
Using Function Point Analysis and COSMIC for Measuring the Functional Size of

Real-Time and Embedded Software: a Comparison

Luigi Lavazza Sandro Morasca Davide Tosi

Dipartimento di Scienze Teoriche e Applicate

Università degli Studi dell’Insubria

Varese, Italy

{luigi.lavazza, sandro.morasca, davide.tosi}@uninsubria.it

Abstract— Function Points Analysis and the COSMIC method

are very often used for measuring the functional size of

programs. The COSMIC method was proposed to solve some

shortcomings of Function Points, including not being well

suited for representing the functionality of real-time and

embedded software. However, little evidence exists to support

the claim that COSMIC Function Points are better suited than

traditional Function Points for the measurement of real-time

and embedded applications. To help practitioner choose a

method for measuring real-time or embedded software, some

evidence of the merits and shortcomings of the two methods is

needed. Accordingly, our goal is to compare how well the two

methods can be used in the functional measurement of real-

time and embedded systems. To this end, we applied both

measurement methods to the situations that occur quite often

in real-time and embedded software and are not considered by

standard measurement practices. Our results indicate that,

overall, COSMIC Function Points are better suited than

traditional Function Points for measuring characteristic

features of real-time and embedded systems.

Keywords - Functional Size Measurement, Function Point

Analysis, COSMIC Function Points, Real-time software,

Embedded software.

I. INTRODUCTION

Several methods have been proposed to estimate the
development effort of a software product, given the
characteristics of the product itself and its development
process. Software size plays a special role in effort
estimation, as it is the main input used by the vast majority
of effort estimation models. Accordingly, measures of
functional size are used in early effort estimation models,
since other measures –like Lines of Code– are not available
in the early development phases. Functional measures
quantify the functional size of a software application, as
defined in the requirements specification documents. The
need for software development estimation and size
measurement applies to RT software as well [1].

The available functional sizing methods are evolutions of
Function Points Analysis (FPA), originally proposed by
Allan Albrecht [2]. The International Function Points User
Group (IFPUG) maintains the definition of the method and
publishes and regularly updates the official Function Point
(FP) counting manual [3][4]. Effort estimation methods have
been defined, and tools supporting them have been
developed, which require the size in FP as the main input [5].

FP are generally not considered well suited for measuring
the functional size of embedded applications. The reported
motivation is that FP –conceived by Albrecht when the
programs to be sized were mostly Electronic Data Processing
applications– capture well the functional sizes of data storage
and data movement operations, but are ill-suited for
representing the complexity of control and elaboration that
are typical of embedded and real-time software.

The COSMIC method was defined to overcome some
limitations of FPA. The COSMIC method [6] redefines
FPA’s basic principles of functional size measurement in a
way that applies equally well to traditional “business”
application and other applications, including real-time and
embedded ones. Specifically, the COSMIC method counts
the data movements (entries, exits, reads, and writes) that
involve data groups (corresponding approximately to FPA’s
logic files) in each functional process (corresponding to
FPA’s elementary processes). The result is a functional size
measure called COSMIC Function Points (CFP).

Even though it is traditionally considered not well suited
for real-time and embedded applications, FPA can be applied
to embedded software via a careful interpretation of FP
counting rules [7]. Moreover, it is known that many real-time
projects have actually been measured using FPA. On the
contrary, there is little analytic evidence of successful
applications of the COSMIC method to real-time and
embedded applications. This paper aims at providing some
evidence about the suitability of FPA and the COSMIC
method to measure real-time embedded software.

Both FPA and COSMIC methods require the
representation of user requirements according to a method-
specific model of software (e.g., the FP model includes logic
files and elementary processes, while the COSMIC model
includes functional processes and data movements).
Measurement is then based on counting the elements of these
models according to given rules. To measure real-time and
embedded software, it is of critical importance that
representative models can be correctly derived from the user
requirements. To test this ability, we consider a somewhat
extensive –though necessarily incomplete– set of typical and
representative features of real-time embedded software and
apply FPA and COSMIC to each of them. The comparison
of the two methods provides useful indications to the
developers that have to choose a functional size
measurement method.

330

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Archivio istituzionale della ricerca - Università dell'Insubria

https://core.ac.uk/display/53560901?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Even though both FPA and COSMIC methods aim at
measuring the size of Functional User Requirements (FUR),
there are a few reasons that suggest that the COSMIC
method may be preferable. First, CFP are defined in a simple
and sound way, while the definition of FP has been widely
criticized, e.g., because the weighting mechanism make
unclear whether FP are a measure of size or effort [8], or
because the inherent subjectivity of FPA leads even certified
measurers to provide different size measures for the same
application [9][10]. Finally, the COSMIC method, which
does not require a thorough analysis of data and allows for
analyzing transactions at coarser granularity level, is
somewhat faster and less expensive than FPA.

So, managers have a few reasons to prefer the COSMIC
method over FPA. However, evidence concerning the
suitability of the COSMIC method for measuring real-time
software is still missing. This paper aims at filling this gap.

In this paper, we enhance the work reported in [1] by
considering additional characteristics of real-time and
embedded software –namely the usage of clocks and timers–
that could make the application of functional size
measurement rules challenging. Consequently, the discussion
on the comparison of FP and CFP is extended to the newly
considered cases. In addition, the section on related work
was also extended.

