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Abstract. This paper extends the internal frank report 28 as follows:
It is shown that for a call-by-need lambda calculus LRCCPλ extending
the calculus LRCCλ by por, i.e in a lambda-calculus with letrec, case,
constructors, seq and por, copying can be done without restrictions, and
also that call-by-need and call-by-name strategies are equivalent w.r.t.
contextual equivalence.

1 Introduction

This paper has to be read together with the internal report 28 [10]. We repeat
all the definitions, lemmas and theorems, and indicate the differences by hints
and explanations. The main motivation for adding a por to the calculus LRCCλ
was its potential for application in hardware descriptions, in particular an exten-
sion of Lava [3,4,13] to also correctly deal with constructive cycles in sequential
circuits.

1.1 Structure and Result of this Paper

This paper extends the result in [9], where a tiny letrec-calculus LRλ is treated,
and also the extended lambda-calculus in [10], to the calculus LRCCPλ that
also permits por, i.e. a lambda-calculus with letrec, seq, case, constructors, and
por, which is equipped with a normal order reduction and a contextual seman-
tics as definition of equality of expressions. First it defines the infinite trees
corresponding to the unrolling of expressions as in the 111-calculus of [5] also
adding constructors, case, seq and por. Then reduction on the infinite trees is
defined, where the basic rules are the corresponding rules for (beta), seq, case
and por, and the rule ∞−→ is a generalization of the (parallel) 1-reduction (see
[2]); it can also be seen as an infinite development (see also [5]), however, the
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tree structure is a bit more general for LRCCPλ. It is shown that convergence of
expressions in the call-by-need lambda-calculus, as well as for the call-by-name
calculus is equivalent to convergence of a normal-order-variant of (Tr)-reduction,
i.e. (betaTr), (seqTr), (caseTr) and (porTr) on the corresponding infinite trees.
An essential step is the standardization lemma for

∞,∗−−→-reductions, shown in the
appendix Finally, as a corollary we obtain the correctness of a general copy-rule
in LRCCPλ (see Theorem 4.10).
It is also shown as a spin-off that (cp) and (lll)-rules of the calculus are correct
(see Theorems 4.10, 4.11); the proof of correctness of the other normal-order
rules (in any context) is omitted, but can be done in an analogous way as in
[11]. The correctness of the (por)-rules is proved in the internal report [12].
Our results imply that our calculus LRCCPλ together with its contextual equiv-
alence is equivalent to the theory of the extended lambda-calculi with case and
constructors seq and por, but without letrec, where also call-by-name may be
used.
As a summary, we have demonstrated that going via a calculus on infinite trees
is a successful and extendible method to resolve questions concerning correctness
of copy-related transformations in call-by-need letrec-calculi. We are confident
that our purely operational method can be adapted to extensions of the calculi
by non-deterministic operators like choice and amb to prove correctness of copy-
related transformations, i.e. copy of deterministic subterms for which currently
there is no other proof method.

2 Syntax and Reductions of the Functional Core
Language LRCCPλ

2.1 The Language and the Reduction Rules

We define the calculus LRCCPλ consisting of a language L(LRCCPλ) and its
reduction rules, presented in this section, the normal order reduction strategy
and contextual equivalence. There is a set K of constructors that have a built-in
arity. We assume that True, False ∈ K are 0-ary constructors. The syntax for
expressions E is as follows:

E ::= V | (E1 E2) | (λ V.E) | (letrec V1 = E1, . . . , Vn = En in E)
(c E1 . . . Ear(c)) | (case E of (c V1 . . . Var(c))→ E) . . .
(seq E E) | (por E E)

where E,Ei are expressions and V, Vi are variables, and c means a construc-
tor. The expressions (E1 E2), (λV.E), (letrec V1 = E1, . . . , Vn = En in E),
(c s1 . . . , sar(c)), (case . . .), (seq s t), and (por E E) are called application,
abstraction, letrec-expression, constructor application, case-expression, seq-
expression, and por-expression, respectively.
All letrec-expressions obey the following conditions: The variables Vi in the
bindings are all distinct. We also assume that the bindings in letrec are commu-
tative, i.e. letrecs with bindings interchanged are considered to be syntactically
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equivalent. The bindings by a letrec may be recursive: I.e., the scope of xj in
(letrec x1 = E1, . . . , xj = Ej , . . . , xn = tn in E) is E and all expressions Ei for
i = 1, . . . , n. We also assume that the variables in a case-pattern are disjoint and
that their scope is within the continuation expression. This fixes the notions of
closed, open expressions and α-renamings. Free and bound variables in expres-
sions are defined using the usual conventions. Variable binding primitives are λ
and letrec. The set of free variables in an expression t is denoted as FV (t). For
simplicity we use the distinct variable convention: I.e., all bound variables in ex-
pressions are assumed to be distinct, and free variables are distinct from bound
variables. The reduction rules are assumed to implicitly rename bound variables
in the result by α-renaming if necessary to obey this convention. Note that this
is only necessary for the copy and the case-rules (cp) and (case) (see below). We
omit parentheses in nested applications: (s1 . . . sn) denotes (. . . (s1 s2) . . . sn).
The set of closed LRCCPλ-expressions is denoted as LRCCPλ0.
Sometimes we abbreviate the notation of letrec-expression (letrec x1 =
E1, . . . , xn = En in E), as (letrec Env in E), where Env ≡ {x1 = E1, . . . , xn =
En}. This will also be used freely for parts of the bindings. The set of variables
bound in an environment Env is denoted as LV (Env).
In the following we define different context classes and contexts. To visually
distinguish context classes from individual contexts, we use different text styles.
The class C of all contexts is the set of all expressions C from LRCCPλ, where
the symbol [·], the hole, is a predefined context that is syntactically treated as an
atomic expression, such that [·] occurs exactly once in C. Given a term t and a
context C, we will write C[t] for the expression constructed from C by plugging
t into the hole, i.e, by replacing [·] in C by t, where this replacement is meant
syntactically, i.e., a variable capture is permitted.

Definition 2.1. A value is an abstraction or a constructor-application. We de-
note values by the letters v, w. A weak head normal form (WHNF) is either a
value, or an expression (letrec Env in v), where v is a value.

The reduction rules in figure 1 are defined more liberally than necessary for the
normal order reduction, in order to permit an easy use as transformations.

