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Abstract

We present a calculus that captures the operational semantics of call-by-need. The call-by-

need lambda calculus is confluent, has a notion of standard reduction, and entails the same

observational equivalence relation as the call-by-name calculus. The system can be formulated

with or without explicit let bindings, admits useful notions of marking and developments,

and has a straightforward operational interpretation.

Capsule Review

Although the “call-by-need” interpretation of lambda calculus is popular and quite intuitive,

formalizing its properties can be a tricky business. This paper provides a rather thorough

formal treatment of call-by-need, including: (1) proofs of confluence and standard reduction,

(2) observational equivalence with respect to call-by-name, (3) a natural semantics, and (4)

some extensions with data constructors and constants. Given the importance of call-by-need

interpretation to implementors of non-strict functional languages, this paper provides a useful

theoretical foundation.

Introduction

The correspondence between call-by-value lambda calculi and strict functional lan-

guages (such as the pure subset of Standard ML) is quite good; the correspondence

between call-by-name lambda calculi and lazy functional languages (such as Mi-

randa or Haskell) is not so good. Call-by-name re-evaluates an argument each time

it is used, a prohibitive expense. Thus, many lazy languages are implemented using

the call-by-need mechanism proposed by Wadsworth (1971), which overwrites an

argument with its value the first time it is evaluated, avoiding the need for any

subsequent re-evaluation (Turner, 1979; Johnsson, 1984; Koopman and Lee, 1989;

Peyton Jones, 1992).

Call-by-need reduction implements the observational behaviour of call-by-name

in a way that requires no more substitution steps than call-by-value reduction. It

seems to give us something for nothing – the rich equational theory of call-by-name
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without the overhead incurred by re-evaluating arguments. Yet the resulting gap

between the conceptual and the implementation calculi can be dangerous since it

might lead to program transformations that drastically increase the complexity of

lazy functional programs. In practice, this discrepancy is dealt with in an ad hoc

manner. One uses the laws of the call-by-name lambda calculus as support that

the transformations do not alter the meaning of a program, and one uses informal

reasoning to ensure that the transformations do not increase the cost of execution.

However, the reasoning required is more subtle than it may at first appear. For

example, in the term

let x = 1 + 2

in let f = λy.x+ y

in f y + f y

the variable x appears textually only once, but substituting 1 + 2 for x in the body

of the let will cause 1 + 2 to be computed twice rather than once.

Underestimating the difficulty of this problem can be quite hazardous in practice.

The Glasgow Haskell Compiler is written in Haskell, is self-compiled, and makes

extensive use of program transformations. In one version of the compiler, one such

transformation inadvertently introduced a loss of sharing, causing the symbol table

to be rebuilt each time an identifier was looked up. The bug was subtle enough that

it was not caught until profiling tools later pinpointed the cause of the slowdown

(Sansom and Peyton Jones, 1995).

In this paper we present the call-by-need lambda calculus λneed. We write ‘call-by-

need’ rather than ‘lazy’ to avoid a name clash with the work of Abramsky (1990),

which describes call-by-name reduction to weak head-normal form. We present our

calculus in section 2, after a review of the call-by-name and call-by-value calculi in

section 1.

The basic syntactic properties of λneed are quite satisfying. Reduction in λneed
admits an interesting variation of the usual marking of redexes, which in turn gives

the properties of finite developments and unique completions. While somewhat

technical, these properties are very interesting from the point of view of reduction

semantics, and make the proofs of the other results much easier and more systematic.

Reduction in λneed is confluent: reduction rules may be applied to any part of a term,

including under a lambda, and regardless of order the same normal form will be

reached. Confluence is valuable for modelling program transformations. We also have

a notion of standard evaluation: a computable, deterministic strategy for choosing

redexes which will terminate whenever any reduction sequence leads to a member of

a natural class of answers. This property is valuable for modelling computation. We

discuss all of these properties in section 3. Call-by-need is observationally equivalent

to call-by-name, where the notion of observation is taken to be reducibility to

weak head-normal form, as in the lazy lambda calculus of Abramsky (1990) and

Ong (1988). A corollary is that Abramsky and Ong’s models are also sound and

adequate for our calculus. We give the details of the relationship between call-by-

name and call-by-need in section 4. Our calculus is the only one which we know to

satisfy all of these properties without considerably sacrificing simplicity.
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Syntactic Domains

Variables x, y, z

Values V ,W ::= x | λx.M
Terms L,M,N ::= V | M N

Evaluation contexts E ::= [ ] | E M

Reduction Rule

(β) (λx.M)N → M[x := N]

Fig. 1. The call-by-name lambda calculus.

Syntactic Domains

Variables, values, terms As for call-by-name

Evaluation contexts E ::= [ ] | E M | (λx.M) E

Reduction Rule

(βV ) (λx.M) V → M[x := V ]

Fig. 2. The call-by-value lambda calculus.

Our formulation of call-by-need can also be given a natural semantics, similar to

the one proposed for the lazy lambda calculus by Launchbury (1993), as we show

in section 5. There is a close correspondence between our natural semantics and our

standard reduction scheme. In section 6 we show that one can formulate λneed with

or without the use of a let construct. The reduction rules appear more intuitive if

a let construct is used, but an equivalent calculus can be formed without bindings,

simply taking (let x = M in N) and (λx.N)M to be indistinguishable.

We consider some of the more common extensions to basic lambda calculi in

section 7. Finally, in section 8 we consider the relationship of our calculus to a

number of other systems and concerns. In particular, we consider other formulations

of call-by-need reduction, and stronger notions of reduction such as full laziness and

optimal reduction. We also discuss other variations on the basic β-reduction rule,

the relationship to classical and linear logics, and garbage collection. Probably the

most serious drawback of our system is the lack of a good model for recursion; we

include a discussion of work by other researchers on including recursive bindings.

1 The call-by-name and call-by-value calculi

Figures 1 and 2 review the call-by-name and call-by-value lambda calculi. Both

calculi concern classical lambda terms: applications, abstractions and variables. A

context C[ ] is a term with a single hole [ ] in it. By C[M] we denote the term that

results from replacing the hole in C[ ] with M.

The call-by-name calculus (Church, 1941) consists of a single reduction rule, β,

which describes the simplification of the application of an abstraction to an arbitrary

argument. We define the reduction relation −−→
(β)

to be the compatible closure of β

under arbitrary contexts, and −−→
(β)
→ to be the reflexive, transitive closure of −−→

(β)
. We

write M 7−−→
(β)

N to mean that we have M ≡ E[∆0], N ≡ E[∆1] and 〈∆0,∆1〉 ∈ β,

with 7−−→
(β)
→ as the reflexive, transitive closure of 7−−→

(β)
.
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The call-by-value calculus (Plotkin, 1975) also consists of a single axiom, βV ,

which is like β except that applications are contracted only when the argument is

a value. We use the same notation for the relations derived from βV as for those

derived from β, and summarise the general notation below.

Notation. Throughout this article we use the following notational conventions,

largely following Barendregt (1981). We use fv(M) to denote the free identifiers

in a term M. A term is closed if fv(M) = ∅. We use M ≡ N for syntactic equality of

terms (modulo α-renaming) and reserve M = N for convertibility by the symmetric

closure of reduction (or for example M
name

= N to specify the particular reduction

axioms). Following Barendregt, we work with equivalence classes of α-renameable

terms. To avoid name capture problems in substitutions we assume that the bound

and free identifiers of a representative term and all its subterms are always distinct.

We say that a reduction relation R is confluent if for all M0,M1,M2 such that

M0 −−−→
(R)
→ M1 and

M0 −−−→
(R)
→ M2

we have some N such that M1 −−−→(R)
→ N and M2 −−−→(R)

→ N. Reduction R is strongly

normalising if no infinite R-reduction sequence exists.

Developments and their finiteness. In the results that follow we will make use of

the notion of call-by-name developments, which we recall presently. The idea is

to track individual redexes as others are contracted. We can identify redexes by

their location within a term via paths, strings of symbols which indicate how one

“navigates” from the top level of a term into its subterms. We use symbols @1,@2, λ1

respectively to indicate the left and right subterms of an application and the body

of an abstraction. We let γ, δ range over paths and F,G range over sets of paths,

writing (M,F) suggesting that paths in F index subterms of M which are top-level

redexes. We also write M
γ−→ N where the term in M indexed by γ is the top-level

redex which, when contracted, transforms M into N. This association of terms with

sets of paths is intuitive, but unfortunately reduction rules for sets of paths are

rather complicated. One generally moves freely back and forth between pairs of

a term plus a set of paths on the one hand, and terms where certain redexes are

indicated directly in the writing of the term on the other hand. Barendregt justifies

the equivalence of the two formulations (Barendregt, 1981, Chapter 11). We present

the syntax and reduction rules of the marked call-by-name calculus λ′
name

in Figure 3.

We use the same metanotation for marked terms as for unmarked terms, except

with a tick ′ after the letter: hence marked terms L′,M ′, N ′ and marked values V ′.

A development is a reduction sequence which contracts only marked redexes, that is,

only (β0) steps. A complete development is one which ends in an unmarked term.

We write

σ1 : M ′1 −−−→
dev

N ′1

σ2 : M ′2 −−−→
dev
→ N ′2
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Syntactic Domains

Variables x, y, z

Values V ′,W ′ ::= x | λx.M ′

Terms L′,M ′, N ′ ::= V ′ | M ′ N ′ | β(λx.M ′) N ′

Reduction Rules

(β0) β(λx.M)N → M[x := N]

(β1) (λx.M)N → M[x := N]

Fig. 3. The marked call-by-name lambda calculus λ′
name

.

to indicate that the single-step reduction sequence σ1 and multi-step sequence σ2

contracting marked terms M ′i to N ′i are developments, and

τ : M ′ −−→
cpl

N

to indicate that a development τ is complete.

Example 1

Let M ′ ≡ β(λx. y x x) (β(λz. z) u). We have two one-step developments of M ′, namely

σ1 : M ′ −−−→
dev

y (β(λz. z) u) (β(λz. z) u)

≡ ( (y ((λz. z) u) ((λz. z) u)) , {@2,@1,@2})

and

σ2 : M ′ −−−→
dev

β(λx. y x x) u

≡ ((λx. y x x) u, {ε}) .

Both of these developments, when completed, end in the same term:

M ′ −−→
cpl

y u u .

Since developments coincide with (β0)-reduction, which is strongly normalising and

confluent, we have the following result:

Proposition 1

(Barendregt, 1981, Theorem 11.2.25) All call-by-name developments are finite, all

can be extended to a complete development, and all complete developments with

the same origin end in the same term.

2 The call-by-need calculus

Figure 4 details the call-by-need calculus, λneed. We augment the term syntax of the

λ-calculus with a let-construct. The underlying idea is to represent a reference to a

node in a graph by a let-bound identifier. Hence, sharing in a graph corresponds to

naming in a term.

The second half of Figure 4 presents reduction rules for need.

• Rule (I), ‘introduction’, introduces a let binding from an application. Given an

application (λx.M) N, a reducer should construct a copy of the body M where

all occurrences of x are replaced by a reference to a single occurrence of the
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Syntactic Domains

Variables x, y, z

Values V ,W ::= x | λx.M
Terms L,M,N ::= V | M N | let x = M in N

Reduction Rules

(I) (λx.M) N → let x = N in M

(V ) let x = V in C[x] → let x = V in C[V ]

(C) (let x = L in M) N → let x = L in M N

(A) let y = (let x = L in M) in N → let x = L in let y = M in N

(G) let x = M in N → N if x 6∈ fv(N)

Fig. 4. The call-by-need λ-calculus λneed.

graph of N. Rule (I) models this behaviour by representing the reference with

a let-bound name.

