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Abstract

Girard described two translations of intuitionistic logic into linear logic� one where

A� B maps to ��A���B� and another where it maps to ��A��B�� We detail the

action of these translations on terms� and show that the �rst corresponds to a call�

by�name calculus� while the second corresponds to call�by�value� We further show

that if the target of the translation is taken to be an a�ne calculus� where � controls

contraction but weakening is allowed everywhere� then the second translation corre�

sponds to a call�by�need calculus� as recently de�ned by Ariola� Felleisen� Maraist�

Odersky and Wadler� Thus the di�erent calling mechanisms can be explained in

terms of logical translations� bringing them into the scope of the Curry�Howard

isomorphism�

� Introduction

Plotkin� in �Call�by�name� call�by�value and the ��calculus� ����� demon�

strated how two di�erent calling mechanisms could be explained by two dif�

ferent translations into continuation passing style	 At the time Plotkin wrote�

the call�by�value translation was widely appreciated� but the call�by�name

translation was less well known	 In particular� the call�by�value translation

was rediscovered several times 
as related by Reynolds ������ while the call�by�

name translation appears to have been known only to Plotkin and Reynolds


the former credits it to the latter�	

While we hesitate to compare our work to Plotkin
s� our goal here is some�

what similar	 We demonstrate how the two di�erent calling mechanisms can

� Presented at Mathematical Foundations of Programming Semantics �MFPS�� New Or�

leans� Lousiana� March�April �����
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be explained by two di�erent translations into linear logic	 At the time we
are writing� the call�by�name translation is widely appreciated� but the call�
by�value translation is less well known	 Both translations can be found in the

original paper of Girard ����� the �rst based on mappingA� B into 
�A���B�
and the second based on mapping it into �
A��B�	 He devotes several pages
to the �rst translation and less than a paragraph to the second� stating that

�its interest is limited
	 That the �rst translation corresponds to call�by�name
appears to be widely known� while the knowledge that the second translation
corresponds to call�by�value appears to be restricted to a narrower circle	

A number of di�erent lambda calculi based on linear logic have been pro�

posed� including work by Lafont ����� Holmstr�om ����� Wadler �������� Abram�
sky ���� Mackie ����� Lincoln and Mitchell ����� Troelstra ����� Benton� Bierman�

dePaiva� and Hyland ������ and della Rocca and Roversi ����	 Various embed�
dings of intuitionistic logic into linear logic have also been studied� including
work by Girard ����� Troelstra ����� and Schellinx ����	 The linear lambda

calculus used in this paper is a minor re�nement of one previously presented
by Wadler �������� which is based on Girard
s successor to linear logic� the
Logic of Unity ����	 A similar calculus has been devised by Plotkin ����	

Corresponding to Girard
s �rst translation we de�ne a mapping � from the
call�by�name calculus to the linear calculus� and show that this mapping is

sound� in that M name
������� N implies M� lin

����� N
�� and complete� in that the

converse also holds	 Corresponding to Girard
s second translation we de�ne a
second mapping � from the call�by�value calculus to the linear calculus� and
show that this mapping is also sound and complete� in that M val

����� N if and

only if M� lin
���� N

�	 We believe these soundness and completeness results to

be new� showing soundness is straightforward� while completeness is somewhat
trickier to establish	

Since writing the �rst draft of this paper� we have become aware of the
work of Mackie ����� which also observes that the �rst translation corresponds

to call�by�name and the second to call�by�value	 
He also states that these

observations are common in the literature� but he gives no references and we
have been unable to locate any	� Mackie
s work is complementary to our own	
Our translations are into a linear lambda calculus� corresponding to intuition�

istic linear logic� while Mackie
s translation is into proof nets� corresponding
to classical linear logic	 We prove soundness and completeness for beta 
but

not eta�� while Mackie proves soundness 
but not completeness� for beta and

eta	 Mackie also says nothing about call�by�need� which we discuss below	

Gonthier� Abadi� and Levy ���� also have a translation based on taking
A� B into �
A��B�� but it is rather more complex than our translation at

the term level� because it deals with a rather more complex notion of optimal
reduction	

Our original motivation for studying these questions came from an in�

terest not in call�by�name or in call�by�value� but instead in a call�by�need

calculus� which was recently proposed by Ariola� Felleisen� Maraist� Odersky�

and Wadler ��������	 The call�by�name calculus is not entirely suitable for

reasoning about functional programs in lazy languages� because the beta rule

�
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may copy the argument of a function any number of times	 The call�by�need

calculus uses a di�erent notion of reduction� observationally equivalent to the

call�by�name calculus	 But call�by�need� like call�by�value� guarantees that

the argument to a function is not copied before it is reduced to a value	

The emphasis on avoiding copying suggests that the �resource conscious


approach of linear logic may be relevant	 In the linear lambda calculus 
as in

linear logic�� the ��
 connective is used to control duplication 
contraction� and

discarding 
weakening� of lambda terms 
proofs�	 For call�by�need we wish

to avoid duplication but not discarding� and so an appropriate target for our

translation is an a�ne calculus� in which contraction is controlled by the ��


connective but weakening is allowed everywhere	 The use of ��
 to separately

control contraction and weakening has been studied by Jacobs ����	

We derive the call�by�need calculus from the call�by�value calculus in two

steps	 The �rst step adds �let
 terms� which enforce sharing� to the call�by�

value calculus	 The resulting call�by�let calculus is observationally equivalent

to call�by�value� the � translation� easily extended� is still sound and complete	