Definition 2.2 (Reduction Rules of the Calculus LRCCPλ). The (base)
reduction rules for the calculus and language LRCCPλ are defined in figure 1.
The union of (llet-in) and (llet-e) is called (llet), the union of (cp-in) and (cp-e)
is called (cp), the union of (porlT), (porrT), (porlF), (porrF) is called (por),
and the union of (llet), (lapp), (lseq), (lcase), (lporl) and (lporr) is called (lll).
Reductions (and transformations) are denoted using an arrow with super and/or
subscripts: e.g. llet−−→. To explicitly state the context in which a particular reduc-
tion is executed we annotate the reduction arrow with the context in which the
reduction takes place. If no confusion arises, we omit the context at the arrow.
The redex of a reduction is the term as given on the left side of a reduction rule.
Transitive closure of reductions is denoted by a +, reflexive transitive closure by
a ∗. E.g. ∗−→ is the reflexive, transitive closure of →.
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(lbeta) ((λx.s) r) → (letrec x = r in s)
(cp-in) (letrec x = s,Env in C[x]) → (letrec x = s,Env in C[s])

where s is an abstraction or a variable or a cv-expression
(cp-e) (letrec x = s,Env , y = C[x] in r) → (letrec x = s,Env , y = C[s] in r)

where s is an abstraction or a variable
(case) (case (c s1 . . . sn) of . . . (c x1 . . . xn) → t . . .)

→ (letrec x1 = s1, . . . , xn = sn in t)
(abs) (letrec x = (c s1 . . . sn),Env in t) →

(letrec x = (c x1 . . . xn), x1 = s1, . . . , xn = sn,Env in t)
if (c s1 . . . sn) is not a cv-expression

(seq) (seq s t) → t if s is a value
(porlT) (por True t) → True

(porrT) (por t True) → True

(porlF) (por False t) → t
(porrF) (por t False) → t
(llet-in) (letrec Env1 in (letrec Env2 in r))

→ (letrec Env1,Env2 in r)
(llet-e) (letrec Env1, x = (letrec Env2 in sx) in r)

→ (letrec Env1,Env2, x = sx in r)
(lapp) ((letrec Env in t) s) → (letrec Env in (t s))
(lseq) (seq (letrec Env in s) t) → (letrec Env in (seq s t))
(lporl) (por (letrec Env in s) t) → (letrec Env in (por s t))
(lporr) (por s (letrec Env in t)) → (letrec Env in (por s t))
(lcase) (case (letrec Env in s) of alts) → (letrec Env in (case s of alts))

Fig. 1. Reduction Rules for Call-By-Need

A cv-expression is a constructor-application of the form (c x1 . . . xn), where all
xi are variables.

2.2 The Unwind Algorithm

The following labeling algorithm (unwind) will detect the position to which a
reduction rule will be applied according to normal order. It uses three labels:
S, T, V , where T means reduction of the top term, S means reduction of a sub-
term, and V labels already visited subexpressions, and S ∨ T matches T as well
as S. The algorithm does not look into S-labeled letrec-expressions. We also
denote the fresh V only in the result of the unwind-steps, and do not indicate
the already existing V -labels. For a term s the labeling algorithm starts with
sT , where no subexpression in s is labeled. The rules of the labeling algorithm
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are:

(letrec Env in t)T → (letrec Env in tS)V

(s t)S∨T → (sS t)V

(seq s t)S∨T → (seq sS t)V

(por s t)S∨T → (por sS t)V (non-deterministically)
(por s t)S∨T → (por s tS)V (non-deterministically)
(case s of alts)S∨T → (case sS of alts)V

(letrec x = s,Env in C[xS ]) → (letrec x = sS ,Env in C[xV ])
if s was not labeled

(letrec x = s, y = C[xS ],Env in t)→ (letrec x = sS , y = C[xV ],Env in t)
if s was not labeled and if C[x] 6= x

If unwind tries to label an already labelled subterm, then it fails. Otherwise,
and if no more rule is applicable, it succeeds. In any case, unwind terminates.
For example for (letrec x = x in x)T it will stop with (letrec x = xS in xV )V .
Note that the final labelling in case of success is not unique due to the por-rules.

Definition 2.3 (Normal Order Reduction). A normal order reduction is
defined as the reduction at the position of the final label S, or one position higher
up, or copying the term from the final position to the position before, as indicated
in figure 2. A normal-order reduction step is denoted as n−→. Note that normal
order reduction is not unique.

Definition 2.4. A normal order reduction sequence is called an (normal-order)
evaluation if the last term is a WHNF. Otherwise, i.e. if the normal order re-
duction sequence is non-terminating, or if the last term is not a WHNF, but has
no further normal order reduction, then we say that it is a failing normal order
reduction sequence.
For a term t, we write t⇓ iff there is an evaluation starting from t. We call this
the evaluation of t. If t⇓, we also say that t is terminating. Otherwise, if there
is no evaluation of t, we write t⇑.

Definition 2.5 (contextual preorder and equivalence). Let s, t be terms.
Then:

s ≤c t iff ∀C[·] : C[s]⇓ ⇒ C[t]⇓
s ∼c t iff s ≤c t ∧ t ≤c s

A complete treatment of the calculus with por is future work. In the report [12],

there is a proof of correctness of the por-rules: If s
(por)−−−→ t, then s ∼c t. In report

[12] there is also a sketch and an argument that all reductions rules used in any
context, are correct.
Our contextual equivalence is w.r.t. may-convergence, which is no restriction,
since we will argue below that must-convergence is identical to may-convergence:
A term t must-converges: t⇓must , iff ∀t′ : t

∗−→ t′ =⇒ t′⇓. It is an easy con-
sequence of the correctness of all the rules (see above), that may- and must-
convergence are equivalent in our calculus, and hence that contextual equiva-
lence based on a conjunction of may- and must-convergence, is the same as our
contextual equivalence.
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(lbeta) C[((λx.s)S r)] → C[(letrec x = r in s)]
(cp-in) (letrec x = sS ,Env in C[xV ]) → (letrec x = s,Env in C[s])

where s is an abstraction or a variable or a cv-expression
(cp-e) (letrec x = sS ,Env , y = C[xV ] in r) → (letrec x = s,Env , y = C[s] in r)

where s is an abstraction or a variable or a cv-expression
(case) C[(case (c s1 . . . sn)S of . . . (c x1 . . . xn) → t) . . .]