This paper is of interest to researchers and practitioners
who are familiar with the usage of Function Point Analysis
and the COSMIC method for measuring traditional software
applications. Accordingly, we take for granted that the
readers are familiar with the concepts and terms of functional
size measurement in general and FPA and the COSMIC
method in particular. Readers who are not familiar with
Functional Size Measurement methods can have a look at a
concise introduction to FPA and COSMIC [29] and at a
glossary of metrics terms [30].

Throughout the paper, we refer exclusively to Unadjusted
Function Points (UFP) for FPA, because UFP are more
commonly used than adjusted Function Points and because
UFP are recognized as an ISO standard [4], while FP are not.

The paper is organized as follows: Section II accounts for
related work. Section III presents a set of modeling and
measurement problems that occur frequently in real-time and
embedded software developments. In Section IV, FPA and
COSMIC methods are applied to the cases illustrated in
Section III, while Section V draws some conclusions and
outlines future work.

II. RELATED WORK

There is a fairly large body of literature aimed at
extending the scope of functional size measurement to
software applications that do not belong to the Information
Systems domain, for which FPA was originally conceived by
Albrecht. An overview of these proposals (rather old but still
relevant) can be found in [13]. Among the notable attempts
to adapt FPA to real-time software are:
– Feature Points [14], which include an algorithmic

element and define new environmental complexity
factors.

– Mark II Function Points [15][16], which refine and
extend the traditional function point transaction model
and environmental factors.

– Asset-R [17], which extends the applicability of function
points to real-time systems by considering issues like
concurrence, synchronization, and reuse. It also accounts
for architectural, language expansion, and technology
factors to generate the size estimate.

– 3D Function Points [18], which consider three
dimensions of the application to be measured: Data,
Function, and Control. The Function measurement
considers the complexity of algorithms; and the Control
portion measures the number of major state transitions
within the application.

– Application Features [19], which aims at the early
estimation of the size of application in the process control
domain.

– Counting practices for highly constrained systems [20],
which address issues such as boundary identification and
internal processing.
Also the IFPUG published a Case Study that shows how

to apply FPA to real-time software [21].
Another set of proposed approaches to make FP

measurement applicable to real-time software took into
account the object-oriented programming paradigm.
Actually, these approaches address every type of object-
oriented program or model, including real-time and control
applications.

Object Points [22] are an object-oriented approach that
measures the external, internal, application and object size of
object-oriented systems. Objects are viewed as mini
applications where each object encapsulates data and
operations. A simple mapping is established between object
operations (services) to transactions, and object data
(attributes) to ILFs.

Class points [23] are based on the number of services
required (NSR), the number of external methods (NEM) and
the number of attributes (NOA) of classes. The complexity
of a class is evaluated on the basis of its NSR, NEM and
NOA, and then classes are weighed according to their
complexity and type. Class types are: Problem Domain,
Human Interaction, Data Management, Task Management.
The sum of the weights gives the number of class points.

Object-oriented FPs [24] are computed following the
function point counting procedure. Classes within the
application boundary correspond to ILFs, while classes
outside the application boundary (including libraries)
correspond to EIFs. Inputs, Outputs and Inquiries are all
treated in the same way: they are called generically “service
requests” and correspond to class methods. The complexity
of ILFs and EIFs depends on the number and type of
attributes and associations. The complexity of service
requests depends on the number and type of method
parameters. Several ways of considering class aggregates
and generalization hierarchies are proposed, thus the
measured size depends on the criterion used to consider class
aggregation and generalization.

Among the proposed approaches –none of which seems
to have succeeded in gaining market acceptance– Full

331

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Function Points (FFP) are quite relevant. FFP [25] take into
account the differences between traditional applications and
real-time applications by extending the FPA by means of
new data and transactional function types:
– Updated control group: a group of data –used by the

application to control, directly or indirectly, the behavior
of an application or of a mechanical device– updated by
the application being measured.

– Read-only control group: A group of control data used,
but not updated, by the application being counted.

– Entry / Exit: A sub-process that receives / sends control
data across the application's boundary.

– Read / Write: A sub-process that reads / writes a group of
control data.
Also FFP did not prove successful in dealing with the

functional size measurement of real-time software; hence,
their authors decided to thoroughly review their definition,
thus arriving at the definition of COSMIC function points
[6][26]. CFP retain the basic principles of functional size
measurement as in FPA, but they are defined in a manner
that applies equally well to traditional “business” application
and to other applications, including the real-time and
embedded ones.

Several papers have been written on the suitability of Full
Function Point and COSMIC Function Points to measure
real-time software.

Desharnais and Morris stress the possibility of
identifying and measuring different layers with the COSMIC
method, and dealing with the “cut-off” effect we discussed in
Section IV. IV.D [27].

Oligny et al. report about the applicability of FFP in
general, based on the experiences gained while measuring
seven projects (four of which real-time) [28]. The discussion
does not address any of the details reported in our paper.

In conclusion, the literature is relatively rich in proposals
for extending or adapting existing functional size
measurement methods to real-time and embedded software;
however, none of such proposals appears to be widely used
in practice (possibly with the partial exception of Mark II
Function Points [15], which were also standardized [16]).