• Rule (V ), ‘value’, substitutes a value for one occurrence of a let-bound variable;

hence it expresses dereferencing. Note that since only values are copied, there

is no risk of duplicating work in the form of reductions that should have been

made to a single, shared expression.

• Rule (C), ‘commute’, allows let-bindings to commute with applications, and

thus pulls a let-binding out of the function part of an application.

• Rule (A), ‘associate’, transforms left-nested let’s into right-nested let’s. It is a

directed version of the associativity law for the call-by-name monad (Moggi,

1991).

• Rule (G), ‘garbage collection’, drops a let-binding whose defined variable no

longer appears in the term. Rule (G) is not strictly needed for evaluation (as

seen in section 3 where we discuss standard reduction), but it helps to keep

terms shorter.

Clearly, these rules never duplicate a term which is not a value. Furthermore,

we will show in section 4.2 that a term evaluates to an answer in our calculus

if and only if it evaluates to an answer in the call-by-name λ-calculus. So need

fulfills the expectations for what a call-by-need reduction scheme should provide: no

loss of sharing except inside values, and observational equivalence to the classical

call-by-name calculus.

Definition 2 (Call-by-need reduction)

Let → be the smallest relation that contains (I, V , C, A, G) and that is closed under

the implication M → N ⇒ C[M] → C[N]. As for call-by-name and call-by-

value, we write reduction in a single step as → and in zero or more steps as →→. To

distinguish call-by-need from (say) call-by-name reduction, we write −−−−→
need

and −−−−→
name

.

To express reduction according to particular individual rules in a system, we will

specify the rules similarly, as in −→
β

and −−→
(I)

. We will omit subscripts whenever

the context is clear. We will often omit the Greek letter lambda to reduce clutter,

and write (for example) need to refer to either the reduction theory λneed or the

collection of terms Λneed.
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x x

@

@?

λx λy

y
� A

@�

−−→
(I)

y

λy

x : • x : •

@?

@ �

� @

−−−→
(V )

z

λz

y

λy

x : •

@?
� @

−−→
(I)

y

λy

x : •

z : •?

−−−→
(V )

y

λy

x : •?

z : •

−−−→
(V )

y

λy?

x : •

z : •

−−−→
(G)

2

y

λy?

Fig. 5. Graphical rendering of Example 2.

Example 2

Consider the reduction of the term (λx.x x) (λy.y):

(λx.x x) (λy.y) −−→
(I)

let x = λy.y

in x x

−−−→
(V )

let x = λy.y

in (λz.z) x

−−→
(I)

let x = λy.y

in let z = x

in z

−−−→
(V )

let x = λy.y

in let z = x

in x

−−−→
(V )

let x = λy.y

in let z = x

in λy.y

−−−→
(G)

2 λy.y

Graphically, we have the sequence shown in Figure 5, where we mark the node

currently considered the root of the graph with a star (?).

The call-by-need calculus enjoys a number of properties which we summarise

presently and detail over the next few sections.

• The notion of a marked redex can be adapted to call-by-need, and the

resulting notion of developments has the same useful results as in call-by-

name and value: all developments are finite, all can be extended to complete

developments, and all complete developments of a given term and marking

end in the same term. We formalise the notion of a call-by-need marking and

verify these results in section 3.1.
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• The call-by-need calculus is confluent. As in the call-by-name and value

systems, this result follows rather easily from the results on developments, as

we show in section 3.2.

• An answer is a reduction-closed set of terms that we select as an acceptable

end result of a reduction sequence. In call-by-name and value one usually takes

abstractions as answers; here we admit an abstraction under let-bindings as

well. A standard reduction sequence is a subset of a reduction relation with

three properties. First, every term may have at most one standard redex.

Second, no answer may have a standard redex. Finally, whenever there is a

reduction sequence from a term M to some answer, there is also a standard

reduction sequence from M to an answer. We identify a standard strategy

for selecting call-by-need redexes and show that it has these properties in

section 3.3.

• We express the correspondence between call-by-name and call-by-need in terms

of observational equivalences, a sort of black-box testing. We make this black-

box test by wrapping both terms in the same context, and checking whether

each wrapped term reduces to an answer, or converges. If the two terms exhibit

the same behaviour (i.e. both converge, or both fail to converge) in every fixed

situation, then we take the terms to be observationally equivalent. Then the

relationship we show in section 4 between call-by-name and call-by-need is

that their theories of observational equivalence are exactly the same.

3 Syntactic issues

Lambda calculi have a number of syntactic properties that are useful in modelling

programming languages, as has been demonstrated by their great success in mod-

elling Algol, Iswim, and a host of successor languages. We discuss a number of these

properties in this section. Section 3.1 concerns call-by-need developments and their

finiteness. In section 3.2 we discuss confluence. The confluence property set forth in

the Church–Rosser theorem guarantees that reduction steps may occur in any order

without changing the eventual final result, providing a simple model of program

transformation and compiler optimisation. We discuss evaluation of call-by-need

terms in section 3.3, giving an evaluation order that contracts only one redex at a

time, arriving in finitely many steps at an answer whenever possible.

3.1 Marked reduction and developments

We begin with a survey of some technical properties which are central to our

proofs of confluence and standardisation, and which will also be useful in the

correspondence results. The material of this section is relevant to the reduction

theory of call-by-need, and is important for the results of later sections, which are

arguably of more general interest. However, the reader who is less interested in those

details can safely skip this section, and proceed to section 3.2.

It is useful to track certain redexes as we contract others. To this end we

mark redexes with tags to distinguish them from other, unmarked redexes. We
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Syntax

Values V ′,W ′ ::= x | Vx | λx.M ′

Terms L′,M ′, N ′ ::= V ′ | M ′ N ′ | let x = M ′ in N ′

| I(λx.M ′) N ′

| An let x = P ′
n
M ′ in N ′

| Cn (P ′n M ′) N ′

where in a term let x = M ′ in N ′,

if x ∈ mv(N ′)

then M ′ is a value.

Prefixes P ′, R′ ::= let x = M ′ in | An let x = P ′
n
M ′ in

Trivial structural equivalences

A0 let x = M ′ in N ′ ≡ let x = M ′ in N ′

C0 (M ′ N ′) ≡ M ′ N ′

Top-level contraction

(I0) I(λx.M ′) N ′ → let x = N ′ in M ′

(I1) (λx.M ′) N ′ → let x = N ′ in M ′

(V0) let x = V ′ in C ′[Vx] → let x = V ′ in C ′[V ′]

(V1) let x = V ′ in C ′[x] → let x = V ′ in C ′[V ′]

(C0)
Cn+1 (P ′ R′n M ′) N ′ → P ′ (Cn (R′n M ′) N ′) n ≥ 0

(C1) (P ′ M ′) N ′ → P ′ (M ′ N ′)

(A0)
An+1 let x = (P ′ R′n M ′) in N ′ → P ′ (An let x = (R′n M ′) in N ′)

(A1) let x = (P ′ M ′) in N ′ → P ′ (let x = M ′ in N ′)

(G1) let x = M ′ in N ′ → N ′ x 6∈ fv(N ′)

Fig. 6. Syntax and reduction axioms of the marked call-by-need calculus need
′.

track (I, V , C, A) redexes through reduction sequences with the marked call-by-need

calculus need
′ of Figs. 6 and 7; we do not mark (G) redexes. This marked system

differs in two distinct ways from more traditional marked systems such as the

marked call-by-name calculus.

The first difference allows us to mark (V ) steps, many of which could arise from

a single let-binding. Rather than mark the binding, we mark the variable whose

occurrence is to be replaced with the bound value. Since we mark variables rather

than terms, we must place a restriction on let-bindings where variables are actually

marked: in such bindings, the bound term must be a value. That is, in a term M,

M ≡ let x = M0 in M1,

if we have an occurrence of Vx within M1, then M0 must be a value. Equivalently,

we might mark the binding rather than the variables, and associate with the marking

the subset of variables which marked reduction would replace; for the summary of

these proofs which we present here, the marking of variables is simpler. We denote

the set of variables which occur marked in a term M by mv(M), and refer to a

marked (V ) redex to mean a let-binding of a variable to some variable x where at

least one occurrence of x is marked.
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Compatible closure

M ′ → N ′

λx.M ′ → λx.N ′

M ′ → N ′

L′ M ′ → L′ N ′
M ′ → N ′

M ′ L′ → N ′ L′

M ′ → N ′
I(λx.L′) M ′ →I (λx.L′) N ′

M ′ → N ′
I(λx.M ′) L′ →I (λx.N ′) L′

M ′ → N ′
CnL′ M ′ →Cn L′ N ′

σ : M ′ → N ′

CnM ′ L′ →Cn+d(|σ|,n)
N ′ L′

M ′ → N ′

let x = L′ in M ′ → let x = L′ in N ′
M ′ → N ′

let x = M ′ in L′ → let x = N ′ in L′

M ′ → N ′
An let x = L′ in M ′ →An let x = L′ in N ′

σ : M ′ → N ′

An let x = M ′ in L′ →An+d(|σ|,n) let x = N ′ in L′

Displacement function

d(let x = (let y = L in M) in N

→ let y = L in let x = M in N , n) = 1, if n > 0.

d(let x = M in N → N, n) = −1, if n > 0.

d(let x = L in M → let x = L in N, n) = d(M → N, n− 1), if n > 0.

d(M → N, n) = 0, otherwise

Fig. 7. Compatible closure of marked need reduction.

The second variation from simpler marked systems is our treatment of the (C,A)

rules. Rather than single steps, for these rules we will mark consecutive sequences of

redexes: for example, we may have two (C) steps which arise from the same binding,

although only one is contractable initially:

(let x1 = L1 in let x2 = L2 in M) N

→ let x1 = L1 in ((let x2 = L2 in M) N)

→ let x1 = L1 in let x2 = L2 in (M N) .

In the marked calculus, we allow both of these bindings to be marked at the same

time, distinguishing the number of bindings to be moved at any point:

C2 (let x1 = L1 in let x2 = L2 in M) N

→ let x1 = L1 in C1 (let x2 = L2 in M) N

→ let x1 = L1 in let x2 = L2 in (M N).

This extension of simple marks will also require a variation from the usual, rather

simple notion of compatible closure. Consider the term

C1 (let x = (let y = L in M) in N0) N1 ,

which has an unmarked (A) redex at position @1. If this redex is contracted before
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the marked top-level step, we must adjust the counter associated with the marker to

reflect the ‘new’ binding separating N0 and N1:

C1 (let x = (let y = L in M) in N0) N1

→ C2 (let y = L in let x = M in N0) N1.

Were we to leave the counter unadjusted, we would lose confluence of marked

reduction, and hence the uniqueness of complete developments as well.

We mark redexes with the four marks I, V , Cm and An , where m, n are positive

integers, each mark corresponding to the rule of the given name. We use the same

metanotation for marked call-by-need terms as for marked call-by-name terms. In

addition it is convenient to let P ′ range over the various marked let-bindings, and

let (say) P ′n range over n consecutive productions (not necessarily identical) of P ′.

The top-level rules for need
′ reduction are as usual with rules subscripted 0

contracting marked steps, and rules subscripted 1 contracting unmarked steps. We

take need
′
0 and need

′
1 steps to refer to contraction by any of those respective sets of

rules. For compatible closure we use the displacement function d on unmarked need

sequences and integers. Intuitively, d returns the number of top-level let-bindings

which are introduced or removed by a reduction sequence, where the first n nested

let-bindings are considered top-level. This added complication in the definition of

compatible closure allows marked need
′
0 reduction to be confluent.

Confluence of the marked subset is somewhat surprising, as simply marking single

redexes alone (i.e., without the numeric subscripts) is insufficient for the uniqueness

result. Consider a term with two such marked (A) steps,

Alet x = (Alet y = (let z = M0 in M1) in M2) in M3.

