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Abstract— Function Points Analysis and the COSMIC method 

are very often used for measuring the functional size of 

programs. The COSMIC method was proposed to solve some 

shortcomings of Function Points, including not being well 

suited for representing the functionality of real-time and 

embedded software. However, little evidence exists to support 

the claim that COSMIC Function Points are better suited than 

traditional Function Points for the measurement of real-time 

and embedded applications. To help practitioner choose a 

method for measuring real-time or embedded software, some 

evidence of the merits and shortcomings of the two methods is 

needed. Accordingly, our goal is to compare how well the two 

methods can be used in the functional measurement of real-

time and embedded systems. To this end, we applied both 

measurement methods to the situations that occur quite often 

in real-time and embedded software and are not considered by 

standard measurement practices. Our results indicate that, 

overall, COSMIC Function Points are better suited than 

traditional Function Points for measuring characteristic 

features of real-time and embedded systems. 

Keywords - Functional Size Measurement, Function Point 

Analysis, COSMIC Function Points, Real-time software, 

Embedded software. 

I.  INTRODUCTION 

Several methods have been proposed to estimate the 
development effort of a software product, given the 
characteristics of the product itself and its development 
process. Software size plays a special role in effort 
estimation, as it is the main input used by the vast majority 
of effort estimation models. Accordingly, measures of 
functional size are used in early effort estimation models, 
since other measures –like Lines of Code– are not available 
in the early development phases. Functional measures 
quantify the functional size of a software application, as 
defined in the requirements specification documents. The 
need for software development estimation and size 
measurement applies to RT software as well [1]. 

The available functional sizing methods are evolutions of 
Function Points Analysis (FPA), originally proposed by 
Allan Albrecht [2]. The International Function Points User 
Group (IFPUG) maintains the definition of the method and 
publishes and regularly updates the official Function Point 
(FP) counting manual [3][4]. Effort estimation methods have 
been defined, and tools supporting them have been 
developed, which require the size in FP as the main input [5].  

FP are generally not considered well suited for measuring 
the functional size of embedded applications. The reported 
motivation is that FP –conceived by Albrecht when the 
programs to be sized were mostly Electronic Data Processing 
applications– capture well the functional sizes of data storage 
and data movement operations, but are ill-suited for 
representing the complexity of control and elaboration that 
are typical of embedded and real-time software. 

The COSMIC method was defined to overcome some 
limitations of FPA. The COSMIC method [6] redefines 
FPA’s basic principles of functional size measurement in a 
way that applies equally well to traditional “business” 
application and other applications, including real-time and 
embedded ones. Specifically, the COSMIC method counts 
the data movements (entries, exits, reads, and writes) that 
involve data groups (corresponding approximately to FPA’s 
logic files) in each functional process (corresponding to 
FPA’s elementary processes). The result is a functional size 
measure called COSMIC Function Points (CFP). 

Even though it is traditionally considered not well suited 
for real-time and embedded applications, FPA can be applied 
to embedded software via a careful interpretation of FP 
counting rules [7]. Moreover, it is known that many real-time 
projects have actually been measured using FPA. On the 
contrary, there is little analytic evidence of successful 
applications of the COSMIC method to real-time and 
embedded applications. This paper aims at providing some 
evidence about the suitability of FPA and the COSMIC 
method to measure real-time embedded software. 

Both FPA and COSMIC methods require the 
representation of user requirements according to a method-
specific model of software (e.g., the FP model includes logic 
files and elementary processes, while the COSMIC model 
includes functional processes and data movements). 
Measurement is then based on counting the elements of these 
models according to given rules. To measure real-time and 
embedded software, it is of critical importance that 
representative models can be correctly derived from the user 
requirements. To test this ability, we consider a somewhat 
extensive –though necessarily incomplete– set of typical and 
representative features of real-time embedded software and 
apply FPA and COSMIC to each of them. The comparison 
of the two methods provides useful indications to the 
developers that have to choose a functional size 
measurement method. 
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Even though both FPA and COSMIC methods aim at 
measuring the size of Functional User Requirements (FUR),  
there are a few reasons that suggest that the COSMIC 
method may be preferable. First, CFP are defined in a simple 
and sound way, while the definition of FP has been widely 
criticized, e.g., because the weighting mechanism make 
unclear whether FP are a measure of size or effort [8], or 
because the inherent subjectivity of FPA leads even certified 
measurers to provide different size measures for the same 
application [9][10]. Finally, the COSMIC method, which 
does not require a thorough analysis of data and allows for 
analyzing transactions at coarser granularity level, is 
somewhat faster and less expensive than FPA. 

