Slow fading broadcast channels can model a wide range of applications in
wireless networks. Due to delay requirements and the unavailability of the
channel state information at the transmitter (CSIT), these channels for many
applications are non-ergodic. The appropriate measure for designing signals in
non-ergodic channels is the outage probability. In this paper, we provide a
method to optimize STBCs based on the outage probability at moderate SNRs.
Multilevel polar coded-modulation is a new class of coded-modulation techniques
that benefits from low complexity decoders and simple rate matching. In this
paper, we derive the outage optimality condition for multistage decoding and
propose a rule for determining component code rates. We also derive an upper
bound on the outage probability of STBCs for designing the
set-partitioning-based labelling. Finally, due to the optimality of the
outage-minimized STBCs for long codes, we introduce a novel method for the
joint optimization of short-to-moderate length polar codes and STBCs