If we contract the outer redex first and inner redex second, we have one complete

development:

Alet x = (Alet y = (let z = M0 in M1) in M2) in M3

→ Alet y = (let z = M0 in M1) in (let x = M2 in M3)

→ let z = M0 in let y = M1 in let x = M2 in M3.

But if we contract the inner redex first, we have another complete development with

a different ending:

Alet x = (Alet y = (let z = M0 in M1) in M2) in M3

→ Alet x = (let z = M0 in let y = M1 in M2) in M3

→ let z = M0 in let x = (let y = M1 in M2) in M3.

We have a similar problem for an (A) contraction occurring at the binding of a

(C) step. In λ′
need

we resolve the difficulty by adding a positive integer to (C,A)

markings, indicating how many prefixes should be moved, and defining residuals to

consider prefixes added or removed by other steps. So in the second sequence above,

we will have:

A1 let x = (A1 let y = (let z = M0 in M1) in M2) in M3
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→ A2 let x = (let z = M0 in let y = M1 in M2) in M3

→ let z = M0 in A1 let x = (let y = M1 in M2) in M3

→ let z = M0 in let y = M1 in let x = M2 in M3,

which does end with the same term as the first complete development.

Once again we can move freely between marked terms and sets of paths, with

the additional symbols `1, `2 indexing respectively the left and right subchildren of

a let-binding. In other words, in a term let x = M in N, on the path `1 we index

M, and with `2 we index N. We continue with the notation M
γ−→ N to index

top-level redexes under compatible closure, and write |M ′| to refer to the underlying

unmarked term; if M ′ ≡ (M,F) then we have |M ′| ≡M. Similarly, given a marked

reduction sequence σ′, we refer to the projection |σ′| to mean the reduction sequence

between the respective projections. Finally, we write ε for a zero-length path string

of no symbols.

Having established the notion of marking, we can define residuals. For a reduction

sequence σ : M →→ N and a marking F of M, we define the residuals of F with

respect to σ – in symbols we write F/σ – to be the set of residuals G such that

σ′ : (M,F)→→ (N,G)

where |σ′| ≡ σ. Developments are as before: a development of a term M and

marking F is a reduction sequence beginning from (M,F) which contracts only

marked redexes, and a complete development is one which ends in an unmarked

term. We write −−−→
dev

and −−→
cpl

as before.

Example 3

Let M ′ ≡ (M,F) ≡ A1 let x = (A1 let y = (let z = M0 in M1) in M2) in M3. There

are two single-step developments of M ′, namely

σ0 : M ′ −−−→
dev

A1 let y = (let z = M0 in M1) in (let x = M2 in M3)

and

σ1 : M ′ −−−→
dev

A2 let x = (let z = M0 in (let y = M1 in M2)) in M3.

We haveF/σ0 = {(ε, 1)}, andF/σ1 = {(ε, 2)}. Assuming that the Mi are unmarked,

we have one complete development of M ′,

M ′ −−→
cpl

let z = M0 in (let y = M1 in (let x = M2 in M3)).

The main result on need-developments is the following theorem:

Theorem 3

All λneed developments are finite, and can be extended to a complete development.

Moreover, all complete developments of a particular term and marking end in the

same term.

Proof

As before, finiteness of developments is equivalent to strong normalisation of marked

reduction need
′
0. The technique is standard, based on a positive integer measure
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of a decoration of marked terms which is decreased by reduction. We give only a

summary of the proof; full details are available elsewhere (Maraist, 1997).

We construct weighted terms by giving every variable occurrence x or Vx a weight

of some positive integer, written xi or Vxi. We let Ṁ, Ṅ and so forth range over

weighted terms, V̇ range over weighted values, and define the norm ‖ . ‖ on weighted

terms (ignoring marks) as follows:

‖xi‖ = i

‖λx. Ṁ‖ = ‖Ṁ‖
‖let x = Ṁ in Ṅ‖ = 2‖Ṁ‖+ ‖Ṅ‖

‖Ṁ Ṅ‖ = 2‖Ṁ‖+ 2‖Ṅ‖.

A term is said to have decreasing weighting if it satisfies the appropriate condition

below based on its form.

• All terms xi or Vxi have decreasing weighting.

• A term λx. Ṁ has a decreasing weighting if Ṁ has a decreasing weighting.

• A term I(λx. Ṁ) Ṅ has decreasing weighting if:

1. Both Ṁ and Ṅ have decreasing weighting.

2. For all xi or Vxi in Ṁ, we have i > ‖Ṅ‖.
• Other applications (Ṁ Ṅ) or Cn(Ṁ Ṅ) have decreasing weighting if both Ṁ

and Ṅ have decreasing weighting.

• A (V )-marked binding (let x = V̇ in Ṁ) has decreasing weighting if:

1. Both V̇ and Ṁ have decreasing weighting.

2. For all Vxi in Ṁ, we have i > ‖V̇‖.
• Other bindings (let x = Ṁ in Ṅ) or An (let x = Ṁ in Ṅ) have decreasing

weighting if both Ṁ and Ṅ have decreasing weighting.

We lift marked reduction to weighted terms by just applying the same rules without

regard for weights. Decreasing weightings have two key properties, both of which

can be shown by a straightforward structural induction. Let M have decreasing

weighting, and let Ṁ −−−−−→
need

′
0

Ṅ. Then:

1. ‖Ṁ‖ > ‖Ṅ‖, and

2. Ṅ has decreasing weighting.

Moreover, every term has a decreasing weighting. To construct a decreasing weighting

for an arbitrary term, we number its variable occurrences by positive integers from 1,

numbering the right-hand side of an application before the left-hand side, and the

bound term of a let-binding before the body of the binding. Then to a variable

numbered i we give the weight fi,

f1 = 1

fn =

(
n∑
i=0

2i

)
· fn−1 , n > 1.
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Then since every term has a decreasing weighting, finiteness follows from the two

key properties above.

Extension follows from strong normalisation. Uniqueness of need′0-normal forms

is implied by confluence of need
′
0. Since we already have strong normalisation it

suffices to show weak confluence, which requires only a simple if tedious analysis of

the relative positions of redexes.

Pairing certain paths with numeric indices in markings raises a technical issue

which is trivial in the calculi without bindings but which requires mention here. In

(say) marked call-by-name reduction, markings F are simply sets of paths; given

matched terms (M,F1) and (M,F2) we clearly have a correspondence between the

marking of M with all redexes in either F1 or F2 and (M,F1 ∪F2). In λ′
need

this

correspondence is no longer trivial, since the set-theoretic union of two markings

does not necessarily correspond to any term M ′.

Example 4

Let

M ≡ let x0 = (let x1 = M1 in let x2 = M2 in N) in L,

with F1 ≡ {(ε, 1)} and F2 ≡ {(ε, 2)}. Then there exists terms M ′1,M
′′
2 such that for

each i we have M ′i ≡ (M,Fi), but there is no M ′0 such that M ′0 ≡ (M,F1 ∪ F2).

Specifically, we have

M ′1 ≡ (M,F1) ≡ A1 let x0 = (let x1 = M1 in let x2 = M2 in N) in L

M ′2 ≡ (M,F2) ≡ A2 let x0 = (let x1 = M1 in let x2 = M2 in N) in L,

but since we allow each redex to take no more than one mark (indexed or otherwise),

we can form no term (M,F1 ∪F2).

Rather than simple set union ∪, we instead use a modified relation d. We define d
to select only the largest integer to form a pair with each different path that set-

theoretic union ∪ would associate with more than one integer. For the F1,F2 of

the above example, we would have F1 dF2 ≡ {(ε, 2)}. Formally, we have

Definition 4

Let F1,F2 mark redexes in M. Then the set F1 dF2 is defined as:

F1 dF2 = {γ : γ ∈ F1 ∪F2}
⋃

γ
{(γ,max{i : (γ, i) ∈ F1 ∪F2}) : (γ, n) ∈ F1 ∪F2}

where max selects the largest of a finite set of natural numbers.

This relation allows us to prove the following lemma:

Lemma 5

Let F0,F1 mark redexes in M. Then there exists some G such that for any

reduction sequence σi which is a complete development of (M,Fi), σi is also a

partial development of (M,G).

Proof

This G is just F0 dF1.
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3.2 Confluence

With the results on developments, confluence follows rather easily. Confluence of

the (I, V , C, A) subset follows immediately from Theorem 3 and Lemma 5.

Lemma 6

Reduction of Λneed terms by (I, V , C, A) steps is confluent: if M −−−−→
need
→ M1 and

M−−−−→
need
→M2, then there exists some N such that M1 −−−−→

need
→ N and M2 −−−−→

need
→ N,

M

M0 M1

∃N

��	need

	
@@RneedR

. . . .Rneed

R

.....	need

	 .

We use diagrams like the one above to illustrate asserted conditions. Reduction

relations which are assumed for the result are drawn in solid lines, while reduction

relations predicted by the result are dotted. On occasion we will also use dashed

lines to highlight correspondences by relations other than reduction.

Proof

The result follows as in Barendregt’s reference (1981, Chapter 11). Note that where in

Barendregt’s system the union of markings is trivial, here we must rely on Lemma 5

to justify the existence by d of a sensible combination of two markings of the

same term. The heart of the proof is the following argument: Given two reduction

sequences

σ0 : (M,F0) −−→
cpl

M0 and

σ1 : (M,F1) −−→
cpl

M1,

we have by Lemma 5 some G such that

σ0 : (M,G) −−−→
dev
→ (M0,G0) and

σ1 : (M,G) −−−→
dev
→ (M1,G1).

Moreover by Theorem 3 the completions of both σ0 and σ1 end in the same term:

that is, we have some N such that for both i

(Mi,Gi) −−→cpl
N.

Since a single reduction step is trivially a complete development, it is a valid inductive

conclusion that given (L0,F) −−→
cpl

L1 and L0 →→ L2 we have some L3 with L1 →→ L3

and L2 →→ L3; a second induction with this result gives confluence.

Reduction by (I, V , C, A) steps and reduction by (G) steps commute in a specific

useful way:

Lemma 7

Let M −−−−−−−→
(I,V ,C,A)

M1 and M −−−→
(G)

M2. Then there exists some N such that M1 −−−→(G)
→ N

and either M2 ≡ N or M2 −−−−−−−→(I,V ,C,A)
N.
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Additional Syntactic Domains

Answers A,Ai ::= λx.M | let x = M in A

Evaluation Contexts E, Ei ::= [ ] | E M | let x = M in E

| let x = E0 in E1[x]

Standard Reduction Rules

(Is) (λx.M) N 7→ let x = N in M

(Vs) let x = λy.M in E[x] 7→ let x = λy.M in E[λy.M]

(Cs) (let x = L in A) N 7→ let x = L in A N

(As) let y = (let x = L in A) in E[y] 7→ let x = L in let y = A in E[y]

Fig. 8. Standard call-by-need reduction.

Proof

By structural induction on M, and an easy examination of the relative positions of

the redexes.

The above two lemmas are sufficient to imply confluence for λneed.

Theorem 8

Reduction in λneed is confluent:

M

M ′ M ′′

∃N

��	need	
@@RneedR

. . . . .Rneed

R

.....	need

	

Proof

Follows from Lemmas 6 and 7 (Barendregt, 1981, Lemma 3.3.5–7).

3.3 Standard evaluation

The confluence result shows that different orders of reduction cannot yield different

normal forms. It might nonetheless be the case that some reduction sequences

terminate with a normal form while others do not terminate at all. However, the

notion of reduction can be restricted to a standard sequence that always reaches an

answer if one equal to the starting term exists.