So, the popularity of FPA and COSMIC suggested that
they are candidates for real-time and embedded software
measurement. However, nobody –to the best of our
knowledge– investigated the actual applicability of IFPUG
and COSMIC measurement rules to real-time and embedded
software.

III. CASE STUDIES FOR FUNCTIONAL SIZE

MEASUREMENT OF REAL-TIME EMBEDDED SOFTWARE

Here, we illustrate a set of typical features of real-time
and embedded software that are difficult to represent by
means of the models that underlie the definition of functional
size measurement methods. All of the cases shown here are
derived from the first author’s experience gained in
measuring seven avionics applications in a large European
company. So, the proposed set of cases is of empirical origin:
during the measurement, the cases presented here emerged as
those particularly challenging for functional size
measurement. Even though the cases considered here were

all derived from the avionic domain, they were observed in
quite different applications. Accordingly, we believe that the
cases presented here are representative of the challenging
cases that can occur when measuring real-time and
embedded software applications.

Most examples are illustrated by means of sequence
diagrams, according to the measurement-oriented modeling
methodology proposed in [11] and used in [12]. It is assumed
that the reader is familiar with UML.

A. Embedded processes having multiple purposes

In embedded software, several processes often include
both updating some data and producing some result.
Consider for instance a process that initializes and tests a
piece of hardware (Fig. 1). The initialization and test of
several hardware devices are performed by means of a single
command: the initialization command is sent to the devices
and the resulting state is sent back, so that it is possible to
check whether the device is working correctly.

In these cases, the initialization and the test are both
necessary and equally important.

Figure 1. Inizialization of devices: the “main purpose” is not evident.

B. Transactions defined at very low level

Requirements often concern very low level operations,
thus making it difficult to identify functions that match the
definition of Base Functional Components.

Figure 2. RAM clearing process.

1) Memory vs. data
In embedded software, the use of RAM as a whole

introduces new requirements. For example, a piece of
software embedded on board of a military airplane should
clear the whole RAM under given circumstances, e.g., if the

: Controller

init(params)

sd Set-up

Record(DeviceState)

Init_result

: State

DeviceState

Eval(Init_result)

: Device

set_up

: System

Clear()

: RAM

sd RAM_clear

Clear()

332

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

airplane crashes in an enemy zone (because the information
stored in memory must not be made available to enemies).
This requirement (Fig. 2) is peculiar in that it is about the
whole RAM, not about some specific user-relevant piece of
data.

2) Memory mapped I/O
In embedded systems, updating a variable and sending

data to a device can be extremely similar operations. For
instance, when I/O is memory-mapped, both mentioned
operations write registers or RAM locations (Fig. 3).

Figure 3. Memory-mapped I/O.

3) Processes that do not terminate properly
In embedded software, it is often required that a function

terminate by jumping to a given location. This situation is
illustrated in Fig. 4: the initialization function terminates by
executing the set-up function (described in Fig. 17).

Figure 4. A function that ends with a jump to another function.

C. Taking into account the devices

In traditional software applications, functions are usually
invoked by the user and end by either updating some internal
data, or outputting some information. In embedded
applications, the situation can be very different. Often it is
some hardware device (not a user) that acts as both the cause
that determines the execution of the function and the
destination of the produced data or signals.

For instance, functional processes are often initiated by
clocks and timers.

1) The Clock

Some functions are triggered periodically by clock signals.

In such cases, the clock acts as a user that invokes a

function: in fact, the resulting behavior is the same obtained

by a human user that periodically invokes the function.

This situation is illustrated in Fig. 5: in this example, an

aircraft is equipped with sensors, which collect navigation

data, and a clock periodically invokes a sensor manager that

asks navigation data from the sensors and sends the returned

data to the flight control unit.

Figure 5. An elementary function triggered by the clock.

2) Timers

In embedded systems, functions can be triggered by

timers, or they can terminate after programming a timer.

Consider the following specifications:

Spec. A (Fig. 6): “The program sends a request for data

to device X, then reads the data sent by X and stores them

for later use.”

Spec. B (Fig. 7): “The program sends a request for data

to device X, waits for 10 ms, then reads the data from X and

stores them for later use.”

Spec. C (Fig. 8): “The program sends a request for data

to device X; then, every 10 ms the program checks whether

the data from X are ready: if so it stores them for later use.”

Figure 6. Device read specifications not mentioning time.

Figure 7. Device read specifications not mentioning time delay.

: System

Output(data)

: Device space
in RAM

sd Memory_mapped_I/O

Write(data)

: Controller : State

init()

: Unit1

sd Init

Set(InitState)

Power_up()

: Unit2

init()

Set-up
ref

: Device1 : Devicen

: Clock : SensorManager : State : FlightControl

Get_state()

state

Read()

: FixedNavigData

data

sd Periodic_sensor_read

Put(state, data)

tick

: Controller

Read()

: Device_X_

command_reg

sd Read

Read()

Store(data)

: Data

data

: Device_X_

data_reg

GetData()

: Controller

Read()

: Device_X_

command_reg

sd Read

Read()

Store(data)

: Data

data

: Device_X_

data_reg

GetData()

wait_(10 ms)

333

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Device polling specifications.

