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Abstract

For a broad spectrum of low level cognitive regulatory and
other biological phenomena, isolation from signal crosstalk be-
tween them requires more metabolic free energy than permit-
ting correlation. This allows an evolutionary exaptation leading
to dynamic global broadcasts of interacting physiological pro-
cesses at multiple scales. The argument is similar to the well-
studied exaptation of noise to trigger stochastic resonance am-
plification in physiological subsystems. Not only is the living
state characterized by cognition at every scale and level of orga-
nization, but by multiple, shifting, tunable, cooperative larger
scale broadcasts that link selected subsets of functional mod-
ules to address problems. This multilevel dynamical viewpoint
has implications for initiatives in translational medicine that
have followed the implosive collapse of pharmaceutical industry
‘magic bullet’ research. In short, failure to respond to the in-
herently multilevel, multiscale nature of human pathophysiology
will doom translational medicine to a similar implosion.

Key Words: index theorem, information theory, phase transition, sufficient
conditions, topology

1 Introduction

1.1 Magic bullets

The collapse of pharmaceutical research productivity (e.g., Paul et al., 2010)
has spawned attempts to speed the ‘bench to bedside’ translation of basic re-
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Figure 1: Adapted from Bernstein (2010). The inverse Moore’s Law for phar-
maceuticals. The number of small molecule and biological USFDA approvals
per inflation-adjusted $ billion in research investment, 1950-2010. The appar-
ent log-linear ‘decline in research productivity’ represents the failure of complex
physiological phenomena to respond to simple interventions. Western medicine,
as defined in the latter half of the 20th Century, has hit a brick wall, a catas-
trophic regime of exponential cost increase.

search into therapeutic instruments, usually seen as new magic bullets, drugs
or otherwise.

The context for this effort can be seen in figure 1, adapted from Bernsetin
(2010). It shows the number of small molecule and biologic USFDA approvals
per inflation-adjusted billion dollars in research investment between 1950 and
2010. The cost per ‘magic bullet’ has increased exponentially from about $
200 million to over $ 1.2 billion, and many pharmaceutical firms have markedly
cut their research efforts as a consequence of this ‘inverse Moore’s Law’ that
represents the failure of complex physiological phenomena to respond to simple
interventions.

In the words of the publisher of the recent volume by Littman and Krishna
(2011), translational medicine

...seeks to translate biological and molecular knowledge of disease
and how drugs work into innovative strategies that reduce the cost
and increase the speed of delivering new medicines for patients.

Marincola (2011) has responded to current efforts with a scathing critique;

Translational research is caught in a feedback cycle whereby com-
plex, multi-factorial disease is confronted without sufficient under-
standing of human pathophysiology... It has been suggested that
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preclinical models do not represent human disease because of differ-
ences among species... However, this is not the principal reason they
often fail to provide suitable models of human disease; the funda-
mental difference between preclinical and clinical testing is that in
the former, the researcher can carefully select the model, whereas in
the latter the clinician has to confront the unpredictable nature of
human genetics and diseases, as well as environmental factors.

Wehling (2011) is more direct:

Approximately a decade ago, translational medicine was invented
both as a catchword and as a novel approach to improve success in
drug development and ameliorate the low-output syndrome from
collapsing pipelines. However, no major breakthroughs regarding
rates of expensive late attrition or market approvals have been de-
tected, and drug industry condensation continues to accelerate...
[T]ranslational efforts so far seem to be driven mainly by claims,
rather than by structure and systematic approaches. In addition,
institutional structures also often seem to be only virtual or pro-
claiming in nature. This is simply not enough.

Horrobin (2003) lays out the lack of congruence between laboratory-level in
vitro and patient-level in vivo models:

An important distinction must be made between what might be
called the anatomical biochemistry of the cell and its functional bio-
chemistry... [I]f a particular biochemical step is present in vitro,
then that particular biochemical step is also likely to be present...
in vivo. We can therefore construct a network of all possible bio-
chemical events in vivo by examining all possible biochemical events
in vitro. But what the in vitro system cannot do is construct a func-
tional and valid in vivo biochemistry. And that is potentially a fatal
flaw. For in most human diseases it is the functional biochemistry
and not the anatomical biochemistry which goes wrong.

Horrobin provides details, and we reproduce his Table 1:
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In Vitro vs. In Vivo models
1. The anatomical constraints and the cellular populations present

in culture and in vivo are different. There is no circulation in vitro.
2. The types and rates of nutrient and oxygen supply, and carbon

dioxide and metabolite removal, are different.
3. The restraints on cell multiplication are different.
4. The endocrine environment is different, both in terms of the

amounts and patterns of hormones present and their kinetic changes.
5. The antibiotic environment is different: in vivo cells are not

normally bathed in penicillin, streptomycin and other antibiotics,
but there has been no systematic evaluation of the effects of any of
these exogenous agents on metabolism.

6. The lipid environment is different. The phospholipid com-
position of cells in culture is quite different from the phospholipid
composition of the parent in vivo cells. As phospholipid composition
determines the quaternary structure and therefore function of a high
proportion of a cell’s proteins, and also determines signal transduc-
tion responses to most protein changes, it is likely that the functions
of proteins in vitro will be, for the most part, somewhat different
from the functions of those same proteins in vivo.

7. Even when appropriate constituents are present in culture
fluid, their concentrations may be dramatically different from any-
thing seen in vivo.

Horrobin (2003) goes on to liken current reductionist biomedicine to Herman
Hesse’s Glasperlenspeil, a Glass Bead Game, in which troublesome intellectuals
have been seduced from real world problems into an elaborate, heavily subsidized
glass cage, lucrative for those who become skilled at grantsmanship.

Here, in some contrast to current biomedical ‘magic bullet’ ideology, we will
attempt to lay a foundation for the development of multilevel, multiscale ‘magic
strategies’ that may, at least in their initial stages, better fit the inherently
complex underlying patterns of multifactorial human pathophysiology. This is
not an effort for the faint of heart, and we must begin far afield.

1.2 Beyond magic bullets

Researchers have long speculated and experimented on the role of noise in biolog-
ical process via models of stochastic resonance (e.g., Park and Neelakanta, 1996;
Gluckman et al., 1996; Ward, 2009; Kawaguchi et al., 2011). The necessary
ubiquity of noise affecting information transmission underwent an evolutionary
exaptation (e.g., Gould, 2002) to become a tool for amplification of weak signals.
Here we examine the parallel necessary circumstance of information leakage be-
tween ‘adjacent’ communication channels or information sources, a generally
unwelcome signal correlation that the electrical engineers call ‘crosstalk’. The
evolutionary exaptation of crosstalk appears to be nested systems of shifting
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global biological broadcasts analogous to, but both slower and more general
than, consciousness.

Baars’ global workspace model of animal consciousness attributes the phe-
nomenon to a dynamic array of unconscious cognitive modules that unite to
become a global broadcast having a tunable perception threshold not unlike a
theater spotlight, but whose range of attention is constrained by embedding
contexts (e.g., Baars, 1988, 2005; Baars and Franklin, 2003):

1. The brain can be viewed as a collection of distributed specialized networks
(processors).

2. Consciousness is associated with a global workspace in the brain – a fleet-
ing memory capacity whose focal contents are widely distributed – ‘broadcast’
– to many unconscious specialized networks.

3. Conversely, a global workspace can also serve to integrate many competing
and cooperating input networks.

4. Some unconscious networks, called contexts, shape conscious contents, for
example unconscious parietal maps modulate visual feature cells that underlie
the perception of color in the ventral stream.

