
How to Prove Similarity a Precongruence
in Non-Deterministic Call-by-Need

Lambda Calculi

Matthias Mann and Manfred Schmidt-Schauß

Institut für Informatik
Johann Wolfgang Goethe-Universität

Postfach 11 19 32
D-60054 Frankfurt, Germany

schauss@cs.uni-frankfurt.de

Technical Report Frank-22
Research Group for Artificial Intelligence and Software Technology,

Institut für Informatik,
J.W.Goethe-Universität Frankfurt,

22.1.2006

Abstract. Extending the method of Howe, we establish a large class of
untyped higher-order calculi, in particular such with call-by-need evalua-
tion, where similarity, also called applicative simulation, can be used as a
proof tool for showing contextual preorder. The paper also demonstrates
that Mann’s approach using an intermediate “approximation” calcu-
lus scales up well from a basic call-by-need non-deterministic lambda-
calculus to more expressive lambda calculi. I.e., it is demonstrated, that
after transferring the contextual preorder of a non-deterministic call-by-
need lambda calculus to its corresponding approximation calculus, it is
possible to apply Howe’s method to show that similarity is a precongru-
ence. The transfer is not treated in this paper.
The paper also proposes an optimization of the similarity-test by cutting
off redundant computations.
Our results also applies to deterministic or non-deterministic call-by-
value lambda-calculi, and improves upon previous work insofar as it is
proved that only closed values are required as arguments for similarity-
testing instead of all closed expressions.

Keywords: Similarity –Precongruence –Contextual Equivalence –Non-determinism
–Call-by-need Lambda Calculus

1 Introduction

1.1 Introduction and Motivation

Higher-order calculi, in particular extended lambda-calculi, are of increasing im-
portance as a foundation for programming languages, parallel programming lan-
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guages, and concurrent modeling languages and their respective (operational)
semantics. Functional programming languages, strict and non-strict ones, are
rather close to these calculi and often directly use results from the field of lambda
calculi and their semantic properties, e.g. by gaining insight into allowed pro-
gram transformations and optimizations and into the correctness of program
analyses. This also holds for non-deterministic lambda calculi, which are treated
in papers in call-by-name, call-by-value and call-by-need variants, and also us-
ing different non-deterministic primitives. We address call-by-need variants of
non-deterministic lambda calculi which in our opinion are most appropriate for
applications in programming languages, since sharing avoids unnecessary copy-
ing of expressions having several potential values, in particular amb-expressions.

Equality of expressions and correctness of program transformations can be
defined in different ways. Of high practical relevance are contextual preorder and
contextual equivalence, defined as s .c t for two expressions, iff for all contexts
C (i.e. programs), whenever C[s] evaluates to a value, then also C[t] evaluates
to a value, and s 'c t, iff s .c t and t .c s. This is the maximal equality
and the right one for practical applications of deterministic calculi. It is also
used in non-deterministic calculi, though there are also other variants [MSC99],
which also take non-termination into account, or employ combinations of may-
and must-convergence. In this paper we only consider .c and 'c based on the
existence of an evaluation to a value.

The disadvantage of contextual preorder is that it is hard to determine
whether s .c t for given expressions s, t holds. Of course it is an undecidable
question, nevertheless, it is of high importance to find tools that are able to
prove s .c t for as much pairs of terms as possible. There are different methods
for providing such tools. One is to restrict the number of necessary contexts
by providing context lemmata [Mil71]. Another direction is to use applicative
(bi)simulation, or similarity [Abr90]. This works as follows: there are no contexts
involved, just reduce the given terms s, t at top level to a value. If the values are
constructed by data constructors, then compare the subexpressions; if the values
are abstractions, then test them applied to all possible arguments, asf. This has
a chance to terminate for interesting classes of term pairs. The correctness proof
for this tool is nontrivial and was given for a minimal calculus by Abramsky
[Abr90], and then for large classes of lazy calculi by Howe ([How89,How96]).
There is further work to extend the scope of this result to different classes of
calculi (see [KvOvR93,San97,Gor99]).

The first result for non-deterministic call-by-need calculi is in [Man05b,Man05a]
showing that in a minimal call-by-need lambda calculus L similarity is a sufficient
criterion for contextual equivalence. The new method is to consider a lambda
calculus LA, which is an approximation variant of L with the same contextual
equivalence but values instead of WHNFs as successful end-points of reductions,
and to define similarity within LA to which Howe’s method can be applied. This
requires a slight modification of Howe’s method by restricting the set of sub-
stitutable terms to be pseudo-values, i.e. values or }, which can be seen as a
representative of non-terminating terms. Note, however, that this paper does not
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treat the relation between a lambda calculus L and its approximating lambda
calculus LA, which is beyond the scope of this paper.

This paper develops Mann’s method further to a larger class of calculi, per-
mitting constructors, case-expressions and the corresponding reductions, and
also different non-deterministic primitives. This will broaden the scope of the
proof tool of similarity to other variants of non-deterministic call-by-need cal-
culi, provided an appropriate approximation calculus is defined and proved to
be adequate.

The main contribution of this paper is to define schematic higher-order com-
putation systems (SHOCS), based on small-step reduction. Covering a large class
of the aforementioned types of calculi, we provide a concise proof along the lines
of Howe that similarity implies contextual preorder. A further contribution of
this paper is that the restriction to pseudo-values also strengthens the original
results on the relation between similarity and contextual equivalence insofar as
only closed values as arguments have to be tested.

1.2 Applying the Results of this Paper to Call-By-Need Calculi

For deterministic or non-deterministic call-by-need lambda-calculi, the paper
provides an interface for the similarity-check, which is free from internal condi-
tions on the precongruence candidate relation (for more information see section
3). Assume such a lambda-calculus L that allows a non-recursive let and has a
normal-order reduction as evaluation. Usually, there will be rules for shuffling the
let-environments to the top, e.g.: ((let x = sx in t) r) −→ (let x = sx in (t r)),
and (let x = (let y = sy in sx) in t) −→ (let x = sx in (let y = sy in t)).
Experience shows that these rules are in conflict with Howe’s method, so our
method proposes the following circumvention. To apply our result, an interme-
diate approximation calculus LA has to be constructed, where one must assure
that s ≤c,L t ⇐⇒ s ≤c,LA

t for all L-terms s, t. Moreover, the rules for let-
shuffling above have to be eliminated in LA, since their format does not fit the
reductions of a SHOCS. The calculus LA must first evaluate the term s in the
term (let x = s in t), giving a pseudo-value sv or the constant } indicat-
ing a stopped evaluation, and then copying sv, giving t[sv/x]. Note that in a
lambda-calculus with λ, case and constructors, a pseudo-value is an expression
constructed from constructors, abstractions, perhaps variables, and the symbol
}, where unevaluated expressions are only allowed within abstractions. The in-
terface also expects that a symbol } is introduced in LA that has no reductions,
and that a stop-rule t → } is permitted for all terms t that are not already
pseudo-values. The similarity-check has to be applied for terms in this calcu-
lus LA, and the results can be carried back into the original calculus L. This
transfer of the problem into LA comes at the price that the reduction in LA is
non-deterministic at a rather high degree, since in general several possibilities
for reductions have to be taken into account, and since there is no notion of a
normal-order reduction or a standard reduction. The additional non-determinism
can be reduced by restricting the reduction such that redundant pseudo-values
need not be reached (see section 7).
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The similarity check (see algorithm 4.7) is a procedure as follows: To check
s .b t for closed terms s, t, compute the set of pseudo-values ans(s), ans(t) that
can be reached from s or t by reduction in LA, respectively. If ans(s) ⊆ ans(t),
then s .b t holds. Otherwise, for every θ(s′1, . . . , s

′
n) ∈ ans(s), there must exist a

term θ(t′1, . . . , t
′
n)) ∈ ans(t), such that for all substitutions σ instantiating closed

pseudo-values (i.e. closed values or the constant }) and for all i: σ(s′i) .b σ(t′i).
Clearly, this test is nonterminating in general. Also the set of closed pseudo-
values is infinite, but in many cases the structure of the terms is simple enough,
so that at least the computation of ans(·) terminates. Often, a generalization or
an abstraction or other ad-hoc methods may help to keep reasoning finite.

The permitted rules are e.g. copy-reductions, of which beta-reduction is an
instance: (λx.s) v −→ s[v/x], and projection rules, where the amb-rules are par-
ticular instances: amb v t −→ v and amb t v −→ v, if v is a value in the language.

As an example, using the similarity check, is is easy to prove that amb Ω t 'b t.
This easily follows from the fact that both terms have the same set of values
as result. Hence by our result that similarity implies contextual preorder, also
amb Ω t 'c t holds.

1.3 Applying the Results of this Paper to Call-By-Value Calculi

For a deterministic or non-deterministic call-by-value calculus, the application
of our results is similar as for call-by-need, however, a bit simpler and more
direct. It is not necessary to use an intermediate approximation calculus nor is
it necessary to add a }-symbol. The call-by-value calculus must reduce to values
without top let-environments. E.g. a list of numbers or a list of abstractions may
be a value, but not a list of terms that are let-expressions. The test-procedure
for similarity has to take into account all closed values, which is an improvement
over previous work.

1.4 Structure of this Paper

The goal of this paper is to prove that (applicative) similarity implies contextual
preorder for a large class of lambda calculi, with an emphasis on call-by-need non-
deterministic lambda calculi, and therefore to extend the techniques of Howe.
The development of the sections, definitions, lemmas and proofs is a bit more
general than really necessary for the final result, the gain is that it provides more
insight into the mechanism of Howe’s proof technique and also gives different
entry points if someone wants to extend the techniques for calculi not covered
in this paper. A principle is to keep all the parts rather general in order to ease
a reuse of the different steps in the development.

The other inclusion, i.e., that contextual preorder implies applicative similar-
ity, is not true in general. For non-deterministic call-by-need calculi see [Man05b]
for a counterexample. There are some (natural) criteria for equivalence in deter-
ministic calculi (see Theorems 6.14 and 6.15).

