6 research outputs found

    Robotics handbook. Version 1: For the interested party and professional

    Get PDF
    This publication covers several categories of information about robotics. The first section provides a brief overview of the field of Robotics. The next section provides a reasonably detailed look at the NASA Robotics program. The third section features a listing of companies and organization engaging in robotics or robotic-related activities; followed by a listing of associations involved in the field; followed by a listing of publications and periodicals which cover elements of robotics or related fields. The final section is an abbreviated abstract of referred journal material and other reference material relevant to the technology and science of robotics, including such allied fields as vision perception; three-space axis orientation and measurement systems and associated inertial reference technology and algorithms; and physical and mechanical science and technology related to robotics

    Low computation vision-based navigation for mobile robots

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1994.Includes bibliographical references (leaves 70-73).by Andrew S. Gavin.M.S

    The Human Factors of Transitions in Highly Automated Driving

    Get PDF
    The aim of this research was to investigate the nature of the out-of-the-loop (OoTL) phenomenon in highly automated driving (HAD), and its effect on driver behaviour before, during, and after the transition from automated to manual control. The work addressed questions relating to how automation affects drivers' (i) performance in transition situations requiring control- and tactical-level responses, (ii) their behaviour in automation compared to in manual driving, (iii-iv) their visual attention distribution before and during the transition, as well as (v) their perceptual-motor performance after resuming control. A series of experiments were developed to take drivers progressively further OoTL for short periods during HAD, by varying drivers' secondary task engagement and the amount of visual information from the system and environment available to them. Once the manipulations ended, drivers were invited to determine a need to resume control in critical and non-critical vehicle following situations. Results showed that, overall, drivers looked around more during HAD, compared to manual driving, and had poorer vehicle control in critical transition situations. Generally, the further OoTL drivers were during HAD, the more dispersed their visual attention. However, within three seconds of the manipulations ending, the differences between the conditions resolved, and in many cases, this was before drivers resumed control. Differences between the OoTL manipulations emerged once again in terms of the timing of drivers' initial response (take-over time) in critical events, where the further OoTL drivers were the longer it took them to resume control, but there was no difference in the quality of the subsequent vehicle control. Results suggest that any information presented to drivers during automation should be placed near the centre of the road and that kinematically early avoidance response may be more important for safety than short take-over times. This thesis concludes with a general conceptualisation of the relationship between a number of driver and vehicle/environment factors that influence driver performance in the transition

    Control y generaci贸n de trayectorias de un nuevo sistema de locomoci贸n para sillas de ruedas con capacidad para subir y bajar escaleras

    Get PDF
    La tesis presentada muestra un original avance en la tecnolog铆a existente para la auto locomoci贸n de personas con alto grado de minusval铆a permitiendo la superaci贸n de barreras arquitect贸nicas. Como principales aportaciones de esta tesis se han de resaltar las siguientes: En primer lugar, se ha realizado una correcta metodolog铆a de trabajo a la hora de realizar el dise帽o. Implantaci贸n y verificaci贸n tanto del sistema sensorial como de la unidad de control del prototipo desarrollado. En segundo lugar, se ha desarrollado un modelo cinem谩tica, un modelo de calibraci贸n y un generador de trayectorias basado en representaci贸n compleja que hace uso de los grados de libertad adicionales del prototipo con la finalidad de conseguir un mayor confort para el pasajero. Finalmente, se ha desarrollado un algoritmo de control basado en modos deslizantes y en la informaci贸n obtenida por el sistema sensorial del prototipo con la finalidad de conseguir una mejor adaptaci贸n din谩mica al entorno