All of the above specifications could be rewritten by

explicitly mentioning the use of timers. For instance, Spec. C
could be rewritten as follows:

Spec. D: “The program sends a request for data to device
X and programs a 10 ms timeout; upon receiving the
timeout signal, the program checks whether the data from X
are ready: if so it stores them for later use and disables the
timer, otherwise, a new 10 ms timeout is programmed.”

The first part of this specification is described in Fig. 9,
while the second part is described in Fig. 10

Figure 9. A transaction that programs a timer.

Figure 10. The timer triggers the conclusion of the operation.

3) Considering the role of the Operating System in I/O
Let us consider the following requirements for an I/O

functionality (described in Fig. 11): “upon request by the
controller, data are retrieved from an I/O channel, according
to the criteria stored in the I/O channel table. When all the
data have been read, they are suitably converted and sent
back to the controller.” It is often the case that the I/O
operation has to be carried out with the help of the Operating
System and the requirements can be implemented by means

of two functions, illustrated in Figs. 12 and 13. The first
function (Fig. 12) is invoked by the controller and prepares
an I/O request for the OS and a subsequent system call. The
second function (Fig. 13) is triggered by the interrupt from
the I/O device and involves reading the data from the
channel, elaborating them, and sending them back to the
controller. The execution of this “function” is done partly by
the OS (by a driver that will have to be implemented as a
part of the application development) and partly in the section
of the application devoted to I/O.

If the development also includes the construction of a
driver for the considered I/O device, taking into account the
size of the corresponding code will contribute to produce a
more accurate effort estimate. In other words, it appears
reasonable to count two functions, corresponding to the
“elementary processes” described in Figs. 12 and 13.

Figure 11. Process featuring direct access to I/O channels.

Figure 12. Process Access to I/O channels via the O.S.

Figure 13. The O.S. handles the I/O.

: Controller
: Device_X_

command_reg

sd Read

Read()

Store(data)

: Data

data

: Device_X_

data_reg

GetData()

wait_(10 ms)

Read_state()

state

loop [not state==ready]

: Controller : Timer

read()

: Device_X_

command_reg

sd Read_init

Read()

set(10 ms)

: Controller
: Device_X_

command_reg

sd Read_end

Store(data)

: Data

data

: Device_X_

data_reg

GetData()

Read_state()

state

alt [state==ready]

: Timer

timeout

set(10 ms)[else]

disable

: Controller
: I/O

component
: I/O Channel

Table
: I/O Channel

Read(ch_ID)
Get_channel_data(ch_ID)

channel_data

Get_Byte()loop

Convert_data()
data

Byte

sd Direct_read

: Controller
: I/O

component
: I/O Channel

Table
: OS

Read(ch_ID)

Get_channel_data(ch_ID)

channel_data

: I/O space
in RAM

Sys call

sd Read_req_SO

Write(I/O_request)

: I/O

channel

: I/O
component

: OS

ready_intr

: I/O space

in RAM
: Driver

Read()

: Controller

write(Byte)

data

get_Byte()

Byte

loop

Read()

data

Return from write syscall

sd SO_reads

Convert_data()

334

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

4) Multi cycle operations
In real-time systems, it is not unusual that a function is

too long to fit into one execution cycle. In such cases, it is
rather common to split the function into two (or more) pieces
that are executed in consecutive execution cycles. Here are
two typical examples:

− The function transfers data via a buffer. The data to be
transferred do not fit in the buffer. The transfer is split
into n cycles: in each cycle 1/n of the data are copied
into the buffer.

− The function, triggered by the tick, takes a time longer
than the cycle duration (i.e., the time between two
consecutive ticks) to execute. Thus, the transfer is split
into multiple consecutive cycles.

An example is given in Figs. 14 and 15: an output
operation is split over two consecutive clock cycles. In the
first cycle (Fig. 14), the application outputs the data from
Data_1 and sets the State to represent that there is a pending
output operation. In the following cycle (Fig. 15), the State
indicates that the output operation must be completed, thus
data are read from Data_2 and sent to the output device.

Figure 14. Output: first cycle.

Figure 15. Output: second (final) cycle.

These cases are often described in the requirements, since
they deal with the real-time behavior of the application,
which is typically explicitly accounted for in the
requirements specification. However, requirements
specifications could not state explicitly that the function
should be split, i.e., requirements could just describe the
whole operation as in Fig. 16.

Figure 16. Output, not split.

D. Long processes

In embedded software, functions are often “service
routines” that perform rather long tasks; e.g., the
requirements specify that “the connected devices are tested,
and the result (a ‘pass’ value or the set of diagnostics) is sent
to the controller, which stores it for later use.” Fig. 17
illustrates the situation with 4 different device types.

Figure 17. A long transaction.

E. Unusual data

Embedded applications often include constant data
structures (e.g., data mapping tables or bit masks) that
require a non-negligible design effort, which we would like
to take into account. An example is shown in Fig. 12: for
each request to read an I/O channel, the I/O component reads
from the channel table how many bytes must be read from
the channel and how they should be interpreted. The channel
table is a read-only structure that describes how to manage
the I/O channels.