5. Such contexts work together jointly to constrain conscious events.
6. Motives and emotions can be viewed as goal contexts.
7. Executive functions work as hierarchies of goal contexts.
The basic mechanism emerges ‘naturally’ from a relatively simple application

of the asymptotic limit theorems of information theory, once a broad range
of unconscious cognitive processes is recognized as inherently characterized by
information sources – generalized languages (Wallace, 2000, 2005, 2007). The
approach allows mapping physiological unconscious cognitive modules onto an
abstract network of interacting information sources. This, in turn, permits a
simplified mathematical attack based on phase transitions in network topology
that, in the presence of sufficient linkage – crosstalk – permits rapid, shifting,
global broadcasts.

While the mathematical description of consciousness is itself relatively sim-
ple, the evolutionary trajectories leading to its emergence seem otherwise. Here
we argue that this is not the case, and that physical restrictions on the avail-
ability of metabolic free energy provide sufficient conditions for the emergence,
not only of consciousness, but of a spectrum of analogous ‘global’ broadcast
phenomena acting across a variety of biological scales of space, time, and levels
of organization.

The argument is, in a sense, an extension of Gould and Lewontin’s (1979)
famous essay “The Spandrels of San Marco and the Panglossian Paradigm:
A Critique of the Adaptationist Programme”. Spandrels are the triangular
sectors of the intersecting arches that support a cathedral roof. They are simple
byproducts of the need for arches, and their occurrence is in no way fundamental
to the construction of a cathedral. Our assertion is that crosstalk between
‘low level’ cognitive biological modules is a similar inessential byproduct that
evolutionary process has exapted to construct the dynamic global broadcasts of
consciousness and a spectrum of roughly analogous physiological phenomena:
Evolution built many new arches from a single spandrel.
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We provide a minimal formal overview that will be reexpressed in more com-
plex form, much like Onsager’s nonequilibrium thermodynamics, and then, using
these ideas, examine recent initiatives on ‘translational medicine’ (e.g., Littman
and Krishna, 2011) that seek to overcome the recent collapse of pharmaceutical
industry productivity (Paul et al., 2010).

2 Cognition as ‘language’

Atlan and Cohen (1998) argue, in the context of a cognitive paradigm for the
immune system, that the essence of cognitive function involves comparison of a
perceived signal with an internal, learned or inherited picture of the world, and
then, upon that comparison, choice of one response from a much larger reper-
toire of possible responses. That is, cognitive pattern recognition-and-response
proceeds by an algorithmic combination of an incoming external sensory sig-
nal with an internal ongoing activity – incorporating the internalized picture of
the world – and triggering an appropriate action based on a decision that the
pattern of sensory activity requires a response.

More formally, incoming sensory input is mixed in an unspecified but sys-
tematic manner with a pattern of internal ongoing activity to create a path of
combined signals x = (a0, a1, ..., an, ...). Each ak thus represents some functional
composition of the internal and the external. An application of this perspective
to a standard neural network is given in Wallace (2005, p.34).

This path is fed into a highly nonlinear, but otherwise similarly unspecified,
decision oscillator, h, which generates an output h(x) that is an element of one
of two disjoint sets B0 and B1 of possible system responses. Let

B0 ≡ {b0, ..., bk},

B1 ≡ {bk+1, ..., bm}.

Assume a graded response, supposing that if

h(x) ∈ B0,

the pattern is not recognized, and if

h(x) ∈ B1,

the pattern is recognized, and some action bj , k + 1 ≤ j ≤ m takes place.
The principal objects of formal interest are paths x which trigger pattern

recognition-and-response. That is, given a fixed initial state a0, we examine
all possible subsequent paths x beginning with a0 and leading to the event
h(x) ∈ B1. Thus h(a0, ..., aj) ∈ B0 for all 0 < j < m, but h(a0, ..., am) ∈ B1.

For each positive integer n, let N(n) be the number of high probability
grammatical and syntactical paths of length n that begin with some particular

6

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
12

.6
97

3.
1 

: P
os

te
d 

7 
M

ar
 2

01
2



a0 and lead to the condition h(x) ∈ B1. Call such paths ‘meaningful’, assuming,
not unreasonably, that N(n) will be considerably less than the number of all
possible paths of length n leading from a0 to the condition h(x) ∈ B1.

While combining algorithm, the form of the ‘decision oscillator’ h, and the
details of grammar and syntax, are all unspecified in this model, the critical
assumption which permits inference on necessary conditions constrained by the
asymptotic limit theorems of information theory is that the finite limit

H ≡ lim
n→∞

log[N(n)]

n

(1)

both exists and is independent of the path x.
Call such a pattern recognition-and-response cognitive process ergodic. Not

all cognitive processes are likely to be ergodic, implying that H, if it indeed
exists at all, is path dependent, although extension to nearly ergodic processes,
in a certain sense, seems possible (e.g., Wallace, 2005, pp. 31-32).

Invoking the spirit of the Shannon-McMillan Theorem, it is possible to de-
fine an adiabatically, piecewise stationary, ergodic information source X asso-
ciated with stochastic variates Xj having joint and conditional probabilities
P (a0, ..., an) and P (an|a0, ..., an−1) such that appropriate joint and conditional
Shannon uncertainties satisfy the classic relations

H[X] = lim
n→∞

log[N(n)]

n
=

lim
n→∞

H(Xn|X0, ..., Xn−1) =

lim
n→∞

H(X0, ..., Xn)

n
.

(2)

This information source is defined as dual to the underlying ergodic cognitive
process, in the sense of Wallace (2000, 2005).

The essence of ‘adiabatic’ is that, when the information source is parameter-
ized according to some appropriate scheme, within continuous ‘pieces’, changes
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in parameter values take place slowly enough so that the information source
remains as close to stationary and ergodic as needed to make the fundamental
limit theorems work. By ‘stationary’ we mean that probabilities do not change in
time, and by ‘ergodic’ (roughly) that cross-sectional means converge to long-time
averages. Between ‘pieces’ one invokes various kinds of phase change formalism,
for example renormalization theory in cases where a mean field approximation
holds (Wallace, 2005), or variants of random network theory where a mean
number approximation is applied. More will be said of this latter approach
below.

Recall that the Shannon uncertainties H(...) are cross-sectional law-of-large-
numbers sums of the form−

∑
k Pk log[Pk], where the Pk constitute a probability

distribution. See Cover and Thomas (2006), Ash (1990), or Khinchin (1957) for
the standard details.

A formal equivalence class algebra can be constructed by choosing different
origin points a0 and defining equivalence of two states by the existence of a
high probability meaningful path connecting each of them with the same origin.
Disjoint partition by equivalence class, analogous to orbit equivalence classes
for dynamical systems, defines the vertices of the proposed network of cognitive
dual languages. Each vertex then represents a different information source dual
to a cognitive process. This is not a representation of a neural network as such,
or of some circuit in silicon. It is, rather, an abstract set of ‘languages’ dual to
the cognitive biological processes.

This structure generates a groupoid, leading to complicated algebraic prop-
erties we will not examine further (Wallace and Fullilove, 2008, Section 3.2).

A recent series of articles has applied this perspective to cognitive paradigms
for gene expression (Wallace and Wallace, 2009, 2010), the regulation of pro-
tein folding (Wallace, 2010, 2011a, b), and the production and regulation of
the glycan determinants that coat cellular surfaces and, in fact, constitute the
principal means of biological information transmission (Wallace, 2012). The es-
sential point is that such regulatory machineries can become nodes on a network
of interacting information sources whose connections, by crosstalk, become the
means for shifting, tunable, global broadcasts analogous to neural consciousness
that dedicate chosen sets of physiological subsystems to selected problems.