We then add one further law� which allows a value bound by a �let
 to be

discarded without �rst being computed if the value is not needed for the

result	 The resulting call�by�need calculus is observationally equivalent to

call�by�name as opposed to call�by�value� and the � translation remains sound

and complete if its target is taken to be an a�ne calculus as opposed to the

linear calculus	

As a result� the call�by�value and call�by�need calculi are brought into the

scope of the Curry�Howard isomorphism� as the � translation relates these to

reductions of the linear calculus that have a clear logical explanation	

An additional contribution of this work is that we con�rm that our linear

calculus is con�uent	 Although many linear calculi have been described� rela�

tively few possess claims of con�uence� notable exceptions being the work of

Benton ���� Bierman ���� and della Rocca and Roversi ����	

As an application of these results� we have devised a type system that

can infer information about which variables are used linearly in a call�by�need

or call�by�value lambda calculus	 This is useful for program transformation�

the reduction 

�x�M� N� � M �x �� N � does not in general hold for a call�

by�value or call�by�need calculus� but it does hold if x is used linearly	 It

may also useful for implementing call�by�need� normally a closure needs to be

overwritten on evaluation� this step may be saved if the closure is bound to a

variable that is used linearly	 These applications are developed in a companion

paper by Turner� Wadler� and Mossin ����	

The remainder of this paper is organised as follows	 Section � introduces

the linear lambda calculus	 Sections ��� describe the call�by�name� call�by�

value� call�by�let� and call�by�need calculi and their translations	 For sim�

plicity� we restrict our attention to function types only	 Section � sketches

how this work may be extended by adding products� by adding constants and

primitive operations� or by removing types� and it remarks that adding sums

or recursion is more problematic	 Section � concludes	

Full versions of the proofs can be found in the technical report version of

�
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this paper ����	

� Linear lambda calculus

We begin with a linear lambda calculus similar to one introduced previously

by Wadler �������	

In many presentations of logic a key role is played by the structural rules�

contraction provides the only way to duplicate an assumption� while weakening

provides the only way to discard one	 In linear logic ����� the presence of

contraction or weakening is revealed in a formula by the presence of the �of

course
 connective� written ��
	 The Logic of Unity ���� takes this one step

further by introducing two sorts of assumption� one that cannot be contracted

or weakened� which we will write x � A� and one which can� which we will

write �x � �A	

Figure � presents the details of the linear lambda calculus lin	 A type�

corresponding to a formula of the logic� is either a base type� an �of course


type� or a linear function� let Z range over base types� and A�B�C range over

types	 A term� corresponding to a proof in the logic� is either a variable� an

�of course
 introducer� an �of course
 eliminator� a function abstraction� or a

function application� let x� y� z range over variables� and L�M�N range over

terms	 We write M �x �� N � for the result of substituting term N for every

free occurrence of the variable x in termM 	

Contexts are sets containing the two forms of assumption� x � A and �x � �A�

where each variable x is distinct	 Let � and  range over contexts	 If �

and  are contexts with distinct variables� then ��  denotes their union	

If � is a context of the form x� � A�� � � � � xn � An� then �� is the context

�x� � �A�� � � � � �xn � �An	

A typing judgement � � M � A indicates that in context � term M has

type A	 If the judgement

x� � A�� � � � � xm � Am� �y� � �B�� � � � � �yn � �Bn � M � C

holds then the free variables ofM will be drawn from x�� � � � � xn� each of which

occurs linearly� and y�� � � � � yn� each of which occurs any number of times	

Those familiar with linear logic or the Logic of Unity may observe that the

following three statements are equivalent�

� There exist variables x�� � � � � xm� y�� � � � � yn and termM such that the judge�

ment x� � A�� � � � � xm � Am� �y� � �B�� � � � � �yn � �Bn �M � C holds in lin	

� The judgement A�� � � � � Am� �B�� � � � � �Bn � C holds in linear logic	

� The judgement A�� � � � � Am� B�� � � � � Bn � C holds for the Logic of Unity


without polarities�	

There are �ve rules concerned with the � connective� Dereliction� Con�

traction� and Weakening are structural rules� while ��I introduces and ��E

eliminates the � connective	 An assumption of the form �x � �A can only be

introduced by the ��E rule	 The only thing that may be done with such an

assumption is to duplicate it via Contraction� discard it via Weakening� or

�
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Syntactic domains

Types A�B�C 		
 Z j �A j A��B
Terms L�M�N 		
 x j �M j let �x 
 M in N j �x�M jM N