Figure 8 details our notion of standard reduction. To state the standard reduction

property, we first make precise the kind of observations that can be made about

need programs. Following the spirit of Abramsky’s work (1990), we define an

observation to be a reduction sequence that ends in a function term. In need it

makes sense to allow a function term to be wrapped in let-bindings, since we can

remove bindings from positions interfering with a subsequent application of that

function to an argument by rule (C). Hence, an answer A is either an abstraction or

a let-binding whose body is an answer.

Standard reduction is a restriction of ordinary reduction in that each redex must

occupy the hole of an evaluation context. The first two productions for evaluation
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contexts in Figure 8 are just as for the call-by-name calculus. The third production

states that evaluation is possible in the body of a let. The final production highlights

the call-by-need aspect of the strategy. It says that a definition should be evaluated

if the defined node is demanded (i.e., it appears in evaluation position itself). The

second evaluation context in this form is the key; evaluation contexts reveal demand

for one branch of this term by the other.

The restriction to evaluation contexts for redex selection does not by itself make

call-by-need reduction deterministic. For instance,

let x = V0 in let y = V1 in x y

has both let’s in evaluation position, and hence would admit either the substitution

of V0 for x or the substitution of V1 for y. For the former contraction we have

E0[∆0] →0 [∆′0] where E0 ≡ [ ] and ∆0 is the entire term; for the latter we have

evaluation context (let x = V0 in [ ]) and contractum (let y = V1 in x y). We arrive

at a deterministic standard reduction by specialising reduction rules to those shown

in the second half of Figure 8. Note the use of evaluation contexts within these rules:

evaluation contexts describe demand within redexes as well as within the contexts

surrounding them.

Definition 9 (Call-by-need evaluation)

Let 7→ be the smallest relation that contains (Is, Vs, Cs, As) and that is closed under

the implication M 7→ N ⇒ E[M] 7→ E[N]. As usual we write 7→→ for the reflexive,

transitive closure of 7→, and refer to reduction by specific rules by writing the name

of the rule below the arrow.

Theorem 10

The relation 7→ is a standard reduction relation for λneed: for all terms M and

answers A, the following three conditions hold.

• (Uniqueness) Exactly one of the following is true:

1. M is an answer.

2. We have some evaluation context E and x ∈ fv(M) such that M ≡ E[x].

3. We have some evaluation context E and top-level standard redex ∆ such

that M ≡ E[∆].

• (Soundness) If M 7→→ A then M →→ A.

• (Completeness) IfM →→ A then there exists some answer A0 such thatM 7→→ A0.

Proof

Uniqueness of evaluation contexts follows by an easy structural induction on M.

Soundness is trivial, as all 7→ steps are also→ steps. For completeness the technique

is as in Barendregt’s result for call-by-name (Barendregt, 1981, §11.4). We define an

internal redex to be any (I, V , C, A) step which is not standard, and refer to such a

contraction with −→
i

. Since we do not mark (G) steps, we treat them separately. Each

of the following properties can be shown by a tedious but conceptually simple case

analysis:

• If M −→
i
A then M is also an answer.
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• If σ : M → N0 and M
γ−→ N1, both by internal steps, then every redex in γ/σ

is also internal.

• If M
γ−→ N is internal and N 7→ N0, then M has a standard redex.

• If σ : M → N0 is internal and M 7 γ−→ N1, then γ/σ contains a single element

which is also the standard redex of N0.

From these properties and Lemma 5, we can use the finiteness of developments

result in Theorem 3 to deduce that arbitrary (I, V , C, A) sequences can be reordered

as standard steps followed by internal steps,

• If M −−−−−−−→
(I,V ,C,A)

→ N, then there exists some M0 such that M 7→→M0 −→i→ N.

In fact the use of Theorem 3 here and in the above steps is essential; it would be very

difficult to make these arguments directly, without using developments. Moreover, a

separate analysis shows that the following statement holds as well:

• If M −−−→
(G)

N 7→→ A, then there exists some answer A0 such that M 7→→ A0.

It is clear that (G) steps preserve answers, and so completeness follows by induction

on the internal steps leading to the standard sequence which terminates in an answer.

4 Call-by-need and call-by-name

The call-by-need calculus is confluent and has a standard reduction order, and so

it is, at the least, a workable calculus by itself. Still we have yet to explore the

relationship between λneed and λname. The conversion theories =need and =name are

clearly different – otherwise there would be little point in studying call-by-need

systems! In this section we will demonstrate the exact difference between these

calling conventions. We begin in section 4.1 with the map t which maps call-by-

need terms to call-by-name terms by simply substituting all let-bound terms for

the bound variables. We use t to give a rigorous comparison of their reduction

relations in section 4.2; in section 4.3 we show the coincidence of the observational

equivalence relations over the common term language.

4.1 Relating the terms

The following map formalises the intuitive relationship between call-by-name and

call-by-need terms.

Definition 11 (Let contraction map t)

We define the map t from (marked) call-by-need terms to (marked) call-by-name

terms as follows:

xt ≡ x

(λx.M)t ≡ λx.Mt

(M N)t ≡ Mt Nt

(let x = M in N)t ≡ Nt[x := Mt]

(I(λx.M) N)t ≡ β(λx.Mt) Nt.
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For terms decorated with other redex markers, we simply drop the marker and

translate according to the above rules.

Example 5

Let

M0 ≡ (λx.x) (λy.let z0 = (let z1 = N1 in N2) in N3)

→ let x = (λy.let z0 = (let z1 = N1 in N2) in N3) in x ≡M1

→ λy.let z0 = (let z1 = N1 in N2) in N3 ≡M2.

Then

Mt0 ≡ (λx.x) (λy.Nt3 [z0 := (Nt2 [z1 := Nt1 ])])

Mt1 ≡ Mt2 ≡ λy.Nt3 [z0 := (Nt2 [z1 := Nt1 ])]

Lemma 12

Let M,N ∈ need, where

1. (M[x := N])t ≡Mt[x := Nt].

2. If M
(V ,C,A,G)

= N then Mt ≡ Nt.

3. M is an answer if and only if Mt ≡ λx.N.

Proof

All three clauses are straightforward: The first clause follows by a straightforward

induction on the structure of M; the second, by inspection of the individual rules,

and structural induction to find the redex contracted in M; and the third by the

obvious structural induction.

Note that we write, for example, γF as a shorthand for {γγ0 : γ0 ∈ F}. We now

extend the map t to paths with respect to the term which the path indexes.

Definition 13 (t-images of markings with respect to terms)

Let F index (I)-redexes in M ∈ need, where (M,F)t ≡ (Mt,G) for some set G
marking (β)-redexes. Then we define the t-image of F with respect to M to be G,

in symbols Ft[M] ≡ G. We will write the t-image of a single path to mean simply

the t-image of the singleton set containing just that path, i.e.γt[M] ≡ {γ}
t
[M].

Example 6

Taking M0 as in Example 5, we have

{ε}t[M0] ≡ {ε}

{@2λ1}t[M0] ≡ {}

Taking N ≡ let x = ((λy.y) (λz.z)) in ((x N1) (x N2)), we have

{`1}t[N] = {@1@1,@2@1}.

The following lemma explicitly justifies what might otherwise appear to be an abuse

of the notation. Since t-images of (V ,C, A, G)-equal terms are identical, we can

associate the t-image of a path from either term with the t-image of either term to

produce the same valid member of name′.
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L Lt

let x = I I in f x x f (I I) (I I)

(λx.f x x) (let y = I in y) (λx.f x x) I

let x = (let y = I in y) in f x x f I I

Table 1. Possible (I) steps M −−→
(I)
→ L from M ≡ (λx.f x x) (I I).

Lemma 14

Let M
(V ,C,A,G)

= N, let F index (I)-redexes in N and let G =Ft[N]. Then (Mt,G) is a

marked call-by-name term, and (Mt,G) ≡ (Nt,G)

Proof

Trivial, since by Lemma 12.(2) we have Mt ≡ Nt.

4.2 Relating reduction

In this section we study the relationship between need reduction and name reduction.

We will begin with some basic results about the operator, including the soundness

of t for mapping multi-step need reduction sequences to multi-step name reduction

sequences. By soundness we mean just that t preserves reduction sequences: if

M −−−−→
need
→ N, then Mt −−−−→

name
→ Nt as well.

Completeness is more tricky for two reasons: first, reduction in need may ‘over-

shoot’ reduction in name. For example, we can consider the term

M ≡ (λx.f x x) (I I),

where I ≡ λx.x. In name we have

(λx.f x x) (I I)

→ f (I I) (I I)

→ f I (I I)

≡ N.

But for all L where M −−−−→
need
→ L, we do not necessarily have Lt ≡ N; the strongest

statement we can make about these L,M,N is that we will have Lt
name

= N. Table 1

shows the possible results of (I) steps M −−→
(I)
→ L; we do not consider (V ,C, A, G)

contraction since (as we show below) they preserve t-images. This difficulty is easily

overcome: we simple relax the statement of the completeness result to allow such

overshooting; such behaviour is exactly what one would expect from introducing

shared subexpressions into a compatibly-closed reduction relation.

The second complication arises in finding redexes in a need term M which

correspond to each redex in the t-image of a M: in some cases, there may be no

corresponding redex in the original term. For example, in the term M ≡ let x =

I in x y, there is no readily markable redex corresponding to the one contracted in

Mt ≡ I y −−−−→
name

y. The only redex in M is a (V ) redex, which again does not vary
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the t image. Moreover, other sorts of redex in need terms can interfere similarly.

Our solution to this problem is to normalise terms with respect to the (V ,C, A, G)

rules: then we can always associate redexes in a t-image with a redex – obviously

a (I) redex – in the original term. After establishing these preliminary results, the

completeness result follows naturally.

Outline of the results. The behaviour of need reduction sequences under t is straight-

forward, and leads easily to the soundness result in Lemma 16. For completeness

it is easier to work in need terms which have no (V ,C, A, G) redexes. We first

establish that all terms do indeed have unique (V ,C, A, G)-normal forms, and give a

grammar corresponding to these forms. We link reduction of need terms in general

to (V ,C, A, G)-normalisation by Corollary 22, and link reduction of (V ,C, A, G)-

normal need terms to (β)-reduction of name terms through Corollary 26. These

results lead to the completeness argument, which we give as Lemma 27. The sound-

ness and completeness properties are summarised as Proposition 28. We then extend

the equivalence results to convergence (Corollary 30) and observational equivalence

(Theorem 32).

Technically, the soundness and completeness results rely in an essential way on the

notion of developments. What we actually show for soundness is that let contraction

preserves complete developments: if σ is a complete development of a marked need

term (M,F) ending in N, then the complete name development of the t image

of (M,F) is Nt. For completeness we show that a complete name development σ

corresponds to a complete need development whose t-image is again a complete

name development τ; σ will be a partial development of the redexes marked at the

beginning of τ.

For soundness we need two lemmas. Lemma 12.2 tells us that (V ,C, A, G) steps

preserve t-images; the following result treats (I) steps.

Lemma 15

Let M
γ−−→

(I)
N be a need step. Then (M, {γ})t −−→

cpl
Nt.

Proof

By structural induction on M. All of the cases are immediate from the induction

hypothesis except when M ≡ (let x = M0 in M1). Then we have two cases, depending

on the location of the redex.

1. γ ≡ `1δ. Then M0
δ−→ N0, N ≡ (let x = N0 in M1) and Nt ≡Mt1 [x := Nt0 ]. By

the induction hypothesis we have

(M0, {δ})t −−→cpl
Nt0 ,

or in other words

(M0, {δ})t −−−−−→
name

′
0

→ Nt0 ∈ name.