3 No Free Lunch

Given a set of biological cognitive modules that become linked to solve a problem
– e.g., riding a bicycle in heavy traffic, followed by localized wound healing
– the famous ‘no free lunch’ theorem of Wolpert and Macready (1995, 1997)
illuminates the next step in the argument. As English (1996) states the matter,

...Wolpert and Macready... have established that there exists no
generally superior [computational] function optimizer. There is no
‘free lunch’ in the sense that an optimizer ‘pays’ for superior per-
formance on some functions with inferior performance on others...
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gains and losses balance precisely, and all optimizers have identical
average performance... [That is] an optimizer has to ‘pay’ for its
superiority on one subset of functions with inferiority on the com-
plementary subset...

Another way of stating this conundrum is to say that a computed solution is
simply the product of the information processing of a problem, and, by a very
famous argument, information can never be gained simply by processing. Thus
a problem X is transmitted as a message by an information processing channel,
Y , a computing device, and recoded as an answer. By the extended argument
of the Mathematical Appendix, there will be a channel coding of Y which, when
properly tuned, is itself most efficiently ‘transmitted’, in a purely formal sense,
by the problem – the ‘message’ X. In general, then, the most efficient coding
of the transmission channel, that is, the best algorithm turning a problem into
a solution, will necessarily be highly problem-specific. Thus there can be no
best algorithm for all sets of problems, although there will likely be an optimal
algorithm for any given set.

Based on the no free lunch argument, it is clear that different challenges
facing an entity must be met by different arrangements of cooperating basic
‘low level’ cognitive modules. It is possible to make a very abstract picture of
this phenomenon, not based on anatomy, but rather on the linkages between
the information sources dual to the basic physiological and learned unconscious
cognitive modules (UCM). That is, the remapped network of lower level cogni-
tive modules is reexpressed in terms of the information sources dual to the UCM.
Given two distinct problems classes (e.g., riding a bicycle vs. wound healing),
there must be two different ‘wirings’ of the information sources dual to the
available physiological UCM, as in figure 2, with the network graph edges mea-
sured by the amount of information crosstalk between sets of nodes representing
the dual information sources. A more formal treatment of such coupling can be
given in terms of network information theory (Cover and Thomas, 2006), partic-
ularly incorporating the effects of embedding contexts, implied by the ‘external’
information source Z – signals from the environment.

The possible expansion of a closely linked set of information sources dual
to the UCM into a global workspace/broadcast – the occurrence of a kind of
‘spandrel’ – depends, in this model, on the underlying network topology of
the dual information sources and on the strength of the couplings between the
individual components of that network. For random networks the results are well
known, based on the work of Erdos and Renyi (1960). Following the review by
Spenser (2010) closely (see, e.g., Boccaletti et al., 2006, for more detail), assume
there are n network nodes and e edges connecting the nodes, distributed with
uniform probability – no nonrandom clustering. Let G[n, e] be the state when
there are e edges. The central question is the typical behavior of G[n, e] as e
changes from 0 to (n − 2)!/2. The latter expression is the number of possible
pair contacts in a population having n individuals. Another way to say this
is to let G(n, p) be the probability space over graphs on n vertices where each
pair is adjacent with independent probability p. The behaviors of G[n, e] and
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Figure 2: By the no free lunch theorem, two markedly different problems will be
optimally solved by two different linkages of available lower level cognitive mod-
ules – characterized now by their dual information sources Xj – into different
temporary networks of working structures, here represented by crosstalk among
those sources rather than by the physiological UCM themselves. The embedding
information source Z represents the influence of external signals whose effects
can be at least formally accounted for by network information theory.
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G(n, p) where e = p(n− 2)!/2 are asymptotically the same.
For ‘real world’ biological and social structures, one can have p = f(e, n),

where f may not be simple or even monotonic. For example, while low e would
almost always be associated with low p, beyond some threshold, high e might
drive individuals or nodal groups into isolation, decreasing p and producing an
‘inverted-U’ signal transduction relation akin to stochastic resonance. Some-
thing like this would account for Fechner’s law which states that perception of
sensory signals often scales as the log of the signal intensity.

For the simple random case, however, we can parameterize as p = c/n. The
graph with n/2 edges then corresponds to c = 1. The essential finding is that
the behavior of the random network has three sections:

[1] If c < 1 all the linked subnetworks are very small, and no global broadcast
can take place.

[2] If c = 1 there is a single large interlinked component of a size ≈ n2/3.
[3] If c > 1 then there is a single large component of size yn – a global

broadcast – where y is the positive solution to the equation

exp(−cy) = 1− y.

(3)

Then

y =
W (−c/ exp(c)) + c

c
,

(4)

where W is the Lambert W function.
The solid line in figure 3 shows y as a function of c, representing the fraction

of network nodes that are incorporated into the interlinked giant component –
a de-facto global broadcast for interacting UCM. To the left of c = 1 there is no
giant component, and large scale cognitive process is not possible.

The dotted line, however, represents the fraction of nodes in the giant com-
ponent for a highly nonrandom network, a star-of-stars-of-stars (SoS) in which
every node is directly or indirectly connected with every other one. For such a
topology there is no threshold, only a single giant component, showing that the
emergence of a giant component in a network of information sources dual to the
UCM is dependent on a network topology that may itself be tunable (Wallace
and Fullilove, 2008). We will obtain a generalization of this result by means of
an index theorem argument below.
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Figure 3: Fraction of network nodes in the giant component as a function of the
crosstalk coupling parameter c. The solid line represents a random graph, the
dotted line a star-of-stars-of-stars network in which all nodes are interconnected,
showing that the dynamics of giant component emergence are highly dependent
on an underlying network topology that, for UCM, may itself be tunable. For
the random graph, a strength of c < 1 precludes emergence of a larger-scale
‘global’ broadcast.
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4 Multiple broadcasts, punctuated detection

The random network development above is predicated on there being a vari-
able average number of fixed-strength linkages between components. Clearly,
the mutual information measure of cross-talk is not inherently fixed, but can
continuously vary in magnitude. We address this by a parameterized renormal-
ization. In essence the modular network structure linked by mutual information
interactions has a topology depending on the degree of interaction of interest.
Suppose we define an interaction parameter ω, a real positive number, and look
at geometric structures defined in terms of linkages which are zero if mutual
information is less than, and ‘renormalized’ to unity if greater than, ω. Any
given ω will define a regime of giant components of network elements linked by
mutual information greater than or equal to it.

Now invert the argument : A given topology for the giant component will,
in turn, define some critical value, ωC , so that network elements interacting by
mutual information less than that value will be unable to participate, i.e., will
be locked out and not be ‘consciously’ perceived. We hence are assuming that
the ω is a tunable, syntactically-dependent, detection limit, and depends criti-
cally on the instantaneous topology of the giant component of linked cognitive
modules defining the global broadcast. That topology is, fundamentally, the
basic tunable syntactic filter across the underlying modular structure (Wallace
and Fullilove, 2008), and variation in ω is only one aspect of a much more gen-
eral topological shift. Further analysis can be given in terms of a topological
rate distortion manifold (Wallace and Fullilove, 2008; Glazebrook and Wallace,
2009).

There is considerable empirical evidence from fMRI brain imaging and many
other experiments to show that individual animal consciousness – restricted by
necessity of a time constant near 100 milliseconds – involves a single, shifting
and tunable, global broadcast, a matter leading necessarily to the phenomenon
of inattentional blindness. Multiple cognitive submodules within systems not
constrained to the 100 ms time range, for example institutions – individuals,
departments, formal and informal workgroups – by contrast, can do more than
one thing, and indeed, are usually required to multitask. Clearly, then, multiple
workspace global broadcasts lessen the probability of inattentional blindness, if
there is time to support them, but do not eliminate it, and introduce critical
failure modes related to the degradation of information transmitted between
global broadcasts.