The structure of the paper is as follows. In section 2 the abstract syntax for
higher-order calculi is introduced following Howe ([How89,How96]). In section 3
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the first extension to Howe is to restrict the substitutable terms, called pseudo-
values, and to adapt the technique by defining the open extension of closed rela-
tions w.r.t. pseudo-values. From now on, the pseudo-values are a parameter for
the hole development. In subsection 3.2 the so-called precongruence candidate
relation is defined and a criterion for a relation ηo on terms to be a precongru-
ence is proved. In section 4, a big-step operational semantics is considered, and
necessary conditions are made explicit in the definition of a higher-order com-
putation system. The similarity (applicative simulation) .b and the contextual
preorder .c are defined on this basis. The most important condition implying
that .b

o ⊆ .c is the stability criterion in Theorem 4.15. However, at this level
of abstraction, it is not possible to verify stability, hence in section 5, a small-step
reduction and further conditions are specified. These conditions are summarized
in the definition of a HOCS+SR (Def. 5.2). The conditions allow to show the
right-stability part of the stability criteria. In section 6 we further specialize and
define several formats for rules, which comprise all the reductions in an approxi-
mation calculus of a call-by-need non-deterministic calculus with (non-recursive)
let, and also in call-by-value calculi with strict let. This is summarized in the
definition of schematic higher order computation systems (SHOCS) (Def. 6.11).
For SHOCS, it is then possible to show the left-stability for every kind of re-
duction, i.e., the remaining part of the stability criteria. This finally shows that
in every lambda calculus that matches the definition of a SHOCS, similarity
implies contextual preorder. In section 7, we show that it is permitted to replace
the non-deterministic reduction relation defined in section 6 by an optimized
reduction relation that may be more deterministic and also avoids reductions to
redundant values. Section 8 contains some example calculi, and how our results
may be applied to example terms.

2 Higher-Order Computation Language

The presentation of higher-order abstract syntax follows [How96].

Definition 2.1 (Higher-Order Computation Language). Let L = (O,α)
be a signature, where O consists of symbols, called operators, and

α(τ) ∈ { 〈k1, . . . , kn〉 | ∀1 ≤ i ≤ n ∈ N : ki ∈ N0 } for every τ ∈ O.

Then L is called a higher-order computation language (HOCL for short) and O
its set of operators with α denoting their respective arity.

Definition 2.2 (Terms and Operands). Let L = (O, α) be a higher-order
computation language and V be a countable set of variables. Then the sets iT (L)
are inductively defined as follows:

– V ⊆ 0T (L)
– If t ∈ 0T (L) and x1, . . . , xn ∈ V are distinct then x1, . . . , xn.t ∈ nT (L)
– If τ ∈ O with arity α(τ) = 〈k1, . . . , kn〉 and tj ∈ kjT (L) for j ∈ {1, . . . , n}

then τ(t1, . . . , tn) ∈ 0T (L)
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The elements of nT (L) are called operands, the elements of nT (L) for n > 0
are called higher-order operands, also denoted as (≥1)T (L), and the elements of
T (L) = 0T (L) are called terms of the language L.

Only the construct x1, . . . , xn.t can bind variables. Free and bound variables
are defined as usual, FV(t) denotes the set of free variables of an operand t. An
operand t is closed if all of its variables are bound, i.e. FV(t) = ∅, otherwise
it is called open. The set of closed terms will be referred to as T0(L). Tuples
of operands are sometimes denoted as t, or ti. If the language L is clear from
context we omit the parameter in the notation. Note that the abstract syntax
has an implicit typing: whenever an operator τ and operands ai are mentioned
in some context, then τ(ai) is supposed to form a valid term.

The expression s[t/x] stands for the application of the capture-free substitu-
tion of t for x. This notation is also used for tuples of terms and variables. We
will also write {x 7→ t} for the substitution [t/x] when it is convenient. In the
following, we use the symbol ≡ to denote syntactic equivalence up to renaming
of bound variables, i.e. terms and operands will be considered syntactically equal
modulo alpha-renaming. In particular for higher-order operands, this means that
x.s ≡ y.t holds if there are fresh variables z such that the syntactic equivalence
s[z/x] ≡ t[z/y] is true.

Variable Convention 1 Throughout this paper, whenever some term t is re-
ferred to, the bound variables are chosen to be distinct from each other and the
free variables. Furthermore, this convention extends to sets of terms as well as
terms which result from other terms, e.g., by transformations.

Example 2.3. With O = {λ, let,@, Cons, Nil, case} a simple let-language with
lists and a case is declared. The arities of λ, @, let are α(λ) = 〈1〉, α(@) =
〈0, 0〉, α(let) = 〈1, 0〉, α(Cons) = 〈0, 0〉, α(Nil) = 〈〉, and α(case) = 〈0, 2, 0〉.
A term like case x of (Cons z1 z2) -> y; Nil -> Nil would be expressed
as case(x, z1z2.y, Nil). For call-by-value calculi, there is a slight modification
explained in Example 6.3.

The notion of a context will be introduced. Roughly, a context C is a term
with a hole [ ] and C[s] stands for the resulting term where s has been plugged
into the hole of C. Contexts are defined analogously to Definition 2.2 where [ ]
denotes the empty context.

Definition 2.4 (Contexts). Let L be a HOCL and T (L) its set of terms.
Then the set C(L) = 0C(L) of contexts over L is inductively defined as follows.

– [ ] ∈ 0C(L)
– If t ∈ 0C(L) and x1, . . . , xn ∈ V are distinct then x1, . . . , xn.t ∈ nC(L)
– If τ ∈ O has arity α(τ) = 〈k1, . . . , kn〉 and Ci ∈ kiC(L) is true for some

1 ≤ i ≤ n as well as tj ∈ kjT (L) for all j ∈ {1, . . . , i− 1, i + 1, . . . , n} then
τ(t1, . . . , ti−1, Ci, ti+1, . . . , tn) ∈ 0C(L) holds.
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We may omit the language L whenever there is no risk of confusion and write
C for the set of all such single-hole contexts. We sometimes also consider multi-
contexts, i.e., contexts with multiple, distinguishable holes. If C,D are contexts
then C[D] denotes the context resulting from inserting D into C’s hole. The
essential feature of contexts is to possibly capture free variables of the term
plugged into the hole. Therefore, contexts are not identified up-to renaming of
bound variables.

Example 2.5. Regard the HOCL of example 2.3 again. Then let(x.[ ], t) and
let(y.[ ], t) denote different contexts. Also λ(x.@(s, [ ])) is a context.

3 Open Extension and the Precongruence Candidate

In this section we will develop the method for dealing with relations, open exten-
sions and the so-called precongruence candidate introduced by Howe [How89,How96].
In this section we treat properties of a higher-order language equipped with a set
of pseudo-values PV ⊆ T , which represents just the terms that may be copied
and substituted. We require the following assumption.

Assumption 3.1. There is a set of pseudo-values PV ⊆ T . The condition PV ∩
T 0 6= ∅ must hold.

Definition 3.2. A relation υ ⊆ T ×T is admissible, iff it is invariant un-
der variable renamings, i.e. if for every variable permutation ρ : s υ t ⇐⇒
ρ(s) υ ρ(t).

In this paper we tacitly assume that all relations on terms and operands are
admissible.

Definition 3.3. In general, a relation on higher-order operands is an extension
of an (admissible) relation υ defined as follows

x.s υ y.t
def⇐⇒ s[z/x] υ t[z/y] for fresh and different variables z (3.1)

For sequences of operands we use si υ ti
def⇐⇒ ∀i : si υ ti.

Definition 3.4. For υ ⊆ T 2 a relation, (υ) 0

def
= υ ∩ T0

2 defines its restriction
to closed terms.

Note that the operator (·) 0 is monotone on relations.

3.1 Preorders and the Open Extension

A preorder is a reflexive and transitive relation and an equivalence relation is
a symmetric preorder. A relation υ ⊆ T 2 is compatible (with contexts) if for
every context C ∈ C from s υ t also C[s] υ C[t] follows. A precongruence is a
compatible preorder, and a congruence is a compatible equivalence relation. A
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relation υ ⊆ T 2 is said to be operator-respecting (see also [How89]), if and only
if ai υ bi implies τ(ai) υ τ(bi) for all operands ai, bi and operators τ ∈ O. By
induction on the structure of contexts and due to our admissibility assumption
for relations, it is easily shown that this implies compatibility. If the relation is
transitive, then also the reverse holds.

A substitution σ with range PV will be called pseudo-valued substitution or
PV-substitution for short. The set of PV-substitutions is denoted as PVS. For
an open term t a substitution σ is closing if σ(t) is closed.

Definition 3.5. Let η ⊆ T0 × T0 be a relation on closed terms.
Then for s, t ∈ T 2: s ηo t, if and only if σ(s) η σ(t) for all pseudo-valued closing
substitutions σ holds.

It is obvious that the open extension of a relation on closed terms is admis-
sible. It is also clear that s ηo t implies ρ(s) ηo ρ(t) for every pseudo-valued
substitution ρ = {x 7→ r}. Moreover, ηo is reflexive (transitive, symmetric, re-
spectively) whenever η is. Further obvious properties of the open extension are:

Lemma 3.6. Let η, ν ⊆ T0
2 be relations. Then

– (ηo) 0 = η.
– ν ⊆ η =⇒ νo ⊆ ηo.
– η ⊆ ηo

– if η is a preorder, then η ◦ ηo ⊆ ηo holds.

3.2 The Precongruence Candidate

In this subsection we define the precongruence candidate η̂ on the basis of a
preorder η. The candidate relation will be operator-respecting by construction,
but it is not known whether it is transitive. Note that for non-transitive relations,
operator-respecting and compatible are different notions. Theorem 3.13 exhibits
conditions when the relation η̂ is already a precongruence. The proofs in this
section are from [How89], but slightly reworked and generalized.

Definition 3.7 (Precongruence Candidate). Let η ⊆ T0×T0 be a preorder.
Then define its precongruence candidate η̂ ⊆ T ×T inductively by

– x η̂ b if x ∈ V is a variable and x ηo b.
– τ(ai) η̂ b if there exists a′i such that ai η̂ a′i and τ(a′i) ηo b hold.

The relation η̂ can be seen as an operator-respecting closure of η, however losing
some properties. As Howe puts it: a η̂ b if b can be obtained from a via one
bottom-up pass of replacements of subterms by terms that are larger under ηo.
Note that τ η̂ t ⇐⇒ τ ηo t if τ is a nullary operator and t is an arbitrary term.
Note also that the precongruence candidate is admissible.