So, managers have a few reasons to prefer the COSMIC 
method over FPA. However, evidence concerning the 
suitability of the COSMIC method for measuring real-time 
software is still missing. This paper aims at filling this gap. 

In this paper, we enhance the work reported in [1] by 
considering additional characteristics of real-time and 
embedded software –namely the usage of clocks and timers– 
that could make the application of functional size 
measurement rules challenging. Consequently, the discussion 
on the comparison of FP and CFP is extended to the newly 
considered cases. In addition, the section on related work 
was also extended. 

This paper is of interest to researchers and practitioners 
who are familiar with the usage of Function Point Analysis 
and the COSMIC method for measuring traditional software 
applications. Accordingly, we take for granted that the 
readers are familiar with the concepts and terms of functional 
size measurement in general and FPA and the COSMIC 
method in particular. Readers who are not familiar with 
Functional Size Measurement methods can have a look at a 
concise introduction to FPA and COSMIC [29] and at a 
glossary of metrics terms [30]. 

Throughout the paper, we refer exclusively to Unadjusted 
Function Points (UFP) for FPA, because UFP are more 
commonly used than adjusted Function Points and because 
UFP are recognized as an ISO standard [4], while FP are not. 

The paper is organized as follows: Section II accounts for 
related work. Section III presents a set of modeling and 
measurement problems that occur frequently in real-time and 
embedded software developments. In Section IV, FPA and 
COSMIC methods are applied to the cases illustrated in 
Section III, while Section V draws some conclusions and 
outlines future work. 

II. RELATED WORK 

There is a fairly large body of literature aimed at 
extending the scope of functional size measurement to 
software applications that do not belong to the Information 
Systems domain, for which FPA was originally conceived by 
Albrecht. An overview of these proposals (rather old but still 
relevant) can be found in [13]. Among the notable attempts 
to adapt FPA to real-time software are: 
– Feature Points [14], which include an algorithmic 

element and define new environmental complexity 
factors. 

– Mark II Function Points [15][16], which refine and 
extend the traditional function point transaction model 
and environmental factors. 

– Asset-R [17], which extends the applicability of function 
points to real-time systems by considering issues like 
concurrence, synchronization, and reuse. It also accounts 
for architectural, language expansion, and technology 
factors to generate the size estimate. 

– 3D Function Points [18], which consider three 
dimensions of the application to be measured: Data, 
Function, and Control. The Function measurement 
considers the complexity of algorithms; and the Control 
portion measures the number of major state transitions 
within the application. 

– Application Features [19], which aims at the early 
estimation of the size of application in the process control 
domain. 

– Counting practices for highly constrained systems [20], 
which address issues such as boundary identification and 
internal processing. 
Also the IFPUG published a Case Study that shows how 

to apply FPA to real-time software [21]. 
Another set of proposed approaches to make FP 

measurement applicable to real-time software took into 
account the object-oriented programming paradigm. 
Actually, these approaches address every type of object-
oriented program or model, including real-time and control 
applications.  

Object Points [22] are an object-oriented approach that 
measures the external, internal, application and object size of 
object-oriented systems. Objects are viewed as mini 
applications where each object encapsulates data and 
operations. A simple mapping is established between object 
operations (services) to transactions, and object data 
(attributes) to ILFs. 

Class points [23] are based on the number of services 
required (NSR), the number of external methods (NEM) and 
the number of attributes (NOA) of classes. The complexity 
of a class is evaluated on the basis of its NSR, NEM and 
NOA, and then classes are weighed according to their 
complexity and type. Class types are: Problem Domain, 
Human Interaction, Data Management, Task Management. 
The sum of the weights gives the number of class points. 

Object-oriented FPs [24] are computed following the 
function point counting procedure. Classes within the 
application boundary correspond to ILFs, while classes 
outside the application boundary (including libraries) 
correspond to EIFs. Inputs, Outputs and Inquiries are all 
treated in the same way: they are called generically “service 
requests” and correspond to class methods. The complexity 
of ILFs and EIFs depends on the number and type of 
attributes and associations. The complexity of service 
requests depends on the number and type of method 
parameters. Several ways of considering class aggregates 
and generalization hierarchies are proposed, thus the 
measured size depends on the criterion used to consider class 
aggregation and generalization.  

Among the proposed approaches –none of which seems 
to have succeeded in gaining market acceptance– Full 
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Function Points (FFP) are quite relevant. FFP [25] take into 
account the differences between traditional applications and 
real-time applications by extending the FPA by means of 
new data and transactional function types: 
– Updated control group: a group of data –used by the 

application to control, directly or indirectly, the behavior 
of an application or of a mechanical device– updated by 
the application being measured. 

