15,184 research outputs found

    Correctness of copy in calculi with letrec, case, constructors and por

    Get PDF
    This paper extends the internal frank report 28 as follows: It is shown that for a call-by-need lambda calculus LRCCP-Lambda extending the calculus LRCC-Lambda by por, i.e in a lambda-calculus with letrec, case, constructors, seq and por, copying can be done without restrictions, and also that call-by-need and call-by-name strategies are equivalent w.r.t. contextual equivalence

    Simulation in the call-by-need lambda-calculus with letrec

    Get PDF
    This paper shows the equivalence of applicative similarity and contextual approximation, and hence also of bisimilarity and contextual equivalence, in the deterministic call-by-need lambda calculus with letrec. Bisimilarity simplifies equivalence proofs in the calculus and opens a way for more convenient correctness proofs for program transformations. Although this property may be a natural one to expect, to the best of our knowledge, this paper is the first one providing a proof. The proof technique is to transfer the contextual approximation into Abramsky's lazy lambda calculus by a fully abstract and surjective translation. This also shows that the natural embedding of Abramsky's lazy lambda calculus into the call-by-need lambda calculus with letrec is an isomorphism between the respective term-models.We show that the equivalence property proven in this paper transfers to a call-by-need letrec calculus developed by Ariola and Felleisen

    The call-by-need lambda calculus

    Get PDF

    Simulation in the Call-by-Need Lambda-Calculus with Letrec, Case, Constructors, and Seq

    Full text link
    This paper shows equivalence of several versions of applicative similarity and contextual approximation, and hence also of applicative bisimilarity and contextual equivalence, in LR, the deterministic call-by-need lambda calculus with letrec extended by data constructors, case-expressions and Haskell's seq-operator. LR models an untyped version of the core language of Haskell. The use of bisimilarities simplifies equivalence proofs in calculi and opens a way for more convenient correctness proofs for program transformations. The proof is by a fully abstract and surjective transfer into a call-by-name calculus, which is an extension of Abramsky's lazy lambda calculus. In the latter calculus equivalence of our similarities and contextual approximation can be shown by Howe's method. Similarity is transferred back to LR on the basis of an inductively defined similarity. The translation from the call-by-need letrec calculus into the extended call-by-name lambda calculus is the composition of two translations. The first translation replaces the call-by-need strategy by a call-by-name strategy and its correctness is shown by exploiting infinite trees which emerge by unfolding the letrec expressions. The second translation encodes letrec-expressions by using multi-fixpoint combinators and its correctness is shown syntactically by comparing reductions of both calculi. A further result of this paper is an isomorphism between the mentioned calculi, which is also an identity on letrec-free expressions.Comment: 50 pages, 11 figure

    How to prove similarity a precongruence in non-deterministic call-by-need lambda calculi

    Get PDF
    Extending the method of Howe, we establish a large class of untyped higher-order calculi, in particular such with call-by-need evaluation, where similarity, also called applicative simulation, can be used as a proof tool for showing contextual preorder. The paper also demonstrates that Mann’s approach using an intermediate “approximation” calculus scales up well from a basic call-by-need non-deterministic lambdacalculus to more expressive lambda calculi. I.e., it is demonstrated, that after transferring the contextual preorder of a non-deterministic call-byneed lambda calculus to its corresponding approximation calculus, it is possible to apply Howe’s method to show that similarity is a precongruence. The transfer is not treated in this paper. The paper also proposes an optimization of the similarity-test by cutting off redundant computations. Our results also applies to deterministic or non-deterministic call-by-value lambda-calculi, and improves upon previous work insofar as it is proved that only closed values are required as arguments for similaritytesting instead of all closed expressions

    Call-by-name, Call-by-value, Call-by-need, and the Linear Lambda Calculus

    Get PDF
    Girard described two translations of intuitionistic logic into linear logic, one where A -> B maps to (!A) -o B, and another where it maps to !(A -o B). We detail the action of these translations on terms, and show that the first corresponds to a call-by-name calculus, while the second corresponds to call-by-value. We further show that if the target of the translation is taken to be an affine calculus, where ! controls contraction but weakening is allowed everywhere, then the second translation corresponds to a call-by-need calculus, as recently defined by Ariola, Felleisen, Maraist, Odersky, and Wadler. Thus the different calling mechanisms can be explained in terms of logical translations, bringing them into the scope of the Curry-Howard isomorphism

    Call-by-name, call-by-value, call-by-need and the linear lambda calculus

    Get PDF
    this paper is a minor refinement of one previously presented by Wadler [41,42], which is based on Girard's successor to linear logic, the Logic of Unity [15]. A similar calculus has been devised by Plotkin and Barber [6]. In many presentations of logic a key role is played by the structural rules: contraction provides the only way to duplicate an assumption, while weakening provides the only way to discard one. In linear logic [14], the presence of contraction or weakening is revealed in a formula by the presence of the `of course' connective, written `!'. The Logic of Unity [15] takes this separation one step further by distinguishing linear assumptions, which one cannot contract or weaken, from nonlinear or intuitionistic assumptions, which one can. Corresponding to Girard's first translation we define a mapping ffi from the call-byname to the linear calculus and show that this mapping is sound, in that M \Gamma\Gamma\Gamma\Gamma

    Realizability Interpretation and Normalization of Typed Call-by-Need λ\lambda-calculus With Control

    Get PDF
    We define a variant of realizability where realizers are pairs of a term and a substitution. This variant allows us to prove the normalization of a simply-typed call-by-need \lambda$-$calculus with control due to Ariola et al. Indeed, in such call-by-need calculus, substitutions have to be delayed until knowing if an argument is really needed. In a second step, we extend the proof to a call-by-need \lambda-calculus equipped with a type system equivalent to classical second-order predicate logic, representing one step towards proving the normalization of the call-by-need classical second-order arithmetic introduced by the second author to provide a proof-as-program interpretation of the axiom of dependent choice

    Lazy Evaluation and Delimited Control

    Full text link
    The call-by-need lambda calculus provides an equational framework for reasoning syntactically about lazy evaluation. This paper examines its operational characteristics. By a series of reasoning steps, we systematically unpack the standard-order reduction relation of the calculus and discover a novel abstract machine definition which, like the calculus, goes "under lambdas." We prove that machine evaluation is equivalent to standard-order evaluation. Unlike traditional abstract machines, delimited control plays a significant role in the machine's behavior. In particular, the machine replaces the manipulation of a heap using store-based effects with disciplined management of the evaluation stack using control-based effects. In short, state is replaced with control. To further articulate this observation, we present a simulation of call-by-need in a call-by-value language using delimited control operations
    • 

    corecore