A technical, but helpful catalogue of properties of η̂ is the following lemma:

Lemma 3.8. Let η ⊆ T0
2 be a preorder. Then
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1. η̂ is reflexive
2. η̂ and η̂ 0 are operator-respecting
3. ηo ⊆ η̂
4. η̂ ◦ ηo ⊆ η̂

Proof. Note that the extension ηo is a preorder.

1. Let a ∈ T be an arbitrary but fixed term, then we show a η̂ a by induction
on the structure of a:
– If a ∈ V is a variable, we have a η̂ a from the reflexivity of ηo and the

base case of Definition 3.7.
– If a ≡ τ(ai) for some operator τ and operands ai, we have ai η̂ ai from

the induction hypothesis and τ(ai) ηo τ(ai) from the reflexivity of ηo.
So, by Definition 3.7, we may compose this to τ(ai) η̂ τ(ai).

2. We assume ai η̂ bi and have to show τ(ai) η̂ τ(bi) for an arbitrary but fixed
operator τ . By reflexivity of ηo we have τ(bi) ηo τ(bi) and from Definition 3.7
we conclude τ(ai) η̂ τ(bi).
As a consequence if τ(ai), τ(bi) ∈ T0 are closed, we also have τ(ai) η̂ 0 τ(bi)
from ai η̂ bi, which implies that η̂ 0 is operator-respecting too.

3. Assume a ηo b for arbitrary but fixed a, b ∈ T and show a η̂ b by induction
on the structure of a:
– If a ∈ V is a variable, we have a η̂ b directly from a ηo b and the base

case of Definition 3.7.
– If a ≡ τ(ai) for some operator τ and operands ai, we have ai η̂ ai from

property 1, the reflexivity of η̂. By Definition 3.7 then, we may conclude
τ(ai) η̂ b.

4. Assume a η̂ b and b ηo c, so according to Definition 3.7 we have to distinguish
the following two cases:
– a is a variable, then for a η̂ b also a ηo b must hold and thus the propo-

sition by transitivity of ηo and property 3.
– For a of the form τ(ai) there is τ(a′i) with ai η̂ a′i and τ(a′i) ηo b. By

transitivity of ηo we also have τ(a′i) ηo c thus τ(ai) η̂ c.

The vital Substitution Lemma (see also [How96, Lemma 3.2]) holds also for
our different notion of open extension:

Lemma 3.9 (Substitution Lemma). Let η ⊆ T0
2 be a preorder on closed

terms, b, b′ ∈ T be terms and a, a′ ∈ PV be pseudo-values. Then for every
variable x the implication (a η̂ a′ ∧ b η̂ b′) =⇒ b[a/x] η̂ b′[a′/x] is true.

Proof. By induction on the structure of the term b.

– If b ∈ V is a variable then b η̂ b′ is equivalent to b ηo b′ by definition. If b ≡ x
then b[a′/x] ≡ a′ ηo b′[a′/x] holds by the definition of the open extension.
Because of a η̂ a′ we also have a ≡ b[a/x] η̂ b[a′/x] ≡ a′ and thus a η̂ b′[a′/x]
is implied by composition, i.e., property 4 of Lemma 3.8.
If b is a variable different from x, i.e., b ≡ y, then y[a′/x] ηo b′[a′/x] is valid .
Therefore y[a/x] ≡ y ≡ y[a′/x] ηo b′[a′/x] holds and y[a/x] η̂ b′[a′/x] follows
from property 3 of Lemma 3.8.
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– If b is of the form b ≡ τ(bi) then τ(bi) η̂ b′ means that there are b′i such
that bi η̂ b′i and τ(b′i) ηo b′ holds. Hence, for all i : bi[a/x] η̂ b′i[a

′/x] by
the induction hypothesis. Moreover, τ(bi)[a/x] ≡ τ(bi[a/x]) η̂ τ(b′i[a′/x]) ≡
τ(b′i)[a

′/x] ηo b′[a′/x], since η̂ is operator-respecting, and because of the
definition of the open extension. This implies b[a/x] η̂ b′[a′/x] by composition
(see Lemma 3.8 (4)).

Corollary 3.10. Let η ⊆ T0
2 be a preorder on closed terms. Then η̂ ⊆ (η̂ 0)

o

holds.

Proof. Assume arbitrary terms s, t ∈ T such that s η̂ t is true. Then by the Sub-
stitution Lemma σ(s) η̂ σ(t) holds for every pseudo-valued closing substitution
σ, since η̂ is reflexive. Since σ(s), σ(t) ∈ T0 are closed even σ(s) η̂ 0 σ(t) is valid.
This is satisfied for every pseudo-valued closing substitution σ, therefore with
s ((η̂) 0)

o
t the claim is shown.

Lemma 3.11. Let η ⊆ T0
2 be a preorder on closed terms, a, b ∈ T be terms.

Then a η̂ b if one of the following holds:

– a ≡ x for a variable x ∈ V and x ηo b
– a ≡ τ(ai) for some τ ∈ O, operands ai, and there are operands a′i such that

ai η̂ a′i and τ(a′i) ηo b hold with FV(a′i) ⊆
⋃

j FV(aj) ∪ FV(b) for all i.

Proof. It is sufficient to show the second case.
By the definition of η̂, if a ≡ τ(ai) η̂ b, then there is some a′′i , such that ai η̂ a′′i and
τ(a′′i ) ηo b. Let {x1, . . . , xn} =

⋃
j FV(a′′j ) \ (

⋃
j FV(aj)∪FV(b)). We construct

the desired operands a′i as a′i := a′′i [c/x1, . . . , c/xn], where c is a closed pseudo-
value, which exists due to Assumption 3.1. The relation τ(a′i) ηo b holds, since xk

does not occur free in b. The relation ai η̂ a′i follows from n successive applications
(for each of the variables x1, . . . , xn) of the Substitution Lemma 3.9 to ai η̂ a′′i
and c η̂ c. The latter relation holds, since η̂ is reflexive by Lemma 3.8.

Corollary 3.12. Let η ⊆ T0
2 be a preorder on closed terms, τ(ai), b ∈ T0 be

closed terms, such that τ(ai) η̂ b holds. Then there are operands a′i, such that
τ(a′i) is closed, ai η̂ a′i and τ(a′i) ηo b.

Proof. Follows from Lemma 3.11.

Now we can establish our counterpart to [How96, Theorem 3.1].

Theorem 3.13. Let η ⊆ T0
2 be a preorder. Then the following are equivalent.

1. ηo is a precongruence
2. η̂ ⊆ ηo

3. η̂ 0 ⊆ η

Proof. The claim is shown by a chain of implications.
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“1 =⇒ 2”: Assuming ηo to be a precongruence and a η̂ b, we show a ηo b by
induction on the definition of η̂.
– If a ∈ V is a variable, the only possibility is a ηo b.
– If a ≡ τ(ai) for some operator τ and operands ai, there must have

been operands a′i such that ai η̂ a′i for every i and τ(a′i) ηo b. From the
induction hypothesis we may conclude ai ηo a′i, which in turn means
τ(ai) ηo τ(a′i) and furthermore τ(ai) ηo b since ηo is a precongruence.

“2 =⇒ 3”: From η̂ ⊆ ηo we have η̂ 0 ⊆ (ηo) 0 = η because of Lemma 3.6.
“3 =⇒ 2”: From η̂ 0 ⊆ η we have (η̂ 0)

o ⊆ ηo by monotonicity (see Lemma 3.6).
In conjunction with Corollary 3.10, this becomes η̂ ⊆ (η̂ 0)

o ⊆ ηo.
“2 =⇒ 1”: Property (3) of Lemma 3.8 and η̂ ⊆ ηo together imply η̂ = ηo,

thus ηo is operator-respecting by Lemma 3.8 (2) and a precongruence. ut

4 Evaluation, Similarity and Contextual Preorder

This section introduces a big-step operational semantics, and gives all conditions
that are necessary for the precongruence proof to go through on this abstract
level. This is close to the abstraction given by Howe [How89], however, slightly
more general since we have a set of answers and a set of pseudo-values as pa-
rameters.

4.1 Higher-Order Computation Systems

Conditions on pseudo-values, answers, and the big-step reduction are formulated
in the following definition. Note that in this section there is no connection be-
tween answers and pseudo-values, but in subsequent sections, answers will also
be pseudo-values.

Definition 4.1 (Higher-Order Computation System). A tuple
(L,PV, ANS, ⇓) is called a higher-order computation system (HOCS), iff the
following conditions hold:

1. L = (O, α) is a higher-order computation language.
2. There is a set of answer terms ANS ⊆ T .
3. PV ⊆ T is a set of pseudo-values for L with PV ∩T0 6= ∅ (see also Assump-

tion 3.1).
4. ⇓ ⊆ T ×ANS.
5. ∀s ∈ T0,∀v ∈ ANS : s ⇓ v =⇒ v ∈ T0.
6. ∀v ∈ ANS : v ⇓ v.
7. ∀s ∈ T : ∃sc ∈ T0 : s[sc/x] ⇓ ⇐⇒ s ⇓.

We then call ⇓ evaluation. If s ⇓ v, the term v is the answer to which s
is said to evaluate to. We simply write s ⇓ if there exists some v such that s
evaluates to v, and we say s converges. Otherwise, we write s 6⇓ if there is no
such v.
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Note that evaluation ⇓ may be non-deterministic, as s ⇓ v may hold for
different v. Note also that the notion of answers (values) is rather abstract, e.g.
in this section, answers are not further restricted, and there is no connection
between answers and pseudo-values. Note also that it may be possible that a
value v reduces to another value v′. There are no restrictions on the term sc,
however, in general the term sc can be uniformly chosen as a non-terminating
closed term (usually Ω). In section 5 below, we will treat big-step evaluation
defined by small-step evaluation, i.e., when values can be reached by finitely
many reduction steps.

Definition 4.2. The answer set of a term s is defined by ans(s) = { t | s ⇓ t }.

4.2 Simulations and Contextual Equivalence

By observing the termination behavior of terms in all possible contexts, we
obtain contextual preorder and contextual equivalence. This is the semantics of
terms w.r.t. evaluation. In other papers, contextual equivalence is also called
observational equivalence.