With respect to other elements of the system, the channel
table differs only in that it is read-only; apart from that, it
concerns information that is relevant to the user and it must
be properly designed to be effectively and efficiently read.

: Controller : State

read()

: Data_1

sd Out_init

write(data)

Output()
: Device

data
: Clock

tick

set(out_2)

: Controller

: State

read()

: Data_2

sd Out_end

write(data)

: Device

data

: Clock

tick

set(out_finished)

opt [state==out_2]

: Controller : Data_2

read()

: Data_1

sd Output

write(data1)

output()

: Device

data1

read()

data2

write(data2)

: Controller : State : Device2

poll()

: Device1

sd Set-up

: Device4: Device3

Record(DevState)

DevState

poll()

Record(DevState)

DevState

poll()

Record(DevState)

DevState

poll()

Record(DevState)

DevState

335

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

F. Complex elaborations

In real-time and embedded applications, some operations
can be complex. Consider for instance the generic flight
control operations described in Fig. 18: it is quite likely that
the computation of the flight control data is rather complex.

Figure 18. Sensor-driven flight control.

IV. APPLYING FPA AND COSMIC TO REAL-TIME

EMBEDDED SOFTWARE

This section illustrates the application of FPA and
COSMIC methods to the cases described in Section III.

A. Embedded processes having multiple purposes

According to the IFPUG counting rules [3][4], the size of
a function varies according to its type (external input, output
or query). The type is determined by the “main purpose” of
the function, according to the requirements. However, it may
be difficult to decide what the main purpose is, since both the
external input and the external output can update internal
data and report a result, as in our case. In conclusion,
measures based on FPA have some degree of subjectivity
that can be hardly avoided.

The problem described above does not apply to COSMIC
measurement, since all processes are treated in the same
way, regardless of their purpose.

B. Transactions defined at very low level

1) Memory vs. data
According to the principles of FPA, in a case like the one

described in Section III.B.1) one should count the memory
clearing function as an external input. In that case, since
every External Input (EI) manages an Internal Logical File
(ILF), we should consider the RAM an ILF. On the one
hand, counting the RAM as an ILF does not appear correct
with respect to the rules, since logic data files should
represent a homogeneous set of related data (which RAM is
not), on the other hand, not considering the RAM as an ILF
is an inconsistency, as all EI have to deal with an ILF.

There is a similar problem with the COSMIC method, as
the process writes in the RAM: accordingly, we should
consider a write data movement. However, this implies that
the RAM is classified as a data group, which does not appear
perfectly coherent with the COSMIC rules.

In the COSMIC method, there is no rule that clearly
prevents treating the RAM as the object of interest involved
in the process that clears the RAM. Accordingly, we would
have a process involving a write data movement.

2) Memory mapped I/O
When I/O is memory-mapped, an output operation can be

modeled as an External Output (EO) in FPA but also as an
EI, since the output is obtained by writing registers or RAM
locations (see Fig. 3). The choice affects the resulting
measure, since EI and EO have different weights. With the
COSMIC method, you still can model the operation as a
Write or an Exit data movement, but the choice does not
affect the final measure, since every data movement
contributes exactly one CFP.

3) Processes that do not finish properly
According to FPA, a transaction function has to be self-

contained and leave the application being counted in a
consistent state. In embedded software, it is often required
that a function terminates by jumping to a given location
(Fig. 4). In this case, the transaction is not self-contained and
does not leave the program in a consistent state. FPA does
not suggest how to deal with this type of functions. Just
ignoring them would not be a good idea, since it takes some
effort to implement these functions; hence, we want them to
contribute to the functional size of the application. Actually,
there is no other way of dealing with these cases than just
ignoring the constraints imposed by the IFPUG and counting
the functions, considering their behavior down to the final
jump. The same problem occurs when the COSMIC method
is used, since functional processes are defined as FPA
transactions, in essence.

C. Taking into account the devices

1) The Clock
In functions that are triggered periodically by clock

signals (as in Fig, 5), the clock acts as the user that invokes
the function.

From a COSMIC point-of-view, the clock is the
functional user that generates the triggering Entry (i.e., a
message that informs the software that the functional user is
initiating a functional process). The possibility that a device
acts as a functional user is explicitly stated in the COSMIC
counting manual [6]. Accordingly, the functional process
illustrated in Fig. 5 involves the following data movements:

− The entry of the clock tick;

− Reading the current state;

− The request to for navigation data (an exit);

− The entry of navigation data;

− The output of state;

− The output of navigation data.

The sensor is another functional user. For this software,
an event occurs when it is time to update the navigation data:
the clock triggers the software, by sending it a message
(triggering Entry).

The considerations reported above can be applied to FPA
as well. Thus, we shall simply consider the clock as a user
that can originate the execution of a function. The rest of the
measurement is carried out easily according to FPA rules [3].

: Clock : SensorManager
: Sensor

State
: FlightControl

Get_state()

state

Read()

: NavigData

data

sd Periodic_flight_control

Put(control_data)

tick

Compute(state, data)

control_data

336

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2) Timers

Let us consider Spec. A (Fig. 6): in this specification

there is no mention of the time delay between the request to

read and the retrieval of data. According to FPA, the

specification involves a single transaction (an external input,

if the main intent is storing the data retrieved from the

sensor). Similarly, it is a single COSMIC functional

process.