We must postulate a set of crosstalk information measures between cognitive
submodules, each associated with its own tunable giant component having its
own special topology.

Again, although animal consciousness, with its 100ms time constant, seems
restricted to a single tunable global broadcast, it is clear that slower physiologi-
cal consciousness global broadcast analogs would permit individual subsystems,
or localized sets of such subsystems, to engage in more than one global broadcast
at a time, to multitask, in the same sense that workgroups within an institution
will usually be given more than one task at a time. Thus the immune system
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can be expected to simultaneously engage in wound healing, attack on invading
microorganisms, neuroimmuno dialog, and routine tissue maintenance tasks.

Following, again, the arguments of Wallace and Fullilove (2008), we further
expand the argument.

Suppose, now, a set of giant components of interacting cognitive physio-
logical submodules at some time k is characterized by a set of parameters
Ωk ≡ (ωk

1 , ..., ω
k
m). Fixed parameter values define a particular giant compo-

nent set having a particular set of topological structures. Suppose that, over
a sequence of times, the set of giant components can be characterized by a
possibly coarse-grained path xn = (Ω0,Ω1, ...,Ωn−1) having significant serial
correlations permitting definition of an adiabatically, piecewise stationary, er-
godic (APSE) information source that we call X. Suppose a set of (external
or internal) signals impinging on the set of giant components is also highly
structured and forms another APSE information source Y. Then we can define
joint and conditional Shannon uncertainties leading to an iterated chain rule ar-
gument as above, complicated by the necessity of information transfer between
the multiple, shifting spotlights characterizing the interacting giant components.
To reiterate, a major possible source of pathology would be distortion in the
transmission of information between interacting global broadcasts.

5 Information and metabolic free energy

The information sources dual to unconscious cognitive modules represented in
figure 2 are not independent, but are correlated, so that a joint information
source can be defined having the properties

H(X1, ..., Xn) ≤
n∑

j=1

H(Xj).

(5)

This result is known as the information chain rule (e.g., Cover and Thomas,
2006), and has profound implications: Feynman (2000) describes in great detail
how information and free energy have an inherent duality. Feynman, in fact,
defines information precisely as the free energy needed to erase a message. The
argument is surprisingly direct (e.g., Bennett, 1988), and for very simple systems
it is easy to design a small (idealized) machine that turns the information within
a message directly into usable work – free energy. Information is a form of
free energy and the construction and transmission of information within living
things consumes metabolic free energy, with inevitable losses via the second law
of thermodynamics.
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Information catalysis arises most simply via the information theory chain
rule. Restricting the argument to two information sources, X and Y , one can
define jointly typical paths zi = (xi, yi) having the joint information source
uncertainty H(X,Y ) satisfying H(X,Y ) = H(X) +H(Y |X) ≤ H(X) +H(Y ).

Of necessity, then, H(X,Y ) ≤ H(X) +H(Y ) if H(Y ) 6= 0.
Within a biological structure, however, there will be an ensemble of possi-

ble reactions, driven by available metabolic free energy, so that, taking Ĥ as
representing an average,

Ĥ(X,Y ) < Ĥ(X) + Ĥ(Y ).

(6)

This is a very general result that, by the equivalence of information and free
energy, leads to a model in which interacting biological signals can ‘canalize’ the
overall behavior of the system: Interaction consumes less metabolic free energy
than signal isolation.

Typically, letting Q(κM) ≥ 0, Q(0) = 0 represent an intensity measure
of available metabolic free energy, and C be the maximum channel capacity
available to the cognitive biological processes of interest, one would expect

Ĥ =

∫ C

0
H exp[−H/Q]dH∫ C

0
exp[−H/Q]dH

=
Q[exp(C/Q)− 1]− C

exp(C/Q)− 1
.

(7)

κ is an inverse energy intensity scaling constant that may be quite small in-
deed, a consequence of entropic translation losses between metabolic free energy
and the expression of information. Note that, near M = 0, we can expand Q as
a Taylor series, with a first term Q ≈ κM .

This expression tops out quite rapidly with increases in either C or Q, pro-
ducing energy- and channel capacity- limited results

Ĥ = Q(κM), C/2.

(8)
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Then, expanding Q near zero, the two limiting relations imply

Q(κMX,Y ) < Q(κMX) +Q(κMY )→MX,Y < MX +MY ,

CX,Y < CX + CY .

(9)

The channel capacity constraint can be parsed further for a noisy Gaussian
channel. Then (Cover and Thomas, 2006)

C = 1/2 log[1 + P/σ2] ≈ 1/2P/σ2

(10)

for small P/σ2, where P is the ‘power constraint’ such that E(X2) < P and σ2

is the noise variance. Assuming information sources X and Y act on the same
scale, so that noise variances are the same and quite large, then we may take
P = Q(κM) – channel power is determined by available metabolic free energy
– and we recover the expression

Q(κMX,Y ) < Q(κMX) +Q(κMY ).

Both limiting inequalities are, then, free energy relations leading to a kind of
‘reaction canalization’ in which a set of lower level cognitive modules consumes
less metabolic free energy if interaction among them is permitted than under
conditions of individual signal isolation.

The global broadcast mechanisms of consciousness and its slower physiolog-
ical generalizations make an arch of this spandrel, using the lowered free energy
requirement of crosstalk interaction between low level cognitive modules as the
springboard for launching (sometimes) rapid, tunable, more highly correlated,
multiple global broadcasts that link those modules to solve problems.
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6 Environmental signals

Lower level cognitive modules operate within larger, highly structured, environ-
mental signals and other constraints whose regularities may also have a recogniz-
able grammar and syntax, represented in figure 2 by an embedding information
source Z. Under such a circumstance the splitting criterion for three jointly
typical sequences is given by the classic relation of network information theory
(Cover and Thomas, 2006, Theorem 15.2.3)

I(X1, X2|Z) = H(Z) +H(X1|Z) +H(X2|Z)−H(X1, X2, Z)

(11)

that generalizes as

I(X1, ..., Xn|Z) = H(Z) +

n∑
j=1

H(Xj |Z)−H(X1, ..., Xn, Z)

(12)

More complicated multivariate typical sequences are treated much the same
(e.g., El Gamal and Kim, 2010, p.2-26). Given a basic set of interacting in-
formation sources (X1, ..., Xk) that one partitions into two ordered sets X(J )
and X(J ′), then the splitting criterion becomes H[X(J |J ′)]. Extension to a
greater number of ordered sets is straightforward.

Then the joint splitting criterion – I,H above – however it may be expressed
as a composite of the underlying information sources and their interactions, sat-
isfies a relation like the first expression in equation (2), where N(n) is the num-
ber of high probability jointly typical paths of length n, and the theory carries
through, now incorporating the effects of external signals as the information
source Z.

7 The simplest ‘regression’ model

Given the splitting criteria I(X1, ..., Xn|Z) or H[X(J |J ′)] as above, the essen-
tial point is that these are the limit, for large n, of the expression log[N(n)]/n,
where N(n) is the number of jointly typical paths of the interacting information
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sources of length n. Again, as Feynman (2000) argues at great length, informa-
tion is simply another form of free energy, and its dynamics can be expressed
using a formalism similar to Onsager’s nonequilbrium thermodynamics.