Definition 4.3. Given a higher-order computation system
(L,PV, ANS, ⇓). The contextual preorder .c ⊆ T 2 is defined by

s .c t
def⇐⇒ (∀C ∈ C : C[s] ⇓ =⇒ C[t] ⇓) (4.1)

Contextual equivalence 'c ⊆ T 2 is defined by

s 'c t
def⇐⇒ s .c t ∧ t .c s (4.2)

Obviously, contextual preorder is a precongruence and contextual equivalence
is a congruence.

Contextual preorder and equivalence are not effective, since the number of
contexts is infinite, and in general, termination is undecidable. In most calculi
the situation can be improved by providing context lemmata which reduce the
number of necessary contexts. We will define applicative simulation and mutual
similarity, which will be shown to be sufficient conditions for contextual preorder.
It uses evaluation followed by an analysis of the subterms. For non-deterministic
calculi the definition of s .b t, it will also require that for choices within s, we
have to fix the choices on the t-side. This leads to the notion of a simulation,
which is based on a, not necessarily effective, experiment.

Definition 4.4. Let L be a higher-order computation language and υ ⊆ T ×T
be a relation. Then the experiment [·] with [υ] ⊆ T0

2 is given by

s [υ] t
def⇐⇒ (∀θ(si) : s ⇓ θ(si) =⇒ (∃θ(ti) : t ⇓ θ(ti) ∧ si υ ti)) (4.3)

Definition 4.5 (Simulation). Let a higher-order computation system
(L,PV, ANS, ⇓) be given. A relation η ⊆ T0

2 is called a simulation if and
only if η ⊆ [ηo] holds.
Similarity .b ⊆ T0

2 is defined to be the largest simulation, i.e. as the greatest
fixed point of [ · o].
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From Definition 4.4 and Lemma 3.6 it is clear that [ · o] is monotone, hence
its greatest fixed point exists.

By η ⊆ [ηo] a simulation constitutes a post-fixed point of the [ · o]-operator.
A relation η which meets this property is called [ · o]-dense in [Gor94]. This is
the base for the proof principle of co-induction, cf. [Gor99,NNH99].

Lemma 4.6. There are two characterizations of .b:

– Similarity .b is the greatest [ · o]-dense set, i.e., it is itself [ · o]-dense and
can be characterized as the union of all [ · o]-dense sets:

.b =
⋃
{η | η ⊆ [ηo]}

– An operational characterization is

.b =
⋂
i

[
(T0

2)
o
]i

This follows, since we are working on sets and relations (cf. [DP92,Gor94]).
The technique of fixed points and co-induction has its history and is being used
for different calculi ([Mil71,Par81,Abr90,Las98,Gor99]).

A procedure to test similarity is as follows:

Algorithm 4.7. Similarity-Test (s, t).
The input terms s, t must be closed terms.

1. Return True, if s ≡ t.
2. Compute the sets ans(s), ans(t).
3. For every θ(si) ∈ ans(s), select a θ(ti) ∈ ans(t). If there is no such term,

then fail. Test the following property for all i:
• If si, ti are (closed) terms, the Similarity-Test for si, ti must

return True.
• If si, ti are higher-order operands, then for every pseudo-

valued substitution σ, the Similarity-Test applied to
σ(si), σ(ti) must return true.

The test is successful, if there is a run, using an appropriate selections at every
level, which returns “True”.

We define mutual similarity as a symmetric similarity. Other alternatives
are too weak in the case of non-deterministic calculi (see [Gor99, p. 19] and in
particular [Las98, p. 92] and [Man05b]).

Definition 4.8 (Mutual Similarity). The largest equivalence relation con-

tained in .b is defined by 'b
def
= .b ∩ &b and called mutual similarity.

Lemma 4.9. The relation .b is a preorder and the relation 'b is an equivalence
relation.
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Proof. To prove that .b is a preorder, we have to prove that it is reflexive
and transitive. We give only the proof for transitivity, the case for reflexivity is
simpler.

The proof uses that .b =
⋂

i

[
(T0

2)
o
]i

(see Lemma 4.6). We show by

induction on i that the relations νi :=
[
(T0

2)
o
]i

are transitive. This is clear for
i = 0. For i > 0, assume s νi r νi t. For every θ(sj) with s ⇓ θ(sj), there is some
θ(rj) with r ⇓ θ(rj) and sj νi−1

o rj . The relation r νi t implies that there exists
θ(tj) with t ⇓ θ(tj) and rj νi−1

o tj . Since by induction νi−1 is transitive, and
also the open extension νi−1

o is transitive, hence sj νi−1
o tj . This shows s νi t.

If s .b r .b t, then for all i: s νi r νi t, and since νi is transitive for all i, we
obtain the claim.

Note that now .̂b can be defined and used, since .b is shown to be a preorder.
Since .b = [.b

o], we have the following property of .b:

s .b t ⇐⇒ ∀θ(ai) ∈ ans(s) : ∃θ(a′i) ∈ ans(t) : ai .b
o a′i (4.4)

4.3 Stability as a Criterion for a Simulation to Imply Contextual
Preorder

Contrary to [How89], our proof method emphasizes the use of reduction rules
instead of performing a certain proof task for every language operator (see also
[Gor99]). A preparation for this approach are the stability criteria.

Employing the precongruence property of a simulation η to show its inclusion
within contextual preorder requires a means to transfer convergent behavior
from closed to open terms. Such a condition holds for higher-order computation
systems as the following lemma demonstrates.

Lemma 4.10. Let a HOCS be given and let η ⊆ T0
2. Then

(∀s, t ∈ T0 : s η t =⇒ (s ⇓ =⇒ t ⇓)) =⇒
(∀s′, t′ ∈ T : s′ ηo t′ =⇒ (s′ ⇓ =⇒ t′ ⇓)) (4.5)

Proof. Assume that s′ ηo t′ and s′ ⇓ θ(s′i) holds. Then let σ be the substitution
which replaces the variables in FV(s′, t′) by (perhaps different) closed pseudo-
values si,c according to Definition 4.1 (7). Then σ(s′), σ(t′) are closed terms.
The relation σ(s′) η σ(t′) and σ(s′) ⇓ implies σ(t′) ⇓, and moreover σ(t′) ⇓
implies that t′ ⇓ by condition (7) in Definition 4.1.

Theorem 4.11. Let η ⊆ T0×T0 be a simulation such that ηo is a precongruence.
Then ηo ⊆ .c is true.

Proof. Assume terms s, t ∈ T such that s ηo t holds. Then ∀C : C[s] ηo C[t]
because ηo is a precongruence. Since η is a simulation, η matches the premise of
Lemma 4.10. Thus, from ∀C : C[s] ηo C[t] we may also infer ∀C : C[s] ⇓ =⇒
C[t] ⇓ which establishes the claim.
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Definition 4.12 (Stability). Let a (HOCS) be given.

– The relation η ⊆ T0
2 is called left-stable, iff for all closed terms s, s′, t ∈ T0

such that s η t and s ⇓ s′ hold, the relation s′ η t is valid as well.
– The relation η ⊆ T0

2 is right-stable, iff for all t ∈ T0, θ(si) ∈ ANS ∩ T0: if
θ(si) η t, then there is a θ(ti) ∈ ANS ∩ T0, such that t ⇓ θ(ti) and si ηo ti.

– The relation η ⊆ T0
2 is called stable, iff it is left-stable and right-stable.

Proposition 4.13. Let a (HOCS) be given. If η ⊆ T0
2 is stable, then η is a

simulation, i.e. η ⊆ [ηo] holds.

Proof. Assume terms s, t, θ(si) ∈ T0 such that s η t and s ⇓ θ(si) hold. Since η
is left-stable, there exists a term θ(si), such that s ⇓ θ(si) and θ(si)ηt. Since η
is right-stable, there exists θ(ti) ∈ ANS ∩ T0, such that t ⇓ θ(ti) and (si) ηo ti
is satisfied. Thus si ηo ti holds. This shows s [ηo] t, and thus the claim is proved.

Definition 4.14. Let a higher-order computation system (L,PV, ANS, ⇓) be
given. Similarity .b is called well-behaved, iff

– (.̂b) 0 = .b,
– .b

o is a precongruence, and
– .b

o ⊆ .c.

Note that the properties are not independent, see Theorem 3.13.

Theorem 4.15. Let a higher-order computation system
(L,PV, ANS, ⇓) be given. If the closed precongruence candidate (.̂b) 0 ⊆ T0

2

is stable, then the similarity .b is well-behaved.

Proof. Lemma 4.9 shows that .b is a preorder, hence the precongruence candi-
date can be defined. Proposition 4.13 applied to (.̂b) 0 shows that (.̂b) 0 is a sim-
ulation. Since .b contains all simulations by Lemma 4.6, we obtain (.̂b) 0 ⊆ .b.
Thus from Lemma 3.8 (3) we derive .b

o ⊆ .̂b, hence .b ⊆ (.̂b) 0 and thus
.b = (.̂b) 0. Condition 3 of Theorem 3.13 is satisfied, hence .b

o is a precon-
gruence. Now Theorem 4.11 shows that .b

o ⊆ .c.

We show a non-trivial property for non-deterministic calculi, and if the sim-
ilarity .b is already known to be well-behaved.

Proposition 4.16. Let a higher-order computation system (L,PV, ANS, ⇓)
be given, such that the relation .b is well-behaved. Then for all closed terms
s, t ∈ T0 the following holds:

s .b t =⇒ ∀θ(si) : s ⇓ θ(si) =⇒ ∃θ(ti) : t ⇓ θ(ti) ∧ θ(si) .b θ(ti)

Proof. This follows, since s .b t =⇒ ∀θ(si) : s ⇓ θ(si) ∃θ(ti) : t ⇓ θ(ti) ∧
si .b

o ti. Since .b
o is a precongruence, we also have θ(si) .b θ(ti).
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5 Calculi with Small-Step Semantics

In order to apply the results to a given higher-order calculus and to prove sta-
bility of the closed precongruence candidate for several higher-order calculi in
one blow, it is necessary to know more about the given higher-order calculi and
their reduction rules. i.e., to formulate restrictions for the calculi.