Since marked call-by-name reduction is substitutive, we have σ such that

σ : (M, {γ})t ≡Mt1 [x := (M0, {δ})t] −−−−−→
name

′
0

→Mt1 [x := Nt0 ] ≡ N,
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Syntactic Domains

Applicable Terms H̄ ::= V̄ | H̄ M̄

Values V̄ ::= λx.M̄ | x
Terms L̄, M̄, N̄ ::= V̄ | let x = H̄ M̄ in M̄ | H̄ M̄

where in a term (let x = H̄ M̄0 in M̄1), x ∈ fv(M̄1)

Fig. 9. (V ,C, A, G)-normal need terms.

and since Mt1 , N
t
0 ∈ name and unmarked, so is N, and σ is in fact a complete

development.

2. γ ≡ `2δ. Then M1
δ−→ N1, N ≡ let x = M0 in N1 and Nt ≡ Nt1 [x := Mt0 ].

The result is largely as in the previous subcase. By the induction hypothesis

we have

(M1, {δ})t −−→cpl
Nt1 ,

or in other words

(M1, {δ})t −−−−−→
name

′
0

→ Nt1 ∈ name.

Again by substitutivity of marked call-by-name reduction, we have σ such that

σ : (M, {γ})t ≡Mt1 [x := (M0, {δ})t] −−−−−→
name

′
0

Nt1 [x := Mt0 ] ≡ N,

and once again since Mt0 , N
t
1 ∈ name and unmarked, so is N, and we have

that σ is a complete development.

Corollary 16 (Soundness of t for reduction)

Let M,N ∈ need with M −−−−→
need
→ N. Then Mt −−−−→

name
→ Nt.

Proof

By induction on the length of the reduction sequence, with Lemma 12.(2) for

(V ,C, A, G) steps and Lemma 15 for (I) steps.

For completeness we will use the subset of need terms shown in Figure 9. In fact

we will show in the next lemma that this subset identifies the need terms which are

in (V ,C, A, G)-normal form. We let L̄, M̄, N̄ range over these terms.

Lemma 17

Let M̄ be as described in the figure.

1. M̄ is a need term.

2. Moreover, a term M ∈ need is in (V ,C, A, G)-normal form if and only if it can

be expressed as some term M̄.

Proof

The first clause is trivial. For the second clause, it is clear that every term M̄

has no (V ,C, A, G)-redexes. For the converse, we consider structural induction on

(V ,C, A, G)-normal forms, and show that they are indeed equivalent to some term

M̄. Only applications and let-bindings are interesting; other term-forms are trivial.
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1. Let M ≡ M0 M1 be a (V ,C, A, G)-normal form. By the induction hypothesis,

each Mi is equivalent to some M̄i. Moreover, for M not to be a (C)-normal

form, M0 cannot be a let-binding, only a (V ,C, A, G)-normal value or applica-

tion: in other words, it must be some H̄ , and so we have M ≡ H̄ M̄1.

2. Let M ≡ let x = M0 in M1 be a (V ,C, A, G)-normal form. By the induction

hypothesis, again each Mi is equivalent to some M̄i, and we clearly have

x ∈ fv(M1). For M not to be a top-level (V ,A)-redex, we must have that

M0 is neither a value nor another let-binding, only a (V ,C, A, G)-normal

application: in other words, it must be some (H̄ N̄), and so we have M ≡
let x = (H̄ N̄) in M̄1.

Definition 18 ((V ,C, A, G)-normalization relation)

For terms M,N ∈ need, we write M −−−−−−−−−→
(V ,C,A,G)-nf

N if M −−−−−−−→
(V ,C,A,G)

→ N and N is a

(V ,C, A, G)-normal form.

The following three technical lemmas follow from the technical issues we detail in

the proof of Theorem 3.

Lemma 19

For all M ∈ need there exists a unique N such that M −−−−−−−−−→
(V ,C,A,G)-nf

N.

Proof

We modify the argument for the finiteness of call-by-need developments from

Theorem 3. We use the same notion of weighted term and norm as above, but we

take a different definition of decreasing weighting:

• All free variables xi or Vxi have decreasing weighting.

• An abstraction λx. Ṁ has a decreasing weighting if Ṁ has a decreasing

weighting.

• An application I(Ṁ Ṅ) has decreasing weighting if both Ṁ and Ṅ have

decreasing weighting.

• A binding (let x = Ṁ in Ṅ) or An (let x = Ṁ in Ṅ) has decreasing weighting if:

1. Both Ṁ and Ṅ have decreasing weighting.

2. For all xi or Vxi in Ṁ, we have i > ‖Ṅ‖.

The idea is that we track all let-bindings, but we do not ever create any new

ones, since we are not interested in (I) steps. By manual analysis of the various

combinations we can show that (V ,C, A, G) reduction – marked or unmarked – of

a term with decreasing weighting both strictly decreases the norm and retains a

decreasing weighting. We can give any term a decreasing weighting with the same

algorithm as above, and thus strong normalisation follows.

Lemma 20

Let σ : L0 −−−−−−−→(V ,C,A,G)
L1, (L0,F) −−→

cpl
M where F marks (I) steps, and take N where

(L1,F/σ) −−→
cpl

N. Then M −−−−−−−→
(V ,C,A,G)

N.
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Proof
For σ a (V ,C, A) step the result is immediate from Theorem 3. Otherwise, for a (G)

step we have the result by induction on the size of F with a simple comparison of

the relative positions of the redexes at each step.

Lemma 21
Let L −−−−−−−−−→

(V ,C,A,G)-nf
L̄, M −−−−−−−−−→

(V ,C,A,G)-nf
M̄ and let F index (I)-redexes in L such that

σ : (L,F) −−→
cpl

M. Then L̄ −−−−→
need
→ M̄.

Proof

We strengthen the obvious fact that L̄
need

′
= M̄. We fix τ as some (V ,C, A, G)-reduction

sequence from L to L̄; then by induction on the length of τ, applying Lemma 20 at

each step, we have a common reduct of L̄ and M, which by Lemma 19 reduces to

M̄.

The condition guaranteed by the next result is stronger than just confluence for (I)

steps: confluence tells us only that there exists some N such that both L̄ and M̄

reduce to N. This lemma asserts that this N is in fact equivalent to M̄.

Corollary 22
Let L −−−−−−−−−→

(V ,C,A,G)-nf
L̄, M −−−−−−−−−→

(V ,C,A,G)-nf
M̄ and L −−−−→

need
M. Then L̄ −−−−→

need
→ M̄.

Proof
If L −−−−→

need
M is a (V ,C, A, G)-step, then the result is trivial since we have unique

normal forms: thus L̄ ≡ M̄. Otherwise, the result follows from the above lemma

since the single step can be viewed as the complete development of a single

(I)-redex.

Lemma 23
Let M̄ be a (V ,C, A, G)-normal need term where M̄t ≡ N ∈ name, and let γ index

a (β)-redex in N. Then there exists some δ indexing an (I)-redex in M̄ such that

γ ∈ {δ}t[M̄].

Proof
By induction on the structure of the term M̄. When M̄ is an application or ab-

straction the result follows directly from the induction hypothesis. For M̄ ≡ let x =

H̄ M̄1 in M̄2, we distinguish between two possibilities: whether the marked redex

in N originates in M̄1 or in M̄2. The distinction is made by the following technical

criterion: do there exist γ0 and γ1 such that γ ≡ γ0γ1 and M̄t2 |γ0
≡ x? In other

words, in indexing M̄t2 by γ, do we run into a reference to the let-bound variable

somewhere along the indexing path?

• Such γ0, γ1 exist. Then the result follows by induction on (H̄ M̄1) and γ1.
• No such γ0, γ1 exist. Then clearly we have some δ such that M̄2|δ is an ap-

plication V̄ N̄ and δt
M̄2
≡ γ. Moreover, V̄ must be an abstraction and not a

variable: if it were a variable, and for M to have a redex at γ, then it would be

necessary that the variable be let-bound to an abstraction, which is impossible

by (V )-normalisation. We also have that V̄ is not a let-binding, since M̄ is

(C)-normal. So δ does in fact mark a redex in M̄.
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Corollary 24
Let M̄ be a (V ,C, A, G)-normal need term where M̄t ≡ N ∈ name, and let F index

(β)-redexes in N. Then there exists some G indexing (I)-redexes in M̄ such that

F ⊆ {G}t[M̄].

Proof
This G is just the union of the individual corresponding redexes for every member

of F predicted by Lemma 23 above.

The main lemma of this section follows:

Lemma 25
Let L̄ be a (V ,C, A, G)-normal need term, and let M,N ∈ name where

σ0 : M
γ−−−−→

name
N.

σ1 : M −−−−→
name
→ L̄t

Then there exists some (V ,C, A, G)-normal need term L̄0 such that L̄ −−−−→
need
→ L̄0 and

N −−−−→
name
→ L̄t0 :

M N

L̄t L̄t0

L̄ ∃L̄0

-γ -
name

6
name

6

. . . . . . . . . . . .-
need

-

.

.

.

.

.
6
name

6

.

Proof
[1] Since M −−−−→

name
N in a single step, σ0 may be viewed as a complete development

of that single redex. [2] Then by Proposition 1, we have some M0 ∈ name such that

τ : (L̄t, γ/σ1) −−→
cpl

M0 and N →→M0. [3] By Lemma 24 we have some marking G of L̄

such that γ/σ1 ⊆ Gt[L̄]
. [4] We take N0 to be the result of the complete development of

L̄ by the (I)-redexes marked in G, which is also unique (by Theorem 3), and which

has some (V ,A, C, G)-normal form L̄0 (by Lemma 19). [5] Since we can consider

only marked (I) steps, by Lemma 21, we have (L̄,G)t −−−−−−−→
name-cpl

L̄t0 as well. [6] Since

γ/σ1 ⊆ Gt[L̄]
, τ is a partial development of (L̄,G)t which can be extended again by

finiteness of developments for call-by-name to a complete development ending in

L̄t0 . [7] So since developments can be projected to sequences in the unmarked calculi,

we have that both L̄ −−−−→
need
→ N0 −−−−→

need
→ L̄0 and N −−−−→

name
→ M0 −−−−→

name
→ L̄t0 . The reasoning

is summarised in Figure 10, which refers to the sentence numbering.

Corollary 26
Let L̄ be a (V ,C, A, G)-normal need term, and let M,N ∈ name where M −−−−→

name
→ L̄t

and M −−−−→
name
→ N. Then there exists some (V ,C, A, G)-normal need term L̄0 such that

L̄ −−−−→
need
→ L̄0 and N −−−−→

name
→ L̄t0 :

M N

L̄t L̄t0

L̄ ∃L̄0

-
name

-

6
name

6

. . . . . . . . . . . .-
need

-

.

.

.

.

.
6
name

6

.
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M N

(M, γ)

L̄t

M0(L̄t, γ/σ1)

(L̄,G)t ≡ (L̄t,Gt
[L̄]

)

(M0,Gt[L̄]
/τ)

(L̄,G)

Nt0 ≡ L̄t0

L̄ N0 L̄0

-σ0 : -
[Given]

-γ -
name

6

name

66

σ1 :

6

[Given]

XXXXXXXXXXXXXXXXXXz
cpl

XXXXXXXXXXXXXXXXXXz

[1]

-
cpl

-τ : -
[2]

6

name

66

[2]

6

⊆

6

[3]

��
��

��
��*

need-cpl

��
��

��
��*

[4]

-
(V ,A, C, G)-nf

-[4]

-
cpl

-[5]

HHHHHHHjdev

HHHHHHHj

[6]

��
��

��
�*

cpl��
��

��
�*

[6]

-
need

--
[7]

6

name

66

[7]

t

@@
@@
@@
@@
@@
@@

t

t

t

.

Fig. 10. Reasoning for the proof of Lemma 25. The numbers in square brackets refer to

the sentence in the proof where the particular link is established. Except where explicitly

indicated, all (complete) developments are name sequences.

Proof

By the obvious induction using Lemma 25 at each step.