The argument is direct.
First, the physical model. Let F (K) be the free energy density of a physical

system, K the normalized temperature, V the volume and Z(K,V ) the partition
function defined from the Hamiltonian characterizing energy states Ei. Then

Z(V,K) ≡
∑
i

exp[−Ei(V )/K],

(13)

and

F (K) = lim
V→∞

−K log[Z(V,K))

V
≡ log[Ẑ(K,V )]

V
.

If a nonequilibrium physical system is parameterized by a set of variables
{Ki}, then the empirical Onsager equations are defined in terms of the gradient
of the entropy S ≡ F −

∑
j KjdF/dKj as

dKj/dt =
∑
i

Li,j∂S/∂Ki,

(14)

where the Li,j are empirical constants. For a physical system having microre-
versibility, Li,j = Lj,i. For an information source where, for example, ‘ the ’ has
a much different probability than ‘ eht ’, no such microreversibility is possible,
and no ‘reciprocity relations’ can apply.

For stochastic systems this generalizes to the set of stochastic differential
equations

dKj
t =

∑
i

[Lj,i(t, ...∂S/∂K
i...)dt+ σj,i(t, ...∂S/∂K

i)dBi
t]
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= L(t,K1, ...,Kn)dt+
∑
i

σ(t,K1, ...,Kn)dBi
t,

(15)

where terms have been collected and expressed in terms of the driving param-
eters. The dBi

t represent different kinds of ‘noise’ whose characteristics are
usually expressed in terms of their quadratic variation. See any standard text
for definitions, examples, and details.

The essential trick is to recognize that, for the splitting criteria I(X1, ..., Xn|Z)
or H[X(J |J ′)], the role of information as a form of free energy, and the corre-
sponding limit in log[N(n)]/n, make it possible to define entropy-analogs as

S ≡ I(...Ki...)−
∑
j

Kj∂I/∂Kj

S ≡ H[X(J |J ′)]−
∑
j

Kj∂H[X(J |J ′)]/∂Kj .

S ∝MJ |J ′ −
∑
j

Kj∂MJ |J ′/∂Kj .

(16)

where, for the last relation, we have invoked the embedding metabolic free ener-
gies that instantiate the actual mechanisms by which information is transmitted.

The basic information theory ‘regression equations’ for the system of figures 2
and 3, driven by a set of external ‘sensory’ and other, internal, signal parameters
K = (K1, ...,Kn) that may be measured by the information source uncertainty
of other information sources is then precisely the set of equations (15) above.

Several features emerge directly from invoking this ‘coevolutionary’ approach.
The first involves Pettini’s (2007) topological hypothesis: A fundamental

change in the underlying topology of a system characterized by any free energy-
like ‘Morse Function’ is a necessary condition for the kind of phase transition
shown in figure 3. What seems clear from the neurological context is that
a converse topological tuning of the threshold for the global broadcast phase
transition is possible.

Second, there are several obvious possible dynamic patterns:
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1. Setting equation (15) equal to zero and solving for stationary points gives
attractor states since the noise terms preclude unstable equilibria.

2. This system may converge to limit cycle or pseudorandom ‘strange at-
tractor’ behaviors in which the system seems to chase its tail endlessly within
a limited venue – a kind of ‘Red Queen’ pathology.

3. What is converged to in both cases is not a simple state or limit cycle
of states. Rather it is an equivalence class, or set of them, of highly dynamic
information sources coupled by mutual interaction through crosstalk. Thus
‘stability’ in this structure represents particular patterns of ongoing dynamics
rather than some identifiable static configuration.

We are deeply enmeshed in a highly recursive phenomenological stochastic
differential equations (as in, e.g., Zhu et al. 2007), but in a dynamic rather than
static manner. The objects of this dynamical system are equivalence classes of
information sources, rather than simple ‘stationary states’ of a dynamical or
reactive chemical system. The necessary conditions of the asymptotic limit
theorems of communication theory have beaten the mathematical thicket back
one layer.

Third, as Champagnat et al. (2006) note, shifts between the quasi-equilibria
of a coevolutionary system can be addressed by the large deviations formalism.
They find that the issue of dynamics drifting away from trajectories predicted
by the canonical equation can be investigated by considering the asymptotic of
the probability of ‘rare events’ for the sample paths of the diffusion.

By ‘rare events’ they mean diffusion paths drifting far away from the di-
rect solutions of the canonical equation. The probability of such rare events is
governed by a large deviation principle: when a critical parameter (designated
ε) goes to zero, the probability that the sample path of the diffusion is close
to a given rare path φ decreases exponentially to 0 with rate I(φ), where the
‘rate function’ I can be expressed in terms of the parameters of the diffusion.
This result, in their view, can be used to study long-time behavior of the dif-
fusion process when there are multiple attractive singularities. Under proper
conditions the most likely path followed by the diffusion when exiting a basin
of attraction is the one minimizing the rate function I over all the appropriate
trajectories. The time needed to exit the basin is of the order exp(V/ε) where
V is a quasi-potential representing the minimum of the rate function I over all
possible trajectories.

An essential fact of large deviations theory is that the rate function I which
Champagnat et al. invoke can almost always be expressed as a kind of entropy,
that is, having the canonical form

I = −
∑
j

Pj log(Pj)

(17)
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for some probability distribution. This result goes under a number of names;
Sanov’s Theorem, Cramer’s Theorem, the Gartner-Ellis Theorem, the Shannon-
McMillan Theorem, and so forth (Dembo and Zeitouni, 1998).

These considerations lead very much in the direction of equation (15), but
now seen as subject to internally-driven large deviations that are themselves
described as information sources, providing K = f(I)-parameters that can trig-
ger punctuated shifts between quasi-stable modes. Thus both external signals,
characterized by the information source Z, and internal ‘ruminations’, charac-
terized by the information source I, can provide K-parameters that serve to
drive the system to different quasi-equilibrium ‘conscious attention states’ in a
highly punctuated manner, if they are of sufficient magnitude to overcome the
topological renormalization ω-constraints described above.

More generally, following the topological arguments of Section 4, setting
equation (15) to zero generates an index theorem (Hazewinkel, 2002), in the
sense of Atiyah and Singer (1963), that relates analytic results – the solutions
to the equations – to an underlying set of topological structures representing
the eigenmodes of a complicated Ω-network geometric operator whose spectrum
represents the possible multiple global broadcast states of the system.

Finally, an essential perspective of the Baars global workspace/global broad-
cast model of animal consciousness is the role of contexts in defining the ‘river-
banks’ between which the stream of individual consciousness flows. The most es-
sential context for the dynamic global broadcasts associated with human patho-
physiology is the embedding cultural milieu that most distinguishes humans
from other animals. Richerson and Boyd (2006), for example, argue persua-
sively that culture is as much a part of human biology as the enamel on our
teeth and bipedal locomotion. That is, culture and human biology are inex-
tricably linked. Pathophysiology involves developmental trajectories driven by
cognitive processes of gene expression (e.g., Wallace and Wallace, 2010) that,
in the sense of figure 2, respond to environmental signals largely defined by cul-
tural context as mitigated by social interaction and the power relations between
groups. Expressing the regularities of sociocultural interaction in terms of the
grammar and syntax of an information source would permit their incorporation
into the dynamics of equation (15) in a natural manner.

Clearly, then, the ‘riverbank’ nature of cultural pattern and power relations
that directs the stream of human pathophysiology arises from the difference
in time scales between normal physiological process and the rate of change of
culture, catastrophic events aside.

