6,413 research outputs found

    Cocomo II as productivity measurement: a case study at KBC.

    Get PDF
    Software productivity is generally measured as the ratio of size over effort, whereby several techniques exist to measure the size. In this paper, we propose the innovative approach to use an estimation model as productivity measurement. This approach is applied in a case-study at the ICT-department of a bank and insurance company. The estimation model, in this case Cocomo II, is used as the norm to judge about productivity of application development projects. This research report describes on the one hand the set-up process of the measurement environment and on the other hand the measurement results. To gain insight in the measurement data, we developed a report which makes it possible to identify productivity improvement areas in the development process of the case-study company.

    Rethinking Productivity in Software Engineering

    Get PDF
    Get the most out of this foundational reference and improve the productivity of your software teams. This open access book collects the wisdom of the 2017 "Dagstuhl" seminar on productivity in software engineering, a meeting of community leaders, who came together with the goal of rethinking traditional definitions and measures of productivity. The results of their work, Rethinking Productivity in Software Engineering, includes chapters covering definitions and core concepts related to productivity, guidelines for measuring productivity in specific contexts, best practices and pitfalls, and theories and open questions on productivity. You'll benefit from the many short chapters, each offering a focused discussion on one aspect of productivity in software engineering. Readers in many fields and industries will benefit from their collected work. Developers wanting to improve their personal productivity, will learn effective strategies for overcoming common issues that interfere with progress. Organizations thinking about building internal programs for measuring productivity of programmers and teams will learn best practices from industry and researchers in measuring productivity. And researchers can leverage the conceptual frameworks and rich body of literature in the book to effectively pursue new research directions. What You'll Learn Review the definitions and dimensions of software productivity See how time management is having the opposite of the intended effect Develop valuable dashboards Understand the impact of sensors on productivity Avoid software development waste Work with human-centered methods to measure productivity Look at the intersection of neuroscience and productivity Manage interruptions and context-switching Who Book Is For Industry developers and those responsible for seminar-style courses that include a segment on software developer productivity. Chapters are written for a generalist audience, without excessive use of technical terminology. ; Collects the wisdom of software engineering thought leaders in a form digestible for any developer Shares hard-won best practices and pitfalls to avoid An up to date look at current practices in software engineering productivit

    Using Function Point Analysis and COSMIC for Measuring the Functional Size of Real-Time and Embedded Software: a Comparison

    Get PDF
    Function Points Analysis and the COSMIC method are very often used for measuring the functional size of programs. The COSMIC method was proposed to solve some shortcomings of Function Points, including not being well suited for representing the functionality of real-time and embedded software. However, little evidence exists to support the claim that COSMIC Function Points are better suited than traditional Function Points for the measurement of real-time and embedded applications. To help practitioner choose a method for measuring real-time or embedded software, some evidence of the merits and shortcomings of the two methods is needed. Accordingly, our goal is to compare how well the two methods can be used in the functional measurement of real-time and embedded systems. To this end, we applied both measurement methods to the situations that occur quite often in real-time and embedded software and are not considered by standard measurement practices. Our results indicate that, overall, COSMIC Function Points are better suited than traditional Function Points for measuring characteristic features of real-time and embedded systems

    Rethinking Productivity in Software Engineering

    Get PDF
    Get the most out of this foundational reference and improve the productivity of your software teams. This open access book collects the wisdom of the 2017 "Dagstuhl" seminar on productivity in software engineering, a meeting of community leaders, who came together with the goal of rethinking traditional definitions and measures of productivity. The results of their work, Rethinking Productivity in Software Engineering, includes chapters covering definitions and core concepts related to productivity, guidelines for measuring productivity in specific contexts, best practices and pitfalls, and theories and open questions on productivity. You'll benefit from the many short chapters, each offering a focused discussion on one aspect of productivity in software engineering. Readers in many fields and industries will benefit from their collected work. Developers wanting to improve their personal productivity, will learn effective strategies for overcoming common issues that interfere with progress. Organizations thinking about building internal programs for measuring productivity of programmers and teams will learn best practices from industry and researchers in measuring productivity. And researchers can leverage the conceptual frameworks and rich body of literature in the book to effectively pursue new research directions. What You'll Learn Review the definitions and dimensions of software productivity See how time management is having the opposite of the intended effect Develop valuable dashboards Understand the impact of sensors on productivity Avoid software development waste Work with human-centered methods to measure productivity Look at the intersection of neuroscience and productivity Manage interruptions and context-switching Who Book Is For Industry developers and those responsible for seminar-style courses that include a segment on software developer productivity. Chapters are written for a generalist audience, without excessive use of technical terminology. ; Collects the wisdom of software engineering thought leaders in a form digestible for any developer Shares hard-won best practices and pitfalls to avoid An up to date look at current practices in software engineering productivit

    Measures related to social and human factors that influence productivity in software development teams

    Get PDF
    Software companies need to measure their productivity. Measures are useful indicators to evaluate processes, projects, products, and people who are part of software development teams. The results of these measurements are used to make decisions, manage projects, and improve software development and project management processes. This research is based on selecting a set of measures related to social and human factors (SHF) that influence productivity in software development teams and therefore in project management. This research was performed in three steps. In the first step, there was performed a tertiary literature review aimed to identify measures related to productivity. Then, the identified measures were submitted for its evaluation to project management experts and finally, the measures selected by the experts were mapped to the SHF. A set of 13 measures was identified and defined as a key input for designing improvement strategies. The measures have been compared to SHF to evaluate the development team\u27s performance from a more human context and to establish indicators in productivity improvement strategies of software projects. Although the number of productivity measures related to SHF is limited, it was possible to identify the measures used in both traditional and agile contexts