5.1 HOCS built upon Small Step Reductions

In the following we define the notion of a HOCS+SR, where ⇓ is based on a
small step reduction relation −→, and specify more conditions, but retain gen-
erality as much as possible. The gain is that the result is applicable to the
approximation variants of call-by-need non-deterministic calculi, as well as to
call-by-value calculi. A requirement is that the reduction is compatible using a
small class of contexts, so-called surface contexts. This will make the reduction
non-deterministic to a higher degree. In section 7 we show that also an optimized
evaluation suffices (see Theorem 7.3).
The main technical task in this subsection will be to show that the right-stability
part of the stability-condition is met.

Definition 5.1 (Surface Contexts). Let a HOCL L be given. Then the set
S of surface contexts over L is inductively defined as follows.

– [ ] ∈ S
– If τ ∈ O with arity α(τ) = 〈k1, . . . , kn〉, S ∈ S and tj ∈ kjT (L) for j ∈
{1, . . . , i−1, i+1, . . . , n} and ki = 0, then τ(t1, . . . , ti−1, S, ti+1, . . . , tn) ∈ S.

Note that this corresponds to non-closing surface contexts in [Man05b], i.e.,
let x = [·] in t is a surface context, but let x = s in [·] is not a surface context.

Given a relation −→ ⊆ T 2, the notation −→+ and −→∗ means the transitive
and reflexive-transitive closure, respectively, of −→. Let DIV be the set of diverg-
ing terms, i.e. DIV := {s ∈ T | σ(s) 6⇓ for all pseudo-valued substitutions σ}.
It is obvious that DIV ∩ T0 = {s ∈ T0 | s 6⇓}.

Definition 5.2. A higher-order computation system with small step reduction
(abbreviated as HOCS+SR) is a tuple (H,Θ,−→, sl) with a HOCS H =
(L,PV, ANS, ⇓), such that the following holds:

1. Θ is a set of canonical operators with ∅ 6= Θ ⊆ O.
2. −→ ⊆ T 2 is a small step reduction that defines ⇓ ⊆ T ×ANS, i.e.,

∀s ∈ T , v ∈ ANS : s ⇓ v ⇐⇒ s −→∗ v.
3. sl ∈ {lazy, strict}.
4. If sl = lazy, then there is a 0-ary constant } ∈ O \Θ.
5. If sl = strict, then DIV ∩ T0 6= ∅.
6. The set PV of pseudo-values is inductively defined as follows:

(a) If sl = lazy, then
PV := {}} ∪ {θ(ai) | θ is canonical and either ai = x.t for some t, or
ai ∈ V , or ai ∈ PV }.
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(b) If sl = strict, then
PV ::= {θ(ai) | θ is canonical and either ai = x.t for some t, or ai ∈
PV}.

7. The set of answers is defined as: ANS := PV \ {}}
8. For all s ∈ T0: s −→ t =⇒ t ∈ T0.
9. The reduction −→ is compatible with surface contexts. I.e. for all terms s, t

and surface context S: s −→ t =⇒ S[s] −→ S[t].
10. For every term s there is a closing substitution σ, such that sσ ⇓ ⇐⇒ s ⇓.
11. If sl = lazy, then for every t ∈ T : t −→ }.
12. If sl = lazy, then the constant } does not converge, i.e., } 6⇓.

We say a HOCS+SR is lazy (strict, respectively) if sl = lazy (or sl = strict,
respectively).

Note that the relation −→ is not deterministic in general, since it is allowed
in arbitrary surface contexts. Furthermore, all canonical constants, i.e., 0-ary
operators, are answers.

5.2 Reductions in HOCS+SR

Lemma 5.3. Let s, t be closed terms. Then s −→∗ t implies that t .b s.

Proof. We use induction on the number of −→-reductions. The base is reflexivity
of .b. For s −→ t, from ans(t) ⊆ ans(s), .b = [.b

o], and from reflexivity of .b,
we see that t .b s.

Lemma 5.4. Let s ∈ DIV ∩ T0, in particular s = } is possible. Then

1. s .b t for all closed terms t.
2. s .̂b t for all closed terms t.

Proof. The first relation holds, since .b = [.b
o], and since s does not converge.

The second relation holds, since for s = τ(si), the relation s .̂b t follows from
si .̂b si and s .b t, which holds by (1).

The following lemma prepares the proof that (.̂b) 0 is right-stable:

Lemma 5.5. Let a (HOCS+SR) be given and let t ∈ T0, θ(si) ∈ ANS ∩ T0. If
θ(si) (.̂b) 0 t, then there is a θ(ti) ∈ ANS ∩T0, such that t ⇓ θ(ti) and si .̂b ti.

Proof. The proof is by induction on the depth of θ(si). The definition of (.̂b) 0

and Lemma 3.12 imply that there is a closed θ(s′i) with si .̂b s′i ∧ θ(s′i) .b t.
We define s′′i by looking at the operands si, s

′
i for every i:

– If si is a higher-order operand, then let s′′i := s′i. The relation si .̂b s′′i holds.
– If si = } (i.e. this implies sl = lazy), then there are the following cases:

If s′i ⇓, then let s′′i be such that s′i ⇓ s′′i : otherwise, s′′i := }. The relation
si .̂b s′′i holds by Lemma 5.4.
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– If si ∈ ANS, then si := θi(si,j) and si, s
′
i must be closed as well. We apply

the induction hypothesis to si(.̂b) 0 s′i, which results in a closed θi(s′i,j) with

s′i ⇓ θi(s′i,j), and si,j .̂b s′i,j . We define s′′i := θi(s′i,j). Since .̂b is operator-

respecting, we also have si ≡ θi(si,j) (.̂b) 0 θi(s′i,j) ≡ s′′i .

The construction shows that θ(s′i) −→∗ θ(s′′i ) by Definition 5.2 (9) and that θ(s′′i )
is closed by condition 5.2 (8), which implies θ(s′′i ) .b t by Lemma 5.3. The
condition in Definition 5.2 (6) on answer-terms for HOCS+SR now implies that
θ(s′′i ) ∈ ANS for a lazy as well as a strict HOCS+SR. Note that the case si = }
above is not possible for a strict HOCS+SR.

Now θ(s′′i ) .b t and .b = [.b
o] imply that there is a closed θ(ti) ∈ ANS

with t ⇓ θ(ti) and s′′i .b
o ti. The two relations si .̂b s′′i and s′′i .b

o ti can be
combined to si .̂b ti by Lemma 3.8, part 4.

Corollary 5.6. Let a (HOCS+SR) be given. Let s = θ(si) and t = θ′(ti) be
closed answers with s (.̂b) 0 t. Then θ = θ′ and for all i : si .̂b ti. In particular,
for all i: if i is an index of a term in θ, then si (.̂b) 0 ti and si, ti are closed
pseudovalues, and if si 6= }, then si, ti are closed answers.

Proof. Follows from Lemma 5.5 and the conditions on answers in Definition 5.2.

Corollary 5.7. Let a (HOCS+SR) be given. Then (.̂b) 0 is right-stable.

Proof. Follows from Corollary 3.10, which shows .̂b ⊆ ((.̂b) 0)
o
, and from

Lemma 5.5.

6 Schematic Higher-Order Computation Systems

This section introduces schematic higher order computation systems (SHOCS)
and establishes the left-stability for every kind of its reductions. The consequence
is, that in every lambda calculus which matches the definition of a SHOCS,
similarity implies contextual preorder.

6.1 Schematic Reductions and Stability

In order to capture substitution within the reduction rules we need a notion of
higher-order contexts.

Definition 6.1 (Redex Multi-Contexts). Let a HOCL L be given. Then
the set PRC of potential redex multi-contexts over L is inductively defined as
follows.

1. [ ] ∈ PRC
2. Let τ ∈ O with arity α(τ) = 〈k1, . . . , kn〉. For j ∈ {1, . . . , n}, there are

the following possibilities: aj ≡ [ ], or aj ∈ PRC, provided kj = 0. Then
τ(a1, . . . , an) ∈ PRC.
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A redex multi-context is a potential redex multi-context that in addition satisfies
the following restrictions:

– The top level operator must be non canonical.
– All other operators τ mentioned in the second part of the construction must

be canonical.

The set of redex multi-contexts is denoted as RC. A redex multi-context R may
have several holes. For a redex multi-context R with n holes, we write R[t1, . . . , tn]
for the operand constructed by replacing the n holes in R by t1, . . . , tn, where the
replacement is done in a left-to-right sequence. Our implicit assumption is that
the operand construction is possible.

Note that the redex multi-context consists of one top non-canonical operator,
further canonical operators, and holes, where the holes may be filled with terms
or higher-order operands, however, for every hole, the “higher-order type” of the
operand is fixed.

We define four types of reductions that can be treated in a schematic way.

Definition 6.2. The four types of schematic reductions are of the form:

1. stop-reduction
t −→ }, if t is a term.

2. simple projection-reduction
It has two parameters: τ ∈ O \Θ and k, which must be an index of a term-
argument of τ , i.e. α(τ) (k) = 0
A simple projection reduction for (τ, k) is of the form τ(t1, . . . , tn) −→ tk for
operands ti.

3. conditional projection reduction
It has three parameters: τ ∈ O \ Θ, k, which must be an index of a term-
argument of τ , and a set I ⊂ {1, . . . , n}, where n is the number of arguments
of τ .
For all i ∈ I : α(τ) (i) = 0. A conditional projection reduction for parameters
(τ, k, I) is of the form τ(t1, . . . , tn) −→ tk, provided for all i ∈ I : ti ∈ ANS.

4. copy-reduction
It has four parameters: A redex multi-context R, a set I ⊆ {1, . . . , n}, where
n is the number of holes of R, an index k ∈ ({1, . . . , n} \ I), and a function
π : I → {1, . . . , n}. Conditions are: the kth hole of R accepts only higher-
order operands from |I|T , and for all j ∈ I: the arguments at index π(j) of
R must be terms.
A copy-reduction for the parameters (R, I, k, π) is R[si] −→ r[sπ(j)/xj ], where
{sj | j = 1, . . . , n, j 6= k} ⊆ PV ∪ (≥1)T , and sk ≡ xj .r and sk ∈ |I|T .

