know that f ≥ 0. For any α ∈ Z≥0 the function xα : E(H)→ Q defined by

xα(e)←


α, e = ein

x(e) + α · f(e), e ∈ B
x(e), e ∈ E(H) \ (B ∪ {ein})

satisfies xα(e) ≥ 0, xα(δH(v)) = x(δH(v)) = d(v) for all v ∈ V (H), and∑
e∈E(H)

c(e)xα(e) =
∑

e∈E(H)
c(e)x(e) + α

∑
e∈E(H)

c(e)f(e) + αf(ein)

=
∑

e∈E(H)
c(e)x(e) + αcπ(ein).

Thus, each xα is a feasible hyperflow and c(xα) → −∞ for α → ∞ as cπ(ein) < 0.
This implies that the hyperflow problem on H, d, c is unbounded, contradicting our
assumption.
Now, we consider the case that the hyperflow problem is unbounded. Suppose

that the hypernetwork simplex does not return "Unbounded" but a hyperflow x. In
this case, let π be the solution to πTAB = cTB computed in the first step of the final
iteration. As the algorithm returns x, the reduced cost cπ(e) must be non-negative
for every e ∈ E(H) \ B. Now, let x′ be a hyperflow of smaller cost than that of x,
which must exists as we assumed our instance to be unbounded. Using cπ ≥ 0 we
obtain

∑
e∈E(H)

c(e)x′(e) ≥
∑

e∈E(H)
x′(e) ·

 ∑
v∈h(e)

π(v)−
∑
v∈t(e)

π(v)


=

∑
v∈V (H)

d(v)π(v) =
∑
E∈B

c(e)x(e),

contradicting the choice of x′. Thus, the hypernetwork simplex algorithm correctly
returns "Unbounded".

We have not specified how the systems of linear equations ABf = d (Primal) and
πTAB = cTB (Dual) are solved. We give combinatorial algorithms for both problems.
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Given a basis B and corresponding trees {Tr}r∈R, we always assume that the trees
Tr for r ∈ R have its vertices and arcs ordered such that v1 = r is the root, vj is a
leaf in Tr[{v1, . . . , vj}] and aj−1 is the unique arc vj is incident to in Tr[{v1, . . . , vj}].
In this way, the arcs of Tr are a1, . . . , a|V (Tr)|−1 and each aj is incident to vj+1 and
some vertex vi with i ≤ j. We also assume that r1 ∈ R is a fixed root and the
treematrix TM is given with respect to this root.

Algorithm 2 Flow
1: procedure Flow(B, {Tr}r∈R, d, f2)
2: for all e ∈ B2, v ∈ t(e) ∪ h(e) do
3: if v ∈ t(e) then d(v)← d(v) + f2(e).
4: if v ∈ h(e) then d(v)← d(v)− f2(e).
5: end for
6: for all trees Tr do
7: for j = |V (Tr)| − 1 to 1 do
8: if aj = (v, vj+1) then f1(aj)← d(vj+1).
9: if aj = (vj+1, v) then f1(aj)← −d(vj+1).

10: d(v)← d(v) + d(vj+1)
11: end for
12: end for
13: return f1
14: end procedure

We start with the primal problem ABf = d for which we basically use the ideas
described in the proof of Theorem 5.21. As a subroutine we need Algorithm 2, which
given the demand d on the vertices, and flow f2 on the proper hyperarcs B2 of the

basis B computes the unique flow f1 on the tree arcs B1 such that AB ·
(
f1
f2

)
= d,

where the columns of AB are arranged accordingly.

Algorithm 3 Primal
1: procedure Primal
2: for all e ∈ B2 do
3: Set y(e) =

∑
r∈R\{r1} TM(e, r)

(∑
v∈V (Tr) d(v)

)
.