→ C[(letrec x1 = s1, . . . , xn = sn in t)]
(abs) (letrec x = (c s1 . . . sn)S ,Env in t) →

(letrec x = (c x1 . . . xn), x1 = s1, . . . , xn = sn,Env in t)
(seq) C[(seq sS t)] → C[t] if s is a value
(porlT) (por TrueS t) → True

(porrT) (por t TrueS) → True

(porlF) (por FalseS t) → t
(porrF) (por t FalseS) → t
(llet-in) (letrec Env1 in (letrec Env2 in r)S)

→ (letrec Env1,Env2 in r)
(llet-e) (letrec Env1, x = (letrec Env2 in sx)S in r)

→ (letrec Env1,Env2, x = sx in r)
(lapp) C[((letrec Env in t)S s)] → C[(letrec Env in (t s))]
(lseq) C[(seq (letrec Env in s)S t)] → C[(letrec Env in (seq s t))]
(lporl) (por (letrec Env in s)S t) → (letrec Env in (por s t))
(lporr) (por s (letrec Env in t)S) → (letrec Env in (por s t))
(lcase) C[(case (letrec Env in s)S of alts)] → C[(letrec Env in (case s of alts))]

Fig. 2. Normal-Order Reduction Rules

3 Reductions on Trees

In the following we use “expression” for finite expressions including letrec, and
“tree” for the finite or infinite trees, which can co-inductively be defined like
LRλ-expressions, but do not contain letrec-expressions.
The infinite tree corresponding to an expression is intended to be the letrec-
unfolding of the expression with the extra condition that cyclic variable chains
lead to local nontermination, represented by the symbol ⊥. This corresponds to
the infinite trees in the 111-variant of the calculus in [5]. A rigorous definition
is as follows, where we use the explicit binary application operator @, since it is
easier to explain, but stick to the common notation in examples.

Definition 3.1. Given an expression t, the infinite tree IT (t) of t is defined by
giving an algorithm to compute for every position p the label of the infinite tree
at position p. The computed label for the position ε is defined in figure 3.
In all cases not mentioned in figure 3, the result is undefined (and also not
necessary). The equivalence of trees is syntactic, where α-equal trees are assumed
to be equivalent. A tree of the form λx.s or (c s1 . . . sn) is called a value.
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C[(@ s t)|ε] 7→ @
C[(case . . .)|ε] 7→ case

C[(seq s t)|ε] 7→ seq

C[(por s t)|ε] 7→ por

C[(c s1 . . . sn)|ε] 7→ c
C[(λx.s)|ε] 7→ λx
C[x|ε] 7→ x if x is a free or a lambda-bound variable

If the position ε hits the same (let-bound) variable twice, using the rules below, then
the result is ⊥. The general case:

C[(λx.s)|1.p] → C[λx.(s|p)]
C[(@ s t)|1.p] → C[(@ s|p t)]
C[(@ s t)|2.p] → C[(@ s t|p)]
C[(seq s t)|1.p] → C[(seq s|p t)]
C[(seq s t)|2.p] → C[(seq s t|p)]
C[(por s t)|1.p] → C[(por s|p t)]
C[(por s t)|2.p] → C[(por s t|p)]
C[(case s of alt1 . . . altn)|1.p] → C[(case s|p of alt1 . . . altn)]
C[(case s of alt1 . . . altn)|i.p] → C[(case s ofalt1 . . . alt i|p . . . altn)]
C[. . . (c . . .) → s)|1.p . . .] → C[. . . (c . . .) → s|1.p) . . .]
C[(c s1 . . . sn))|i.p] → C[(c s1 . . . si|p . . . sn)]
C[(letrec Env in r)|p] → C[(letrec Env in r|p)]
C1[(letrec x = s,Env in C2[x|p])] → C1[(letrec x = s|p,Env in C2[x])]
C1[(letrec x = s, y = C2[x|p],Env in r)]

→ C1[(letrec x = s|p, y = C2[x],Env in r)]

Fig. 3. Infinite tree construction from positions

Example 3.2. The expression letrec x = x, y = (λz.z) x y in y has the
corresponding tree ((λz.z) ⊥ ((λz.z) ⊥ ((λz.z) ⊥ . . .))).

Definition 3.3. Reduction contexts R for (infinite) trees are defined by R ::=
[·] | (@ R E) | (case R alts) | (seq R E) | (por R E) | (por E R), where E
means a tree.

Lemma 3.4. Let s, t be expressions and C be a context. Then IT (s) = IT (t)⇒
IT (C[s]) = IT (C[t]).

Lemma 3.5. Let s, t be expressions and s → t by a rule (cp) or (lll). Then
IT (s) = IT (t).
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Definition 3.6. The reduction rules on trees are allowed in any tree context
and are as follows:

(betaTr) ((λx.s) r)→ s[r/x]
(seqTr) (seq s t) → t if s is a value
(caseTr) (case (c s1 . . . sn) of . . . (c x1 . . . xn)→ s . . .) → s[s1/x1, . . . , sn/xn]
(porlTr) (por True t) → True
(porrTr) (por t True) → True
(porlFTr) (por False t) → t
(porrFTr) (por t False) → t

Let (porTr) be the union of the rules (porlTr), (porrTr), (porlFTr), (porrFTr).
If a tree-reduction rule is applied within an R-context, we call it an R-reduction
on trees. The redex is the corresponding expression that is reduced in one of the
rules above. A sequence of R-reductions of T that terminates with a value tree
is called evaluation. If T has an evaluation, then we also say T converges and
denote this as T⇓. Note that the R-reduction is not unique.

The (betaTr) as a reduction may modify infinitely many positions, since there
may be infinitely many positions of the variable x. E.g. a top-level (betaTr) of
IT ((λx.(letrec z = (z x) in z)) r) = (λx.((. . . (. . . x) x) x)) r modifies the
infinite number of occurrences of x. Further note that (betaTr) does not overlap
with itself, where we ignore overlaps within the meta-variables s, r.

Lemma 3.7. Let C[(por s t)] be a tree. If different rules can be applied to the
por-expression, then the result is identical. This means that (porTr) is determin-
istic as a reduction rule.

Proof. The different possibilities are the Boolean combinations of the arguments:
(por True True) results in True; (por False False), (por True False) and
(por False True) result in False.

The non-determinism inherent in the R-reduction is only due to reduction at
independent positions within different arguments of a por-expression.

Lemma 3.8. Let s be an expression and let IT (s) be a value tree. Then s⇓.

We will use a variant of infinite outside-in developments [2,5] as a reduction on
trees that may reduce infinitely many redexes in one step. For a more detailed
definition, in particular concerning the labeling, see [9].

Definition 3.9. For trees S, T , we define the reduction S
∞,a−−→ T as follows.

We mark a possibly infinite subset of all a-redexes in S for one reduction type
a ∈ {(betaTr), (caseTr), (seqTr), (porTr)}, say with a †. The reduction constructs
a new infinite tree top-down by iteratedly using labelled reduction, where the label
of the redex is removed before the reduction. If the reduction does not terminate
for a subtree at the top level of the subtree, then this subtree is the constant ⊥
in the result. This recursively defines the result tree top-down.
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Sometimes we omit the reduction rule type a, if it is not important, and write
only ∞−→. We write T⇓(∞) if T

∞,∗−−→ T ′, where T ′ is a value tree.

The reduction S
∀,∞,a−−−−→ T is defined as the specific S

∞−→ T -reduction, if all
a-redexes in S are labeled.