Lemma 27 (Completeness of t for reduction with overshooting)

Let M ∈ need and N0 ∈ name where Mt −−−−→
name
→ N0. Then there exists some N ∈ need

such that M −−−−→
need
→ N and N0 −−−−→

name
→ Nt.

Proof

Follows immediately from Corollary 26 by considering the (V ,C, A, G)-normal forms

M̄ and N̄ of M and N, respectively, which exist and are unique by Lemma 19; we

have M̄ −−−−→
need
→ N̄ by Corollary 22.

We can now prove the main equivalence result between call-by-name and call-by-

need reduction.

Proposition 28 (Equivalence of call-by-name and call-by-need reduction)

The function t is sound and complete for mappings of name reduction sequences
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to need reduction sequences, where need sequences are allowed to ‘overshoot’ name

results:

Mt Nt

M N-need -

. . . . . . . . . . .-name - Mt N0 Nt

M ∃N

-name -

. . . . . . . . . . . . . . . . . . . . . . . . . .-need -

. . . . . . . . . . . .-name -

Proof

By Lemmas 16 and 27.

The convergence relations ⇓ are defined in terms of whether the respective reduction

relations lead from a term to a result, but do not consider the particular result.

Definition 29 (Convergence relations)

Let M ∈ name and N ∈ need.

1. We say that M converges in the call-by-name calculus, or M ⇓name, exactly

when we have some abstraction λx.M0 such that M −−−−→
name
→ λx.M0.

2. We say that N converges in the call-by-need calculus, or N ⇓need, exactly when

we have some call-by-need answer A such that M −−−−→
need
→ A.

Example 7

Let Ω ≡ (λx.x x) (λx.x x), I ≡ (λy.y) and K ≡ (λzw.z). Then K I Ω ⇓name, since

K I Ω ≡ (λzw.z) I Ω

7−−−−→
name

(λw.I) Ω

7−−−−→
name

I.

But adopting the convergence notation for call-by-value, we have K I Ω 6⇓val, since

K I Ω 7−−−→
val

(λw.I) Ω

7−−−→
val

(λw.I) Ω

and so on.

Proposition 28 gives us a straightforward relationship between the two convergence

relations:

Corollary 30 (Convergence in call-by-name and call-by-need )

For all M ∈ Λneed,

M ⇓need if and only if Mt ⇓name .

Proof

By Proposition 28 and Lemma 12.(3).

4.3 Relating observational equivalences

Observational equivalence is the coarsest equivalence relation over terms that still

distinguishes between terms with different observational behaviour. Formally:
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Definition 31 (Observational equivalence relations)

Two terms M,N of a languageL are observationally equivalent under a convergence

theory ⇓R , written M ∼=R N, if and only if for all L-contexts C such that C[M] and

C[N] are closed,

C[M] ⇓R if and only if C[N] ⇓R .

Example 8

It is trivially true that all reduction-related terms of the calculi we consider are

observationally equivalent: if L0 →→ L1 and C[L0] →→ A0, then clearly C[L0] →→
C[L1], and

• By confluence there is some M0 such that τ : A0 →→M0 and C[L1]→→M0.

• By the first itemised property in the proof of 10 and τ, M0 must also be an

answer.

so C[L1] ⇓ as well.

The converse is simpler; if L0 →→ L1 and C[L1]→→ A0, then C[L0]→→ C[L1]→→ A0

as well. So for example, K I Ω ∼=name I . Taking C ≡ [ ] it is clear that K I Ω 6∼=val I ,

but a simple structural induction reveals that K I Ω ∼=val Ω.

Corollary 30 implies that λneed is a conservative observational extension of λname:

Theorem 32 (Observational equivalences in call-by-name and call-by-need )

The observational equivalence theories of λname and λneed coincide on Λname. For all

terms M,N ∈ Λname,

M ∼=name N if and only if M ∼=need N.

Proof

“⇒”: Assume M ∼=name N and let C be a λneed-context such that C[M] and C[N] are

closed. Let C# result from C by eliminating all let’s in C using rule (I) repeatedly

in reverse. Then

C[M] ⇓need
⇔ C#[M] ⇓need since C#[M]

need

= C[M]

⇔ C#[M] ⇓name by Corollary 30, since (C#[M])t ≡ C#[M]

⇔ C#[N] ⇓name since M ∼=name N

⇔ C[N] ⇓need by the reverse argument on Corollary 30.

‘⇐’: symmetrically, with C instead of C#, and leaving out the first step in the

equivalence chain.

Corollary 33

The rule β is an observational equivalence in λneed: For all M,N ∈ Λneed,

(λx.M) N ∼=need [M/x]N .
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Id
〈Φ〉M ⇓ 〈Ψ〉V

〈Φ, x 7→M, Υ〉 x ⇓ 〈Ψ, x 7→ V , Υ〉V

Abs 〈Φ〉 λx.N ⇓ 〈Φ〉 λx.N

App
〈Φ〉L ⇓ 〈Ψ〉 λx.N 〈Ψ, x′ 7→M〉 [x′/x]N ⇓ 〈Υ〉V x′ fresh

〈Φ〉L M ⇓ 〈Υ〉V

Fig. 11. Operational semantics of call-by-need lambda calculus.

Proof

Let M,N ∈ Λneed. Let M0, N0 be the corresponding Λname-terms that result from

eliminating all let’s in M,N by performing (I) reductions in reverse. Then we have

in λneed:

(λx.M)N = (λx.M0)N0
∼= [N0/x]M0 = [N/x]M

where “∼=” follows from Theorem 32.

5 Natural semantics

This section presents an operational semantics for call-by-need in the natural se-

mantics style of Plotkin and Kahn, similar to one given by Launchbury (1993). The

natural semantics is closely related to the standard reduction order we presented

above.

A heap abstracts the state of the store at a point in the computation. It consists

of a sequence of pairs binding variables to terms,

x1 7→M1, . . . , xn 7→Mn.

The order of the sequence of bindings is significant: all free variables of a term

must be bound to the left of it, i.e. a term Mi may contain as free variables only

x1, · · · , xi−1. Furthermore, all variables bound by the heap must be distinct. Thus

the heap above is well-formed if fv(Mi) ⊆ {x1, . . . , xi−1} for each i in the range

1 ≤ i ≤ n, and all the xi are distinct. Let Φ,Ψ,Υ range over heaps. If Φ is the heap

x1 7→ M1, . . . , xn 7→ Mn, define vars(Φ) = {x1, . . . , xn}. A configuration pairs a heap

with a term, where the free variables of the term are bound by the heap. Thus 〈Φ〉M
is well-formed if Φ is well-formed and fv(M) ⊆ vars(Φ). The operation of evaluation

takes configurations into configurations. The term of the final configuration is always

a value. Thus evaluation judgements take the form 〈Φ〉M ⇓ 〈Ψ〉V .

The rules defining evaluation are given in Figure 11. There are three rules, for

identifiers, abstractions and applications.

• Abstractions are trivial. As abstractions are already values, the heap is left

unchanged and the abstraction is returned.

• Applications are straightforward. We evaluate the function to yield a lambda

abstraction, extend the heap so that the the bound variable of the abstraction

is bound to the argument, and then evaluate the body of the abstraction. In
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this rule, x′ is a new name not appearing in Ψ or N. The renaming guarantees

that each identifier in the heap is unique.

• Variables seem more subtle, but the basic idea is straightforward: we find

the term bound to the variable in the heap, evaluate the term, then update

the heap to bind the variable to the resulting value. Some care is required to

ensure that the heap remains well-formed. The original heap is partitioned into

Φ, x 7→M, Υ. Since the heap is well-formed, only Φ is required to evaluate M.

Evaluation yields a new heap Ψ and value V . The new heap Ψ will differ from

the old heap Φ in two ways: bindings may be updated (by Var) and bindings

may be added (by App). The free variables of V are bound by Ψ, so to ensure

the heap stays well-formed, the final heap has the form Ψ, x 7→ V , Υ. Note

that this last statement implies that any new bindings added into Ψ will use

fresh variables which are not also used in Υ.

A semantics of let terms can be derived from the above rules: the semantics of

let x = M in N is identical to the semantics of (λx.N) M.

As one would expect, evaluation uses only well-formed configurations, and eval-

uation only extends the heap.

Lemma 34

Given an evaluation tree with root 〈Φ〉M ⇓ 〈Ψ〉V , if 〈Φ〉M is well-formed then

every configuration in the tree is well-formed, and furthermore, vars(Φ) ⊆ vars(Ψ).

Thanks to the care taken to preserve the ordering of heaps, it is possible to draw

a close correspondence between evaluation and standard reductions. If Φ is the heap

x1 7→M1, . . . , xn 7→Mn, write let Φ in N for the term

let x1 = M1 in · · · let xn = Mn in N.

Every answer A can be written let Ψ in V for some heap Ψ and value V . Then a

simple induction on ⇓-derivations yields the following result.

Proposition 35

For all heaps Φ, Ψ, terms M and values V ,

〈Φ〉M ⇓ 〈Ψ〉V if and only if let Φ in M 7−−−−→
need
→ let Ψ in V .

The semantics given here is similar to that presented by Launchbury (1993).

An advantage of our semantics over Launchbury’s is that the form of terms is

standard, and care is taken to preserve ordering in the heap. Launchbury uses a

non-standard syntax, in order to achieve a closer correspondence between terms and

evaluations: in an application the argument to a term must be a variable, and all

bound variables must be uniquely named. Here, general application is supported

directly and all renaming occurs as part of the application rule. It is interesting

to note that Launchbury presents an alternative formulation quite similar to ours,

buried in one of his proofs.

An advantage of Launchbury’s semantics over ours is that his copes more neatly

with recursion, by the use of multiple, recursive let bindings. An extension of our

semantics to include recursion (Ariola and Felleisen, 1994, for example) would lose
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Syntactic Domains

Variables x, y, z

Values V ,W ::= x | λx.M
Terms L,M,N ::= V | M N

Answers A,Ai ::= λx.M | (λx.A) M

Evaluation Contexts E, Ei ::= [ ] | E M | (λx.E) M

| (λx.E0[x]) E1

General Reduction Rules

(V`) (λx.C[x]) V → (λx.C[V ]) V

(C`) (λx.L)MN → (λx.LN)M

(A`) (λx.L)((λy.M)N) → (λy.(λx.L)M)N

(G`) (λx.M) N → M if x 6∈ fv(M)

Standard Reduction Rules

(V`
s ) (λx.E[x]) (λy.M) 7→ (λx.E[(λy.M)]) (λy.M)

(C`
s ) (λx.A)MN 7→ (λx.AN)M

(A`s ) (λx.E[x])((λy.A)N) 7→ (λy.(λx.E[x])A)N

Fig. 12. The let-less call-by-need calculus.

the ordering property of the heap, and hence lose the close connection to standard

reductions (Mossin et al., 1995). We discuss other extensions for recursion below.

6 Call-by-need without bindings

In the call-by-name calculus, we have related (let x = M in N) to ((λx.N) M) by an

explicit reduction rule: but are let-bindings really essential? It turns out that they

are not; we can take the conversion to be a syntactic identity, and thus expel the

bindings from call-by-need. We call the resulting calculus λ`
need

(reading the ` as

‘let-less’). Its notions of general and standard reduction are shown in Figure 12. We

define convergence ⇓
need

` and observational equivalence ∼=need
` in the new system as

usual.

While λ`
need

is perhaps somewhat less intuitive than λneed, its simpler syntax

makes some of the basic (syntactic) results easier to derive. It also allows better

comparison with the call-by-name calculus, since no additional syntactic constructs

are introduced.

Clearly, λneed and λ`
need

are closely related. More precisely, the following theorem

states that reduction in λneed can be simulated in λ`
need

, and that the converse is also

true, provided we identify terms that are equal up to (I) introduction.