4: end for
5: Compute Flow(B, {Tr}r∈R, d, y).
6: Set f(e) = f1(e) for e ∈ B1, and f(e) = y(e) for e ∈ B2.
7: return f
8: end procedure

167



Chapter 5 Flows in Directed Hypergraphs

r1
−1

0

0

−1
0

r2
−2

4

−1−1

21

r3
0

−20

1 0

e1

e2

(a) Calculating flow on the hyperarcs.
r1

−1

0

1

−1
1

r2
−2

3

−1−1

01

r3
0

−11

1 −1

(b) Adjusting demands and calculate flow on the arcs.

Figure 5.7: Example of Algorithm 3.

Algorithm 3 describes how ABf = d is solved. First, we calculate the flow on the
proper hyperarcs of the basis using the treematrix TM . Then, we use Algorithm 2
to compute the flow values on the arcs of each tree Tr separately. The correctness
of Algorithm 3 directly follows from the second part of the proof of Theorem 5.21
and the definition of the treematrix.

Theorem 5.27. Algorithm 3 solves correctly the system ABf = b if AB is a basis
matrix and

∑
v∈V d(v) = 0.

Before we show how to solve πTAB = cTB combinatorially, we illustrate Algo-
rithm 3 on an example.

Example 5.28. Let H be a graph based hypergraph with basic arcs and hyperarcs
drawn in Figure 5.7a, where the demand of a vertex is given by its label. As seen
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in Example 5.24, the treematrix of this basis restricted to the rows of B2 is(
1/2 1/2
1/4 −1/4

)
.

If we sum up the demands of the vertices in Tr2 we obtain 3 and for Tr3 we obtain
−1. Thus, f(e1) = 3/2− 1/2 = 1 and f(e2) = 3/4− (−1/4) = 1. Now, we have to
adjust the demands on the vertices v ∈ t(e1) ∪ h(e1) ∪ t(e2) ∪ h(e2). The demands
of the tail vertices increase by f(e1) or f(e2) and that of the head vertices decrease
by this amount. The resulting demands are depicted in Figure 5.7b. Finally, we
calculate on each tree separately the correct flow values from the leaves to the root.
We obtain that f(e) = 1 for all arcs e of Tr1 , Tr2 , Tr3 .

For the dual problem πTAB = cTB we need Algorithm 4 as a subroutine. Given the
cost c1 of all tree arcs B1, and the potential πR at the root vertices the procedure
Potential computes a cost vector c2 on B2 and potential πN on the non-root vertices
such that (πTR, πTN )AB = (cT1 , cT2 ), i.e., the reduced cost of every basic arc and
hyperarc is zero.

Algorithm 4 Potential
1: procedure Potential(B, {Tr}r∈R, c1, πR)
2: π′(v)← πR(v) for all v ∈ R.
3: π′(v)← 0 for all v ∈ V (H) \R.
4: for all trees Tr do
5: for j = 2 to |V (Tr)| do
6: if aj−1 = (v, vj) then π′(vj)← π(v) + c1(aj).
7: if aj−1 = (vj , v) then π′(vj)← π(v)− c1(aj).
8: end for
9: end for

10: for all e ∈ B2 do
11: c2(e)←

∑
v∈h(e) π

′(v)−
∑
v∈t(e) π

′(v).
12: end for
13: return c2, π

′.
14: end procedure

As the rank of AB is |V (H)| − 1 the system πTAB = cTB has no unique solution.
Thus, we can fix the value of one vertex, for example we can choose π(r1) = 0. Now,
we can solve πTAB = cTB as shown in Algorithm 5. First, the potential on the root
vertices is set to zero, and we compute a potential on the non-root vertices such that
the reduced cost of every tree arc is zero. However, some proper hyperarcs might
have non-zero reduced costs. Therefore, we calculate potentials on the root vertices
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using the treematrix TM such that the reduced cost of every proper hyperarc in
the basis becomes zero. Finally, the potential on the non-root vertices is adjusted.

Algorithm 5 Dual
1: procedure Primal
2: Compute c2 ← Potential(B,{Tr}r∈R, c|B1 , 0).
3: Set y(r1) = 0, and y(r) =

∑
e∈B2(c(e)− c2(e))TM(e, r) for all r ∈ R \ {r1}.