Note that even for a tree with only two marked redexes, it is possible that after
the first reduction, infinitely many redexes are labeled.

Example 3.10. We give two examples for a ∞−→-reduction:

– t = (λz.letrec y = λu.u, x = (z (y y) x) in x). The infinite tree IT (t) is
like an infinite list, descending to the right, with elements ((λu.u) λu.u). The
∞-reduction may label any subset of these redexes, even infinitely many, and
then reduce them by (betaTr).

– t = (letrec x = λy.x (λu.u) in x) has the infinite tree
(λy.(λy.(λy. . . .) (λu.u) (λu.u)) (λu.u)) which, depending on the labeling,
may reduce to itself, or, if all redexes are labeled, it will reduce to ⊥, i.e.,
t
∀,∞−−−→ ⊥.

Lemma 3.11. For all trees S, R, T and reduction types a: if S
∞,a−−→ R where

the set of a-redex positions is MR, and S
∞,a−−→ T , where the the set of a-redex

positions is MS, and MS ⊆ MR, then also T
∞,a−−→ R. A special case is that

S
∀,∞,a−−−−→ R, and S

∞,a−−→ T imply that T
∞,a−−→ R.

S

MR,∞,a

��

MS ,∞,a // T

∞,a
xxp p p p p p p S

∀,∞,a

��

∞,a // T

∞,a
xxp p p p p p p

R R

Proof. The argument is that we can mark the a-redexes in S that are not reduced
in S

MS ,∞,a−−−−−→ T . Reduce all MR-labeled redexes in the reduction T
∞,a−−→ R.

In the appendix it is shown:

Theorem 3.12 (Standardization for tree-reduction). Let S be a tree.
Then S⇓(∞) implies S⇓.

4 Properties of Call-by-Need Convergence

4.1 Call-by-Need Convergence Implies Infinite Tree Convergence

Lemma 4.1. If s
a−→ t for two expressions s, t and a ∈

{(lbeta), (seq), (case), (por)} then IT (s)
∞,a′

−−−→ IT (t) for the tree reduction
type a′ corresponding to a.

Proof. We label every redex of IT (t) that is derived from the redex of s
a−→ t.

This is obvious for a por-redex.

Proposition 4.2. Let t be an expression. Then t⇓ ⇒ IT (t)⇓.
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4.2 Infinite Tree Convergence Implies Call-by-Need Convergence

Now we show the harder part of the desired equivalence in a series of lemmas.

Lemma 4.3. For every reduction possibility S1
R←− T

∞−→ S2, either S1
∞−→ S2

or there is some T ′ with S1
∞−→ T ′ R←− S2. I.e. we have the following forking

diagrams for trees between an R-reduction and an ∞−→-reduction:

T
∞ //

R
��

S2

R
���
�
� T

∞ //

R
��

S2

S1
∞ //___ T ′ S1

∞

>>}
}

}
}

Proof. This follows by checking the overlaps of ∞−→ with R-reductions. Note that
if the type of the ∞−→ and R−→ reductions are different, then the first diagram
applies.

Lemma 4.4. Let T be a tree such that there is an R-evaluation of length n, and
let S be a tree with T

∞−→ S. Then S has an R-evaluation of length ≤ n.

Proof. Follows from Lemma 4.3 by induction.

Lemma 4.5. Let t be a term and let T := IT (t) a′

−→ T ′ be an R-reduction
with a′ ∈ {(betaTr), (seqTr), (caseTr), (porTr)} Then there is an expression t′, a
reduction t

n,∗−−→ t′ using (lll), (cp) and (abs)-reductions, an expression t′′ with
t′

n,a−−→ t′′, where a is the expression reduction corresponding to a, such that there

is a reduction T ′ ∞,a′

−−−→ IT (t′′).

t
IT(·) //

n,(cp)∨(lll)∨(abs),∗
���
�
� T

R,a′

��
∞,a′

ww

Q O L G
4
�



wro

t′

IT(·)
77nnnnnnnn

n,a

���
�
� T ′

∞,a′

���
�
�

t′′
IT(·) //______ IT (t′′)

Proof. The expressions t′, t′′ are constructed as follows: t′ is the resulting term
from a maximal normal-order reduction of t consisting only of (cp), (lll) and

(abs)-reductions. It is clear that such a sequence of
(cp)∨(lll)∨(abs),n−−−−−−−−−−−→-reductions

is terminating. Then IT (t) = IT (t′) by Lemma 3.5. The unique normal-order

(a)-redex in t′ must correspond to T
R,a′

−−−→ T ′ and is used for the reduction
t′

n,a−−→ t′′. Note that the (a)-redex in t′ may correspond to infinitely many

redexes in T . Lemma 4.1 shows that there is a reduction T
∞,a′

−−−→ IT (t′′), and

Lemma 3.11 shows that also T ′ ∞,a′

−−−→ IT (t′′).
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Proposition 4.6. Let t be an expression such that IT (t)⇓. Then t⇓.

Proof. The precondition IT (t)⇓ and the Standardization Theorem 3.12 imply
that there is an R-evaluation of T to a value tree. The base case, where no R-

reductions are necessary is treated in Lemma 3.8. In the general case, let T
a′

−→ T ′

be the unique first R-reduction of a single redex. Lemma 4.5 shows that there

are expressions t′, t′′ with t
n,(cp)∨(lll)∨(abs),∗−−−−−−−−−−−−−→ t′

n,lbeta−−−−→ t′′, and T ′ ∞−→ IT (t′′).
Lemma 4.4 shows that the number of R-reductions of IT (t′′) to a value tree
is strictly smaller than the number of R-reductions of T to a value. Hence we
can use induction on this length and obtain a normal-order reduction of t to a
WHNF.

Convergence is equivalent for a term and its corresponding infinite tree:

Theorem 4.7. Let t be an expression. Then t⇓ iff IT (t)⇓.

Proof. This follows from Propositions 4.2 and 4.6.

Definition 4.8. Let the generalized copy rule be:
(gcp) C1[letrec x = r . . . C2[x] . . .]→ C1[letrec x = r . . . C2[r] . . .]

This is just like the rule (cp), but all kinds of terms r can be copied, not only
abstractions. Obviously the following holds:

Lemma 4.9. If s
gcp−−→ t, then IT (s) = IT (t)

Theorem 4.10. Let s, t be expressions with s
gcp−−→ t Then s ∼c t.

Proof. Lemma 3.4 shows that it is sufficient to show equivalence of termination
of s, t. Lemma 4.9 implies IT (s) = IT (t). Hence equivalence of termination
follows from Theorem 4.7.

Theorem 4.11. Let s, t be expressions with s
lll−→ t or s

abs−−→ t Then s ∼c t.