A projection reduction is a simple projection reduction or a conditional pro-
jection reduction.

Example 6.3. In [Man05a,Man05b] there is an example for a calculus with stop-
reductions. A simple projection reduction is the reduction defined by a non-
deterministic choice-rule (choice s t) → s and (choice s t) → t, whereas the
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local amb-rule and seq-rule with (amb v t) → v and (amb s v) → v, (seq v t) → t,
where v are answers, are conditional projection rules. The call-by-value beta-
reduction rule is a copy-reduction with R = @(λ([·]), [·]). The case-reduction
has two different encodings, depending on whether the SHOCS is lazy or strict.
The case-reduction (case (cons s1 s2) of (cons x1 x2) → t1; Nil → t2) →
t[s1/x1, s2/x2] and the analogous case-reduction in the approximation calculus
are also copy-reductions, where the redex multi-context is case((cons([·], [·]), [·], [·]).
In the lazy variant, the arity of case is 〈0, 2, 0〉, and the translation of the re-
duction is case(cons(s1, s2), (x1x2.t1),}) → t1[s1/x1, s2/x2], and the reduction
for Nil is as follows: case((Nil), (x1x2.t1), t2) → t2. In the strict (i.e., call-by-
value) variant, the arity of case is 〈0, 2, 1〉, and the translation of a reduction is
case(cons(s1, s2), (x1x2.t1), z.t2) → t1[s1/x1, s2/x2], and the reduction for Nil
is as follows: case((Nil), (x1x2.t1), z.t2) → t2[r/z] ≡ t2, where r is any term.
The call-by-value encoding of the copy-reductions does not enforce evaluation
of t2 in the case that the scrutinized argument is a non-empty list. The reason
for the slightly unusual encoding of the Nil-case is that in the naive encoding, a
copy reduction would require the term t2 to be reduced to a pseudo-value, which
would prevent the proper encoding of call-by-value calculi.

More complex reduction rules could also be accommodated by using combi-
nations of simpler ones.

Note that in the following proofs, the compatibility of .b as well as the
transitivity of (.̂b) 0 are unknown and must not be used in proofs.

Lemma 6.4. If S[s] −→ S[t], where s −→ t is a schematic reduction, then S[s] ∈
T0 =⇒ S[t] ∈ T0

Proof. This is obvious for stop- and projection reductions. For copy reductions
with sk = xi.r, the resulting term r[sπ(j)/xj ] is closed, since sπ(j) and xi.r are
closed.

6.2 Stability of Schematic Reductions

In this subsection, we assume that a HOCS+SR is given.
For proving stability of (.̂b) 0 we first treat top-level reductions only. The results
will be transferred into arbitrary surface contexts later.

Corollary 6.5. The relation (.̂b) 0 is left-stable w.r.t. stop-reductions. I.e., if
s (.̂b) 0 t for closed terms s, t and s −→ }, then } (.̂b) 0 t.

Proof. Follows from Lemma 5.4.

Lemma 6.6. Given the parameters (τ, k), let us assume that all simple projec-
tions reductions for (τ, k) are permitted. Then the relation (.̂b) 0 is left-stable
w.r.t. a simple projection-reduction for parameter (τ, k). I.e., if s (.̂b) 0 t for
closed terms s, t and s −→ r by a simple projection-reduction for (τ, k), then
r (.̂b) 0 t.
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Proof. For a closed term τ(si) let τ(si) −→ sk be a simple projection reduction.
The relation τ(si) (.̂b) 0 t for closed terms τ(si), t implies that there is a closed
term τ(s′i), such that si .̂b s′i, and τ(s′i) .b t. The projection reduction
τ(s′i) −→ s′k is permitted and k denotes a term-argument, hence by Lemma 5.3
s′k .b τ(s′i). Transitivity of .b implies s′k .b t. Together with sk (.̂b) 0 s′k this
implies sk (.̂b) 0 t, and hence the claim holds.

Lemma 6.7. Given the parameters (τ, k, I), let us assume that all conditional
projections reductions for (τ, k, I) are permitted, and that reductions are com-
patible with surface contexts. Then the relation (.̂b) 0 is left-stable w.r.t. a con-
ditional projection-reduction for (τ, k, I).

Proof. For a closed term τ(si) let τ(si) −→ sk be a conditional projection reduc-
tion. The relation τ(si) (.̂b) 0 t for closed terms τ(si), t implies that there is a
closed term τ(s′i), such that si .̂b s′i, and τ(s′i) .b t. Since the reduction is
applicable, for all i ∈ I : si ∈ ANS must hold. For i ∈ I, the terms si, s

′
i are

closed, and the relation si .̂b s′i implies that s′i ⇓ s′′i ∈ ANS with si .̂b s′′i by
Lemma 5.5. For i 6∈ I, let s′′i := s′i. Then τ(s′i) −→∗ τ(s′′i ) by the assumption
that reduction is compatible with surface contexts, and thus Lemma 5.3 implies
τ(s′′i ) .b τ(s′i), and by transitivity, τ(s′′i ) .b t. Since all conditional projection
reductions for (τ, k, I) are permitted, we have τ(s′′i ) −→ s′′k , hence by Lemma 5.3
s′′k .b τ(s′′i ). Transitivity of .b implies s′′k .b t. Together with sk (.̂b) 0 s′′k this
implies sk (.̂b) 0 t, and hence the claim holds.

Lemma 6.8. If a copy-reduction is applicable to a term t at top-level, then
t ≡ τ(ti), where τ is a non-canonical operator, and either ti ∈ PV, or ti is a
higher-order operand.

Proof. Since R[ri] −→ a implies that for R[ri] ≡ τ(ti), we have ti ∈ PV, or ti is a
higher-order operand, and the conditions for ti ∈ PV according to Definition 5.2
are satisfied. This holds for lazy as well as strict HOCS+SR.

Lemma 6.9. Given the parameters (R, I, k, π), let us assume that all copy-
reductions for (R, I, k, π) are permitted. Assume also that reductions are compat-
ible with surface contexts. Then the relation (.̂b) 0 is left-stable w.r.t. reduction
by copy-reductions for (R, I, k, π). I.e., if R[si] (.̂b) 0 t for closed terms R[si], t
and R[si] −→ s′ by a copy-reduction w.r.t. (R, I, k, π), then s′ is a closed term
and s′ (.̂b) 0 t.

Proof. Let R[si] (.̂b) 0 t for a closed term R[si], such that this term reduces by
a copy-reduction for (R, I, k, π) to r[sπ(j)/xj ], where sk ≡ xj .r. Note that the
definition of redex multi-contexts enforces that all operands si are closed. Let
R[si] = τ(ai). Since the copy-reduction is applicable, from the structure of redex
multi-contexts it follows that every ai is either }, an answer, or a higher-order
operand. We obtain closed a′i, such that ai .̂b a′i, τ(a′i) .b t. For every i, there
are the following possibilities:
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– ai = }. This implies sl = lazy. If a′i ⇓, then let a′′i be such that a′i ⇓ a′′i ,
otherwise, let a′′i := }. We have ai .̂b a′′i in either case.

– ai is a higher-order operand. Then a′i is also a higher-order operand, hence
let a′′i := a′i. Obviously, ai .̂b a′′i .

– ai ∈ ANS with ai ≡ θi(ai,j). Then by Lemma 5.5, there is a term θi(a′i,j),

such that a′i ⇓ θi(a′i,j), and ai,j .̂b a′i,j . Let a′′i := θi(a′i,j). The relation

ai .̂b a′′i holds, since .̂b is operator-respecting.

By the conditions on reductions for a HOCS+SR, we have τ(a′i) −→∗ τ(a′′i ),
hence τ(a′′i ) .b t.

The structure of redex multi-contexts, Lemma 6.8 and Corollary 5.6 together
imply, using induction on the depth of operands, that τ(a′′i ) ≡ R[s′i] and si .̂b s′i
where the operands s′i are higher-order operands or pseudo-values. This permits
to reduce this term by the same copy-reduction: τ(a′′i ) ≡ R[s′i] −→ r′[s′π(j)/xj ].

The Substitution Lemma 3.9 shows that r[sπ(j)/xj ] (.̂b) 0 r′[s′π(j)/xj ]. Since

τ(a′i) −→∗ τ(a′′i ) −→ r′[s′π(j)/xj ], we have r′[s′π(j)/xj ] .b t. Hence by composition,

and since the terms are closed, we also have r[sπ(j)/xj ] (.̂b) 0 t

Now the stability results can be transferred from top-level reductions to ar-
bitrary surface contexts.

Lemma 6.10. If (.̂b) 0 is left-stable w.r.t. a reduction s −→ r, then it is also
left-stable w.r.t. S[s] −→ S[r], where we assume that reductions are compatible
with surface contexts.

Proof. We prove the claim by induction on the depth of the hole of S. There-
fore, it is sufficient to prove that if s −→ r ∧ s (.̂b) 0 t′ =⇒ r (.̂b) 0 t′, then
τ(s1, . . . si−1, s, si+1, . . . , sn) (.̂b) 0 t implies τ(s1, . . . si−1, r, si+1, . . . , sn) (.̂b) 0 t.
Assume τ(s1, . . . si−1, s, si+1, . . . , sn) (.̂b) 0 t. Then there is a term
τ(s′1, . . . s

′
i−1, s

′, s′i+1, . . . , s
′
n) such that sj .̂b s′j for j 6= i, and s (.̂b) 0 s′, and

τ(s′1, . . . s
′
i−1, s

′, s′i+1, . . . , s
′
n) .b t. By the induction hypothesis, s (.̂b) 0 s′ and

s −→ r implies r (.̂b) 0 s′. Now we can use the definition of .̂b, since we have
sj .̂b s′j for j 6= i, and r .̂b s′, and obtain τ(s1, . . . , si−1, r, si+1, . . . , sn) (.̂b) 0 t
because τ(s1, . . . , si−1, r, si+1, . . . , sn) and t are closed.

6.3 Schematic Higher Order Computation System

Now we show that the restriction to schematic rules and the appropriate defini-
tions of answers is sufficient to use the similarity for proving contextual preorder.