4: For all r ∈ R set π(v)← π′(v) + π(r) for all v ∈ V (Tr).
5: return π
6: end procedure

Before we prove that Algorithm 5 works correctly, we illustrate it on the hyper-
graph from Example 5.28.

Example 5.29. Consider again the basis drawn in Figure 5.7a where the cost of
every arc and every hyperarc is one. We want to find π(v) for every vertex v such
that

∑
v∈h(e) π(v)−

∑
v∈t(e) π(v) = 1 for all basic arcs and hyperarcs e.

First, we set π(r1) = π(r2) = π(r3) = 0 and compute π on each tree Tr1 , Tr2 , Tr3

separately such that π(w) − π(v) = 1 for all arcs (v, w). The resulting potentials
are depicted as labels of the vertices in Figure 5.8a.
Using the potentials from the first step we obtain c2(e1) = 1 + 0 − 2 − 2 = −3

and c2(e2) = 1 + 1 − 1 − (−1) = 2. Thus, y(r2) = 4 · 1/2 + (−1) · 1/4 = 7/4 and
y(r3) = 4 · 1/2 + (−1) · (−1/4) = 9/4. We adjust the potentials by adding y(r2)
to every π(v) for v ∈ V (Tr2) and y(r3) to every π(v) for v ∈ Tr3 . The resulting
potentials are depicted in Figure 5.8b. For every arc (v, w) the potential difference
π(w)− π(v) does not change and

∑
v∈h(ei) π(v)−

∑
v∈t(ei) π(v) = 1 for i = 1, 2 after

the adjustments of the potentials.

In the following theorem we show that Algorithm 5 not only works correctly on
Example 5.29 but also in general.

Theorem 5.30. Algorithm 5 correctly solves the system πTAB = cTB if AB is a
basis matrix.

Proof. We have to show that the reduced costs cπ(e) are zero for all e ∈ B, where
cπ(e) = c(e)−

∑
v∈h(e) π(v) +

∑
v∈t(e) π(v).

For e ∈ B1 with e = (v, w) and v, w ∈ V (Tr) we get

cπ(e) = c(e)− π(w) + π(v) = c(e)− π′(w)− y(r) + π′(v) + y(r) = 0.

Now, we consider a hyperarc e′ ∈ B2. The matrix C ∈ Q(R\{r1})×B2 whose entries
are Cr,e := |h(e) ∩ V (Tr)| − |t(e) ∩ V (Tr)| is the inverse of the submatrix of TM
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Figure 5.8: Example of Algorithm 5.
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restricted to the rows of B2, see Lemma 5.23. Therefore, it follows that∑
r∈R\{r1}

(
|h(e′) ∩ V (Tr)| − |t(e′) ∩ V (Tr)|

)
TM(e, r) =

∑
r∈R\{r1}

Cr,e′TM(e, r)

=
{

1, e = e′

0, e 6= e′
.

Using this equation and y(r) =
∑
e∈B2(c(e)− c2(e))TM(e, r) for all r ∈ R \ {r1} we

obtain

cπ(e′) = c(e′)−
∑

v∈h(e′)
π(v) +

∑
v∈t(e′)

π(v)

= c(e′)−
∑

v∈h(e′)
π′(v) +

∑
v∈t(e′)

π′(v)

−
∑

r∈R\{r1}

(
|h(e′) ∩ V (Tr)| − |t(e′) ∩ V (Tr)|

)
y(r)

= cπ
′(e′)−

∑
r∈R\{r1}

(
|h(e′) ∩ V (Tr)| − |t(e′) ∩ V (Tr)|

) ∑
e∈B2

cπ
′(e)TM(e, r)

= cπ
′(e′)−

∑
e∈B2

cπ
′(e)

∑
r∈R\{r1}

(
|h(e′) ∩ V (Tr)| − |t(e′) ∩ V (Tr)|

)
TM(e, r)

= cπ
′(e′)− cπ′(e′) = 0.

In total we have shown that cπ(e) = 0 for all e ∈ B, and thus πTAB = cTB.