Typing judgements

Id
x 	 A � x 	 A

Dereliction
�� x 	 A �M 	 B

�� �x 	 �A �M 	 B

Contraction
�� �y 	 �A� �z 	 �A �M 	 B

�� �x 	 �A �M �y 	
 x� z 	
 x
 	 B

Weakening
� �M 	 B

�� �x 	 �A �M 	 B

��I
�� �M 	 A

�� � �M 	 �A
��E

� �M 	 �A �� �x 	 �A � N 	 B

�� � � let �x 
 M in N 	 B

���I
�� x 	 A �M 	 B

� � �x�M 	 A��B
���E

� �M 	 A ��B � � N 	 A

�� � �M N 	 B

Reduction relation

����� ��x�M�N � M �x 	
 N 


���� let �x 
 �M in N � N �x 	
M 


����� �let �x 
 L in M�N � let �x 
 L in �M N�

���� let �y 
 �let �x 
 L in M� in N � let �x 
 L in �let �y 
 M in N�

Fig� �� The linear lambda calculus lin�

convert it to an assumption of the form x � A via Dereliction	 Furthermore� it

is only assumptions of this form that can appear in the ��I rule� as indicated

by writing �� for the context	 Analogous to the conclusion x � A � x � A of Id�

the conclusion �x � �A � �x � �A may be derived by combining Id� Derelection�

and ��I	

The reduction relation is speci�ed by two beta rules� 
���� and 
���� and

two commuting rules� 
���� and 
���	 We take the reduction relation to be

the compatible closure of the given rules� as we do for all reduction systems

presented in the remainder of this paper	 Also� in order to avoid capture� we

assume free and bound variables of a term are distinct� for instance� in rules


���� and 
���� variable x cannot appear free in term N 	

Some notation� We write �� for the re�exive and transitive closure of �	

We write � for the re�exive� symmetric� and transitive closure of �� and we

write � for syntactic identity	 When necessary� we may write the name of

a calculus above a symbol to disambiguate� as in

lin

� or
lin
�����	 We may also

write the name of a rule below an arrow to indicate which rule is applied� as

in
lin
�����
�����

	

Each of the reduction rules has a logical basis	

� Rule 
���� arises when a ���I rule meets a ���E rule� and the two rules

annihilate	

�
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� Rule 
��� arises when a ��I rule meets a ��E rule� and the two rules annihilate	

� Rule 
���� arises when a ��E rule meets a ���E rule� commuting one through

the other	

� Rule 
��� arises when two ��E rules meet� commuting one through the other	

These reduction rules are compatible with an operational interpretation

where one evaluates 
let �x �M in N� by �rst evaluating M to the form �M �

and then evaluating N �x �� M ��	 Thus we may view the term associated

with ��E as forcing evaluation� and the term associated with ��I as suspending

evaluation	

It is important to verify that the substitutions respect the restrictions on

variables	 In rule 
����� the variable x appears linearly in M � and so any

free variable that appears linearly in N will still appear linearly in M �x ��

N �	 Hence the substitution is well formed	 In rule 
��� the variable x may

appear any number of times in N � and so a free variable of M may be copied

arbitrarily many times in N �x �� M �	 This is where distinguishing two sorts

of assumptions is helpful� the constraint on the ��I rule guarantees that the

term �M may only contain free variables that can appear any number of times	

Hence this substitution is also well formed	

Some terminology� A calculus satis�es the subject reduction property if

whenever � � M � A and M � N then � � N � A	 A calculus is con�uent if

whenever L��M and L��M �� there exists a term N such thatM �� N and

M �

�� N 	 All of the systems we study will possess both the subject reduction

and con�uence properties	

Proposition ��� lin satis�es subject reduction�

Proposition ��� lin is con�uent�

Proof� The subject reduction result is straightforward� its essence is is the

logical content of the reduction rules listed above	 For con�uence� the proof

is similar to our proof of con�uence for the call�by�need lambda calculus �����

which uses Barendregt
s technique of marked and weighted redexes with a

norm for weighted terms ���	 �

We conclude this section with a few words about the relation of our linear

lambda calculus to other formulations	

The formulation given here is based on the Logic of Unity ����� but omitting

the extra complication of polarities	 In Girard
s presentation� the rule ��E

does not appear� but it can be derived by combining his � elimination rule


the fourth to last rule on the right in his Figure �� with one of his structural

rules 
the last rule on the right in his Figure ��	 We chose our formulation

because it yields a simpler 
��� rule	

Our system follows the Logic of Unity� but di�ers from most other linear

lambda calculi� in that we use two forms of assumption� which enables the

subject reduction property to be established in a simple way	 The other sys�

tems listed in the introduction either lack this property altogether� or satisfy

only a restricted version� or else possess full subject reduction but have a more

�
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Syntactic domains

Types A�B�C 		
 Z j A� B

Terms L�M�N 		
 V jM N

Values V�W 		
 x j �x�M

Typing judgements

Id
x 	 A � x 	 A

Contraction
�� y 	 A� z 	 A �M 	 B

�� x 	 A �M �y 	
 x� z 	
 x
 	 B

Weakening
� �M 	 B

�� x 	 A �M 	 B

��I
�� x 	 A �M 	 B

� � �x�M 	 A� B
��E

� �M 	 A� B � � N 	 A

�� � �M N 	 B

Reduction relation

���� ��x�M�N � M �x 	
 N 


Translation

Z� � Z

�A� B�� � ��A����B�

x� � x

��x�M�� � �y� let �x 
 y in M�

�M N�� � M� �N�

�x� 	 A�� � � � � xn 	 An�
� � �x� 	 �A

�

�
� � � � � �xn 	 �A�

n

Fig� �� The call�by�name lambda calculus name

complex syntax for � introduction	

Also� most other systems treat Weakening and Contraction as logical rules

with associated term forms	 Our system treats Weakening and Contraction

as structural rules� without the clutter of term forms	 The result is more

compact� and arguably more suitable as the basis of a programming language	

Some elaboration of the above points can be found in our previous work

�������	 Every term of our language is also a term of the language in ����� from

which it is easy to see how to give a semantics to this language in a categorical