– Read-only control group: A group of control data used, 
but not updated, by the application being counted. 

– Entry / Exit: A sub-process that receives / sends control 
data across the application's boundary. 

– Read / Write: A sub-process that reads / writes a group of 
control data. 
Also FFP did not prove successful in dealing with the 

functional size measurement of real-time software; hence, 
their authors decided to thoroughly review their definition, 
thus arriving at the definition of COSMIC function points 
[6][26]. CFP retain the basic principles of functional size 
measurement as in FPA, but they are defined in a manner 
that applies equally well to traditional “business” application 
and to other applications, including the real-time and 
embedded ones. 

Several papers have been written on the suitability of Full 
Function Point and COSMIC Function Points to measure 
real-time software. 

Desharnais and Morris stress the possibility of 
identifying and measuring different layers with the COSMIC 
method, and dealing with the “cut-off” effect we discussed in 
Section IV. IV.D [27]. 

Oligny et al. report about the applicability of FFP in 
general, based on the experiences gained while measuring 
seven projects (four of which real-time) [28]. The discussion 
does not address any of the details reported in our paper. 

In conclusion, the literature is relatively rich in proposals 
for extending or adapting existing functional size 
measurement methods to real-time and embedded software; 
however, none of such proposals appears to be widely used 
in practice (possibly with the partial exception of Mark II 
Function Points [15], which were also standardized [16]). 

So, the popularity of FPA and COSMIC suggested that 
they are candidates for real-time and embedded software 
measurement. However, nobody –to the best of our 
knowledge– investigated the actual applicability of IFPUG 
and COSMIC measurement rules to real-time and embedded 
software. 

III. CASE STUDIES FOR FUNCTIONAL SIZE 

MEASUREMENT OF REAL-TIME EMBEDDED SOFTWARE 

Here, we illustrate a set of typical features of real-time 
and embedded software that are difficult to represent by 
means of the models that underlie the definition of functional 
size measurement methods. All of the cases shown here are 
derived from the first author’s experience gained in 
measuring seven avionics applications in a large European 
company. So, the proposed set of cases is of empirical origin: 
during the measurement, the cases presented here emerged as 
those particularly challenging for functional size 
measurement. Even though the cases considered here were 

all derived from the avionic domain, they were observed in 
quite different applications. Accordingly, we believe that the 
cases presented here are representative of the challenging 
cases that can occur when measuring real-time and 
embedded software applications. 

Most examples are illustrated by means of sequence 
diagrams, according to the measurement-oriented modeling 
methodology proposed in [11] and used in [12]. It is assumed 
that the reader is familiar with UML. 

A. Embedded processes having multiple purposes 

In embedded software, several processes often include 
both updating some data and producing some result. 
Consider for instance a process that initializes and tests a 
piece of hardware (Fig. 1). The initialization and test of 
several hardware devices are performed by means of a single 
command: the initialization command is sent to the devices 
and the resulting state is sent back, so that it is possible to 
check whether the device is working correctly. 

In these cases, the initialization and the test are both 
necessary and equally important. 

 

 
Figure 1.  Inizialization of devices: the “main purpose” is not evident. 

 

B. Transactions defined at very low level 

Requirements often concern very low level operations, 
thus making it difficult to identify functions that match the 
definition of Base Functional Components. 

 

   
Figure 2.  RAM clearing process. 

 

1) Memory vs. data 
In embedded software, the use of RAM as a whole 

introduces new requirements. For example, a piece of 
software embedded on board of a military airplane should 
clear the whole RAM under given circumstances, e.g., if the 

 

: Controller

init(params)

sd Set-up

Record(DeviceState)

Init_result

: State

DeviceState

Eval(Init_result)

: Device

set_up

 

: System

Clear()

: RAM

sd RAM_clear

Clear()
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airplane crashes in an enemy zone (because the information 
stored in memory must not be made available to enemies). 
This requirement (Fig. 2) is peculiar in that it is about the 
whole RAM, not about some specific user-relevant piece of 
data. 

2) Memory mapped I/O 
In embedded systems, updating a variable and sending 

data to a device can be extremely similar operations. For 
instance, when I/O is memory-mapped, both mentioned 
operations write registers or RAM locations (Fig. 3). 

 

 

Figure 3.  Memory-mapped I/O. 

 

3) Processes that do not terminate properly 
In embedded software, it is often required that a function 

terminate by jumping to a given location. This situation is 
illustrated in Fig. 4: the initialization function terminates by 
executing the set-up function (described in Fig. 17). 

 

 
Figure 4.  A function that ends with a jump to another function. 