Proof. Follows in the same way as in the proof of Theorem 4.10 using Lemma
3.5.

5 Relation Between Call-By-Name and Call-By-Need

For the same language we now treat a call-by-name variant of the reduction
strategy using beta-reduction instead of the rule (lbeta) that respects sharing,
and also a substituting case as well as a different (cp) and omitting the (abs)-rule.
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Definition 5.1. The call-by-name normal-order reduction is defined by using
the (lll)-rules and the (seq)-rule and the following modified rules in the call-by-
need normal-order reduction as follows:

(beta) ((λx.s)S r)→ s[r/x]
(cpn-in) (letrec x = sS ,Env in C[xV ])→ (letrec x = s,Env in C[s])

where s is an abstraction or a variable
or a constructor-application

(cpn-e) (letrec x = sS ,Env , y = C[xV ] in r)
→ (letrec x = s,Env , y = C[s] in r)

where s is an abstraction or a variable
or a constructor-application

(casen) (case (c s1 . . . sn)S of . . . (c x1 . . . xn)→ t) . . .
→ s[s1/x1, . . . , sn/xn]

where the same labelling and redex is used. Let (cpn) be the union of (cpn-e)
and (cpn-in). We denote the reduction as name−−−→, the corresponding call-by-name
convergence of a term t as t⇓(name), and the corresponding contextual preorder
and equivalence as ≤c,name and ∼c,name , respectively.

5.1 Call-by-Name Convergence Implies Infinite Tree Convergence

Lemma 5.2. Let a ∈ {(beta), (casen)}, and a′ ∈ {(betaTr), (caseTr)} be the

corresponding tree-reduction. If s
a−→ t for two expressions s, t, then IT (s)

∞,a′

−−−→
IT (t).

Proposition 5.3. Let t be an expression. Then t⇓(name)⇒ IT (t)⇓.

Proof. This follows from Lemma 5.2 by induction on the length of the call-by-
name evaluation of t, from Lemma 3.5 using the standardization theorem 3.12
and from the fact that a WHNF has a value tree as corresponding infinite tree.

5.2 Infinite Tree Convergence Implies Call-by-Name Convergence

Now we show the desired implication also for call-by-name.

Lemma 5.4. Let t be a term, a ∈ {(beta), (casen), (seq), (por)}, and let a′ ∈
{(betaTr), (caseTr), (seqTr), (porTr)} be the corresponding tree reduction. Let

T := IT (t)
(a′)−−→ T ′ be an R-reduction. Then there is an expression t′, a reduc-

tion t
n,∗−−→ t′ using (lll) and (cpn)-reductions, an expression t′′ with t′

name,a−−−−−→ t′′,
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such that there is a reduction T ′ ∞,a′

−−−→ IT (t′′).

t
IT(·) //

n,(cpn)∨(lll),∗
���
�
� T

R,a′

��
∞,a′

ww

Q O L G
4
�



wro

t′

IT(·)
77nnnnnnnn

name,a

���
�
� T ′

∞,a′

���
�
�

t′′
IT(·) //______ IT (t′′)

Proof. The expressions t′, t′′ are constructed as follows: t′ is the resulting term
from a maximal normal-order reduction consisting only of (cpn) and (lll)-

reductions. It is clear that such a sequence of
(cpn)∨(lll),n−−−−−−−−→-reductions is termi-

nating. Then IT (t) = IT (t′) by Lemma 3.5. The unique normal-order (a)-redex

in t′ corresponding to T
a′

−→ T ′ is used for the reduction t′
name,a−−−−−→ t′′. Note that

the normal-order a-redex in t′ may correspond to infinitely many a′-redexes in

T . Lemma 5.2 shows that there is a reduction T
∞,a′

−−−→ IT (t′′), and Lemma 3.11

shows that also T ′ ∞,a′

−−−→ IT (t′′).

Proposition 5.5. Let t be an expression such that IT (t)⇓. Then t⇓(name).

Proof. The precondition IT (t)⇓ means that there is an R-evaluation of T :=
IT (t) to a value tree. The base case, where no R-reductions are necessary

is treated in Lemma 3.8. In the general case, let T
a′

−→ T ′ with a′ ∈
{(betaTr), (caseTr), (seqTr), (porTr)} be the unique first R-reduction of a sin-

gle redex. Lemma 5.4 shows that there are expressions t′, t′′ with t
n,(cpn)∨(lll),∗−−−−−−−−−→

t′
name,a−−−−−→ t′′, and T ′ ∞,a′

−−−→ IT (t′′). Lemma 4.4 shows that the number of R-
reductions of IT (t′′) to a value tree is strictly smaller than the number of R-
reductions of T to a value. Hence we can use induction on this length and obtain
a call-by-name normal-order reduction of t to a WHNF.

Now we can show that call-by-name convergence for a term is equivalent to
convergence of its corresponding infinite tree.

Theorem 5.6. Let t be an expression. Then t⇓(name) iff IT (t)⇓.

Proof. Follows from Propositions 5.3 and 5.5.

The strategies call-by-need and call-by-name are equivalent:

Theorem 5.7. The contextual preorders for call-by-need and call-by-name are
equivalent.

Proof. This follows from Theorems 4.7 and 5.6.
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6 Conclusion

We demonstrated the proof method via infinite trees by showing correctness of
unrestricted copy-reductions and the equivalence of call-by-name and call-by-
need for a deterministic letrec-calculus LRCCPλ with case, constructors, seq
and parallel or.
For non-deterministic calculi like [6,7,8] we plan to extend the method to show
correctness of the copy-reduction for deterministic subexpressions, which appears
to be a hard obstacle for other methods.
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A Labeled Reduction

We define two variants of the notion of labeled reduction for trees. Labelled
reduction is used to identify correspondences of positions during a reduction
step. It will be used in two variants, the joining variant for the inheritance of
positions during reductions and the consuming one for a reduction that is similar
to a development: Some redexes are marked at the start of the reduction process,
and all the labeled redexes have to be reduced.

Definition A.1 (labeled reduction of trees). First we define joining labeled
reduction for sets of labels.
Let S be a tree and assume there are sets of labels at certain (subexpression-)
positions of S. We can assume that every position is labeled, perhaps with an

empty set. Let T be a tree with S
(betaTr)−−−−−→ T , and assume that the reduction is

S = C[(λx.r) s]→ C[r[s/x]]. Then the labels in the result are as follows:

– label sets within C are unchanged.
– label sets properly within s are copied to all occurrences of s in the result.
– If r = x, then ((λx.xA)B sC)D → r[s/x]A∪B∪C∪D.
– If r 6= x, label sets of positions properly within r and not at x remain un-

changed.
– If r 6= x, the label sets of the new occurrences of sB in C[r[s/x]] are as fol-

lows: For every occurrence of xA in r the new label set of the new occurrence
of s is A ∪B.