model in the style of Seely ���� as ammended by Bierman �����	

� Call�by�name

Figure � reviews the call�by�name lambda calculus name and presents its trans�

lation into the linear lambda calculus	 Types� terms� and values are standard�

a type is a base type or function type� a term is a value or a function applica�

tion� and a value is a variable or a function abstraction	

Contexts are sets of assumptions of the form x � A� where each variable x

is distinct	 A typing judgement � � M � A indicates that in context � term

�
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M has type A	 The type rules are standard	 We chose a formulation with
Weakening and Contraction to stress the connection with the linear type sys�
tem� the key di�erence being that now the use of Contraction and Weakening

is unconstrained	

There is a single reduction rule� 
���	 This calculus satis�es the usual

subject reduction and con�uence results	

Proposition ��� name satis�es subject reduction� �

Proposition ��� name is con�uent� �

Translation � takes types� terms� and contexts A�M � � of the call�by�name
lambda calculus name to types� terms� and contexts A�� M�� �� of the linear

lambda calculus lin	 In the translation of abstractions� y is a fresh variable�

not appearing in M 	

The idea behind this translation is that � is added to the left of � and ���

but not to the right	 Every function argument is surrounded by �� which can
be thought of as suspending evaluation� corresponding to the call�by�name
discipline	

In particular� corresponding to 
� �� we have



�x�M�N��

� 
�y� let �x � y in M�� �N�

lin
�����
�����

let �x ��N� in M�

lin
����
����

M��x �� N��

� 
M �x �� N ���

which shows that the translation is sound	

Proposition ��� 
Call�by�name translation� The translation � from name to

lin preserves substitution� types� and reductions�

�i� 
M �x �� N ��� �M��x �� N���

�ii� �
name

� M � A if and only if ��
lin

� M� � A�
�

�iii� M name
������� N if and only if M� lin

����� N�
�

Proof� We prove 
i� by an easy structural induction over terms of name�
and prove 
ii� by an easy structural induction over type derivations in name	

The proof of 
iii� in the forward direction is given above	 For the backward

direction� we consider the grammar

S� T ��� x j �y� let �x � y in S j S �T j let �x ��S in T �

which de�nes the set of lin terms reachable from translations of terms in name�
M� lin

����� S	 We then de�ne an erasure y that takes this set back into name�

xy � x


�y� let �x � y in S�y � �x� Sy


S �T �y � Sy T y


let �x ��S in T �y � T y�x �� Sy� �

�
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Syntactic domains As for name�

Typing judgements As for name�

Reduction relation

���v� ��x�M�V � M �x 	
 V 


Translation

A�
� �A�

Z� � Z

�A� B�� � �A�
��B��

V �
� �V �

�M N�� � �let �z 
 M� in z�N�

x� � x

��x�M�� � �y� let �x 
 y in M�

�x� 	 A�� � � � � xn 	 An�
�
� �x� 	 �A

�

� � � � � � �xn 	 �A�
n

Fig� �� The call�by�value lambda calculus val�

It is straighforward to show�


a� The mapping y is a right�inverse of �� M�y �M � for all M in name	


b� The mapping y sends lin�reduction sequences to name�reduction sequences�

if S lin���� T then S
y name������� T

y	

Now� M� lin����� N
� implies by 
b� that M�y name������� N

�y� which implies by 
a�

that M name������� N 	 �

� Call�by�value

Figure � reviews the call�by�value lambda calculus val and presents its trans�

lation into the linear lambda calculus	 Types� terms� and values are as in the

call�by�name calculus	

There is a single reduction rule� 
��v�� which is a restriction of 
beta��

to the case when the function argument is a value	 Again� the usual subject

reduction and con�uence results hold	

Proposition ��� val satis�es subject reduction� �

Proposition ��� val is con�uent� �

Translation � takes types� terms� and contexts A� M � � of val to types�

terms� and contexts A�� M�� �� of lin	 There is also an auxiliary mapping

! from types and values A� V of val to types and terms A�� V � of lin� this

mapping omits the outermost ��
	 As before� in the translation of applications

and abstractions y and z are fresh variables not appearing in M 	

The idea behind this translation is that � is added on both the left and

right of � and ��	 Function arguments are no longer surrounded by �� so

the argument will be reduced until a � is encountered before evaluation of the

function body proceeds	 Under this translation� the only terms beginning with

�
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� are those of the form V �

� �V �� so function arguments are forced to reduce
to values	

In particular� corresponding to the call�by�name 
� �� rule we have



�x�M�N��

� 
let �z ��
�y� let �x � y in M�� in z�N�

lin
����
����


�y� let �x � y in M��N�

lin
�����
�����

let �x � N� in M� �

and the reduction cannot necessarily proceed further	 But if we replace the
argument termN by a value V � then corresponding to the call�by�value 
� �v�
rule we have



�x�M� V ��

lin
���� let �x ��V � in M�

lin
����
����

M��x �� V ��

� 
M �x �� V ���

which shows that the translation is sound	

Proposition ��� 
Call�by�value translation� The translation � from val to

lin preserves substitution of values� preserves types� and preserves reductions�


i� 
M �x �� V ��� �M��x �� V ���


ii� �
val

� M � A if and only if ��
lin

� M� � A�

� and

�
val

� V � A if and only if ��
lin

� V � � A�
�


iii� M val
������ N if and only if M� lin

����� N�

�

Proof� Prove 
i� and 
ii� similarly to name	 The proof of 
iii� in the forward
direction is given above	 The backward direction follows from two results
stated in the next section� that the implication holds in an enriched call�by�
value calculus let� and that reduction in let conservatively extends reduction
in val	 �

� Call�by�let

Soundness is reasonably robust under variation of the translations� while com�
pleteness is fairly fragile	 For instance� one might alter the translation of
application to


M N�� � let �z � M� in 
z N��

and this turns out to be sound but no longer complete	

Or say we wish to extend val with a �let
 construct� where �let x � M in N 

has the same semantics as 

�x�N�M�	 We previously observed that



�x�N�M�� lin
����� let �x � M� in N� �

So it seems eminently sensible to de�ne


let x � M in N�� � let �x � M� in N� �

This is clearly sound� but again completeness has been lost	

��
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Syntactic domains As for val� plus the following	

Terms L�M�N 		
 � � � j let x 
 M in N

Typing judgements As for val� plus the following	

Let
� �M 	 A �� x 	 A � N 	 B

�� � � let x 
 M in N 	 B

Reduction relation

�I� ��x�M�N � let x 
 N in M

�V� let x 
 V in M � M �x 	
 V 


�C� �let x 
 L in M�N � let x 
 L in �M N�

�A� let y 
 �let x 
 L in M� in N � let x 
 L in �let y 
 M in N�

Translation As for val� plus the following	

�let x 
 M in N�� � let �x 
 M� in N�

Fig� �� The call�by�let calculus�

To restore completeness in the latter case we add more laws to val� yielding

a system we call let	 The new laws are similar to the commuting conversions

of lin� and also have some similarity to Moggi
s computational lambda calculus

�������� as discussed in Section �	�	

Figure � de�nes the call�by�let lambda calculus let and presents its trans�

lation into the linear lambda calculus	 The terms are the same as previously�

plus a �let
 contruct� and the values remain unchanged	 The types and type

rules are also the same� with the addition of the obvious rule for �let
	

Reduction for let is de�ned by the four rules 
I�� 
V�� 
C�� 
A�� which

stand for �Introduce
� �Value
� �Commute
� and �Associate
	 As before� subject

reduction and con�uence both hold	

Proposition ��� let satis�es subject reduction�

Proposition ��� let is con�uent�

Proof� Subject reduction can be veri�ed straightforwardly	 Con�uence is

easily shown by modifying the our previous results for call�by�need ����	 �

The translation � is extended by adding a clause for �let
	

Proposition ��� 
Call�by�let translation� The translation � from let to lin

preserves substitution of values� preserves types� and preserves reductions�


i� 
M �x �� V ��� �M��x �� V
���


ii� �
let

� M � A if and only if ��

lin

� M
� � A�

� and

�
let

� V � A if and only if ��

lin

� V
� � A��


iii� M let
������ N if and only if M

� lin
����� N

�

�

Proof� The proof of 
i� and 
ii� is similar to that for val	 To prove 
iii� in

the forward direction� consider each possible reduction in let	 Reduction by

��
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rule 
I� translates to


let z ��
�y� let �x � y in M
�

� in z�N
�

lin
����
����


�y� let �x � y in M
�

�N
�

lin
�����
�����

let �x � N
�
in M

�
�

Reduction by rule 
V� translates to

let �x ��V
�
in M

�

lin
����
����

M
�
�x �� V

�
� �

Reduction by rule 
C� translates to


let �z � 
let �x � L
�
in M

�
� in z�N

�

lin
����
����


let �x � L
�
in 
let �z � M

�
in z��N

�

lin
�����
�����

let �x � L
�
in 

let �z � M

�
in z�N

�
� �

And reduction by rule 
A� translates to 
��� in lin	

The proof of the backward direction is similar to the corresponding proof

for call�by�name	 One shows that the set of lin terms reachable from transla�

tions of terms in let is produced by the grammar�

Term image S� T ��� �U j P S j let �x � S in T

Value image U ��� x j �y�let �x � y in S

Pre�x P ��� U j let �x � S in P �

An erasure z that takes this set back into let is given by�

x
z

� x


�y�let �x � y in S�
z
� �x�S

z


�U�
z

� U
z


P S�
z

� P
z
S
z


let �x � S in D�x��
z
� 
D�S��

z


let �x � S in T �
z

� let x � S
z
in T

z
if T �� D�x�


let �x � S in P �
z

� let x � S
z
in P

z
if P �� D�x�

where D ranges over contexts in the language

D ��� � � j D S j let �y � D in S �

It is straightforward to show that z is a right inverse of �	 Furthermore� an

analysis of lin�reductions shows that z sends lin�reduction sequences to let�

reduction sequences	 The result then follows as in the call�by�name case	 �

What is the relationship between val and let" Clearly� every ��v�reduction

in val can be simulated in let by a pair of 
I� and 
V� reductions	 That is� let�

reduction extends val�reduction� and it is not hard to show that this extension

is conservative	

Proposition ��� let conservatively extends val� For all terms M and N in

val� M
val
������ N if and only if M

let
������ N � �

��
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Syntactic domains As for lin�

Typing judgements As for lin� but changing Weakening as follows	

Weakening
� �M 	 B

�� x 	 A �M 	 B

Reduction relation As for lin� plus the following	

��Weakening� let �x 
M in N � N� if x is not free in N

Fig� �� The a�ne lambda calculus aff�

Syntactic domains As for let�

Typing judgements As for let�

Reduction relation As for let� plus the following	

�G� let x 
M in N � N� if x is not free in N

Translation As for let� except into aff rather than lin�

Fig� �� The call�by�need lambda calculus need�

� Call�by�need

In the call�by�name translation� every function argument was surrounded by

�� and so could be freely duplicated or discarded	 In the call�by�value and

call�by�let translations� only values are surrounded by �� and so non�values

cannot be duplicated� but also cannot be discarded	 The call�by�need calculus

di�ers from these in that any term may be discarded if it is not needed� but a

term should not be duplicated unless and until it has been reduced to a value	

Thus� we wish to shift to a calculus where discarding 
Weakening� is always

allowed� but duplication 
Contraction� remains under the strict control of the

��
 connective	

Figure � presents the details of the resulting a�ne lambda calculus aff	

The types� terms� and contexts are the same as for the linear lambda calculus

lin	 The type rules are also identical to those for lin� with the exception that

the rule Weakening of lin� which allows weakening only on assumptions of the

form �x � �A� is replaced by a rule which allows weakening on assumptions of

the form x � A	 This is strictly stronger than the previous rule� as the previous

rule can be derived by combining this Weakening with Dereliction	

Reduction is de�ned by the rules 
����� 
���� 
����� 
��� together with a new

rule 
�Weakening�	 Again� this rule has a logical basis	

� Rule 
�Weakening� arises when a ��E rule meets a Weakening rule� commut�

ing one through the other	

The 
�Weakening� rule cannot be valid in lin� as it does not satisfy subject

reduction	 For instance� y � �A� z � B � let �x � y in z � B� which is a valid

judgement in both lin and aff� reduces to y � �A� z � B � z � B� which is valid

in aff but not in lin	

What is the operational impact of the switch to an a�ne calculus" Recall

��
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that in the linear calculus� one evaluates 
let �x �M in N� by �rst evaluating

M to the form �M � and then evaluating N �x ��M
��	 This notion of evaluation

is not suitable for the a�ne calculus� as it would violate the 
�Weakening� rule	

Instead� one must evaluate 
let �x �M in N� by bindingM to a closure which

is evaluated only if x is required during the evaluation of N 	 Thus� much of

the call�by�need machinery is implicit in the 
�Weakening� rule	

As before� the logical origin of the rules ensures the subject reduction

property	 Furthermore� con�uence still holds	

Proposition ��� aff satis�es subject reduction�

Proposition ��� aff is con�uent�

Proof� These are easily demonstrated by modifying the equivalent proofs for

lin	 �

Figure � de�nes the call�by�need calculus need� which can be derived as

a slight modi�cation of the call�by�let calculus let	 The only change is the

addition of a new reduction rule 
G�� which can be thought of as the surface

manifestation of the underlying reduction 
�Weakening�	 The name 
G� stands

for �Garbage collection
	

Proposition ��� need satis�es subject reduction�

Proposition ��� need is con�uent�

Proof� Subject reduction is easy� requiring just one more case than let	 We

have previously published a proof of con�uence for call�by�need ����	 �

By design� if � is now viewed as taking the call�by�need calculus need into

the a�ne calculus aff� then the transformation result still holds	

Proposition ��� �Call�by�need translation	 The translation � from need

to aff preserves substitution of values� preserves types� and preserves reduc�

tions�


i� 
M �x �� V ��� �M��x �� V
���


ii� �
need

� M � A if and only if ��

aff

� M
� � A�

� and

�
need

� V � A if and only if ��

aff

� V
� � A��


iii� M need
������� N if and only if M

� aff
������ N

�
�

Proof� The proof is as before� noting that the reduction 
G� in need translates

to 
�Weakening� in aff	 �

We conclude this section with some results on the observational behav�

ior of the calculi we have studied	 Some general terminology� Assume two

calculi� say X and Y � extended with constants and primitives as outlined in

Section �	�	 Assume that calculus X is bigger than calculus Y � that is� that

every term of X is also a term of Y � but not necessarily conversely	 Also as�

sume that both systems have the same constants and primitives� and the same

��
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delta rules de�ning the value of these	 We say that calculus X is observation�

ally equivalent to calculus Y if for every term M in calculus Y � and for every
constant c� we have M X

���� c if and only if M Y
���� c	 The previous section
s

result on conservative extension of let over val has the following corollary	

Proposition ��� let is observationally equivalent to val� �

Now� the addition of the single law 
G� changes the situation signi�cantly	

Proposition ��
 need is observationally equivalent to name�

Proof� We showed in previous work ����� that ifM is a term and V is a value

both in name� such that M name

������ V � then there exist variables x�� � � � xk�
terms M�� � � �Mk and a value V � such that