 

C. Taking into account the devices 

In traditional software applications, functions are usually 
invoked by the user and end by either updating some internal 
data, or outputting some information. In embedded 
applications, the situation can be very different. Often it is 
some hardware device (not a user) that acts as both the cause 
that determines the execution of the function and the 
destination of the produced data or signals. 

For instance, functional processes are often initiated by 
clocks and timers.  

1) The Clock 

Some functions are triggered periodically by clock signals. 

In such cases, the clock acts as a user that invokes a 

function: in fact, the resulting behavior is the same obtained 

by a human user that periodically invokes the function.  

This situation is illustrated in Fig. 5: in this example, an 

aircraft is equipped with sensors, which collect navigation 

data, and a clock periodically invokes a sensor manager that 

asks navigation data from the sensors and sends the returned 

data to the flight control unit. 

 

 
Figure 5.  An elementary function triggered by the clock. 

 

2)  Timers 

In embedded systems, functions can be triggered by 

timers, or they can terminate after programming a timer. 

Consider the following specifications:  

Spec. A (Fig. 6): “The program sends a request for data 

to device X, then reads the data sent by X and stores them 

for later use.” 

Spec. B (Fig. 7): “The program sends a request for data 

to device X, waits for 10 ms, then reads the data from X and 

stores them for later use.” 

Spec. C (Fig. 8): “The program sends a request for data 

to device X; then, every 10 ms the program checks whether 

the data from X are ready: if so it stores them for later use.” 

 

 

Figure 6.  Device read specifications not mentioning time. 

 

 

Figure 7.  Device read specifications not mentioning time delay. 

 

: System

Output(data)

: Device space 
in RAM

sd Memory_mapped_I/O

Write(data)

: Controller : State

init()

: Unit1

sd Init

Set(InitState)

Power_up()

: Unit2

init()

Set-up
ref

: Device1 : Devicen

: Clock : SensorManager : State : FlightControl

Get_state()

state

Read()

: FixedNavigData

data

sd Periodic_sensor_read

Put(state, data)

tick

: Controller

Read()

: Device_X_

command_reg

sd Read

Read()

Store(data)

: Data

data

: Device_X_

data_reg

GetData()

: Controller

Read()

: Device_X_

command_reg

sd Read

Read()

Store(data)

: Data

data

: Device_X_

data_reg

GetData()

wait_(10 ms)
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Figure 8.  Device polling specifications. 

 
All of the above specifications could be rewritten by 

explicitly mentioning the use of timers. For instance, Spec. C 
could be rewritten as follows: 

Spec. D: “The program sends a request for data to device 
X and programs a 10 ms timeout; upon receiving  the 
timeout signal, the program checks whether the data from X 
are ready: if so it stores them for later use and disables the 
timer, otherwise, a new 10 ms timeout is programmed.” 

The first part of this specification is described in Fig. 9, 
while the second part is described in Fig. 10 
 

 
Figure 9.  A transaction that programs a timer. 

 

 
Figure 10.  The timer triggers the conclusion of the operation. 

 

3) Considering the role of the Operating System in I/O  
Let us consider the following requirements for an I/O 

functionality (described in Fig. 11): “upon request by the 
controller, data are retrieved from an I/O channel, according 
to the criteria stored in the I/O channel table. When all the 
data have been read, they are suitably converted and sent 
back to the controller.” It is often the case that the I/O 
operation has to be carried out with the help of the Operating 
System and the requirements can be implemented by means 

of two functions, illustrated in Figs. 12 and 13. The first 
function (Fig. 12) is invoked by the controller and prepares 
an I/O request for the OS and a subsequent system call. The 
second function (Fig. 13) is triggered by the interrupt from 
the I/O device and involves reading the data from the 
channel, elaborating them, and sending them back to the 
controller. The execution of this “function” is done partly by 
the OS (by a driver that will have to be implemented as a 
part of the application development) and partly in the section 
of the application devoted to I/O. 

If the development also includes the construction of a 
driver for the considered I/O device, taking into account the 
size of the corresponding code will contribute to produce a 
more accurate effort estimate. In other words, it appears 
reasonable to count two functions, corresponding to the 
“elementary processes” described in Figs. 12 and 13. 

 

 

Figure 11.  Process featuring direct access to I/O channels. 

 
Figure 12.  Process Access to I/O channels via the O.S. 

 
Figure 13.  The O.S. handles the I/O. 