Specifications B (Fig. 7) and C (Fig. 8) are functionally

equivalent to Spec. A, with the only difference that they

mention time. By the way, Spec. B and C are also similar to

each other, the only difference being that, in Spec. B, we are

sure that, 10 ms after issuing the read command, the

required data are ready, while in Spec. C this is not true.

However, as with Spec. A, we have just one transition

according to FPA, or a functional process according to the

COSMIC method.
Specifications B and C (and possibly A as well) can be

implemented with or without using a timer: in fact the 10 ms
waiting could be achieved via a sort of busy loop. Of course,
the functional size (either in FP or in CFP) of the
specifications does not depend on how it will be
implemented.

The problem is that the same operation described by
Specifications B and C could be described as in Spec. D
(Fig. 9 and Fig. 10). In this case, the analyst is just specifying
delays by means of timers, which –by the way– are the most
obvious means to implement the operation. As a
consequence, we have two FPA transactions: the one that
initialized the device (described in Fig. 9) and the one that
reacts to timeout signals (Fig. 10).

In practice, specifications B and C are both low
complexity External Input transactions (under the hypothesis
that the data read from the sensor includes a small set of
DET), accounting for 3 FP.

From a COSMIC point-of-view, Spec. B involves 5 data

movements (the Entry of the triggering event, the Exit of the

Read command, the Exit of the GetData command, the

Entry of data, the Write of data), while Spec. C involves 6

data movements (the Entry of the triggering event, the Exit

of the Read_state command, the Entry of the state, the Exit

of the GetData command, the Entry of the data, the Write of

data).

Spec. D involves a low complexity External Output

transaction (Fig. 9) and a low complexity External Input

transaction (Fig. 10): therefore, it has a size of 3+4=7 FP.

From a COSMIC point-of-view, Spec. B involves a

functional processes (Fig. 9) comprising 3 data movements,

and a functional process (Fig. 10) comprising 7 data

movements: therefore, it has a size of 3+7=10 CFP.

In conclusion, the problem here is that mentioning the

timers in the specifications (which is quite natural for real-

time software analysts) causes the functional size of the

specified operations to increase substantially.

3) Considering the role of the Operating System in I/O
With both FPA and COSMIC methods, the measurement

of the process represented in Fig. 11 is quite straightforward.

The problem here occurs when the development must also
include the construction of a driver for the considered I/O
device, since taking into account the size of the
corresponding code will contribute to producing a more
accurate effort estimate. In other words, it appears reasonable
to count two functions, described in Figs. 12 and 13.

This requires a deviation from the FPA counting practice,
since FPA does not take into account the existence of
different “layers”: with FPA you can only measure
requirements at the single abstraction level corresponding to
the user’s point of view, and the user is not aware of the OS
and what happens in the OS.

With the COSMIC method, it is possible to explicitly
model and measure the layers that compose the software
application. The sum of the sizes of the layers is generally
greater than the size of the whole application corresponding
to the point of view of the user (who is not aware of the
existence of layers). So, the measure of layers is exactly what
is needed to take into account the size of the OS parts that
are being developed.

4) Multi cycle operations
The cases described in Section III.C.4) suggest that the

value of a functional size measure can depend on how
requirements are written. Let us consider the case when
requirements specifications do not state explicitly that the
function should be split (Fig. 16): if Data_1 and Data_2
account for 10 DET each, the transaction is a high
complexity EO (having 3 FTR and 21 DET), whose size is 7
FP. When requirements specifications prescribe that the
function be split (Fig. 14 and 15) we have two average
complexity EO (3 FTR and around 12 DET each), whose
size is 10 FP in total. When requirements specifications do
not state explicitly that the function should be split, the
COSMIC method identifies one functional process sized 5
CFP, since it involves 5 data movements (the Entry, the
Reads of Data_1 and Data_2, and the corresponding Exits).
When requirements specifications prescribe that the function
be split, according to the COSMIC rules we have two
functional processes, one involving 5 data movements (the
Entry that triggers the operation, the Read of Data_1, the
Entry of the clock tick, the Exit to the device, the Write of
the state), and one involving 4 data movements (the Entry of
the tick, the Read of Data_2, the Exit to the device, the Write
of the state); the total size is thus 9 CFP.

In conclusion, both methods provide measures of size
that depend on how requirements are written. This is a
characteristic of the methods that has to be taken into
account, as it affects the resulting measures.

D. Long processes

A well known problem with Function Points is the so-
called “cut-off” effect: a function cannot contribute more
than 7 FP to the functional size, regardless how many DETs
it moves and how many FTRs it involves. This is a relevant
problem, especially in embedded software, where functions
are often “service routines” that perform rather long tasks,
like in the example illustrated in Section III.D and Fig. 17.

Fig. 17 illustrates the situation with 4 different device
types. According to the IFPUG counting rules, this is a single

337

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

transaction. If the device states contain on average 5 (or
more) parameters, then the transaction is a complex one. The
problem here is that if we had 5 or more different types of
devices, the number of FP would not increase with the
number of devices: according to FPA, we would have just
one complex EI. This is a problem, because in practice the
development effort increases with the number of device
types, since each device type provides different status data,
which need to be interpreted in a specific way.