It remains to show how the treematrix TM is calculated. We do not want to
compute TM from scratch for every new basis, instead, we show how to update
TM . At the beginning we have a basis consisting only of arcs, and thus TM is the
empty matrix. Now, let B be a basis with corresponding treematrix TM , and root
set R at the beginning of an iteration of the hypernetwork simplex method. Suppose
that ein /∈ B enters the basis, and f is the unique solution to ABf = −Aein . If
eout is the leaving hyperarc determined by f , then B′ = B \ {eout} ∪ {ein} a new
basis. Let R′ be the root set of B′ and TM ′ its treematrix. First, we show that it
is possible to choose R′ in such a way that it contains at most one vertex not in R
and r1 ∈ R′, where r1 is the root we have chosen at the initialization step.

Observation 5.31. We can choose R′ such that |R′ \R| ≤ 1 and r1 ∈ R′.

Proof. We prove the observation by distinguishing whether ein, eout are arcs or
proper hyperarcs.

1. If eout and ein are both arcs, then the end vertices of ein are either contained
in the same tree Tr or one is contained in a tree Tr and the other in a different
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tree Tr′ . In the first case, the root set does not change. In the second, eout is
an arc of some tree Tr′′ , where r′′ = r or r′′ = r′ is possible. We first consider
the case that r′′ = r or r′′ = r′. Then, Tr and Tr′ , together with ein and
without eout form two new trees T1, T2. If r ∈ V (T1) and r′ ∈ V (T2) or the
other way around, then R = R′. Otherwise, we can assume r, r′ ∈ V (T1).
We have to delete one of r, r′ from R and choose a new vertex from V (T2)
that has to be added to R′. Clearly, this can be done such that r1 ∈ R′ and
|R′ \R| = 1.
Now, we consider the case that r′′ 6= r and r′′ 6= r′. i.e., Tr, Tr′ and Tr′′ are
three distinct trees. Then, Tr, Tr′ and Tr′′ together with ein and without eout
form three new trees T1, T2, T3. One of the three trees, say T1, is the union
of Tr, Tr′ and ein, the other two are obtained from Tr′′ by deleting eout. One
of T2, T3 contains r′′, for the other one we choose an arbitrary vertex r3 as its
root. We can define R′ by adding r3 to R and deleting one of r, r′ in such a
way that r1 ∈ R′.

2. Now, assume eout is an arc and ein a proper hyperarc. The forest corresponding
to B′ has one more tree than that corresponding to B. Namely, the tree Tr
containing eout is split into two trees. For the one not containing r, we have
to choose a vertex r′ as a new root. Again, r1 ∈ R′ and |R′ \R| = 1 holds.

3. If eout is a proper hyperarc and ein an arc, then ein connects two trees Tr, Tr′
that become one tree in B′. To obtain R′ from R we have to delete one of
r, r′. If one of the two vertices is r1, we delete the other vertex, otherwise, we
delete just any of the two. By this way we get r1 ∈ R′ and |R′ \R| = 0.

4. Finally, if eout and ein are both proper hyperarcs, then the trees {Tr}r∈R do
not change and we can set R′ = R.

In order to update TM , we define a function f̃ :
(
B ∪ {ein}

)
→ Z by f̃(e) = f(e)

for all e ∈ B, and f̃(ein) = 1, where f is the solution to ABf = −Aein computed
in the third step of the current iteration of the hypernetwork simplex algorithm.
Furthermore, for every r ∈ (R′ ∩R)\{r1} we define a function f r :

(
B ∪ {ein}

)
→ Q

by f r(e) := TM(e, r) for all e ∈ B and f r(ein) = 0. If there exists a new root
r ∈ R′ \R we calculate a solution f r to A|(B∪{ein})x = δr with f r(ein) = 0, where

δr(v) :=


1, if v = r

−1, if v = r1

0, otherwise
.