The general argument implied by equation (17) can be directly expressed in
terms of an inherently multi-scale therapeutic intervention, or the ‘farming’ of
pathophysiology within the interpenetrating, shifting, global broadcasts of the
mind/body system.
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8 Multiscale therapeutic intervention

8.1 The generalized retina

Cohen (2000) argues for an ‘immunological homunculus’ as the immune system’s
perception of the body as a whole. The particular utility of such a thing, in
his view, is that sensing perturbations in a bodily self-image can serve as an
early warning sign of pending necessary inflammatory response – expressions of
tumorigenesis, acute or chronic infection, parasitization, and the like. Thayer
and Lane (2000) argue something analogous for emotional response as a quick
internal index of larger patterns of threat or opportunity.

It seems obvious that the tunable, shifting global broadcasts of interact-
ing cognitive submodules explored above must also have coherent internal self-
images of the states of the mind/body and its social relationships. Such an
inferred picture might be termed a ‘generalized retina’ (GR). It is possible to
use the responses of the GR to characterize physiological/mental responses to
both illness and to medical interventions used to treat that illness. Illness and
treatment may then come to reflect one another in a hall of mirrors reminiscent
of Jerne’s idiotypic network proposed for the dynamics of the immune system.

Suppose, rather than measuring either stress or cognitive submodule and
broadcast function directly, it is possible to determine the concentrations of
hormones, neurotransmitters, certain cytokines, and other biomarkers, or else
macroscopic behaviors, beliefs, feelings, or other responses associated with the
function of cognitive submodules according to some natural time frame inherent
to the system. This would typically be the circadian cycle in both men and
women, and the hormonal cycle in premenopausal women. Suppose, in the
absence of extraordinary meaningful psychosocial stress, it is possible to measure
a series of n biomarker concentrations, behavioral characteristics, other indices
at time t which we represent as an n-dimensional vector Xt. Suppose it possible
to conduct a number of experiments, and create a regression model so that, in
the absence of perturbation, it becomes possible to write, to first order, the set
of markers at time t + 1 in terms of that at time t using a matrix equation of
the form

Xt+1 ≈ RXt,

(18)

where R is the matrix of regression coefficients, with normalization to a zero
vector of constant terms.

Write a GR response to short-term perturbation as

Xt+1 = (R0 + δRt+1)Xt,
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where δR represents variation of the generalized cognitive self-image about the
basic state R0.

Now impose a Jordan block diagonalization in terms of the matrix of (gener-
ally nonorthogonal) eigenvectors Q0 of some ‘zero reference state’ R0, obtaining,
for an initial condition that is an eigenvector Yt ≡ Yk of R0,

Yt+1 = (J0 + δJt+1)Yk = λkYk + δYt+1 =

λkYk +

n∑
j=1

ajYj ,

(19)

where J0 is a (block) diagonal matrix as above, δJt+1 ≡ Q0δRt+1Q
−1
0 , and

δYt+1 has been expanded in terms of a spectrum of the eigenvectors of R0, with

|aj | � |λk|, |aj+1| � |aj |.

(20)

The essential point is that, provided R0 has been properly tuned, so that
this condition is true, the first few terms in the spectrum of the plieotropic
iteration of the eigenstate will contain almost all of the essential information
about the perturbation, i.e., most of the variance. This is precisely similar to the
detection of color in the optical retina, where three overlapping non-orthogonal
‘eigenmodes’ of response suffice to characterize a vast array of color sensations.
Here, if a concise spectral expansion is possible, a very small number of (typically
nonorthogonal) ‘generalized cognitive eigenmodes’ permit characterization of a
vast range of external perturbations, and rate distortion constraints become very
manageable indeed. Thus GR responses – the spectrum of excited eigenmodes
of R0, provided it is properly tuned – can be a very accurate and precise gage
of environmental perturbation.

The choice of zero reference state R0, the ‘base state’ from which pertur-
bations are measured, is, apparently, a highly nontrivial task, necessitating a
specialized apparatus.

This is no small matter. According to current theory, the adapted human
mind functions through the action and interaction of distinct mental modules
which evolved fairly rapidly to help address special problems of environmental
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and social selection pressure faced by our Pleistocene ancestors (Barkow et al.,
1992). It appears necessary to postulate other physiological and social cognitive
modules. As is well known in computer engineering, calculation by specialized
submodules – numeric processor chips – can be a far more efficient means of
solving particular well-defined classes of problems than direct computation by
a generalized system. It appears, then, that generalized physiological cognition
has evolved specialized submodules to speed the address of certain commonly
recurring challenges. Nunney (1999) has argued that, as a power law of cell
count, specialized subsystems are increasingly required to recognize and redress
tumorigenesis, mechanisms ranging from molecular error-correcting codes, to
programmed cell death, and finally full-blown immune attack.

It seems that identification of the designated normal state of the GR – gener-
alized cognition’s self-image of the body and its social relationships – is difficult,
requiring a dedicated cognitive submodule within overall generalized cognition.
This is essentially because, for the vast majority of information systems, unlike
mechanical systems, there are no restoring springs whose low energy state au-
tomatically identifies equilibrium: relatively speaking, all states of the GR are
‘high energy’ states. That is, active comparison must be made of the state of
the GR with some stored internal reference picture, and a decision made about
whether to reset to zero, which is a cognitive process. The complexity of such a
submodule may also follow something like Nunney’s power law with animal size,
as the overall generalized cognition and its image of the self, become increasingly
complicated with rising number of cells and levels of linked cognition.

Failure of that cognitive submodule can result in identification of an ex-
cited state of the GR as normal, triggering the collective patterns of systemic
activation which, following the argument of Wallace (2004), constitute certain
comorbid mental and chronic physical disorders. This would result in a rela-
tively small number of characteristic eigenforms of comorbidity, which would
typically become more mixed with increasing disorder.

In sum, since such ‘zero mode identification’ (ZMI) is a (presumed) cognitive
submodule of overall generalized cognition, it involves convoluting incoming
‘sensory’ with ‘ongoing’ internal memory data in choosing the zero state, i.e.,
defining R0. The dual information source defined by this cognitive process
can then interact in a punctuated manner with ‘external information sources’
according to the Rate Distortion and related arguments above. From a Rate
Distortion Theorem perspective (Cover and Thomas, 2006), then, those external
information sources literally write a distorted image of themselves onto the ZMI,
often in a punctuated manner: (relatively) sudden onset of a developmental
trajectory to comorbid mental disorders and pathophysiology.

Different systems of external signals – including but not limited to structured
psychosocial stress – will, presumably, write different characteristic images of
themselves onto the ZMI cognitive submodule, i.e., trigger different patterns of
comorbid mental/physical disorder.

A brief reformulation in abstract terms may be of interest. Recall that the
essential characteristic of cognition in this formalism involves a function h which
maps a (convolutional) path x = a0, a1, ..., an, ... onto a member of one of two
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disjoint sets, B0 or B1. Thus respectively, either (1) h(x) ∈ B0, implying no
action taken, or (2), h(x) ∈ B1, and some particular response is chosen from
a large repertoire of possible responses. Some ‘higher order cognitive module’
might be needed to identify what constituted B0, the set of ‘normal’ states.
Again, this is because there is no low energy mode for information systems:
virtually all states are more or less high energy states, and there is no way
to identify a ground state using the physicist’s favorite variational or other
minimization arguments on energy.

Suppose that higher order cognitive module, now recognizable as a kind of
Zero Mode Identification, interacts with an embedding language of structured
psychosocial stress (or other systemic perturbation) and, instantiating a Rate
Distortion image of that embedding stress, begins to include one or more mem-
bers of the set B1 into the set B0. Recurrent ‘hits’ on that aberrant state would
be experienced as episodes of highly structured comorbid mind/body pathology.