Proposition 36

For all M0 ∈ Λ`
need

, M1 ∈ Λneed,

M0

M1 N1

N0
-need

` -

?

(I)

?

.

.

.

.

.

.

.

.

.?

(I)

?. . . . . . . . .-need -

M0

M1 N1

N0
. . . . . . . . .-need

` -

?

(I)

?

.

.

.

.

.

.

.

.

.?

(I)

?-need - .
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Proposition 36 can be used to derive the essential syntactic properties of λ`
need

from

those of λneed:

Theorem 37

Reduction in λ`
need

is Church–Rosser.

Theorem 38

The relation 7−−−−−→
need

`
is a standard reduction relation for λ`

need
. For all terms M and

answers A ∈ Λ`
need

,

• Soundness. If M 7→→ A then M →→ A.

• Completeness. If M →→ A then there exists some answer A0 ∈ Λ`
need

such that

M 7→→ A0.

The let-less calculus λ`
need

has close relations to both the call-by-value calculus λval
and the call-by-name calculus λname. Its notion of equality =λ`

need

– i.e. the least

equivalence relation generated by the reduction rules – fits between those of the

other two calculi, making λ`
need

an extension of λval and λname an extension of λ`
need

.

Theorem 39

=λval ⊂ =λ`
need

⊂ =λname .

Proof

Rule βV can be expressed by a series of (I, V , G) steps, as shown in Example 9, so

we have =λval ⊆ =λ`
need

. To show that the inclusion is proper, we take Ω to be the

usual divergent expression

Ω ≡ (λx.x x) (λx.x x),

and have

(λx.x) ((λy.y) Ω) = (λy.(λx.x) y) Ω

by the (A`) rule; this equality does not hold in call-by-value, so =λval ⊂ =λ`
need

.

For the second inclusion, we can see that each λ`
need

reduction rule is an equality

in λ. For instance, in the case of (V`) we have:

(λx.C[x]) V =β [V/x](C[x]) ≡ [V/x](C[V ]) =β (λx.C[V ]) V .

The other rules have equally simple translations; the left- and right-hand sides of the

axioms always have a common (β)-reduct which can be constructed by contracting

the applications mentioned in the rules, and identifying the two sides based on the

(non-)occurrence of substituted variables in certain subexpressions. Thus we have

=λ`
need

⊆ =λname . For the proper inclusion, we have the following instance of β which

is not an equality in λ`
need

:

(λx.x) Ω = Ω ,

and so =λ`
need

⊂ =λname .

As in the calculus with bindings, one can show that the observational equivalence

theories of λ`
need

and λname are identical; the proof is by a simple application of

Theorem 32 together with Proposition 36. The observational equivalence theories of

both λ`
need

and λname are incompatible with the theory for λval.
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Theorem 40

For all terms M,N ∈ Λ,

M ∼=name N ⇔ M ∼=need
` N.

Theorem 39 implies that any model of the call-by-name calculus is also a model

of λ`
need

, since it validates all equalities in λ`
need

. Theorem 40 implies that any

adequate (respectively fully-abstract) model of λname is also adequate (fully-abstract)

for λ`
need

, since the observational equivalence theories of both calculi are the same.

For instance, Abramsky and Ong’s adequate model of the lazy lambda calculus

(Abramsky, 1990) is also adequate for λ`
need

.

7 Extensions

The formulation of call-by-need we have reviewed is rather basic, and lacks a

number of common syntactic conveniences, which we consider now. In section 7.1

we consider the algebraic data types which are central to elegance of real functional

programs. Section 7.2 discusses how we can include constants and primitive functions

to the calculus. One also often considers recursive let-bindings; we do not consider

recursion is detail here, but sketch a number of others’ approaches in the conclusion.

7.1 Constructors and selectors

Functional programs rely in an essential way on distinguishable tagged packages of

informations. The ubiquitous list is one such datatype with two such constructors,

Cons and Nil. The former tag accompanies two items, the head and tail of the list;

the latter tag is unaccompanied.

Of course, these additions can be simulated in the base language via Church

encodings, but a more high-level treatment is often desirable for reasons of both

clarity and efficiency. The syntax and semantics of the extension are shown in

Figure 13; we write ~S to abbreviate many occurrences of S , and let ~x = ~M in N as

an abbreviation for

let x1 = M1 in · · · let xai = Mai in N .

In a tagged expression, a tag Ki expects ai component items. We distinguish between

different tags and access their components via a case expression. A clause S of a

case expression has the form

Ki x1 · · · xai . Mi .

A case expression then consists of one subexpression to be considered, plus a series

of clauses of distinct constructors:

case M in 〈 S1, S2, . . . , Sn 〉 .

Reduction of the case statement involves matching the constructor of the subterm

M. Since we do not want to force the constructor subterms to be evaluated until
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Syntactic Domains

Terms L,M,N ::= · · · | case M in 〈 ~S 〉
| Ki M1 ... M(ai) (ai ≥ 0)

Clauses S ::= Ki ~x
ai
1 .M

Answers A ::= · · · | Ki M1 ... M(ai) (ai ≥ 0)

Evaluation contexts E ::= · · · | case E in 〈 ~S 〉

Additional Reduction Rules

(IK ) case Ki
~M in 〈 · · · , Ki ~x.N, · · · 〉 → let ~x = ~M in N

(VK ) let x = Ki
~M in N → let ~y = ~M in N[x := Ki~y]

(AK ) case (let x = M in N) in 〈 ~S 〉 → let x = M in case N in 〈 ~S 〉

Additional Evaluation Rules

(IKs ) case Ki
~M in 〈 · · · , Ki ~x.N, · · · 〉 7→ let ~x = ~M in N

(VK
s ) let x = Ki

~M in E[x] 7→ let ~y = ~M in (E[x])[x := Ki~y]

(AKs ) case (let x = M in A) in 〈 ~S 〉 7→ let x = M in case A in 〈 ~S 〉

Fig. 13. Data constructors and selectors.

they are individually demanded, we create new bindings to the pattern variables in

the (IK) rule:

case (Ki M1 · · · Mai) in 〈 · · · , Ki x1 · · · xai .N, · · · 〉
→ let x1 = M1 in · · · let xai = Mai in N .

The (VK ) rule facilitates let-bound constructor expressions, again creating bindings

for the subexpressions rather than duplicating them in the substitution. The separate

rules (V ) for freely copyable values (abstractions and variables) and (VK ) for

constructor terms is awkward, but avoids the need for separate tags which indicate

whether the subexpressions are copyable. One might further refine this scheme by

including Ki
~V as a value, and restricting (VK ) to the case where at least one of the

subexpressions is not a value. Finally we also have a new structural rule (AK ), which

allows us to rearrange a let-binding in the term under examination.

Most other formalisations of call-by-need, including the representation of terms

for the STG machine (Peyton Jones, 1992), Launchbury’s natural semantics (Launch-

bury, 1993), and our earlier work on the subject with Ariola and Felleisen (1995),

restrict constructor subcomponents to either variables or values, and copy the sub-

components in the rule analogous to (VK ). In our (evaluation) rules, the case

expression is both an evaluator of its subterm and a memory allocator for the new

let-bound terms. Since the STG machine is intended to directly reflect low-level

details of an actual compilation, a more orthogonal design is appropriate. In the

STG machine the case expression is essentially just a subroutine call to evaluate the

subterm, and only case expressions correspond to such subroutine calls. Likewise,

STG let-bindings suggest only memory allocation on the heap, and no other con-

struct allocates heap space. Thus it is desirable in the STG machine to restrict the

subcomponents to variables, and assume the presence of some preprocessor which

repeatedly lifts out non-variable subcomponents via let-bound variables. The other
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Syntactic Domains

Constants and functions c, p

Values V ,W ::= λx.M | c
Evaluation contexts E ::= · · · | p E

Additional Reduction Rules

(δ) p c → δ(p, c) δ(p, c) defined

Additional Evaluation Rules

(Gs) let x = M in c 7→ c

(δs) p c 7→ δ(p, c) δ(p, c) defined

Fig. 14. Constants and primitive functions.

two approaches follow this implementation philosophy, but for a general calculus

the restriction is rather artificial.

7.2 Constants and primitive functions

A further aspect of real functional programming languages is the inclusion of

constants and primitive function in the language. Like constructors and selectors,

constants and primitive functions may simply be Church-encoded, but again at the

cost of readability and a distortion of the actual effort required in program reduction

as compared to the actual implementation.

Figure 14 describes the extension of the call-by-need calculus for constants.

Following Plotkin, we add a set of unique names to the set of values, and assume

the existence of some (probably partial) function δ from pairs of these names

to names. We let c, p range over these constants, generally using p to refer to

constants used as functions. We let A range as usual over abstractions possibly

under bindings, although the result below deals with observation of constants rather

than these ‘answer’ closures. Thus as discussed in section 8, garbage collection

becomes essential in evaluation to constants. The following result relates reduction

to basic elements in call-by-need and in call-by-name. The result is an easy extension

of Proposition 28, and relies on (G) to discard unneeded bindings from around the

primitive in the call-by-need sequence.

Corollary 41

For all terms M ∈ Λ with primitives and constants c,

M −−−−→
need
→ c ⇔ M −−−−→

name
→ c .

8 Concluding remarks

We conclude with a discussion of our call-by-need calculus in relation to a number

of other systems and notion of reduction.

On other formulations of call-by-need. Josephs (1989) gives a continuation- and store-

based denotational semantics of lazy evaluation. Purushothaman and Seaman (1992)
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give a structured operational semantics of call-by-name PCF with explicit environ-

ments that is then shown to be equivalent to a standard denotational semantics for

PCF. Launchbury (1993) presents a system with a simpler operational semantics

and gives in addition rules for recursive let-bindings that capture call-by-need shar-

ing behaviour. The key point about all this work is that while it does provide an

operational model of call-by-need, it does not provide anything like a calculus or a

reduction system for equational reasoning.

In work done independently of ours, Ariola and Felleisen proposed a similar cal-

culus (1994). We have taken the position that call-by-need, in a general sense, should

unite the observational behaviour of call-by-name with the restrictions on copying

of call-by-value. Thus since none of the (V ,C, A, G) rules copy top-level non-values,

and since they do preserve call-by-name observations, it is appropriate to adopt the

rules without restriction. Ariola and Felleisen take a narrower view of what one

should permit within a reduction relation, and interpret the “need” in call-by-need

literally. Their system can be characterised as the relation (Is, Vs, Cs, As) compatibly

closed under all contexts. In other words, the restriction to subexpressions which

we impose only in standard reduction rules, they impose universally. Their calculus

captures only “the intentional aspects of modern call-by-need evaluators,” which we

find appropriate for the standard reduction relation but too restrictive for the general

calculus. Their system proves fewer program transformations as equalities, requiring

instead the more difficult notion of observational equivalence. It is interesting to

note that Ariola and Felleisen’s summary of Plotkin’s criteria for the development

of calculi to capture language properties (1975) does note that “the equations of [a]

calculus should identify terms that are ‘observationally indistinguishable’ from each

other”; as such we feel that our system more closely adheres to Plotkin’s program.

However it should be noted that without their restrictions, confluence may be lost

when extending the system for mutually recursive bindings, which we address as

a separate point below; this point is certainly one advantage of their formulation.

Ariola and Felleisen’s restriction to the bodies of the general rules does streamline

the transition from general to standard reduction, since one needs only to consider

an alternate notion of compatible closure, under evaluation rather than arbitrary

contexts. Our system differs further from Ariola and Felleisen’s in our inclusion of

a rule for garbage collection, which we also discuss separately below.