This can be done via Algorithm 3 (using the treematrix TM of basis B). Finally,
for every r ∈ R′ \ {r1} we set αr := fr(eout)

f̃(eout) . Now, we update TM as follows:
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For all e ∈ B′ and r ∈ R′ \ {r1} we set TM ′(e, r) = f r(e)− αr · f̃(e).
It remains to show that the treematrix is updated correctly. Therefore, we have

to prove that TM ′(·, r) satisfies (5.6)-(5.8) for all r ∈ R′ \ {r1}. First, we observe
that f r(eout)−α · f̃(eout) = 0. Thus, f r(e)−α · f̃(e) 6= 0 is only possible for e ∈ B′.
For any r ∈ R′ \ {r1} and v ∈ V (H) we have∑

e∈δin(v)
TM ′(e, r)−

∑
e∈δout(v)

TM ′(e, r)

= f r(δin(v))− f r(δout(v))− α ·
(
f̃(δin(v))− f̃(δout(v))

)
= f r(δin(v))− f r(δout(v)).

This calculation implies that each column of TM ′ satisfies (5.6)-(5.8).
Although we only need the entries TM(e, r) of the treematrix for e ∈ B2 during

the execution of Algorithm 3 and Algorithm 5, we also need the entries at e ∈ B1
during the update of the treematrix because it is possible that eout ∈ B1. If we
only save TM(e, r) for e ∈ B2, then we have to calculate f r(eout) for all R′ \ {r1} if
eout ∈ B1, for which we would need |R′|−1 = |B′2| calls to Algorithm 3. This would
lead to a worse running time for the hypernetwork simplex method. Thus, we save
TM(e, r) for all e ∈ B.
Regarding the time complexity we get the following result.

Lemma 5.32. Step 1. to 4. in the hypernetwork simplex method can be done in
O(|V (H)| · |E(H)|)-time.

Proof. The complexity of Algorithm 2 and 4 is O(|B2| · |V (H)|). Thus, Algorithm 3
and 5 can be done in time O(|R| · |B2|+ |B2| · |V (H)|) = O(|V (H)|2). Computing
the reduced cost of all non-basic hyperarcs takes time O(|V (H)| · |E(H)|). As we
call Algorithm 5 once and Algorithm 3 at most twice during steps 1. to 4., the total
time complexity is O(|V (H)| · |E(H)|).

In general, a graph-based hypergraph will have much more hyperarcs than ver-
tices. Thus, computing the reduced costs will be the most time consuming step
during the simplex method.
Though each of the steps in the presented hypernetwork simplex method can

be done in polynomial time, it is not a polynomial time algorithm. The reason is
that it might use an exponential number of iterations. In particular, Bland’s rule
uses in practice often much more pivot steps than other pivoting rules. For the
network simplex method there exists another trick to avoid cycling. Namely, one
only considers bases corresponding to special spanning trees, called strongly feasible
spanning trees. It can be shown that if one starts with a strongly feasible spanning
tree, then one can always update the spanning tree such that it remains strongly
feasible. Working with strongly feasible trees guarantees that the network simplex
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algorithm terminates after a finite number of iterations independent of the chosen
pivot rule, for more details see [Cunningham, 1976].

r1
−1

0

0

−1
0

r2
−2

4

−1−1

21

r3
0

−20
1

0

e1

e2

(a) An instance of the minimum cost hyperflow problem.
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(b) Potentials such that all basic hyperarcs have zero reduced cost.

Figure 5.9: Example for the hypernetwork flow algorithm.

The use of strongly feasible trees in the network simplex algorithm is important
both in theory and in practice. Namely, Orlin’s polynomial time variant of the
network simplex algorithm in [Orlin, 1997] uses them, and in practice it turns out
that the chosen pivot rule has a huge effect on the performance of the network
simplex algorithm, see for example [Löbel, 1996]. It does not seem obvious how to
generalize the idea of strongly feasible trees to the hypergraph case. At least one
can guarantee finite termination by choosing a simplex rule that does not cycle.
We conclude this chapter by illustrating one iteration of the hypernetwork simplex

method using our running example.
Example 5.33. Consider an instance of the minimum cost hyperflow problem on
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the hypergraph shown in Figure 5.9a in which all hyperarcs and arcs have cost one,
and the demands are given as labels on the vertices. The arcs and proper hyperarcs
in the basis are drawn in blue and orange, and the unique non-basic arc is drawn
in green. The current solution corresponding to this basis is x(e) = 1 for all basic
hyperarcs e and x(e) = 0 otherwise.

