34,226 research outputs found

    The capacity of multilevel threshold functions

    Get PDF
    Lower and upper bounds for the capacity of multilevel threshold elements are estimated, using two essentially different enumeration techniques. It is demonstrated that the exact number of multilevel threshold functions depends strongly on the relative topology of the input set. The results correct a previously published estimate and indicate that adding threshold levels enhances the capacity more than adding variables

    The capacity of multilevel threshold functions

    Full text link

    Construction of Capacity-Achieving Lattice Codes: Polar Lattices

    Full text link
    In this paper, we propose a new class of lattices constructed from polar codes, namely polar lattices, to achieve the capacity \frac{1}{2}\log(1+\SNR) of the additive white Gaussian-noise (AWGN) channel. Our construction follows the multilevel approach of Forney \textit{et al.}, where we construct a capacity-achieving polar code on each level. The component polar codes are shown to be naturally nested, thereby fulfilling the requirement of the multilevel lattice construction. We prove that polar lattices are \emph{AWGN-good}. Furthermore, using the technique of source polarization, we propose discrete Gaussian shaping over the polar lattice to satisfy the power constraint. Both the construction and shaping are explicit, and the overall complexity of encoding and decoding is O(NlogN)O(N\log N) for any fixed target error probability.Comment: full version of the paper to appear in IEEE Trans. Communication

    Space-Time Signal Design for Multilevel Polar Coding in Slow Fading Broadcast Channels

    Full text link
    Slow fading broadcast channels can model a wide range of applications in wireless networks. Due to delay requirements and the unavailability of the channel state information at the transmitter (CSIT), these channels for many applications are non-ergodic. The appropriate measure for designing signals in non-ergodic channels is the outage probability. In this paper, we provide a method to optimize STBCs based on the outage probability at moderate SNRs. Multilevel polar coded-modulation is a new class of coded-modulation techniques that benefits from low complexity decoders and simple rate matching. In this paper, we derive the outage optimality condition for multistage decoding and propose a rule for determining component code rates. We also derive an upper bound on the outage probability of STBCs for designing the set-partitioning-based labelling. Finally, due to the optimality of the outage-minimized STBCs for long codes, we introduce a novel method for the joint optimization of short-to-moderate length polar codes and STBCs

    Lost in translation: Toward a formal model of multilevel, multiscale medicine

    Get PDF
    For a broad spectrum of low level cognitive regulatory and other biological phenomena, isolation from signal crosstalk between them requires more metabolic free energy than permitting correlation. This allows an evolutionary exaptation leading to dynamic global broadcasts of interacting physiological processes at multiple scales. The argument is similar to the well-studied exaptation of noise to trigger stochastic resonance amplification in physiological subsystems. Not only is the living state characterized by cognition at every scale and level of organization, but by multiple, shifting, tunable, cooperative larger scale broadcasts that link selected subsets of functional modules to address problems. This multilevel dynamical viewpoint has implications for initiatives in translational medicine that have followed the implosive collapse of pharmaceutical industry 'magic bullet' research. In short, failure to respond to the inherently multilevel, multiscale nature of human pathophysiology will doom translational medicine to a similar implosion

    Wave-like Decoding of Tail-biting Spatially Coupled LDPC Codes Through Iterative Demapping

    Full text link
    For finite coupling lengths, terminated spatially coupled low-density parity-check (SC-LDPC) codes show a non-negligible rate-loss. In this paper, we investigate if this rate loss can be mitigated by tail-biting SC-LDPC codes in conjunction with iterative demapping of higher order modulation formats. Therefore, we examine the BP threshold of different coupled and uncoupled ensembles. A comparison between the decoding thresholds approximated by EXIT charts and the density evolution results of the coupled and uncoupled ensemble is given. We investigate the effect and potential of different labelings for such a set-up using per-bit EXIT curves, and exemplify the method for a 16-QAM system, e.g., using set partitioning labelings. A hybrid mapping is proposed, where different sub-blocks use different labelings in order to further optimize the decoding thresholds of tail-biting codes, while the computational complexity overhead through iterative demapping remains small.Comment: presentat at the International Symposium on Turbo Codes & Iterative Information Processing (ISTC), Brest, Sept. 201
    corecore