: Controller
: Device_X_

command_reg

sd Read

Read()

Store(data)

: Data

data

: Device_X_

data_reg

GetData()

wait_(10 ms)

Read_state()

state

loop [not state==ready]

: Controller : Timer

read()

: Device_X_

command_reg

sd Read_init

Read()

set(10 ms)

: Controller
: Device_X_

command_reg

sd Read_end

Store(data)

: Data

data

: Device_X_

data_reg

GetData()

Read_state()

state

alt [state==ready]

: Timer

timeout

set(10 ms)[else]

disable

: Controller
: I/O 

component
: I/O Channel 

Table
: I/O Channel

Read(ch_ID)
Get_channel_data(ch_ID)

channel_data

Get_Byte()loop

Convert_data()
data

Byte

sd Direct_read

 

: Controller
: I/O 

component
: I/O Channel 

Table
: OS

Read(ch_ID)

Get_channel_data(ch_ID)

channel_data

: I/O space 
in RAM

Sys call

sd Read_req_SO

Write(I/O_request)

 

: I/O 

channel

: I/O 
component

: OS

ready_intr

: I/O space 

in RAM
: Driver

Read()

: Controller

write(Byte)

data

get_Byte()

Byte

loop

Read()

data

Return from write syscall

sd SO_reads

Convert_data()
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4) Multi cycle operations 
In real-time systems, it is not unusual that a function is 

too long to fit into one execution cycle. In such cases, it is 
rather common to split the function into two (or more) pieces 
that are executed in consecutive execution cycles. Here are 
two typical examples: 

− The function transfers data via a buffer. The data to be 
transferred do not fit in the buffer. The transfer is split 
into n cycles: in each cycle 1/n of the data are copied 
into the buffer. 

− The function, triggered by the tick, takes a time longer 
than the cycle duration (i.e., the time between two 
consecutive ticks) to execute. Thus, the transfer is split 
into multiple consecutive cycles. 

An example is given in Figs. 14 and 15: an output 
operation is split over two consecutive clock cycles. In the 
first cycle (Fig. 14), the application outputs the data from 
Data_1 and sets the State to represent that there is a pending 
output operation. In the following cycle (Fig. 15), the State 
indicates that the output operation must be completed, thus 
data are read from Data_2 and sent to the output device. 

 

 

Figure 14.  Output: first cycle. 

 

Figure 15.  Output: second (final) cycle. 

These cases are often described in the requirements, since 
they deal with the real-time behavior of the application, 
which is typically explicitly accounted for in the 
requirements specification. However, requirements 
specifications could not state explicitly that the function 
should be split, i.e., requirements could just describe the 
whole operation as in Fig. 16. 

 
Figure 16.  Output, not split. 

 

D. Long processes 

In embedded software, functions are often “service 
routines” that perform rather long tasks; e.g., the 
requirements specify that “the connected devices are tested, 
and the result (a ‘pass’ value or the set of diagnostics) is sent 
to the controller, which stores it for later use.” Fig. 17 
illustrates the situation with 4 different device types.  

 

Figure 17.  A long transaction. 

 

E. Unusual data 

Embedded applications often include constant data 
structures (e.g., data mapping tables or bit masks) that 
require a non-negligible design effort, which we would like 
to take into account. An example is shown in Fig. 12: for 
each request to read an I/O channel, the I/O component reads 
from the channel table how many bytes must be read from 
the channel and how they should be interpreted. The channel 
table is a read-only structure that describes how to manage 
the I/O channels. 

With respect to other elements of the system, the channel 
table differs only in that it is read-only; apart from that, it 
concerns information that is relevant to the user and it must 
be properly designed to be effectively and efficiently read. 

: Controller : State

read()

: Data_1

sd Out_init

write(data)

Output()
: Device

data
: Clock

tick

set(out_2)

: Controller

: State

read()

: Data_2

sd Out_end

write(data)

: Device

data

: Clock

tick

set(out_finished)

opt [state==out_2]

 

: Controller : Data_2

read()

: Data_1

sd Output

write(data1)

output()

: Device

data1

read()

data2

write(data2)

 

: Controller : State : Device2

poll()

: Device1

sd Set-up

: Device4: Device3

Record(DevState)

DevState

poll()

Record(DevState)

DevState

poll()

Record(DevState)

DevState

poll()

Record(DevState)

DevState
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F. Complex elaborations 

In real-time and embedded applications, some operations 
can be complex. Consider for instance the generic flight 
control operations described in Fig. 18: it is quite likely that 
the computation of the flight control data is rather complex. 

 

 

Figure 18.   Sensor-driven flight control. 

IV. APPLYING FPA AND COSMIC TO REAL-TIME 

EMBEDDED SOFTWARE 

This section illustrates the application of FPA and 
COSMIC methods to the cases described in Section III. 