In the first step of the hypernetwork simplex algorithm we have to solve the linear
system πTAB = cTB using Algorithm 5. This was done in Example 5.29 and the result
is shown in Figure 5.9b. The reduced cost of the green arc is 1− 17/4 + 2 = −5/4,
which is negative. Thus, we choose this arc as the arc ein entering the basis.
In Step 3 of the hypernetwork simplex algorithm we have to find eout such that

B \ {eout} ∪ {ein} is again a basis. Therefore, we have to solve ABf = −Aein

using Algorithm 3. If we denote by w the tail and by u the head of the green
arc, then w gets a demand of 1, u of −1, and all other vertices have zero demand,
see Figure 5.11a. Figure 5.11b shows the solution of ABf = −Aein returned by
Algorithm 3.
Finally, we choose a basic hyperarc eout attaining the minimum of x(e)/ − f(e)

over all e with f(e) < 0. In this case, the arc drawn in red in Figure 5.11c is the
unique hyperarc minimizing x(e)/− f(e). Augmenting x by 1 = x(eout)/− f(eout)
units of flow along f gives a new basic solution to the minimum cost hyperflow
problem. The new flow values are depicted in Figure 5.10.

r1

−1

0

0

−1

0
1

1.5

1 0.5

r2

−2

4

−1−1

21 0.75

11

1.25

1

r3

0

−20

1

0

0.5

1.25

0.750.75

0.5

1

Figure 5.10: Update of the basis and the flow function.
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Figure 5.11: Step 3 of the hypernetwork simplex algorithm.
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A Zusammenfassung

Diese Arbeit untersucht Matchings und Flüsse in Hypergraphen mit Hilfe kombina-
torischer Methoden. In Graphen gehören diese Probleme zu den grundlegendsten
der kombinatorischen Optimierung. Viele Resultate lassen sich nicht von Graphen
auf Hypergraphen verallgemeinern, da Hypergraphen ein sehr abstraktes Konzept
bilden. Daher schauen wir uns bestimmte Klassen von Hypergraphen an, die mehr
Struktur besitzen, und nutzen diese aus um Resultate aus der Graphentheorie zu
übertragen.
In Kapitel 2 betrachten wir das perfekte Matchingproblem auf Klassen von „bipar-

titen“ Hypergraphen, wobei es verschiedene Möglichkeiten gibt den Begriff „bipar-
tit“ auf Hypergraphen zu definieren. Für sogenannte partitionierte Hypergraphen
geben wir einen polynomiellen Approximationsalgorithmus an, dessen Gütegarantie
bis auf eine Konstante bestmöglich ist. Danach betrachten wir die Sätze von Kőnig
und Hall und untersuchen deren Zusammenhang. Unser Hauptresultat ist eine Be-
dingung für die Existenz von perfekten Matchings auf normalen Hypergraphen, die
Halls Bedingung für bipartite Graphen verallgemeinert.
Als Verallgemeinerung von perfekten Matchings betrachten wir in Kapitel 3 per-

fekte f -Matchings, f -Faktoren und (g, f)-Matchings. Wir beweisen Bedingungen
für die Existenz von (g, f)-Matchings auf unimodularen Hypergraphen, perfekten
f -Matchings auf uniformen Mengerschen Hypergraphen und f -Faktoren auf uni-
formen balancierten Hypergraphen. Außerdem geben wir eine Übersicht über die
Komplexität des (g, f)-Matchingproblems auf verschiedenen Klassen von Hyper-
graphen an, die bipartite Graphen verallgemeinern.