– If r 6= x, the new label set of r[s/x] is computed as follows: ((λx.rA)B s)C →
r[s/x]A∪B∪C .

In an analogous way the inheritance for the case and seq-rule are defined; we
make only the redex-case explicit:
(case (c s1 . . . sn)A of . . . ((c x1 . . . xn) → tB) . . .)C

→ t[s1/x1, . . . , sn/xn]A∪B∪C , where in the case that t is a variable
xi, the label of respective si is also joined.
(seq sA tB)C → tB∪C if s is a value. Here the label of s is not inherited,
since s is discarded after evaluation.

The consuming labeled reduction is like the joining variant, and can be derived
by removing the label of the redex before the reduction and then using the joining
variant.
We will use the consuming labeled reduction below for one label † in the devel-
opments. In the case of only one label-value it is usually assumed that empty
sets mean no label, and a non-empty set, which must be a singleton in this case,
means that the position is labeled.

The labelled reduction in the True-case of por-reductions must be specified, since
these are the only rules, where on the right hand side a symbol is used where the
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predecessor is ambiguous: We assume that the following labelling inheritance is
used:

(por TrueA TrueB)C → TrueA∪B∪C

(por TrueA t)C → TrueA∪C if t 6= True
(por t TrueB)C → TrueB∪C if t 6= True
(por FalseA FalseB)C → FalseC

(por FalseA tB)C → tB∪C

(por tA FalseB)C → tA∪C

B Standardization of Tree Reduction

Definition B.1. We call a set M of positions prefix-closed, iff for every p ∈M ,
and prefix q of p, also q ∈M . If M is a finite prefix-closed set of positions of the
tree T , and for every p ∈ M , we have T|p 6= ⊥, then we say M is admissible,
and call this set an FAPC-set (finite admissible prefixed-closed) of positions of
T .

In the following we use sets of positions in terms.

Lemma B.2. Let S, T be trees with S
∞−→ T , and let MT be an FAPC-set of

positions of T . Then the set of positions MS which are mapped by joining labeled
reduction to positions in MT is also an FAPC-set of positions of S.

Proof. First we analyze the transport of positions by the reduction S
∞−→ T

using joining labeled reduction. For the reduction S
∞−→ T , there are some †-

labeled positions in S, which are exactly the redexes that are to be reduced.
We determine the new position(s) in T of every position from S. This has to be
done by looking at the construction of the results of the reduction as explained
in Definition 3.9. We will use joining labeled reduction to trace the positions.
At the start of the construction, we assume that all S-positions are labeled
with a singleton set, containing their position. The definition implies that after
a single (betaTr), (seqTr), (caseTr) or (porTr)-reduction, the set of labels at
every position remains a finite set. If for a subtree A the top-reduction sequence
does not terminate, then this subtree will be ⊥ in the resulting tree, hence only
finitely many reductions for A have to be considered. The construction will then
proceed with the direct subtrees of A, which guarantees that every position in
T either has finitely many ancestors in S, or is ⊥. It is obvious that there are
no positions in MS pointing to ⊥.
Now we can simply reverse the mapping. For the set MT , we define the set MS as
the set of all positions of S that are in the label set of any position in MT . This
set is finite, since there are no positions of ⊥ in MT , there is also no position of
⊥ in MS . The set MS is prefix-closed, since the mapping behaves monotone, i.e.
if p is a position in S, q is a prefix of p, then for every position p′ in T that is
derived from p, there is a position q′ in T derived from q such that q′ is a prefix
of p′.
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Lemma B.3. Let S be a tree, and let red be the reduction sequence S = S0
∞−→

S1
∞−→ S2

∞−→ . . .
∞−→ Sn = S′, where S′ is a value. Then the set M0 of all

positions of S that are mapped by red to the top position of S′ is an FAPC-set
of S.

Proof. We perform induction on the number of ∞−→-reductions in the sequence
S = S0

∞−→ S1
∞−→ S2

∞−→ . . .
∞−→ Sn = S′. If the sequence has no reductions,

then the lemma holds, since M = {ε} consists only of the top position of S′. In
the induction step, we can assume that the lemma holds already for the reduction
sequence S1

∞−→ S2
∞−→ . . .

∞−→ Sn = S′, and then we can apply Lemma B.2 to
the reduction step S0

∞−→ S1, which shows the Lemma.

Corollary B.4. Let S be a tree, and let red be the reduction sequence S =
S0

∞−→ S1
∞−→ S2

∞−→ . . .
∞−→ Sn = S′, where S′ is a value. If a position p from

S is not mapped by red to the top position of S′, then all positions q of S such
that p is a prefix of q, are also not mapped to the top position of S′.

We distinguish relevant and irrelevant positions for a reduction sequence to a
value:

Definition B.5. Let red ≡ S
∞,∗−−→ S′ be a reduction sequence, where S′ is a

value. Let M0 be the set of positions of S that are mapped using joining labeled
reduction to the top position of S′. Then the positions p ∈ M0 in S are called
relevant for red, and the positions of S that are not in M0 are called irrelevant
for red. We omit red in the notation if it is clear from the context,

Note that the set of relevant positions for some reduction sequence red ≡ S
∞,∗−−→

S′ is always an FAPC-set in S.

Let
(Tr),∗−−−−→ be the reduction

(betaTr),∗
−−−−−−−−→ ∪

(seqTr),∗
−−−−−−−→ ∪

(caseTr),∗
−−−−−−−→

∪
(porTr),∗
−−−−−−−→.

Lemma B.6. Let red ≡ S1
∞−→ S2

∞,∗−−→ S′ be a reduction sequence to the
value S′. Let M1 be the set of all relevant positions in S1. Then the reduction

S1
∞−→ S2 can be splitted into S1

(Tr),∗−−−−→ S′1
∞,M ′

−−−−→ S2, where M ′ is a set of
irrelevant positions. Moreover, if the first reduction is S1

a,∞−−→ S2, then we can

split as follows: S1
a,∗−−→ S′1

a,∞,M ′

−−−−−→ S2.

Proof. We split the reduction S1
∞−→ S2 into S1

(Tr),∗−−−−→ S0,1
∞−→ S2, such that

S1
(Tr),∗−−−−→ S0,1 is the maximal prefix of the (Tr)-reduction sequence, which de-

fines the ∞-reduction, consisting only of top level reductions, and the first re-
duction in the definition of S0,1

∞−→ S2 is not at top level.