A. Embedded processes having multiple purposes 

According to the IFPUG counting rules [3][4], the size of 
a function varies according to its type (external input, output 
or query). The type is determined by the “main purpose” of 
the function, according to the requirements. However, it may 
be difficult to decide what the main purpose is, since both the 
external input and the external output can update internal 
data and report a result, as in our case. In conclusion, 
measures based on FPA have some degree of subjectivity 
that can be hardly avoided. 

The problem described above does not apply to COSMIC 
measurement, since all processes are treated in the same 
way, regardless of their purpose. 

B. Transactions defined at very low level 

1) Memory vs. data 
According to the principles of FPA, in a case like the one 

described in Section III.B.1) one should count the memory 
clearing function as an external input. In that case, since 
every External Input (EI) manages an Internal Logical File 
(ILF), we should consider the RAM an ILF. On the one 
hand, counting the RAM as an ILF does not appear correct 
with respect to the rules, since logic data files should 
represent a homogeneous set of related data (which RAM is 
not), on the other hand, not considering the RAM as an ILF 
is an inconsistency, as all EI have to deal with an ILF. 

There is a similar problem with the COSMIC method, as 
the process writes in the RAM: accordingly, we should 
consider a write data movement. However, this implies that 
the RAM is classified as a data group, which does not appear 
perfectly coherent with the COSMIC rules. 

In the COSMIC method, there is no rule that clearly 
prevents treating the RAM as the object of interest involved 
in the process that clears the RAM. Accordingly, we would 
have a process involving a write data movement. 

2) Memory mapped I/O 
When I/O is memory-mapped, an output operation can be 

modeled as an External Output (EO) in FPA but also as an 
EI, since the output is obtained by writing registers or RAM 
locations (see Fig. 3). The choice affects the resulting 
measure, since EI and EO have different weights. With the 
COSMIC method, you still can model the operation as a 
Write or an Exit data movement, but the choice does not 
affect the final measure, since every data movement 
contributes exactly one CFP. 

3) Processes that do not finish properly 
According to FPA, a transaction function has to be self-

contained and leave the application being counted in a 
consistent state. In embedded software, it is often required 
that a function terminates by jumping to a given location 
(Fig. 4). In this case, the transaction is not self-contained and 
does not leave the program in a consistent state. FPA does 
not suggest how to deal with this type of functions. Just 
ignoring them would not be a good idea, since it takes some 
effort to implement these functions; hence, we want them to 
contribute to the functional size of the application. Actually, 
there is no other way of dealing with these cases than just 
ignoring the constraints imposed by the IFPUG and counting 
the functions, considering their behavior down to the final 
jump. The same problem occurs when the COSMIC method 
is used, since functional processes are defined as FPA 
transactions, in essence. 

C. Taking into account the devices 

1) The Clock 
In functions that are triggered periodically by clock 

signals (as in Fig, 5), the clock acts as the user that invokes 
the function. 

From a COSMIC point-of-view, the clock is the 
functional user that generates the triggering Entry (i.e., a 
message that informs the software that the functional user is 
initiating a functional process). The possibility that a device 
acts as a functional user is explicitly stated in the COSMIC 
counting manual [6]. Accordingly, the functional process 
illustrated in Fig. 5 involves the following data movements: 

− The entry of the clock tick; 

− Reading the current state; 

− The request to for navigation data (an exit); 

− The entry of navigation data; 

− The output of state; 

− The output of navigation data. 

The sensor is another functional user. For this software, 
an event occurs when it is time to update the navigation data: 
the clock triggers the software, by sending it a message 
(triggering Entry).  

The considerations reported above can be applied to FPA 
as well. Thus, we shall simply consider the clock as a user 
that can originate the execution of a function. The rest of the 
measurement is carried out easily according to FPA rules [3]. 

: Clock : SensorManager
: Sensor

State
: FlightControl

Get_state()

state

Read()

: NavigData

data

sd Periodic_flight_control

Put(control_data)

tick

Compute(state, data)

control_data
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2) Timers 

Let us consider Spec. A (Fig. 6): in this specification 

there is no mention of the time delay between the request to 

read and the retrieval of data. According to FPA, the 

specification involves a single transaction (an external input, 

if the main intent is storing the data retrieved from the 

sensor). Similarly, it is a single COSMIC functional 

process. 

Specifications B (Fig. 7) and C (Fig. 8) are functionally 

equivalent to Spec. A, with the only difference that they 

mention time. By the way, Spec. B and C are also similar to 

each other, the only difference being that, in Spec. B, we are 

sure that, 10 ms after issuing the read command, the 

required data are ready, while in Spec. C this is not true. 