Ariola and Felleisen also raise the somewhat more practical possibility that their

system admits easier proofs of the various syntactic properties. Strictly speaking this

claim is not invalid; their restriction of the general reduction rules allows results on

certain classes of term rewriting systems to be applied directly, making confluence

immediate. While our results on developments are somewhat less immediate, once

proven the same main syntactic results are in fact straightforward; the same results

on developments were also quite useful in the proofs about the observational

equivalence theories, whereas with Ariola and Felleisen’s weaker notion of marked

redexes an additional layer of diagramming notation is necessary. Although we

do believe that the technical results we present allow a more systematic technical

exposition, this issue is separate from the question of which formulation of the

general reduction rules is more appropriate.
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On call-by-need and explicit substitutions. At first glance the call-by-need system

seems to be little aside from yet one more formulation of explicit substitutions (Abadi

et al., 1990, for example). However, the assumptions made by explicit substitution

schemes regarding what the ‘expensive’ operation is in reduction are different.

Explicit substitution schemes track substitutions through a term, but do not place

any restrictions on the duplication of substitutions. As suggested by their name,

the explicit steps of pushing a substitution through the structure of a term, plus

accounting for the interaction of unpropagated substitutions with other structures,

is the difference with an implicit formulation. In our call-by-need scheme, we have

no interest in how substitutions move through the term, but rather under what

circumstances substitutions – implicit or explicit – may be created in a term. A

clear advantage of call-by-need over explicit substitutions is simplicity; explicit

substitution schemes have considerably more rules, and correspondingly one has

more difficulty in establishing its syntactic properties.

Benaisaissa, Lescanne and Rose (1996) have presented a hybrid system which

incorporates sharing, explicit substitutions and explicit address references, and which

is quite useful for expressing space complexity. Their system is quite general, and

can simulate ours, as well as a number of other interesting systems, as a subset of

its rules, but as a result is a rather large, complex system. The particular calculus

which they present allows weak reduction only, but is easily generalised to allow

reduction in any context (Rose, private communication).

On call-by-need, full laziness and optimal reduction. Although we allow only values

to replace a variable in a substitution, it is not true that only values are ever copied.

In the contraction

M ≡ let x = (λy.M0 y y) in C[x]

→ let x = (λy.M0 y y) in C[λy.M0 y y],

the subexpression (M0 y y) is obviously not a value, but is nonetheless copied. A

number of issues apply to this situation, but the motivation behind our formulation

is the behaviour of graph reduction implementations of lazy functional languages in

the style of the G-machine and its descendants. In these designs, lambda abstractions

correspond to subroutines in the machine code, i.e. simple addresses which may be

copied freely. The (V ) rule is faithful to this design principle: we replace a reference

to x with a reference to code which will seek an argument y and then construct the

graph of M0 y y.

We have explicitly declined certain opportunities for greater sharing. In the above

example, if y does not occur in M0 then a more space-efficient representation of M

could be written as

N ≡ let f = M0 in let x = (λy.f y y) in C[x].

Rather than reducing M to N at runtime, we view the conversion of M to N as

appropriate to a transformation carried out before program execution. In particular,

the full laziness transformation enables sharing of such subterms (Wadsworth, 1971;

Hughes, 1983).
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Even after a full laziness pass, we would still copy the non-value (f y y):

let f = M0 in let x = (λy.f y y) in C[x]

→ let f = M0 in let x = (λy.f y y) in C[λy.f y y].

Such expressions are indeed copied in lazy functional graph reduction implementa-

tions, and we do not view this effect as a shortcoming. Sharing of subterms across

different instantiations of bound variables is addressed by optimal reduction strate-

gies (Lévy, 1980; Lamping, 1990; Field, 1990; Abadi et al., 1990; Maranget, 1991).

Although the additional sharing of those calculi does allow the fewest possible

reduction steps, it is not clear how useful optimal reduction is for compilation to

efficient low-level code.

Yoshida (1993) presents a weak lambda calculus with explicit environments similar

to let constructs, and gives an optimal reduction strategy. Her calculus subsumes

several of our reduction rules as structural equivalences. However, due to a different

notion of observation, reduction in this calculus is not equivalent to reduction to

weak head-normal form.

On call-by-need and generalisations of classical β-reduction. Much work exists in

discovering future redexes which are simply blocked by another contraction which

has not yet occurred. For example, in the term

(λx.λy.L) M N

it is clear that the occurrences of y in L will be replaced by N, but that substitution

will not be possible until we have first replaced x with M. Nederpelt proposed

a notion of generalised β reduction ↪→ which allows this contraction to occur at

once (Nederpelt, 1973):

(λx1.λx2.L) M1 M2 ↪→ (λx1.L[x2 := M2]) M1

(λx1.λx2.λx3.L) M1 M2 M3 ↪→ (λx1.λx2.L[x3 := M3]) M1 M2

and so on. The manipulation made explicit by our (C) rule is implicit in Nederpelt’s

rule, appearing only when necessary for a beta-like contraction to occur, but

Nederpelt does not address all of call-by-need reduction, and some massaging of

↪→ is necessary to capture reduction by (A) as well (Maraist, 1997).

On types and logic. It is straightforward to assign simple types to call-by-need terms;

in addition to the usual rules for terms we have

Γ `M : A Γ, x : A ` N : B

Γ ` let x = M in N : B

Let .

It is easy to verify that call-by-need reduction satisfies the subject reduction property,

and it is also clear that this judgement corresponds to the Cut Theorem of the

underlying natural deduction formulation of minimal intuitionistic logic.

In related work with David N. Turner (1995), we have explored the connection

between the typed versions of the call-by-name, call-by-value and call-by-need
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calculi using linear systems based on the work of Girard (1987), where the use of

the structural rules which allow copying and discarding of terms is restricted by

a special ! operator. Girard described two translations of intuitionistic logic into

an intuitionistic fragment of linear logic. The intuitionistic fragment of linear logic

admits a linear lambda calculus in the same manner that the intuitionistic fragment

of classical logic is related to the lambda calculus, for example the systems of

Wadler (1993a; 1993b) and Barber (1995). The translations may be extended to the

term level, and in fact one corresponds to call-by-name reduction, and the other to

call-by-value. The former is sound and complete for mapping call-by-name reduction

sequences into linear lambda sequences; the latter is sound but not complete for

mapping call-by-value sequences (Maraist et al., 1995). Both are sound and complete

for the respective notions of standard reduction (Maraist, 1997). Mackie (1994) has

shown the soundness – but not completeness – of these translations into a system

based on proof nets of full (classical) linear logic for both β and η axioms.

To study call-by-need via transformation into a linear system, it is necessary to

alter the (V ) rule slightly: rather than substituting one use of the bound value at a

time, we replace all occurrences of the bound variable, and discharge the binding:

(Ṽ ) let x = V in M → [V/x]M.

This reformulation allows a better fit into the logics – it is just a restricted form

of cut elimination – and can also simplify a number of syntactic results about

reduction.

Still, call-by-need does not fit directly into the logical framework. The fragment of

call-by-need without the (G) rule, which is a conservative extension of call-by-value

as discussed above, may be soundly mapped by an extension of the call-by-value

translation. To include the (G) rule, we can take the target of the translations to

be not linear logic, but rather affine logic, which allows arbitrary formulas to be

introduced, but not used. This translation of call-by-need is sound for reduction;

the affine lambda calculus also has a reasonable evaluation order under which the

translation is sound and complete for standard reduction.

Jacobs’ decomposition in the model theory of the ! operator into separate op-

erators for each of the two restricted structural operations (1994) suggests another

treatment of call-by-need. In the call-by-name translation, all arguments to functions

are explicitly allowed to be copied or discarded; in the call-by-value translation, all

values have this explicit allowance. For call-by-need it would be necessary to allow

discarding of any function argument, but copying only of values. In a calculus

where the corresponding syntactic operators enable the structural rules separately,

this distinction is possible. Such a hybrid translation is sound and complete for both

reduction and evaluation (Maraist, 1997).

On the relevance of garbage collection. One could question the inclusion of the

garbage collection rule (G) in the basic system: since it is excluded from the

standard reduction relation, it could be accused of irrelevance. Ariola and Felleisen

believe that the rule should be optional; because nearly every implementation does

include a garbage collector we feel it is important to include the rule to establish
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the intuitively obvious results that garbage collection does not cause evaluation to

go wrong (viz. confluence and standardisation).

In a real sense, the (G) rule is exactly the difference between call-by-need and call-

by-value. Reduction in need is clearly an extension of reduction in the call-by-value

calculus.

Example 9

A (βv) step

(λx.M) V → [V/x]M

can be expressed by the following sequence of need-reductions, where there is one

(V ) step for each occurrence of x in M:

(λx.M) V −−→
(I)

let x = V in M

−−−→
(V )
→ let x = V in [V/x] M

−−−→
(G)

[V/x] M .

If we exclude the (G) rule and use the alternate version (Ṽ ) of (V ) discussed above,

then the extension becomes conservative (Maraist et al., 1995): without the (G) rule,

we are thinking more of call-by-value than call-by-name, and so the relevance of

(G) to call-by-need reduction is clear.

Relevance to evaluation, on the other hand, is what one seems to miss. The fact

that unneeded bindings in the closure may simply be ignored is precisely the reason

why there is no rule (Gs). If we did include a garbage collection rule in 7→, we would

no longer be guaranteed that only a single standard redex would be available at

any point; we would also lose the simple and intuitive notion of answers as simply

functions under bindings since such terms might then have a standard redex. The

relevance to evaluation lies in reduction to constants, but since we do not include

constants in the core functional system, we cannot yet see this role. Arguably, the

inclusion of the (G) rule but exclusion of constants at this stage might seem uneven.

We have chosen the present formulation based on the overall importance of the rule,

while initially avoiding extensions beyond the core syntax.

On recursion. A shortcoming of our approach is its treatment of recursion. We

express recursion with a fixpoint combinator (which is definable since our calculus

is untyped). This agrees with Wadsworth’s original treatment and most subsequent

formalisations of call-by-need, with the notable exception of Launchbury’s natural

semantics (1993). However, implementations of lazy functional languages generally

express recursion by a back-pointer in the function graph. The two schemes are

equivalent for recursive function definitions but they have different sharing behaviour

in the case of circular data structures. A circular pointer can allow more efficient

sharing in the cases such as (say) the ‘infinite’ list denoted by the expression

letrec xs = (1 + 1) : xs in xs .

Unfortunately, as Ariola and Klop (1994) have discovered, the näıve extension of a

system with let’s to one allowing arbitrary letrec’s will not be confluent.
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Ariola and Blom (1997) give a thorough treatment of recursive let-bindings in

call-by-name, call-by-value and call-by-need reduction systems. Their work is based

on a theory cyclic graphs constrained in a way which gives a sensible notion of the

scope of bound variables, which is then related to β reduction and finally constrained

to respect sharing of subterms.

Three earlier approaches to letrec’s in call-by-need and similar calculi are also

noteworthy: Ariola and Felleisen (1994) extend their call-by-need calculus with le-

trec’s where selection of redexes is restricted by the use of evaluation contexts as we

discussed above. This restriction does allow the extension with letrec’s to be conflu-

ent, although as with their non-recursive system, it is the restrictions to the internals

of the reduction axioms which makes confluence immediate. Turner, Wadler and

Mossin (1995) describe a variant of the call-by-need calculus for an update analysis

of Haskell programs. While their calculus does not restrict reduction contexts, it

instead allows letrec’s to bind only a single identifier to a value, which is a significant

restriction on the recursion that can be expressed. Finally, Rose extended explicit

substitutions to explicit cyclic substitutions in a λµ calculus (1993). Although his

formulation is simpler than Ariola and Felleisen’s extension for recursion, it is not

confluentã, and as his work concerns explicit substitutions rather than call-by-need,

his rules do not guarantee that only values will be duplicated. A number of the rules

do allow duplication of arbitrary terms, and whether one could restrict these rules

to copy only values is an open question.
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