S1
∞ // S2

(Tr),∗

��

S1

(Tr),∗ // S0,1
(Tr),∗ // S1,1

∞ // S2

(Tr),∗

��
S′ S′
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Let M0,1 be the FAPC-set of all positions in S0,1 that are mapped by S0,1
∞−→ S2

to M2, the set of relevant positions in S2. By induction on the depth of positions
in M0,1, and since we can split into reduction sequences at independent positions,

it is easy to see that there is a reduction sequence S0,1
(Tr),∗−−−−→ S1,1

∞−→ S1, such
that the reduction S1,1

∞−→ S2 is w.r.t. a set M1,1 of irrelevant positions.

Lemma B.7. Let red = S0
M0,∞−−−−→ S1 be a reduction of trees to a value S1,

such that M0 is the set of irrelevant positions in S0. Then S0 is a value

Proof. This is obvious.

Lemma B.8. Let red = S0
M0,∞−−−−→ S1

a−→ S2 · red′ for a ∈
{(betaTr), (seqTr), (caseTr), (porTr)} be a reduction sequence of trees to a value,
such that M0 is the set of irrelevant positions in S0 and let S1

a−→ S2 be a reduc-
tion at the relevant position p1.

Then there is some S′0, a set M ′
0 of positions of S′0 with S0

a−→ S′0
M ′

0,∞−−−−→ S2, such

w.r.t the reduction sequence red′′ ≡ S′0
M ′

0,∞−−−−→ S2 ·red′, the set of positions M ′
0

is irrelevant. Moreover, the reduction S0
a−→ S′0 is also at the relevant position

p1, and the constructed reduction sequence has the same length and reduces at
the same positions.

S0
M0,∞ //

a

���
�
� S1

a

��
S′0

M ′
0,∞ //___ S2

red′

��
·

Proof. Let C be a multicontext that has holes at p1, the position of the redex
of the S1

a−→ S2-reduction, and additionally finitely many holes, such that all
positions of M0 are below a hole of C. Then the following diagrams shows the
given and the derived reductions for every type of reduction:

C[s1, . . . , sn, ((λx.s) r)]
M0,∞//

(betaTr)

���
�
�

C[s′1, . . . , s
′
n, ((λx.s′) r′)]

(betaTr)

��
C[s1, . . . , sn, s[r/x]]

M ′
0,∞ //_____ C[s′1, . . . , s

′
n, s′[r′/x]]

For case a similar diagram can be drawn. For seqthe diagram is as follows:

C[s1, . . . , sn, (seq v t)]
M0,∞//

(seqTr)

���
�
�

C[s′1, . . . , s
′
n, (seq v′ t′)]

(seqTr)

��
C[s1, . . . , sn, t]

M ′
0,∞ //_______ C[s′1, . . . , s

′
n, t′]
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The diagram shows how to construct the required reduction.

Lemma B.9. Let S be a tree with S⇓(∞). Then there is a finite (perhaps non-

R-) reduction sequence S
(Tr),∗−−−−→ T , such that T is a value tree.

Proof. Let red be the ∞-reduction sequence from S to a value tree S′. Lemma
B.3 shows that the set of all positions in S that are mapped by red to the
top position of S′ is an FAPC-set. Using Lemma B.6, the reduction sequence

can be splitted into S
(Tr),∗−−−−→ S0,1

(Tr),∗−−−−→ S1,1
∞−→ S1, such that the reduction

S1,1
∞−→ S1 is w.r.t. a set M1,1 of irrelevant positions.

Now induction on the length of the reduction sequence S1
(Tr),∗−−−−→ S′ and using

Lemma B.8 shows that the reduction S1,1
∞−→ S1 can be shifted to the end of the

reduction sequence until we obtain a reduction sequence S
(betaTr),∗−−−−−−−→ S′′, where

S′′ is a value. ut

The remaining step for the standardization theorem is to remove the non-R-
reduction either by shifting them to the right in the reduction sequence until
they are no longer necessary, or until they are also R-reductions. This shifting
may increase the number of single reductions. Note, that the diagram for the
overlapping case of two (betaTr)-reductions

C[(λx.r)s]
(betaTr) //

R
���
�
�

C[(λx.r)s′]

R
��

C[r[s/x]]
(betaTr),∗ //_____ C[r[s′/x]]

is only valid, if the number of occurrences of the variable x in r is finite. Hence
a further analysis is required, which is possible due to the distinction between
relevant and irrelevant positions.
Now we show that a reduction sequence of a tree to a value can be done by
reducing finitely many redexes in reduction position, i.e. by an R-reduction.

Lemma B.10. Let S1
a−→ S2

R,(Tr),∗−−−−−−→ S′ for a ∈
{(betaTr), (seqTr), (caseTr), (porTr)}, where S′ is a value. Then S1⇓, i.e.

there is also an evaluation S0
R,(Tr),∗−−−−−−→ S′′, where S′′ is a value.

Proof. The proof is by analyzing the traces of the relevant positions using joining

labeled reduction. Let red ≡ S1
a−→ S2

(Tr),R−−−−→ S3
(Tr),∗−−−−→ S′ be a reduction

sequence from S1 to the value S′. Let the FAPC-set M be the set of relevant
positions in S1. We analyze the possibilities to commute a non-R-reduction with



20 M. Schmidt-Schauß

the following R-reduction: There are two possibilities:

S1
¬R,a //

R
���
�
� S2

R

��

S1
¬R,a //

R
���
�
� S2

R

��
S′1

a //______ S3 s′1
a,∞ //______ S3

where the first diagram covers the case of independent positions of the reduc-
tions, the case where the R-reduction is a seq-reduction or a por-reduction, and
the cases that the a-reduction is within (λx.r) for a (betaTr)-R-reduction with
redex ((λx.r) s), or within the alternatives for a (caseTr)-R-reduction with redex
(case (c s1 . . . sn) of . . . (c x1 . . . xn)→ r; . . .); and the second diagram covers
the overlapping cases, where the a-redex may be copied several times by the
R-reduction. Lemma B.6 shows that the second diagram can be further detailed
as

S1
¬R,a //

R
���
�
� S2

R

��
S′1

a,∗ //_____ S4
a,∞,M ′

//_____ S3

where M ′ is a set of irrelevant positions. Lemma B.8 and Lemma B.7 show
that in the case of the second diagram, the reduction w.r.t. the irrelevant set of
positions can be shifted to the right end of the reduction sequence red.
We consider reduction sequences that are mixtures of ¬R−−→ and R−→-reductions,

where the goal is to construct a
R,(Tr),∗−−−−−−→-reduction sequence to a value. The start

is the reduction sequence red ≡ S0
6R,a−−→ S1

R,(Tr),∗−−−−−−→ S′ where S′ is a value.
The operation on the reduction sequences is to focus the rightmost subsequence

T1
¬R,a−−−→ T2

R,(Tr)−−−−→ T3 for a ∈ {(betaTr), (seqTr), (caseTr), (porTr)}, and to
apply one of the following:

1. If T1
6R,a−−→ T2 is at an irrelevant position, then shift

6R,a−−→ to the end of the
reduction sequence. This is considered as one step of the operation.