FPA hides from the estimation methods how much
bigger a function is (thus more expensive to build) than
another that classifies as complex. The COSMIC method, on
the contrary, does not suffer from the cut-off effect. In a case
like the one in Section III.D and Fig. 17, the size in CFP
takes into account all the data movement, whose number is
proportional to the number of devices.

E. Unusual data

According to FPA, data functions are either internal data
“maintained” (i.e., modified) by the application, or external
data (maintained outside the application). Constant data are
treated as “decoding data” and explicitly excluded from the
counting [3]. However, it seems that the authors of the
IFPUG manual had in mind simple “zero effort” constants
when they wrote the rules concerning the constant data.

To account for the fact that a constant data structure will
require some design effort, it is necessary to deviate from the
IFPUG rules, and count a “constant ILF.” For instance, in the
example illustrated in Fig. 12, one should count an ILF for
the channel table; consistently, a FTR for each access to the
table should be considered.

The COSMIC method does not count data directly; that
is, no fraction of the size measures accounts for data. On the

contrary, data movements are counted without considering
whether the data being moved are constant or not. In
conclusion, this case does not pose any additional difficulty
to the application of the COSMIC method.

F. Complex elaborations

Both FPA and COSMIC methods base the measurement
of size on the number of processes and the amount of data
handled. For instance, the process described in Fig. 18 is
considered as an EO (with a maximum size of 7 FP) or a
functional process accounting for 4 CFP (as it involves 4
data movements). None of the two methods considers the
complexity of the computations performed: the fact that the
“Compute” operation performed in the process is simple or
complex does not change the size of the process.

This is clearly a shortcoming of the two methods, since
the development effort is very likely proportional to the
complexity of the functions to be implemented.

V. CONCLUSIONS

The results of our analysis (summarized in Table I) show
that some situations that are typical of real-time and
embedded applications make it necessary to interpret or
“bend” the rules provided by official measurement manuals
[3][6]. However, this happens more often for IFPUG
Function Point Analysis than with the COSMIC method.

Also the resulting measures are easily affected by the
measurement choices made in FPA, while there are just a
few cases (namely, processes terminating with a jump, multi-
cycle operations, explicitly mentioned timers and complex
elaborations) that can affect the measures in CFP.

TABLE I. COMPARISON OF FSM METHODS

Case
FPA COSMIC

Easy application of rules Measure affected Easy application of rules Measure affected.

Multiple purpose processes �
a
 � � �

Memory data � � � �

Memory mapped I/O � � � �

Processes terminating with jump � � � �

Clock � � � �

Timers � �
b
 � �

b

OS involved in I/O � � � �

Multi cycle operations � �
b
 � �

b

Long processes � � � �

Unusual data � � � �

Complex elaborations �
c
 � �

 c
 �

a
 The application of the rule is subjective.

b
 The measures depend on how requirements are written.

c Elaboration complexity is just not accounted for by any rule.

338

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In conclusion, the original claims that the COSMIC
method is more suitable than FPA for measuring real-time
and embedded applications appear justified. The cases that
were used to evaluate the applicability of FPA and COSMIC
to real-time and embedded software are sort of application-
independent patterns: accordingly, the results reported here
are expected to be applicable to a wide range of real-time
and embedded software applications.

A straightforward consequence of the study reported here
is that the COSMIC method is more suited for the functional
measurement of real-time software; however, considering
that functional size measures are often used for effort
estimation, a problem could arise with the availability of
CFP-based models of real-time software development effort.
To derive such models, historical data are needed. The study
reported here could also provide hints for converting FP
measures into CFP measures, thus obtaining the datasets that
are necessary to derive effort models.

In any case, neither FPA nor the COSMIC method
account for the complexity of the required elaboration. This
may be a problem in the real-time embedded context, since
some processes can be really very complex and require a
relevant amount of development effort.

Future work involves assessing measures that represent
not only the functional size of real-time applications as done
by FPA and COSMIC methods, but can represent also the
complexity of the required elaboration.

ACKNOWLEDGMENT

The work reported here was supported by the FP7
Collaborative Project S-CASE (Grant Agreement No
610717), funded by the European Commission and by
project “Metodi, tecniche e strumenti per l’analisi,
l’implementazione e la valutazione di sistemi software,”
funded by the Università degli Studi dell’Insubria.

REFERENCES

[1] L. Lavazza and S. Morasca, “Measuring the Functional Size
of Real-Time and Embedded Software: a Comparison of
Function Point Analysis and COSMIC”, 8th Int. Conf. on
Software Engineering Advances – ICSEA 2013, October 27 -
November 1, 2013 - Venice, Italy

[2] A.J. Albrecht, Measuring Application Development
Productivity, Joint SHARE/ GUIDE/IBM Application
Development Symposium, 1979, pp. 83-92.

[3] International Function Point Users Group. Function Point
Counting Practices Manual - Release 4.3.1, January 2010.

[4] ISO/IEC 20926: 2003, Software engineering – IFPUG 4.1
Unadjusted functional size measurement method – Counting
Practices Manual, Geneva: ISO, 2003.