M need
������ let x� � M� in � � � let xk � Mk in V ��

The proof can be modi�ed to show that if V � c then V �
� c	 By repeatedly

applying 
G�� we get that M name
������� c implies M need

������� c	 The reverse
implication is easy	 �

� Extensions

In this section we discuss various extensions of our results	 It is straightforward

to extend the translations for products 
Section �	�� and for constants and

primitives 
Section �	��� but an appropriate translation of sums is less clear

Section �	��	 Recursion also presents problems 
Section �	��	 Finally� our

results are easily transferred to an untyped framework 
Section �	��	

��	 Products

The extensions for products are straightforward	

Call�by�name


A�B�� � A� #B�


M�N�� � 
M�� N��


fstM�� � fstM�


sndM�� � sndM�

Call�by�value


A�B�� � A� #B�


V�W �� � 
V ��W��


fstM�� � fst 
let �z � M in z�

sndM�� � snd 
let �z � M in z�

In the call�by�name translation� # is the additive product of linear logic�

we use the notations 
M�N�� 
fstM�� and 
snd M� to stand both for � in�

troduction and elimination in the lambda calculus� and for # introduction

and elimination in the linear lambda calculus	 The call�by�value translation

��
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also uses this additive product	 In contrast� Girard
s version of the latter

translation ���� de�nes


A�B�
�

� A�

	B� �

which uses 	� the multiplicative 
or tensor� product of linear logic	 These two

products are related by the isomorphism �
A # B� 
 
�A� 	 
�B�	 Thus our

translation is isomorphic to Girard
s� since

A�

	B�

� 
�A��	 
�B�� 
 �
A� #B�� � �
A�B�
�
� 
A�B�

� �

In call�by�value� the components of a pair are restricted to values	 The

more general construct 
M�N� may be added to the call�by�value language by

de�ning it as an abbreviation for 
�x� �y� 
x� y��M N 	 Restricting pairing to

values makes the translation easier to de�ne� and corresponds to a restriction

on pairs that arises naturally in call�by�need calculi ������	

��
 Sums

Extending the call�by�name translation to sums is straightforward	 At the

type level� following Girard� the translation is de�ned by�


A!B�
�

� 
�A�

�� 
�B�

� �

Here � is the additive 
or direct� sum of linear logic� the term translation

follows immediately	

Extending the call�by�value translation to sums is more problematic	 At

the type level� again following Girard� we would expect a de�nition satisfying

the isomorphism


A!B�
�


 A�

�B� �

As with products it is desirable to re�express the left hand side in the form

�
A!B�
�
	 Unfortunately� it is not clear how to choose a C such that 
�A��


�B� 
 �C� and as a result the treatment of sums is less clear	

��� Constants and primitives

All of the lambda calculi discussed may be straightforwardly extended by the

addition of constants c and primitive applications pM� � � � Mk of arity k	 We

also add a suitable reduction rule for each primitive to each lambda calculus	


�� p c� � � � ck � apply
p� c�� � � � � ck�

Following Plotkin ����� �apply
 is a function that yields a closed term for a

given primitive and constants	

We extend the translations as follows	

Call�by�name

c� � c


p M� � � � Mk�
�

� p M�

�
� � � M�

k

Call�by�value

c� � c


p M� � � � Mk�
�

� let x� � M�

�
in � � � let xk � M�

k
in p x� � � � xk

��
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For the translation to be valid� the interpretation of primitives in the linear

calculus must be related to the interpretations in both the call�by�name and

call�by�value calculi�

applylin
p� c�� � � � � ck� � 
applyname
p� c�� � � � � ck��
�

applylin
p� c�� � � � � ck� � 
applyval
p� c�� � � � � ck��
�

�

Again� the translation results carry through for the extended calculi	

This extension to constants and primitives is particularly useful because

it supports the simple version of the operational equivalence theorems given

in Section �	 A desire to avoid constants led to a somewhat more complex

operational equivalence theorem in our previous work ���	

��� Recursion

Adding recursion to the translation is more di�cult	 There are two basic

problems	

First� it is not clear what typing to use for a recursion operator in the

linear calculus	 The call�by�name translation suggests that corresponding to

the typing

Rec
�� x � A �M � A

� � �x x�M � A

in name� we should take

Rec
��� �x � �A � M � A

�� � �x x�M � A

in lin	 But the call�by�value translation suggests that corresponding to the

typing

Rec
�� x � A � V � A

� � �x x� V � A

in val� we should take

Rec
��� �x � �A � M � �A

�� � �x x�M � �A

in lin	 It is not clear how to reconcile these two choices	

Second� adding recursion to call�by�need poses additional di�culties� as

noted in our previous work ���	 In order to maintain the sharing typical of

call�by�need implementations of recursion� it appears necessary to shift from

single� nonrecursive bindings 
let x �M in N� to multiple� recursive bindings


letrec x� � M�� � � � xk � Mk in N�	 On the surface� this change appears to

pose a problem only because the expected increase in the size of the calculus is

awkward	 In fact� a serious complication arises from a problem pointed out by

Ariola and Klop ���� with �letrec
 one must restrict the selection of redexes� or