Definition 6.11 (Schematic Higher Order Computation System (SHOCS)).
Given a HOCL L, a canonical set of operators ∅ 6= Θ ⊆ O, and sl ∈ {lazy, strict}.
All of the following conditions must hold:
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– If sl = lazy, let there be a 0-ary symbol }, and assume that
– All stop-reductions are permitted.
– There is a fixed set P , such that for every p ∈ P , all simple-projection

reductions for p, or all conditional projection reductions for p, or all copy-
reductions for p, respectively, are permitted.

– All small-step reductions above are also permitted in surface contexts. I.e.,
if s −→ t, and S is a surface context, then also S[s] −→ S[t].

– Let the set of pseudo-values, the set of answer terms, and ⇓ be defined as in
Definition 5.2.

– There is a closed pseudo-value.
– If sl = strict, there is a closed and diverging term Ω.

Then we call this a Schematic Higher Order Computation System (SHOCS).

A trivial consequence of the definition of SHOCS is that a HOCS+SR, in
which all non-stop-reductions are projection-reductions or copy-reductions, and
reduction is compatible with surface-contexts, and whenever a simple projection
reduction for p, a conditional projection reduction for p or a copy-reduction for p
is permitted, then all simple projection reductions for p, all conditional projection
reductions for p or all copy-reduction for p, respectively, are also permitted, then
this HOCS+SR is also a SHOCS.

Theorem 6.12. Every SHOCS is a HOCS+SR.

Proof. It is easy to see that the conditions 4.1 (1) – (6) are satisfied.
We have to show that 4.1 (7) holds: The structure of the reductions shows that
s −→ t implies σ(s) −→ σ(t) for any substitution of a term for free variables in s.
This can easily be checked for all schematic reductions.
Now we show that ∀s ∈ T : ∃sc ∈ T0 : s[sc/x] ⇓ ⇐⇒ s ⇓. For lazy SHOCS, we
let sc := }, and for strict SHOCS, we let sc = Ω. If s ⇓, then by the argument
above, also s[sc/x] ⇓, since answers have a canonical top operator, which cannot
be removed by a substitution. If s[sc/x] ⇓ v, then we slightly generalize, and
assume that there is a term s[r1, . . . , rm] ⇓ v, where all ri are closed diverging
terms. By checking the cases for reductions, we see that the first reduction of
s[r1, . . . , rm] ∗−→ s′ is either a reduction within some rj −→ r′j , or it is a reduction
within s, independent of all ri. In the first case, we can apply the induction
hypothesis to show s ⇓. In the second case s[r1, . . . , rm] −→ s′[r1, . . . , rm′ ] ∗−→ v,
and we obtain that s −→ s′ ⇓ v, and then we can use induction.

We have proved all conditions for a HOCS. All the remaining conditions for
a HOCS+SR are satisfied either by definition, or are obvious consequences.

Theorem 6.13. In every SHOCS, .b is well-behaved.

Proof. Theorem 6.12 shows that the SHOCS is also a HOCS+SR, hence we can
apply our machinery. The relation (.̂b) 0 is stable, which follows from Corol-
lary 6.5 and Lemmas 6.6, 6.7, 6.9, and 6.10. Now Theorem 4.15 is applicable.
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6.4 Equivalence of Similarity and Contextual Preorder

A counterexample in [Man05b] shows that generally .b
o 6= .c for a non-

deterministic calculus. This also holds in calculi if there are no selectors for
some canonical operator. Analogously to Howe [How89], the following criterion
is valid in SHOCS:

Theorem 6.14. Let a HOCS be given, such that the following holds:

1. Evaluation ⇓ is deterministic,
2. ∀s : s ⇓ s′ =⇒ s 'c s′,
3. similarity is well-behaved, and
4. for all canonical operators θ, θ′ and all operands si, ti:

θ(s1, . . . , sn) .c θ′(t1, . . . , tn) =⇒ θ = θ′ ∧ si .c
o ti

Then .b = (.c) 0.

Proof. It is sufficient to show that .c is a simulation. Let s, t be closed terms
with s (.c) 0 t. If s ⇓, then t ⇓ by definition of .c. Now let s ⇓ θ(s1, . . . , sn) and
t ⇓ θ′(t1, . . . , tn) be the unique answers due to condition (1). By condition (2),
θ(s1, . . . , sn) .c θ′(t1, . . . , tn). The above condition (4) implies θ = θ′, and ∀i :
si .c

o ti. Hence (.c) 0 is a simulation. Together with the condition (3) this
implies that .b = (.c) 0.

The criteria in the theorem above are satisfied in most deterministic lambda-
calculi, e.g. using the beta-rule and the case-rules for selection.

In non-deterministic lambda-calculi, the presence of the seq-operator and
the reduction (seq v s) −→ s in the calculus and other conditions enforce that
the contextual preorder implies .b in some useful cases.

Theorem 6.15. Let a SHOCS be given, such that the following holds:

1. There is a seq-operator and the reduction (seq v s) −→ s is valid whenever
v ∈ ANS. Also (seq r s) ⇓ =⇒ r ⇓ holds.

2. For all canonical operators θ, θ′ and all operands si, ti:
θ(s1, . . . , sn) .c θ′(t1, . . . , tn) =⇒ θ = θ′ and ∀i : si .c ti.

3. For every term t there is a surface context Dt[·], such that for all answers
v: Dt[v] −→∗ t[v/x], and for all r : Dt[r] ⇓ ⇐⇒ ∃v : r ⇓ v ∧ t[v/x] ⇓.

Then for all closed terms s, t: if ans(t) is finite, and every ti ∈ ans(t) is a closed
term without higher-order operands as suboperands, then s .c t =⇒ s .b t.

Proof. We show that .c for these restricted term pairs is a simulation in this
special case.
Let s0 ∈ ans(s) and let ans(t) = {t1, . . . , tn}. We show that s0 .c ti for some
i = 1, . . . , n: Suppose this is false. Then for every i, there exists a context Ci,
such that Ci[s0] ⇓, but Ci[ti] 6⇓.
Then let r := (seq C1[x] (seq C2[x] . . . (seq Cn−1[x] Cn[x]) . . .)). Let D be
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the surface context for t according to condition (3). Then D[s] −→∗ D[s0] −→∗

t[s0/x] ⇓, due to seq-reductions and the assumption that ∀i : Ci[s0] ⇓. However,
D[ti] 6⇓ for every i: Assume otherwise; then D[tj ] ⇓ for some j, and by the same
reasoning as above, we see that this implies Cj [tj ] ⇓, which is not possible.
We have reached a contradiction by condition (3), and conclude that s0 .c tk
for some k. Since s0, tk are answers, we also have s0 = θ(s0,i), tk = θ(tk,i), and
by the condition on t, we also have s0,i .c tk,i for all i and tk,i is a closed answer
without a higher-order suboperand. Hence .c on the restricted term pairs is a
simulation, and the lemma holds.

The conditions in Theorem 6.15 are satisfied in most calculi, e.g. to satisfy
the condition (3) often the contexts let x = [·] in t, or (λx.t [·]) can be used.
Note that the counterexample in [Man05b] indeed has an infinite set ans(t).

7 Optimizing the Procedure for Checking Similarity in
SHOCS

The goal of this section is to give support for optimizing the similarity check
procedure for SHOCS in making it more deterministic, i.e., by avoiding un-
necessary computations of answers. This allows to avoid redundant answers
which are equivalences due to Ω- or }-related equivalences, e.g. the equiva-
lences Ω 'b @(Ω, r) (} 'b @(}, r), respectively), which holds in all example
calculi in section 8. An illustrating example for the use of this optimization is in
subsection 8.1.

The following definition captures optimized reduction strategies that can
avoid reductions that are redundant, e.g. may be more deterministic than −→,
and may also avoid reductions to answers that are subsumed by other answers.
We restrict the presentation to a modified big-step evaluation relation ⇓std .

Definition 7.1. Given a SHOCS H. Let ⇓std ⊆ T ×ANS be a relation with
the following properties:

1. ∀s ∈ T0, v
′ ∈ ANS : s ⇓std v′ =⇒ ∃v ∈ ANS : s ⇓ v ∧ v 'b v′.

2. ∀s ∈ T0, s ⇓ v : ∃v′ ∈ T0 ∩ ANS : s ⇓std v′ ∧ v .b v′.

Then ⇓std is called a standardizing evaluation for H.

The first condition permits that ⇓std may lead to different, yet 'b-equivalent,
answers, than ⇓ leads to. The second condition enables ⇓std to choose from an
answer set ans(s) only the maximal ones w.r.t. .b-ordering.

Definition 7.2. Given a SHOCS H and a standardizing evaluation ⇓std . Then
≤b,std is defined analogously to .b as the greatest fixpoint of [·o]std . Given a
relation υ on terms, this is defined as follows:

s [υ]std t
def⇐⇒ (∀θ(si) ∈ ANS : s ⇓std θ(si)

=⇒ (∃θ(ti) ∈ ANS : t ⇓std θ(ti) ∧ si υ ti)) (7.1)
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Theorem 7.3. Given a SHOCS H and a standardizing evaluation ⇓std for H.
Let ≤b,std be the similarity w.r.t. ⇓std and H as defined in Definition 7.2 above.
Then for all closed terms s, t: s .b t iff s ≤b,std t.

Proof. Let ≤i,b,std :=
[
(T0

2)
o
]i

std
and .i,b :=

[
(T0

2)
o
]i

. Now we use the
characterization from Lemma 4.6, which holds for ≤i,b,std analogously. I.e.,

.b =
⋂
i

.i,b and ≤b,std =
⋂
i

≤i,b,std

The relations .i,b and ≤i,b,std are reflexive and transitive, which is shown for
the first one in Lemma 4.9, and can be proved for the latter in the same way.