Empirical tests of this hypothesis, however, quickly lead again into real-
world regression models involving the interrelations of measurable biomarkers,
beliefs, behaviors, feelings, and so on, requiring formalism much like that used
above. The GR can, then, be viewed as a generic heuristic device typifying such
regression approaches.

The generalized retina is more appropriately characterized as a ‘Rate Dis-
tortion Manifold’, a local projection that, through overlap, has global structure,
much like the tangent planes to a complicated geometric object. Glazebrook
and Wallace (2009a) provide more detailed, indeed cutting-edge, mathemati-
cal treatment. Some thought will show that the GR and the more abstract
Rate Distortion Manifold are explicit examples of the general ‘tuning theorem’
argument of the Mathematical Appendix.

8.2 Therapeutic efficacy

To reiterate, if X represents the information source dual to ‘zero mode identifica-
tion’ in a generalized cognition, and if Z is the information source characterizing
structured psychosocial stress or other noxious embedding context, the mutual
information between them

I(X;Z) = H(X)−H(X|Z)

(21)

serves as a splitting criterion for pairs of linked paths of states.
Suppose it possible to parameterize the coupling between these interacting

information sources by some appropriate index, ω, writing
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I(X;Z) = I[ω],

(22)

with structured psychosocial stress or some other noxious condition as the em-
bedding context.

Socioculturally constructed and structured psychosocial stress or other nox-
ious exposure, in this model having both (generalized) grammar and syntax, can
be viewed as entraining the function of zero mode identification when the cou-
pling with stress exceeds a threshold, following the arguments of Section 4. More
than one threshold appears likely, accounting in a sense for the typically staged
nature of environmentally caused disorders. These should result in a synergistic
– i.e., comorbidly excited – mixed affective, rationally cognitive, psychosocial,
and inflammatory or other physical excited state of otherwise normal response,
and represent the effect of stress on the linked decision processes of various cog-
nitive functions, in particular through the identification of a false ‘zero mode’
of the GR. This is a collective, but highly systematic, ‘tuning failure’ that, in
the Rate Distortion sense, represents a literal image of the structure of imposed
pathogenic context written upon the ability of the GR to characterize a normal
condition of excitation, causing a mixed, shifting, highly dynamic excited state
of chronically comorbid mental and physical disorder.

In this model different eigenmodes Yk of the GR regression model character-
ized by the matrix R0 can be taken to represent the ‘shifting-of-gears’ between
different ‘languages’ defining the sets B0 and B1. That is, different eigenmodes
of the GR would correspond to different required (and possibly mixed), highly
dynamic characteristic systemic responses.

If there is a state (or set of states) Y1 such that R0Y1 = Y1, then the ‘unitary
kernel’ Y1 corresponds to the condition ‘no response required’, the set B0.

Suppose pathology becomes manifest,

R0 → R0 + δR ≡ R̂0,

so that, for example, some chronic excited state becomes the new ‘unitary ker-
nel’, and

Y1 → Ŷ1 6= Y1

R̂0Ŷ1 = Ŷ1.

This could represent chronic inflammation, autoimmune response, persistent
depression/anxiety or HPA axis activation/burnout, and so on.

Medical intervention seeks to induce a sequence of therapeutic counterper-
turbations δTk according to the pattern
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[R̂0 + δT1]Ŷ1 = Y 1,

R̂1 ≡ R̂0 + δT1,

[R̂1 + δT2]Y 1 = Y 2

...

(23)

so that, using an appropriate metric,

Y j → Y1.

(24)

That is, the multilevel, highly dynamic, shifting, tunable system of global
broadcasts –the mind/body system – as monitored by the GR, is driven to its
original condition.

The condition R̂0 → R0 may or may not be met. That is, actual cure may
not be possible, in which case palliation or control is the therapeutic aim.

The essential point is that the pathological state represented by R̂0 and the
sequence of inherently multiscale therapeutic interventions δTk, k = 1, 2, ... are
interactive and reflective, depending on the regression of the set of vectors Y j to
the desired state Y1, much in the same spirit as Jerne’s immunological idiotypic
hall of mirrors.

The therapeutic problem revolves around minimizing the difference between
Y k and Y1 over the course of treatment: that difference represents the inextri-
cable convolution of ‘treatment failure’ with ‘adverse reactions’ to the course of
treatment itself, and ‘failure of compliance’ attributed through social construc-
tion by provider to patient, i.e., failure of the therapeutic alliance.

It should be obvious that the treatment sequence δTk represents a cognitive
path of interventions having, in turn, a dual information source in the sense
previously invoked.

Treatment may, then, interact in the usual Rate Distortion manner with
patterns of structured pathogenic context that are, themselves, signals from
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an embedding information source. Thus treatment failure, adverse reactions,
and patient noncompliance will, of necessity, embody a distorted image of that
context.

In sum, characteristic patterns of treatment failure, adverse reactions, and
patient noncompliance reflecting collapse of the therapeutic alliance, will oc-
cur in virtually all therapeutic interventions – even those acting across scale –
according to the manner in which structured psychosocial stress or other em-
bedding noxious conditions are expressed as an image within the multiscale
treatment process. This would most likely occur in a highly punctuated man-
ner, depending in a quantitative way on the degree of coupling of the three-fold
system of affected individual, patient/provider interaction, and multilevel treat-
ment mode, with that stress or condition.

Given that the principal environment of humans is defined by interaction
with other humans and their socioeconomic institutions, social effects in partic-
ular are likely to be dominant.

9 Discussion and conclusions

A tuning theorem variant of the Shannon Coding Theorem that expresses the
no free lunch restriction allows construction of a broad spectrum of versions of
Bernard Baars’ global workspace/global broadcast model of animal conscious-
ness that apply to many interacting ‘low level’ cognitive biological submodules,
usually having much longer characteristic time constants than the 100ms of
consciousness. Such generalized global broadcasts, via the giant component
linking lower level ‘unconscious’ cognitive modules (and possibly inattentional
blindness, via the no free lunch condition), emerges directly, and the effects
of external signals and internal ‘biological ruminations’ can be incorporated
through standard arguments leading to punctuated threshold detection.

The central conceit leading to this elaborate range of mechanisms is that
the spandrel of crosstalk between ‘unconscious’, lower level, cognitive modules
becomes a sufficient condition for evolutionary exaptation into the arch of global
broadcasts through the information theory chain rule that implies it takes more
metabolic free energy to prevent correlation than to allow it. Such general-
ization of neural consciousness, in terms of tunable, shifting global broadcasts,
seems ubiquitous, as collective phenomena like wound healing and the many
‘psychoneuroimmuno’, gene expression, and other processes imply.

The parallel argument is, of course, that the similar necessary ubiquity of
noise in the transmission of information has been exapted into mechanisms of
stochastic resonance amplification at various scales.

It should be obvious that roughly similar evolutionary exaptations would
be available under a broad variety of astrobiological circumstances, via the sta-
tistical regularities imposed by the asymptotic limit theorems of information
theory.

In sum, since information is a form of free energy, a simple entropy gradient
argument leads to an index theorem in which analytic solutions of an empirical
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equation characterize different possible topological modes of cognitive processes
that are linked at, and across, different scales and levels of hierarchy.

Thus, not only is the living state characterized by cognition at every scale
and level of organization, but also by multiple, shifting, tunable, cooperative
broadcasts analogous to, if more general than, consciousness, at and across
those same structures.