otherwise the calculus will not be con�uent	 In the presence of this constraint�

it is not immediately clear how to adapt our results	

��
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��
 Untyped languages

The con�uence and translation results do not depend on types� and so carry

through directly for untyped version of these calculi	 The only trickiness is

that we have used the type rules of the linear lambda calculus to enforce the

constraint that variables bound by linear assumptions appear linearly� and

that all free variables of a term �M are bound by � assumptions	 It is easy

to enforce the same constraints without recourse to types� for instance by

using well�formedness judgements	 
These can be derived from our typing

judgements by simply erasing all the types��

� Conclusions

We have shown that call�by�name� call�by�value� call�by�let� and call�by�need

can be explained by translations into linear and a�ne lambda calculi	 These

transformations begin to provide a logical explanation of call�by�value and

call�by�need in the style of the Curry�Howard isomorphism	 Many interesting

questions remain� and we conclude this paper by mentioning three of these	

��	 Standard reduction

Our previous work on call�by�need ��� uses a slightly di�erent version of the


V� rule�


V� let x � M in C�x�� C�V ��

where C is an arbitrary context	 If the 
��� rule of the linear and a�ne calculi

is changed in a similar way� then the translation is still preserved	

All three systems of reduction� name� val� and need possess notions of

�standard
 reduction� normal order for call�by�need� applicative order for call�

by�value� and a more complex order for call�by�need which is described in our

previous work	 In each case� the value of the standard reductions is that they

correspond closely to the operational semantics of the language in question	

One reason for adopting the variant 
V� rule above is that it enables this close

correspondence in the case of call�by�need	

We conjecture that there is also a standard reduction order for the linear

and a�ne calculi lin and aff	 We have not considered the question of whether

the translations preserve standard reductions� or bear some other interesting

relation to them	

��
 Eta rules

It is common to include an 
� �� rule in the call�by�name calculus� and an


� �v� rule in the call�by�value calculus	


� �� �x� 
M x� � M� if x not free in M


� �v� �x� 
V x� � V� if x not free in V

��
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Similarly� one might add 
���� and 
��� rules to the linear lambda calculus	


���� �x� 
M x� � M� if x not free in M


��� let �x � M in �x � M

The second of these is similar to the right unit law 
id� in Moggi
s computa�
tion lambda calculus ������� 
see the next section below�	 Just as a 
�� rule

simpli�es a logical introduction followed by the corresponding logical elimina�
tion� so each of these 
�� rules simpli�es a logical elimination followed by the
corresponding logical introduction	

One would expect that the translation � from name to lin should preserve

the 
�� rule� that the translation � from val to lin should preserve the 
�v�

rule� and that the translation � from need to aff should preserve the 
�� rule	
None of these are the case� which suggests that perhaps more reduction rules

should be added to lin and aff	 Various rules seem possible� but so far we
have not found rules with the same logical resonance as those considered in
this paper	

��� Equality and Moggi�s computational lambda calculus

We have shown our various translations are both sound and complete for
various notions of reduction	 What about equality"

Since M � N if and only if there is a L such that M �� L and N �� L�

it is clear that any translation that is sound for reduction must also be sound

for equality	 So the only question of interest is completeness	

The call�by�name translation is complete for equality	 This is easily seen

from the following fact� for every name term L and every lin term M � if
L
� lin
�����M � then there exists a name term N such that M lin

����� N
�	

The other translations are not complete for equality	 For instance� the val

terms 
M N� and 

�z� z N�M� are not equal in val� but their translations
are equal in lin	 The same example adopts to let and need	

It is reasonable to ask if more laws could be added to val� let� or need

so that the corresponding translations are sound and complete for equality as
well as reduction	

A hint as to a suitable extension is provided by Moggi
s computational
lambda calculus comp �������� as shown in Figure �	 
The version of the
calculus shown here is based on the untyped reduction calculus� which Moggi

calls �c� and which appears in his technical report ���� but not his LICS

paper ����	� The terms of this theory are the same as for let� though the
grammar now distinguishes non�values E as well as values V 	 This system

satis�es subject reduction� and Moggi shows that it is con�uent	 The system
is designed so that it is strongly normalising even without types� apart from
rule 
�v�	

It is not hard to show that the equalities of let are properly contained

in the equalities of comp� that is� M
let
� N implies M

comp
� N � but not

conversely	 Furthermore� the reductions of let and the reductions of comp are

incomparable� that is� M let
������ N does not imply M

comp
������� N � nor is the

��
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Syntactic domains

Types A�B�C 		
 Z j A� B

Terms L�M�N 		
 V j E

Values V 		
 x j �x�M
Non�values E 		
 M N j let x 
M in N

Typing judgements As for let�

Reduction relation

��
v
� ��x�M�V � M �x 	
 V 


��v� �x� �V x� � V� if x not free in V

�letv� let x 
 V in M � M �x 	
 V 


�id� let x 
M in x � M

�comp� let y 
 �let x 
 L in M� in N � let x 
 L in �let y 
M in N�

�let��� E M � let z 
 E in z M

�let��� V E � let x 
 E in V x

Fig� �� Moggi�s computational lambda calculus comp�

converse true	 It is interesting open question whether there is an extension of

let that has the same equalities as comp	 It is a further interesting question

to know if there is an extension of lin such that the encoding of the extended

let into the extended lin via � is sound and complete	

This question brings us full circle	 Plotkin showed that the continuation

passing style 
CPS� translation from val into itself is sound but not complete

����	 Moggi designed comp to be sound and complete for the monad translation


which generalises CPS� ����� and Sabry and Felleisen veri�ed that the CPS

translation from comp into val is both sound and complete ����� thus answering

the question implicitly raised by Plotkin	

It can be seen that the questions raised here about complete extensions

of let are in a similar vein	 It is not clear if the translations into linear

lambda calculus described here will have the same value as the translations

into continuation passing style described by Plotkin	 But if our answers are

not as good� perhaps we can at least claim to be asking the right sort of

questions�
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