2. If T1
6R,a−−→ T2 is at a relevant position, but the two redexes are at indepen-

dent positions, then apply the first diagram, if the mentioned conditions are
satisfied.

3. If T1
6R,a−−→ T2 is at a relevant position, and the redexes overlap, then apply

the second diagram; in this case a shifting-away of the irrelevant reduction
immediately follows. The whole action is counted as one step.

We have to show that finitely many such operations of modifying the reduction
sequence are sufficient to reach the desired R-reduction sequence.
Now we construct a measure for mixed reduction sequences. Let red ≡ S0 →
S1 → . . . → Sn, let red’ be the reduction sequence to a value after the mod-
ification, and let Trace(red) be defined as follows: It contains all sequences
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p0, p1, . . . , pn, called traces, where p0 is a red-relevant position of S0, and for all
i: pi is a relevant position in Si, and pi+1 is a successor of pi. The trace stops ei-
ther at the last term, or at pi, if pi is the position of the R-redex that is reduced
in this step, or the position of the term (c s1 . . . sn) in the R-(caseTr)-redex
(case (c s1 . . . sn) . . .). An annotated trace is a trace, where the form of inher-
itance is also annotated: p

a1−→ p1
a2−→ . . . ,

an−−→ pn, where ai ∈ {inst , red , trans},
where ai = red means that pi−1 is exactly the redex-position of a non-R-a-
reduction, and inst means that Pi−1 is in the argument of the redex of the R or
non-R-(betaTr)-reduction, or within a term si in a (caseTr)-redex, R or non-R,
of the form (case (c s1 . . . sn) alts). The R-redex does not occur, and the other
possibilities are annotated with ai = trans.
We only use the fingerprint of traces, which is the sequence of inst and red
occurring in a trace. Two fingerprints are compared first by length, and then
lexicographically as strings, where inst < red . The whole reduction sequence is
measured by a triple µ = (µ1, µ2, µ3), where µ1 is the multiset of all fingerprints
of (relevant) traces, where we use the multiset-ordering for comparing multi-
sets, µ2 is the number of non-R-reductions of the reduction sequence to a value,
µ3 is the number of R-reductions after the rightmost non-R-reduction in the
reduction sequence, and we use the lexicographic ordering on µ.
This is a well-founded measure, see e.g. [1] for the multiset-part. We have to
show that every diagram application strictly reduces this measure. The trivial
commuting diagram leaves the fingerprints as they are, since the positions of
reductions are independent, and the trans-reductions are ignored in the finger-
prints of traces, and strictly decreases µ2, or leaves µ2 invariant and strictly
decreases µ3. The hard part is to treat the application of the overlapping dia-
gram.
For the following case distinction we treat the two possibilities that the R-
redex is a (betaTr)-redex of the form ((λx.r) s), or a (caseTr)-redex of the
form (case (c s1 . . . sn) . . .); . . . ; (c x1 . . . xn) → tc; . . .). The por-redexes will
be treated later. For a redex ((λx.r) s), the picture in figure 4 illustrates the
possibilities: for a case-redex this is similar. There are several cases for a relevant
position p:

1. p is independent of the position of the R-redex, or a proper prefix of the
position of the R-redex. Then the trace remains unchanged by the diagram
application.

2. p is the position of the R-redex, or p is the position of the (c s1 . . . sn) in the
R-redex for a (caseTr)-reduction. Then the fingerprint of the trace stops for
both reduction sequences.

3. p is within λx.r if the R-redex is a (betaTr), or within t in the R-redex if it
is a (caseTr). Then the fingerprint of the trace is unchanged.

4. p is within s, but not within the redex in s for a (betaTr)-R-reduction, or p
is within some si, but not within the redex in si for a (caseTr)-R-reduction.
Then the fingerprint part is inst for all traces and unchanged. Also the
number of traces remains the same.
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Fig. 4. Cases for the position p in traces for a (betaTr)-R-redex

5. p is the redex position within s for (betaTr) or within si for a (caseTr).
Then the fingerprints before are 〈. . . red , inst . . .〉. They are changed into
〈. . . inst , red . . .〉, if the corresponding reduction in the bottom arrow of the
second diagram is not turned into an R-reduction. Otherwise the trace is
stopped before the red . At least one fingerprint of some trace will be replaced
by a strictly smaller one.

6. p is properly within the redex in s for a (betaTr)-reduction or in si for
a (caseTr)-reduction. Then the fingerprints 〈inst , inst〉 remains the same,
though the middle position is modified. The number of traces is the same.

We also have to treat the case of a (por)-reduction as R-reduction. In the False-
case

C[(por False t)] //

R
���
�
�

C[(por False t′)]

R
��

C[t] //_________ C[t′]

the fingerprints of traces are unchanged. In the True-case,

C[(por True t)] //

R

))RRRRRRR
C[(por True t′)]

R
��

C[True]
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if there are relevant positions in t, then all these traces are eliminated after the
modification of the reduction. The overlapping cases

C[(por True t)] //

R

((RRRRRRR
C[(por True False)]

R
��

C[(por t False)] //

R
���
�
�

C[(por True False)]

R
��

C[True] C[t] //_______ C[True]

are consistent with the two other cases due to the definition of labelled reduction
in section A.
Now we have to argue that the measure is indeed strictly reduced. There are
several cases:

1. If the first diagram is applied, then µ2 is strictly reduced, or µ2 is the same,
and µ3 is strictly reduced.

2. If the second diagram is applied, and the position of the redex in t is relevant,
then µ1 remains the same, and either µ2 or µ3 is strictly reduced, depending
on whether the non-R-reduction is turned into an R-reduction or not.

3. If the second diagram is applied, and the position of the redex in s is irrel-
evant, then the lower part of the second diagram consists of an irrelevant
reduction, that can be moved to the end of the reduction sequence without
changing the traces, and a non-R-reduction is removed, hence µ3 is strictly
decreased.

Since the measure is well-founded and strictly decreased in every step, the
diagram-application is able to shift the non-R-reductions to the right, until an
evaluation is reached.

Remark B.11. For other kinds of orderings on traces, the case ((λx.x) s) → s
may be exceptional. The problem is solved in our treatment by stopping the
traces after an R-reduction.

Lemma B.12. Let S be a tree, such that S
(Tr),∗−−−−→ S′, where S′ is a value tree.

Then there is also an R-(Tr)-reduction sequence to a value tree, i.e., S⇓.

Proof. This follows by induction on the length of the reduction sequence using
Lemma B.10.

The lemmas in this appendix imply now Theorem 3.12.
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