However, as with Spec. A, we have just one transition 

according to FPA, or a functional process according to the 

COSMIC method. 
Specifications B and C (and possibly A as well) can be 

implemented with or without using a timer: in fact the 10 ms 
waiting could be achieved via a sort of busy loop. Of course, 
the functional size (either in FP or in CFP) of the 
specifications does not depend on how it will be 
implemented. 

The problem is that the same operation described by 
Specifications B and C could be described as in Spec. D 
(Fig. 9 and Fig. 10). In this case, the analyst is just specifying 
delays by means of timers, which –by the way– are the most 
obvious means to implement the operation. As a 
consequence, we have two FPA transactions: the one that 
initialized the device (described in Fig. 9) and the one that 
reacts to timeout signals (Fig. 10). 

In practice, specifications B and C are both low 
complexity External Input transactions (under the hypothesis 
that the data read from the sensor includes a small set of 
DET), accounting for 3 FP. 

From a COSMIC point-of-view, Spec. B involves 5 data 

movements (the Entry of the triggering event, the Exit of the 

Read command, the Exit of the GetData command, the 

Entry of data, the Write of data), while Spec. C involves 6 

data movements (the Entry of the triggering event, the Exit 

of the Read_state command, the Entry of the state, the Exit 

of the GetData command, the Entry of the data, the Write of 

data). 

Spec. D involves a low complexity External Output 

transaction (Fig. 9) and a low complexity External Input 

transaction (Fig. 10): therefore, it has a size of 3+4=7 FP. 

From a COSMIC point-of-view, Spec. B involves a 

functional processes (Fig. 9) comprising 3 data movements, 

and a functional process (Fig. 10) comprising 7 data 

movements: therefore, it has a size of 3+7=10 CFP. 

In conclusion, the problem here is that mentioning the 

timers in the specifications (which is quite natural for real-

time software analysts) causes the functional size of the 

specified operations to increase substantially.   

3) Considering the role of the Operating System in I/O 
With both FPA and COSMIC methods, the measurement 

of the process represented in Fig. 11 is quite straightforward. 

The problem here occurs when the development must also 
include the construction of a driver for the considered I/O 
device, since taking into account the size of the 
corresponding code will contribute to producing a more 
accurate effort estimate. In other words, it appears reasonable 
to count two functions, described in Figs. 12 and 13. 

This requires a deviation from the FPA counting practice, 
since FPA does not take into account the existence of 
different “layers”: with FPA you can only measure 
requirements at the single abstraction level corresponding to 
the user’s point of view, and the user is not aware of the OS 
and what happens in the OS. 

With the COSMIC method, it is possible to explicitly 
model and measure the layers that compose the software 
application. The sum of the sizes of the layers is generally 
greater than the size of the whole application corresponding 
to the point of view of the user (who is not aware of the 
existence of layers). So, the measure of layers is exactly what 
is needed to take into account the size of the OS parts that 
are being developed.  

4) Multi cycle operations 
The cases described in Section III.C.4) suggest that the 

value of a functional size measure can depend on how 
requirements are written. Let us consider the case when 
requirements specifications do not state explicitly that the 
function should be split (Fig. 16): if Data_1 and Data_2 
account for 10 DET each, the transaction is a high 
complexity EO (having 3 FTR and 21 DET), whose size is 7 
FP. When requirements specifications prescribe that the 
function be split (Fig. 14 and 15) we have two average 
complexity EO (3 FTR and around 12 DET each), whose 
size is 10 FP in total. When requirements specifications do 
not state explicitly that the function should be split, the 
COSMIC method identifies one functional process sized 5 
CFP, since it involves 5 data movements (the Entry, the 
Reads of Data_1 and Data_2, and the corresponding Exits). 
When requirements specifications prescribe that the function 
be split, according to the COSMIC rules we have two 
functional processes, one involving 5 data movements (the 
Entry that triggers the operation, the Read of Data_1, the 
Entry of the clock tick, the Exit to the device, the Write of 
the state), and one involving 4 data movements (the Entry of 
the tick, the Read of Data_2, the Exit to the device, the Write 
of the state); the total size is thus 9 CFP. 

In conclusion, both methods provide measures of size 
that depend on how requirements are written. This is a 
characteristic of the methods that has to be taken into 
account, as it affects the resulting measures. 

D. Long processes 

A well known problem with Function Points is the so-
called “cut-off” effect: a function cannot contribute more 
than 7 FP to the functional size, regardless how many DETs 
it moves and how many FTRs it involves. This is a relevant 
problem, especially in embedded software, where functions 
are often “service routines” that perform rather long tasks, 
like in the example illustrated in Section III.D and Fig. 17. 