(1) By induction on i we show that .i,b ⊆ ≤i,b,std is valid for all i: For i = 0,
this is trivial. Let i > 0 and let s, t be closed terms such that s .i,b t holds.
We show that s ≤i,b,std t is true. Assume s ⇓std v′s ≡ θ(s′j) ∈ ANS. By
condition (1) of Definition 7.1 there is some vs ≡ θ(sj) with s ⇓ vs and vs 'b v′s.
This implies ∀i : v′s .i,b vs and thus s′j .i−1,b

o sj since vs and v′s both are
answers. Furthermore, from s .i,b t we obtain an answer vt ≡ θ(tj), such
that t ⇓ vt as well as sj .i−1,b

o tj holds. Since ⇓std is standardizing, there is a
v′t ∈ ANS, such that t ⇓std v′t and vt .b v′t. Since for all answers w, only w ⇓ w
is possible, we also have v′t ≡ θ(t′j) and tj .i−1,b

o t′j . This implies s′j .i−1,b
o t′j ,

since .i−1,b
o is transitive (see the proof of Lemma 4.9). The induction hypothesis

implies s′j ≤i−1,b,std
o t′j . This proves s ≤i,b,std t. Using the characterizations of

.b and ≤b,std , we have shown .b ⊆ ≤b,std .

(2) We show by induction on i that ≤i,b,std ⊆ .i,b holds for all i: For i = 0, this
is trivial. Let i > 0 and s, t be closed terms with s ≤i,b,std t. If s ⇓ vs, then there
exists v′s ∈ ANS with s ⇓std v′s and vs .b v′s. There is a closed value v′t ∈ ANS
such that t ⇓std v′t, v′s = θ(s′j), v′t = θ(t′j), and s′j ≤i−1,b,std

o t′j . The relation
vs .b v′s implies that vs = θ(sj) and sj .b

o s′j , and also sj .i−1,b
o s′j . The first

part of the proof implies s′j ≤i−1,b,std
o t′j , and thus by transitivity of ≤i−1,b,std

o

also sj ≤i−1,b,std
o t′j . By induction hypothesis, this implies sj .i,b

o t′j . Since
there is an answer vt with t ⇓ vt and vt 'b v′t, we also have t′j .i,b

o tj , hence
s .i,b t. By the characterization above, this implies ≤b,std ⊆ .b. ut

The similarity test in Algorithm 4.7 can be optimized, since the sets ans(·)
can be defined w.r.t. ⇓std now. Also, the evaluation to answers can be made less
non-deterministic.

Corollary 7.4. Given a SHOCS. Let s, t be closed terms, and let s
bot,∗−−−→ t iff t

can be constructed from s by replacing subterms by } (or Ω for strict SHOCS).
Then s .b t and s .c t.

Thus v′
bot,∗−−−→ v is a sufficient criterion for v .b v′ in Definition 7.1 (2).
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Proof. This follows since .b
o is a precongruence and } (Ω, respectively) is the

smallest element w.r.t. .b
o by Theorem 6.13.

If, for some term, there are .b-related answers, e.g. inherited from equiv-
alences like } 'b @(}, r) or Ω 'b @(Ω, r), then the standardizing evaluation
permits to select the maximal one w.r.t. the .b-ordering. In this case, v ⇓std v′

is possible for syntactically different, but 'b-equivalent answers v, v′.

8 Applications

We give a series of calculi in which Theorem 6.13 is applicable, and .b is thus
well-behaved. We also show how Theorem 7.3 can be advantageously applied.

8.1 A Tiny Lazy Approximation Calculus

The reduction rules of an approximation calculus for a lazy call-by-need non-
deterministic calculus as defined in [Man05a,Man05b] is slightly reduced, inso-
far as all the let-shuffling rules are omitted. This is possible, as the arguments
in [Man05b] show. The language has application, let, pick, lambda, seq as
operators, where λ is the only canonical operator. The pseudo-values are the
abstractions and }. The rules are:

let x = v in s → s[v/x] if v is a pseudo-value
pick s t → s
pick s t → t
seq v t → t if v is an abstraction
((λx.s) v) → s[v/x] if v is a pseudo-value
s → } if s is not a pseudo-value

If λ is the only canonical operator, and the reduction rules are permitted
in all surface contexts, then we can apply Theorem 6.13, and obtain that .b is
well-behaved.

An example of terms for which .c can be derived via .b, is given. First
we define some abbreviations, and use the usual conventions for the notations
of lambda-expressions. We will make use of Theorem 7.3 to avoid redundant
answers.

K := λxy.x
Y := λf.(λx.f(x x)) (λx.f(x x))
Y2 := λf.(λxy.f(x y y)) (λxy.f(x y y)) (λxy.f(x y y))

We show that Y K .b Y2 K using the optimization method of Theorem 7.3.
First we ignore the stop-reductions. Y K reduces to (λx.K(x x)) (λx.K(x x))
and this to K ((λx.K(x x)) (λx.K(x x))). Continuing this, the terms

K (K . . . (K((λx.K(x x)) (λx.K(x x)))) . . .)
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may be reached. It is easy to see that, now permitting also stop-reductions, the
answers that can be reached by evaluation are of the form λx1.λx2 . . . λxn.r,
where r = }, or r = (} r′). It is easy o verify in this calculus that } 'b (} r′),
hence we can simply use a standardizing reduction that only reaches the answers
of the form λx1.λx2 . . . λxn.}.

The second term Y2 K reduces to ((λxy.K(x y y)) (λxy.K(x y y)) (λxy.K(x y y)))
This term to K ((λxy.K(x y y)) (λxy.K(x y y)) (λxy.K(x y y)))

Again, the possible answers are λx1.λx2 . . . λxn.r, where r = }, or r = (} r′).
We use the same standardizing reduction that only reaches the answers of the
form λx1.λx2 . . . λxn.}. Now, the definition of .b together with Theorem 7.3
shows that the terms are mutually similar.

8.2 A Tiny Lazy Approximation Calculus with Constructors

We extend the approximation calculus for a lazy call-by-need non-deterministic
calculus as defined in [Man05b] to constructors and case, following the same
guidelines as in subsection 8.1 as follows. The language has application, let,
pick, λ, seq, case and all the constructors as operators. The canonical operators
are λ and the constructors. In variations of the language, several case-operators
may be used, one for each data type.

let x = v in s → s[v/x] if v is a pseudo-value
s → } if s is not a value
pick s t → s
pick s t → t
seq v t → t if v is an answer
s → } if s is not a pseudo-value
(λx.s v) → s[v/x] if v is a pseudo-value
(case (c s1 . . . sn)

of . . . (c x1 . . . xn → t) . . .) → t[si/xi] if si are pseudo-values

Values are are constructed from constructors and abstractions. There may be
different kinds of case-rules. The slightly modified encoding as in Example 6.3
is used, i.e., for 0-ary constructors, a higher-order operand is used for the con-
tinuation, and the reduction replaces the dummy-variable by a pseudo-value.
Again, we can apply Theorem 6.13 and obtain the .b is well-behaved.

Consider s = Cons ((pick 0 1), Nil) and t = pick ((Cons 0 Nil), (Cons 1 Nil))
as an example for two terms, for which s 'b t is easy to verify, and hence s 'c t
holds.

Note that the call-by-need non-deterministic calculus that we are targeting
at is different from the calculus above insofar as the reduction rules are different
and a normal-order reduction is defined (see e.g. [SSSS04]).

We will give a sketch, how an optimized reduction may be obtained from
a normal order reduction in the call-by-need calculus: Given a closed term s,
the reductions will be roughly as follows (of course the reduction is in general
non-deterministic):
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1. Compute a weak head normal form of s. Usually, a weak head normal form
is of the form let x1 = t1 in (let x2 = t2 in . . . . . . in v), where v is
an abstraction or a term of the form c(ri), where r is a constructor (i.e.
canonical).

2. There are two different directions, where the reduction has to be continued:
i. Reducing every ti to WHNF, and ii. reducing ri in the term c(ri) to WHNF.

3. Since this may go on indefinitely, there may be a bound or some other
decision to stop further reduction, and to replace the unevaluated subterms
by }, and after this, perform replacements of the let-bound variables, i.e.
the first rule of the rules above, until all top-lets are eliminated. The same
has to be performed within the constructor term c(ri).

4. The result must be a pseudo-value.

8.3 A Tiny Lazy Approximation Calculus with Constructors and
amb

It is no problem to replace in the previous subsection the pick-rules by the
following two amb-rules.

amb v t → v if v is an answer
amb t v → v if v is an asnwer

Also in this case, theorem 6.13 is applicable.
Using an example from [How89], the terms (amb λx.0 λx.1) and (λx.amb 0 1)

are in our formulation neither 'c nor .b. Here the difference between the call-
by-name non-determinism in [How89] and our call-by-need non-determinism be-
comes visible. This is strongly connected to our restriction of the open extension
to pseudo-values, i.e. to allow only copying pseudo-values in reductions.

As a positive example, it is not hard to see that (amb s t) .b (amb t s) for
closed terms s, t, which implies (amb s t) 'c (amb t s) by theorem 6.13, but to
prove this using only the tools of contextual equivalence is rather hard.

8.4 Application to Abramsky’s Lazy Lambda Calculus

The language has application and λ as operators, where λ is canonical. In general,
one rule is sufficient:

((λx.s) t) → s[t/x]

Our approach yields .b
o ⊆ .c (see [Abr90]). The set of pseudo-values is

defined using the lazy variant of SHOCS. There is also a non-terminating term
Ω available. The only difference between the call-by-value and the lazy variant is
in the definition of the pseudo-values which may contain Ω as surface subterms
in the lazy variant, but not in the call-by-value variant.
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8.5 Application to a Call-By-Value Lambda Calculus

The language has application, and λ as operators. In general, one rule is suffi-
cient:

(λx.s v) → s[v/x] if v is a value

It is clear that also in this case, we have .b
o ⊆ .c. There is a nonterminating

term Ω available.

9 Conclusion and Further Research

We have shown that in a large class of higher-order calculi, in particular in
the approximation variants of call-by-need, non-deterministic lambda-calculi,
.b is well-behaved, i.e., similarity is a precongruence. Applying the theorem on
schematic higher-order computation systems for a given calculus is rather simple
and does not need any deep knowledge of Howe’s machinery.

Given a calculus with a normal-order reduction, our approach in general re-
quires a preparation, insofar as a termination-equivalent approximation calculus
is required, since our approach cannot directly treat normal-order reduction.

Possible directions of further research are to investigate the relationship be-
tween L and its approximation variant LA, for specific calculi and if possible for
classes of calculi; to investigate calculi with a recursive let; to apply the method
to non-deterministic call-by-need calculi where a must-convergence is part of
the definition of the contextual preorder as in [MSC99]; and also to adapt the
method to typed languages.
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