    Coordination on Systems of Multiple UAVs

    Get PDF
    Esta tesis trata acerca de m茅todos para coordinar las trayectorias de un sistema de Veh铆culos A茅reos no Tripulados y Aut贸nomos (en adelante UAVs). El primer conjunto de t茅cnicas desarrolladas durante la tesis se agrupan dentro de las t茅cnicas de planificaci贸n de trayectorias. En este caso, el objetivo es generar planes de vuelo para un conjunto de veh铆culos coordinadamente de forma que no se produzcan colisiones entre ellos. Adem谩s, este tipo de t茅cnicas puede usarse para modificar el plan de vuelo de un subconjunto de UAVs en tiempo real. Entre los algoritmos desarrollados en la tesis podemos destacar la adaptaci贸n de algoritmos evolutivos como los Algoritmos Gen茅ticos y el Particle Swarm (Enjambre de Part铆culas), la incorporaci贸n de nuevas formas de muestreo del espacio para la aplicaci贸n del algoritmo Optimal Rapidly Exploring Random Trees (RRT*) en sistemas multi-UAV usando t茅cnicas de muestreo novedosas. Tambi茅n se ha estudiado el comportamiento de parte de estos algoritmos en situaciones variables de incertidumbre del estado del sistema. En particular, se propone el uso del Filtro de Part铆culas para estimar la posici贸n relativa entre varios UAVs. Adem谩s, se estudia la aplicaci贸n de m茅todos reactivos para la resoluci贸n de colisiones en tiempo real. Esta tesis propone un nuevo algoritmo para la resoluci贸n de colisiones entre m煤ltiples UAVs en presencia de obst谩culos fijos llamado G-ORCA. Este algoritmo soluciona varios problemas que han surgido al aplicar el algoritmo ORCA en su variante 3D en sistemas compuestos por veh铆culos reales. Su seguridad se ha demostrado tanto anal铆ticamente, como emp铆ricamente en pruebas con sistemas reales. De hecho, durante esta tesis numerosos experimentos en sistemas multi-UAV reales compuestos hasta por 4 UAVs han sido ejecutados. En dichos experimentos, se realiza una coordinaci贸n aut贸noma de UAVs en las que se asegura la ejecuci贸n de trayectorias libres de colisiones garantizando por tanto la seguridad del sistema. Una caracter铆stica rese帽able de esta tesis es que los algoritmos desarrollados han sido probados e integrados en sistemas m谩s complejos que son usados en aplicaciones reales. En primer lugar, se presenta un sistema para aumentar la duraci贸n del vuelo de planeadores aprovechando las corrientes ascendentes de viento generadas por el calor (t茅rmicas). En segundo lugar, un sistema de detecci贸n y resoluci贸n de colisiones coordinado para sistemas con m煤ltiples UAVs reactivo ha sido dise帽ado, desarrollado y probado experimentalmente. Este sistema ha sido integrado dentro de un sistema autom谩tico de construcci贸n de estructuras mediante m煤ltiples UAVs.The aim of this thesis is to propose methods to coordinately generate trajectories for a system of Autonomous Unmanned Aerial Vehicles (UAVs). The first set of proposed techniques developed in this thesis can be defined as trajectory planning techniques. In this case, the objective is to generate coordinated flight plans for a system of UAVs in such a way that no collision are produced among each pair of UAVs. Besides, these techniques can be applied online in order to modify the original flight plan whenever a potential collision is detected. Amongst the developed algorithms in this thesis we can highlight the adaptation of evolutionary algorithms such as Genetic Algorithms and Particle Swarm, and the application of Optimal Rapidly Exploring Random Trees (RRT*) algorithm into a system of several UAVs with novel sampling techniques. In addition, many of these techniques have been adapted in order to be applicable when only uncertain knowledge of the state of the system is available. In particular, the use of the Particle Filter is proposed in order to estimate the relative position between UAVs. The estimation of the position as well as the uncertainty related to this estimation are then taken into account in the conflict resolution system. All techniques proposed in this thesis have been validated by performing several simulated and real tests. For this purpose, a method for randomly generating a huge test batch is presented in chapter 3. This will allow to test the behavior of the proposed methods in a great variety of situations. During the thesis, several real experimentations with fleets composed by up to four UAVs are presented. In these experiments, the UAVs in the system are automatically coordinated in order to ensure collision-free trajectories and thus guarantee the safety of the system. The other main topic of this thesis is the application of reactive methods for real-time conflict resolution. This thesis proposes a novel algorithm for collision resolution amongst multiple UAVs in the presence of static obstacles, which has been called Generalized-Optimal Reciprocal Collision Avoidance (G-ORCA). This algorithm overcomes several issues that have been detected into the algorithm 3D-ORCA in real applications. A remarkable characteristic of this thesis is that the developed algorithms have been applied as a part of more complex systems. First, a coordinated system for flight endurance extension of gliding aircrafts by profiting the ascending wind is presented. Second, a reactive collision avoidance block has been designed, developed and tested experimentally based in the aforementioned G-ORCA algorithm. This block has been integrated into a system for assembly construction with multiple UAVs
    corecore