29 research outputs found

    The CIFF Proof Procedure for Abductive Logic Programming with Constraints: Theory, Implementation and Experiments

    Get PDF
    We present the CIFF proof procedure for abductive logic programming with constraints, and we prove its correctness. CIFF is an extension of the IFF proof procedure for abductive logic programming, relaxing the original restrictions over variable quantification (allowedness conditions) and incorporating a constraint solver to deal with numerical constraints as in constraint logic programming. Finally, we describe the CIFF system, comparing it with state of the art abductive systems and answer set solvers and showing how to use it to program some applications. (To appear in Theory and Practice of Logic Programming - TPLP)

    The CIFF Proof Procedure for Abductive Logic Programming with Constraints: Definition, Implementation and a Web Application

    Get PDF
    Abduction has found broad application as a powerful tool for hypothetical reasoning with incomplete knowledge, which can be handled by labeling some pieces of information as abducibles, i.e. as possible hypotheses that can be assumed to hold, provided that they are consistent with the given knowledge base. Attempts to make the abductive reasoning an effective computational tool gave rise to Abductive Logic Programming (ALP) which combines abduction with standard logic programming. A number of so-called proof procedures for ALP have been proposed in the literature, e.g. the IFF procedure, the Kakas and Mancarella procedure and the SLDNFA procedure, which rely upon extensions of different semantics for logic programming. ALP has also been integrated with Constraint Logic Programming (CLP), in order to combine abductive reasoning with an arithmetic tool for constraint solving. In recent years, many proof procedures for abductive logic programming with constraints have been proposed, including ACLP and the A-System which have been applied to many fields, e.g. multi-agent systems, scheduling, integration of information. This dissertation describes the development of a new abductive proof procedure with constraints, namely the CIFF proof procedure. The description is both at the theoretical level, giving a formal definition and a soundness result with respect to the three-valued completion semantics, and at the implementative level with the implemented CIFF System 4.0 as a Prolog meta-interpreter. The main contributions of the CIFF proof procedure are the advances in the expressiveness of the framework with respect to other frameworks for abductive logic programming with constraints, and the overall computational performances of the implemented system. The second part of the dissertation presents a novel application of the CIFF proof procedure as the computational engine of a tool, the CIFFWEB system, for checking and (possibly) repairing faulty web sites. Indeed, the exponential growth of the WWW raises the question of maintaining and automatically repairing web sites, in particular when the designers of these sites require them to exhibit certain properties at both structural and data level. The capability of maintaining and repairing web sites is also important to ensure the success of the Semantic Web vision. As the Semantic Web relies upon the definition and the maintenance of consistent data schemas (XML/XMLSchema, RDF/RDFSchema, OWL and so on), tools for reasoning over such schemas (and possibly extending the reasoning to multiple web pages) show great promise. The CIFFWEB system is such a tool which allows to verify and to repair XML web sites instances, against sets of requirements which have to be fulfilled, through abductive reasoning. We define an expressive characterization of rules for checking and repairing web sites' errors and we do a formal mapping of a fragment of a well known XML query language, namely Xcerpt, to abductive logic programs suitable to fed as input to the CIFF proof procedure. Finally, the CIFF proof procedure detects the errors and possibly suggests modifications to the XML instances to repair them. The soundness of this process is directly inherited from the soundness of CIFF

    CRAFTING THE MIND OF PROSOCS AGENTS

    Get PDF
    PROSOCS agents are software agents that are built according to the KGP model of agency. KGP is used as a model for the mind of the agent, so that the agent can act autonomously using a collection of logic theories, providing the mind's reasoning functionalities. The behavior of the agent is controlled by a cycle theory that specifies the agent's preferred patterns of operation. The implementation of the mind's generic functionality in PROSOCS is worked out in such a way so it can be instantiated by the platform for different agents across applications. In this context, the development of a concrete example illustrates how an agent developer might program the generic functionality of the mind for a simple application. 20 2-4 105 131 Cited By :1

    User Guided Abductive Proof Generation for Answer Set Programming Queries (Extended Version)