This perspective, of an inherently multiscale and multilevel, interactive, and
highly dynamic system, has profound implications for translational medicine.
From the viewpoint of this study, the solution to the conundrum of figure 1 is to
reconfigure interventions so as to encapsulate more than a single scale or level
of organization. That is, it has now become necessary for the pharmaceutical
industry – and its medical associates – to move beyond small molecule design to
the principled construction of more comprehensive multifactorial or multiscale
interventions designed to affect the interaction of complementary biochemical
and information source networks, driving them from pathological to benign con-
formations, using externally-imposed and cleverly constructed ‘large deviations’
in the sense of equation (17), as expanded in the section on therapeutic inter-
vention.

At the individual level this would appear to require seeking synergistic total
strategies that act across levels of organization, rather than applying a sequence
of scale-limited magic bullets, a difficult tectonic shift in scientific perspective,
research, and practice not likely to prove popular with those embedded in cur-
rent funding streams.

At the population level, where public policy can be most effective, the in-
creasing expense of individual level interventions – even if the rate of decline
of figure 1 can be mitigated by following a multiscale or multilevel perspective
at the individual level – would seem to imply the necessity of again recognizing
what has been known for the last two hundred years, that patterns of health and
illness are determined by living and working conditions and the power relations
between groups (e.g., Kleinman, Das and Lock, 1994; Wallace and Fullilove,
2008; Wallace and Wallace, 2010).
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12 Mathematical Appendix

Messages from an information source, seen as symbols xj from some alphabet,
each having probabilities Pj associated with a random variable X, are ‘encoded’
into the language of a ‘transmission channel’, a random variable Y with symbols
yk, having probabilities Pk, possibly with error. Someone receiving the symbol
yk then retranslates it (without error) into some xk, which may or may not be
the same as the xj that was sent.

More formally, the message sent along the channel is characterized by a
random variable X having the distribution

P (X = xj) = Pj , j = 1, ...,M.

The channel through which the message is sent is characterized by a second
random variable Y having the distribution
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P (Y = yk) = Pk, k = 1, ..., L.

Let the joint probability distribution of X and Y be defined as

P (X = xj , Y = yk) = P (xj , yk) = Pj,k

and the conditional probability of Y given X as

P (Y = yk|X = xj) = P (yk|xj).

Then the Shannon uncertainty of X and Y independently and the joint
uncertainty of X and Y together are defined respectively as

H(X) = −
M∑
j=1

Pj log(Pj)

H(Y ) = −
L∑

k=1

Pk log(Pk)

H(X,Y ) = −
M∑
j=1

L∑
k=1

Pj,k log(Pj,k).

(25)

The conditional uncertainty of Y given X is defined as

H(Y |X) = −
M∑
j=1

L∑
k=1

Pj,k log[P (yk|xj)]

(26)

For any two stochastic variates X and Y , H(Y ) ≥ H(Y |X), as knowledge
of X generally gives some knowledge of Y . Equality occurs only in the case of
stochastic independence.
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Since P (xj , yk) = P (xj)P (yk|xj), we have

H(X|Y ) = H(X,Y )−H(Y )

The information transmitted by translating the variable X into the channel
transmission variable Y – possibly with error – and then retranslating without
error the transmitted Y back into X is defined as

I(X|Y ) ≡ H(X)−H(X|Y ) = H(X) +H(Y )−H(X,Y )

(27)

Again, see Ash (1990), Cover and Thomas (2006) or Khinchin (1957) for
details. The essential point is that if there is no uncertainty in X given the
channel Y , then there is no loss of information through transmission. In general
this will not be true, and herein lies the essence of the theory.

Given a fixed vocabulary for the transmitted variable X, and a fixed vocabu-
lary and probability distribution for the channel Y , we may vary the probability
distribution of X in such a way as to maximize the information sent. The ca-
pacity of the channel is defined as

C ≡ max
P (X)

I(X|Y )

(28)

subject to the subsidiary condition that
∑
P (X) = 1.

The critical trick of the Shannon Coding Theorem for sending a message with
arbitrarily small error along the channel Y at any rate R < C is to encode it in
longer and longer ‘typical’ sequences of the variable X; that is, those sequences
whose distribution of symbols approximates the probability distribution P (X)
above which maximizes C.

If S(n) is the number of such ‘typical’ sequences of length n, then

log[S(n)] ≈ nH(X)

where H(X) is the uncertainty of the stochastic variable defined above. Some
consideration shows that S(n) is much less than the total number of possible
messages of length n. Thus, as n → ∞, only a vanishingly small fraction of
all possible messages is meaningful in this sense. This observation, after some

34

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
12

.6
97

3.
1 

: P
os

te
d 

7 
M

ar
 2

01
2



considerable development, is what allows the Coding Theorem to work so well.
In sum, the prescription is to encode messages in typical sequences, which are
sent at very nearly the capacity of the channel. As the encoded messages become
longer and longer, their maximum possible rate of transmission without error
approaches channel capacity as a limit. Again, the standard references provide
details.

This approach can be, in a sense, inverted to give a ‘tuning theorem’ variant
of the coding theorem.

Telephone lines, optical wave guides and the tenuous plasma through which
a planetary probe transmits data to earth may all be viewed in traditional
information-theoretic terms as a noisy channel around which we must structure
a message so as to attain an optimal error-free transmission rate.

Telephone lines, wave guides and interplanetary plasmas are, relatively speak-
ing, fixed on the timescale of most messages, as are most sociogeographic net-
works. Indeed, the capacity of a channel, is defined by varying the probability
distribution of the ‘message’ process X so as to maximize I(X|Y ).

Suppose there is some message X so critical that its probability distribution
must remain fixed. The trick is to fix the distribution P (x) but modify the
channel – i.e., tune it – so as to maximize I(X|Y ). The dual channel capacity
C∗ can be defined as

C∗ ≡ max
P (Y ),P (Y |X)

I(X|Y )

(29)

But

C∗ = max
P (Y ),P (Y |X)

I(Y |X)

since

I(X|Y ) = H(X) +H(Y )−H(X,Y ) = I(Y |X).

Thus, in a purely formal mathematical sense, the message transmits the
channel, and there will indeed be, according to the Coding Theorem, a channel
distribution P (Y ) which maximizes C∗.

One may do better than this, however, by modifying the channel matrix
P (Y |X). Since

P (yj) =

M∑
i=1

P (xi)P (yj |xi),
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P (Y ) is entirely defined by the channel matrix P (Y |X) for fixed P (X) and

C∗ = max
P (Y ),P (Y |X)

I(Y |X) = max
P (Y |X)

I(Y |X).

Calculating C∗ requires maximizing the complicated expression

I(X|Y ) = H(X) +H(Y )−H(X,Y )

which contains products of terms and their logs, subject to constraints that
the sums of probabilities are 1 and each probability is itself between 0 and 1.
Maximization is done by varying the channel matrix terms P (yj |xi) within the
constraints. This is a difficult problem in nonlinear optimization. However, for
the special case M = L, C∗ may be found by inspection:

If M = L, then choose

P (yj |xi) = δj,i

where δi,j is 1 if i = j and 0 otherwise. For this special case

C∗ ≡ H(X)

with P (yk) = P (xk) for all k. Information is thus transmitted without error
when the channel becomes ‘typical’ with respect to the fixed message distribution
P (X).

If M < L matters reduce to this case, but for L < M information must be
lost, leading to Rate Distortion limitations.

Thus modifying the channel may be a far more efficient means of ensuring
transmission of an important message than encoding that message in a ‘natural’
language which maximizes the rate of transmission of information on a fixed
channel.

We have examined the two limits in which either the distributions of P (Y )
or of P (X) are kept fixed. The first provides the usual Shannon Coding Theo-
rem, and the second a tuning theorem variant, i.e. a tunable, retina-like, Rate
Distortion Manifold, in the sense of Glazebrook and Wallace (2009).
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