In Kapitel 4 untersuchen wir die Struktur von Hypergraphen, die ein perfektes
Matching besitzen. Wir zeigen, dass diese Hypergraphen entlang spezieller Schnitte
zerlegt werden können. Für Graphen weiß man, dass die so erhaltene Zerlegung
eindeutig ist, was im Allgemeinen für Hypergraphen nicht zutrifft. Wenn man
jedoch uniforme Hypergraphen betrachtet, dann liefert jede Zerlegung die gleichen
unzerlegbaren Hypergraphen bis auf parallele Hyperkanten.
Kapitel 5 beschäftigt sich mit Flüssen in gerichteten Hypergraphen, wobei wir

Hypergraphen betrachten, die auf gerichteten Graphen basieren. Das bedeutet,
dass eine Hyperkante die Vereinigung einer Menge von disjunkten Kanten ist. Wir
definieren ein Residualnetzwerk, mit dessen Hilfe man entscheiden kann, ob ein
gegebener Fluss optimal ist. Unser Hauptresultat in diesem Kapitel ist ein Al-
gorithmus, um einen Fluss minimaler Kosten zu finden, der den Netzwerksimplex
verallgemeinert.
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Index

(g, f)-factor, 10
(g, f)-matching, 9
B-arc, 142
B-connected, 144
B-graph, 142
B-hyperpath, 144
E-maximum matching, 8
F -arc, 142
F -graph, 142
V -maximum matching, 8
f -factor, 10
f -matching, 10
k-extendable graph, 91
k-extendable hypergraph, 98
k-hyperedge connected, 10
k-vertex connected, 10
r-partite, 5
r-partition, 6
s, t-arc flow, 147
s, t-hyperpath, 151
s, t-path cut, 146
s, t-path flow, 146

balanced hypergraph, 13
basic solution, 156
bipartite representation of a hypergraph,

4
brace, 95
brick, 95
brittle function, 97

complete r-partite hypergraph, 111
complete r-uniform hypergraph, 111

connected hypergraph, 10
critical difference, graph, 37
critical difference, hypergraph, 45
critical pair, 45
cut, 11
cycle, 10

deficiency, graph, 37
deficiency, hypergraph, 45
directed cut, 144
directed hypergraph, 142
dual hypergraph, 4

equitable k-coloring, 57
equitable edge k-coloring, 57

feasible basic solution, 156

graph-based directed hypergraph, 142
greedily matchable graph, 92

Hall property, graph, 37
Hall property, hypergraph, 42
Hall’s theorem for balanced hypergraphs,

27
Hoffman-Kruskal theorem, 23
hyperarc, 142
hypercircuit, 151
hyperedge cover, 9
hypergraph, 2
hypergrid, 113
hypernetwork simplex algorithm, 164

incidence matrix, 3
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induced subhypergraph, 6

Kőnig property, 42
Kőnig-Egerváry graph, 36

Latin square, 33
line graph, 5

matching, 8
matching covered graph, 91
maximum degree, 5
Mengerian hypergraph, 15
minimum cost hyperflow, 145
minimum cut, 96
multiplied Hall property, 49

neighborhood, hypergraph, 72
normal hypergraph, 15

orthogonal Latin squares, 33

part size, 17
partial hypergraph, 6
partial subhypergraph, 6
partitioned hypergraph, 16
path, 10
path, directed hypergraph, 144
perfect f -matching, 10
perfect hypergraph, 43
perfect matching, 8

randomly matchable, 92
rank, 5
regular hypergraph, 5
relaxed b-vertex cover, 58
relaxed f -matching, 58
residual hypergraph, 149
restricted unimodular, 24
reverse hyperarc, 149

semi-bipartite graph, 40
semi-brittle function, 98
separating cut, 124

solid brick, 96
stable, 9
stable graph, 36
strong Hall property, 37
strong multiplied Hall property, 49
subhypergraph, 6

tight cut, 116
tight cut contraction, 116
tight cut decomposition, 127
treematrix, 160

uniform, 5
uniformizable, 116
unimodular hypergraph, 13

vertex cover, 8
vertex expansion, 15
vertex multiplication, 46

well-covered graph, 94
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