Fig. 17 illustrates the situation with 4 different device 
types. According to the IFPUG counting rules, this is a single 
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transaction. If the device states contain on average 5 (or 
more) parameters, then the transaction is a complex one. The 
problem here is that if we had 5 or more different types of 
devices, the number of FP would not increase with the 
number of devices: according to FPA, we would have just 
one complex EI. This is a problem, because in practice the 
development effort increases with the number of device 
types, since each device type provides different status data, 
which need to be interpreted in a specific way. 

FPA hides from the estimation methods how much 
bigger a function is (thus more expensive to build) than 
another that classifies as complex. The COSMIC method, on 
the contrary, does not suffer from the cut-off effect. In a case 
like the one in Section III.D and Fig. 17, the size in CFP 
takes into account all the data movement, whose number is 
proportional to the number of devices. 

E. Unusual data 

According to FPA, data functions are either internal data 
“maintained” (i.e., modified) by the application, or external 
data (maintained outside the application). Constant data are 
treated as “decoding data” and explicitly excluded from the 
counting [3]. However, it seems that the authors of the 
IFPUG manual had in mind simple “zero effort” constants 
when they wrote the rules concerning the constant data. 

To account for the fact that a constant data structure will 
require some design effort, it is necessary to deviate from the 
IFPUG rules, and count a “constant ILF.” For instance, in the 
example illustrated in Fig. 12, one should count an ILF for 
the channel table; consistently, a FTR for each access to the 
table should be considered. 

The COSMIC method does not count data directly; that 
is, no fraction of the size measures accounts for data. On the 

contrary, data movements are counted without considering 
whether the data being moved are constant or not. In 
conclusion, this case does not pose any additional difficulty 
to the application of the COSMIC method. 

F. Complex elaborations 

Both FPA and COSMIC methods base the measurement 
of size on the number of processes and the amount of data 
handled. For instance, the process described in Fig. 18 is 
considered as an EO (with a maximum size of 7 FP) or a 
functional process accounting for 4 CFP (as it involves 4 
data movements). None of the two methods considers the 
complexity of the computations performed: the fact that the 
“Compute” operation performed in the process is simple or 
complex does not change the size of the process. 

This is clearly a shortcoming of the two methods, since 
the development effort is very likely proportional to the 
complexity of the functions to be implemented. 

V. CONCLUSIONS 

The results of our analysis (summarized in Table I) show 
that some situations that are typical of real-time and 
embedded applications make it necessary to interpret or 
“bend” the rules provided by official measurement manuals 
[3][6]. However, this happens more often for IFPUG 
Function Point Analysis than with the COSMIC method. 

Also the resulting measures are easily affected by the 
measurement choices made in FPA, while there are just a 
few cases (namely, processes terminating with a jump, multi-
cycle operations, explicitly mentioned timers and complex 
elaborations) that can affect the measures in CFP.  

TABLE I.  COMPARISON OF FSM METHODS 

Case 
FPA COSMIC 

Easy application of rules Measure affected Easy application of rules Measure affected. 

Multiple purpose processes �
a
 � � � 

Memory data � � � � 

Memory mapped I/O � � � � 

Processes terminating with jump � � � � 

Clock � � � � 

Timers � �
b
 � �

b
 

OS involved in I/O � � � � 

Multi cycle operations � �
b
 � �

b
 

Long processes � � � � 

Unusual data � � � � 

Complex elaborations �
c
 � �

 c
 � 

a
 The application of the rule is subjective.  

b
 The measures depend on how requirements are written. 

c Elaboration complexity is just not accounted for by any rule. 
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In conclusion, the original claims that the COSMIC 
method is more suitable than FPA for measuring real-time 
and embedded applications appear justified. The cases that 
were used to evaluate the applicability of FPA and COSMIC 
to real-time and embedded software are sort of application-
independent patterns: accordingly, the results reported here 
are expected to be applicable to a wide range of real-time 
and embedded software applications.  

A straightforward consequence of the study reported here 
is that the COSMIC method is more suited for the functional 
measurement of real-time software; however, considering 
that functional size measures are often used for effort 
estimation, a problem could arise with the availability of 
CFP-based models of real-time software development effort. 
To derive such models, historical data are needed. The study 
reported here could also provide hints for converting FP 
measures into CFP measures, thus obtaining the datasets that 
are necessary to derive effort models. 

In any case, neither FPA nor the COSMIC method 
account for the complexity of the required elaboration. This 
may be a problem in the real-time embedded context, since 
some processes can be really very complex and require a 
relevant amount of development effort. 

Future work involves assessing measures that represent 
not only the functional size of real-time applications as done 
by FPA and COSMIC methods, but can represent also the 
complexity of the required elaboration. 
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