[5] J. E. Matson, B. E. Barrett, and J M. Mellichamp, “Software
development cost estimation using function points,”, IEEE
Transactions on Software Engineering, vol.20, no.4, Apr
1994, pp.275-287.

[6] COSMIC – Common Software Measurement International
Consortium, The COSMIC Functional Size Measurement
Method - version 3.0.1 Measurement Manual, May 2009.

[7] L. Lavazza and C. Garavaglia, “Using Function Points to
Measure and Estimate Real-Time and Embedded Software:
Experiences and Guidelines”, ESEM 2009, Lake Buena Vista,
FL, USA, October 15-16, 2009, IEEE, pp. 100-110.

[8] A. Abran and P.N. Robillard “Function points: a study of their
measurement processes and scale transformations”, Journal of
Systems and Software, vol.25,n.2, Elsevier, 1994, pp.171-184.

[9] C. Kemerer, “Reliability of Function Points Measurement: a
Field Experiment,” Comm. ACM, Vol. 36, No. 2, 1993, pp.
85-97.

[10] J.R. Jeffery, G.C. Low, and M.A Barnes, “Comparison of
Function Point Counting Techniques,” IEEE Trans. Software
Eng., Vol. 19, No. 5, 1993, pp. 529-532.

[11] L. Lavazza, V. del Bianco, and C. Garavaglia, “Model-based
Functional Size Measurement”, 2nd Int. Symp. on Empirical
Software Engineering and Measurement – ESEM 2008,
Kaiserslautern, Germany. October 9-10, 2008, pp. 100-109.

[12] L. Lavazza and V. del Bianco, “A Case Study in COSMIC
Functional Size Measurement: the Rice Cooker Revisited”,
IWSM 2009, Amsterdam, November 2009, pp. 101-121.

[13] T. Hastings, “Adapting Function Points to contemporary
software systems: A review of proposals”, 2nd Australian
Conference on Software Metrics. Australian Software Metrics
Association, 1995.

[14] C. Jones, Applied Software Measurement - Assuring
Productivity and Quality, McGraw-Hill, New York, 1991.

[15] C.R. Symons, “Function Point Analysis: Difficulties and
Improvements”, IEEE Transactions on Software Engineering,
Vol. 14, No. 1, January, 1988, pp. 2-11.

[16] ISO/IEC 20968: 2002, Software engineering Mk II Function
Point Analysis. Counting Practices Manual, International
Standardization Organization, ISO, Genève, 2002.

[17] D. J. Reifer, “Asset-R: A Function Point Sizing Tool for
Scientific and Real-Time Systems”, Journal of Systems and
Software, Vol. 11, No. 3, March 1990, pp. 159-171.

[18] S. A. Whitmire, “An Introduction to 3D Function Points”,
Software Development, Vol. 3 No.4, 1995.

[19] T. Mukhopadhyay and S. Kekre, “Software Effort Models for
Early Estimation of Process Control Applications”, IEEE
Transactions on Software Engineering, Vol. 18, No. 10,
October 1992, pp. 915-924.

[20] European Function Point Users Group, Function Point
Counting Practices for Highly Constrained Systems, 1993.

[21] IFPUG, Case Study 4: Counts Function Points for a Traffic
Control System with Real Time Components, International
Function Point Users Group – IFPUG.

[22] S. A. Whitmire, “Applying Function Points to Object
Oriented Software Models”, in Software Engineering
Productivity Handbook, J. Keyes Ed., New York,
Windcrest/McGraw-Hill, 1993.

[23] G. Costagliola, F. Ferrucci, G. Tortora, and G. Vitiello, “Class
Point: An Approach for the Size Estimation of Object-
Oriented Systems”, IEEE Transactions On Software
Engineering, Vol. 31, No. 1, pp. 52-74, January 2005.

[24] G. Antoniol, C. Lokan, G. Caldiera, and R. Fiutem, “A
Function Point-Like Measure for Object-Oriented Software”,
Empirical Software Engineering, 4 (3), September 1999.

[25] M. Maya, A. Abran, S. Oligny, D. St-Pierre, and J.-M.
Desharnais, “Measuring the Functional Size of Real-Time
Software” 9th European Software Control and Metrics
Conference and 5th Conference for the European Network of
Clubs for Reliability and Safety of Software (ESCOM-
ENCRESS-98), Rome, Italy, 1998.

[26] ISO/IEC 19761:2003, Software engineering – COSMIC-FFP
– A functional size measurement method, Geneva: ISO, 2003.

[27] J.M. Desharnais, P. Morris, “Measuring ALL the Software not
just what the Business”, IFPUG Conference, 1998.

[28] S. Oligny, J.M. Desharnais, A. Abran, “A Method for
Measuring the Functional Size of Embedded Software”, 3rd
Int. Conf. on Industrial Automation, pp. 7-9, 1999.

339

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[29] L. Lavazza, V. del Bianco, and Geng Liu. “Analytical
convertibility of functional size measures: a tool-based
approach."” Joint Conference of the 22nd Int. Workshop on
Software Measurement and the 7th Int. Conf. on Software
Process and Product Measurement. IEEE Computer Society,
2012.

[30] Total Metrics. Glossary of metrics terms. at
http://www.totalmetrics.com/resources/software-metrics-
glossary (accessed on May 16th, 2014).

340

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