    Functional Size Measurement Tool-based Approach for Mobile Game

    Get PDF
    Nowadays, software effort estimation plays an important role in software project management due to its extensive use in industry to monitor progress, and performance, determine overall productivity and assist in project planning. After the success of methods such as IFPUG Function Point Analysis, MarkII Function Point Analysis, and COSMIC Full Function Points, several other extension methods have been introduced to be adopted in software projects. Despite the efficiency in measuring the software cost, software effort estimation, unfortunately, is facing several issues; it requires some knowledge, effort, and a significant amount of time to conduct the measurement, thus slightly ruining the advantages of this approach. This paper demonstrates a functional size measurement tool, named UML Point tool, that utilizes the concept of IFPUG Function Point Analysis directly to Unified Modeling Language (UML) model. The tool allows the UML eXchange Format (UXF) file to decode the UML model of mobile game requirement and extract the diagrams into component complexity, object interface complexity, and sequence diagram complexity, according to the defined measurement rules. UML Point tool then automatically compute the functional size, effort, time, human resources, and total development cost of mobile game. Besides, this paper also provides a simple case study to validate the tool. The initial results proved that the tool could be useful to improve estimation accuracy for mobile game application development and found to be reliable to be applied in the mobile game industry

    Measuring the Functional Size of Real-Time and Embedded Software: a Comparison of Function Point Analysis and COSMIC

    Get PDF
    The most widely used methods and tools for estimating the cost of software development require that the functional size of the program to be developed be measured, either in \u201ctraditional\u201d Function Points or in COSMIC Function Points. The latter were proposed to solve some shortcomings of the former, including not being well suited for representing the functionality of real-time and embedded software. However, little evidence exists to support the claim that COSMIC Function Points are better suited than traditional Function Points for the measurement of real-time and embedded applications. Our goal is to compare how well the two methods can be used in functional measurement of real-time and embedded systems. We applied both measurement methods to a number of situations that occur quite often in real-time and embedded software. Our results seem to indicate that, overall, COSMIC Function Points are better suited than traditional Function Points for measuring characteristic features of real-time and embedded systems. Our results also provide practitioners with useful indications about the pros and cons of functional size measurement methods when confronted with specific features of real-time and embedded software

    Very-high energy gamma-ray astronomy: A 23-year success story in high-energy astroparticle physics

    Full text link
    Very-high energy (VHE) gamma quanta contribute only a minuscule fraction - below one per million - to the flux of cosmic rays. Nevertheless, being neutral particles they are currently the best "messengers" of processes from the relativistic/ultra-relativistic Universe because they can be extrapolated back to their origin. The window of VHE gamma rays was opened only in 1989 by the Whipple collaboration, reporting the observation of TeV gamma rays from the Crab nebula. After a slow start, this new field of research is now rapidly expanding with the discovery of more than 150 VHE gamma-ray emitting sources. Progress is intimately related with the steady improvement of detectors and rapidly increasing computing power. We give an overview of the early attempts before and around 1989 and the progress after the pioneering work of the Whipple collaboration. The main focus of this article is on the development of experimental techniques for Earth-bound gamma-ray detectors; consequently, more emphasis is given to those experiments that made an initial breakthrough rather than to the successors which often had and have a similar (sometimes even higher) scientific output as the pioneering experiments. The considered energy threshold is about 30 GeV. At lower energies, observations can presently only be performed with balloon or satellite-borne detectors. Irrespective of the stormy experimental progress, the success story could not have been called a success story without a broad scientific output. Therefore we conclude this article with a summary of the scientific rationales and main results achieved over the last two decades.Comment: 45 pages, 38 figures, review prepared for EPJ-H special issue "Cosmic rays, gamma rays and neutrinos: A survey of 100 years of research

    Software-Engineering Process Simulation (SEPS) model

    Get PDF
    The Software Engineering Process Simulation (SEPS) model is described which was developed at JPL. SEPS is a dynamic simulation model of the software project development process. It uses the feedback principles of system dynamics to simulate the dynamic interactions among various software life cycle development activities and management decision making processes. The model is designed to be a planning tool to examine tradeoffs of cost, schedule, and functionality, and to test the implications of different managerial policies on a project's outcome. Furthermore, SEPS will enable software managers to gain a better understanding of the dynamics of software project development and perform postmodern assessments

    Using Functional Complexity Measures in Software Development Effort Estimation

    Get PDF
    Several definitions of measures that aim at representing the size of software requirements are currently available. These measures have gained a quite relevant role, since they are one of the few types of objective measures upon which effort estimation can be based. However, traditional Functional Size Measures do not take into account the amount and complexity of elaboration required, concentrating instead on the amount of data accessed or moved. This is a problem since the amount and complexity of the required data elaboration affect the implementation effort, but are not adequately represented by the current size measures, including the standardized ones. Recently, a few approaches to measuring aspects of user requirements that are supposed to be related with functional complexity and/or data elaboration have been proposed by researchers. In this paper, we take into consideration some of these proposed measures and compare them with respect to their ability to predict the development effort, especially when used in combination with measures of functional size. A few methods for estimating software development effort \u2013both based on model building and on analogy\u2013 are experimented with, using different types of functional size and elaboration complexity measures. All the most significant models obtained were based on a notion of computation density that is based on the number of computation flows in functional processes. When using estimation by analogy, considering functional complexity in the selection of analogue projects improved accuracy in all the evaluated cases. In conclusion, it appears that functional complexity is a factor that affects development effort; accordingly, whatever method is used for effort estimation, it is advisable to take functional complexity into due consideration
    corecore