    Full text link
    We present a method for generating possible proofs of a query with respect to a given Answer Set Programming (ASP) rule set using an abductive process where the space of abducibles is automatically constructed just from the input rules alone. Given a (possibly empty) set of user provided facts, our method infers any additional facts that may be needed for the entailment of a query and then outputs these extra facts, without the user needing to explicitly specify the space of all abducibles. We also present a method to generate a set of directed edges corresponding to the justification graph for the query. Furthermore, through different forms of implicit term substitution, our method can take user provided facts into account and suitably modify the abductive solutions. Past work on abduction has been primarily based on goal directed methods. However these methods can result in solvers that are not truly declarative. Much less work has been done on realizing abduction in a bottom up solver like the Clingo ASP solver. We describe novel ASP programs which can be run directly in Clingo to yield the abductive solutions and directed edge sets without needing to modify the underlying solving engine.Comment: 18 page

    Distributed Abductive Reasoning: Theory, Implementation and Application

    Get PDF
    Abductive reasoning is a powerful logic inference mechanism that allows assumptions to be made during answer computation for a query, and thus is suitable for reasoning over incomplete knowledge. Multi-agent hypothetical reasoning is the application of abduction in a distributed setting, where each computational agent has its local knowledge representing partial world and the union of all agents' knowledge is still incomplete. It is different from simple distributed query processing because the assumptions made by the agents must also be consistent with global constraints. Multi-agent hypothetical reasoning has many potential applications, such as collaborative planning and scheduling, distributed diagnosis and cognitive perception. Many of these applications require the representation of arithmetic constraints in their problem specifications as well as constraint satisfaction support during the computation. In addition, some applications may have confidentiality concerns as restrictions on the information that can be exchanged between the agents during their collaboration. Although a limited number of distributed abductive systems have been developed, none of them is generic enough to support the above requirements. In this thesis we develop, in the spirit of Logic Programming, a generic and extensible distributed abductive system that has the potential to target a wide range of distributed problem solving applications. The underlying distributed inference algorithm incorporates constraint satisfaction and allows non-ground conditional answers to be computed. Its soundness and completeness have been proved. The algorithm is customisable in that different inference and coordination strategies (such as goal selection and agent selection strategies) can be adopted while maintaining correctness. A customisation that supports confidentiality during problem solving has been developed, and is used in application domains such as distributed security policy analysis. Finally, for evaluation purposes, a flexible experimental environment has been built for automatically generating different classes of distributed abductive constraint logic programs. This environment has been used to conduct empirical investigation of the performance of the customised system

    Programming in logic without logic programming

    Get PDF
    In previous work, we proposed a logic-based framework in which computation is the execution of actions in an attempt to make reactive rules of the form if antecedent then consequent true in a canonical model of a logic program determined by an initial state, sequence of events, and the resulting sequence of subsequent states. In this model-theoretic semantics, reactive rules are the driving force, and logic programs play only a supporting role. In the canonical model, states, actions and other events are represented with timestamps. But in the operational semantics, for the sake of efficiency, timestamps are omitted and only the current state is maintained. State transitions are performed reactively by executing actions to make the consequents of rules true whenever the antecedents become true. This operational semantics is sound, but incomplete. It cannot make reactive rules true by preventing their antecedents from becoming true, or by proactively making their consequents true before their antecedents become true. In this paper, we characterize the notion of reactive model, and prove that the operational semantics can generate all and only such models. In order to focus on the main issues, we omit the logic programming component of the framework.Comment: Under consideration in Theory and Practice of Logic Programming (TPLP

    Abduction in Annotated Probabilistic Temporal Logic

    Get PDF
    Annotated Probabilistic Temporal (APT) logic programs are a form of logic programs that allow users to state (or systems to automatically learn)rules of the form ``formula G becomes true K time units after formula F became true with L to U% probability.\u27\u27 In this paper, we develop a theory of abduction for APT logic programs. Specifically, given an APT logic program Pi, a set of formulas H that can be ``added\u27\u27 to Pi, and a goal G, is there a subset S of H such that Pi cup S is consistent and entails the goal G? In this paper, we study the complexity of the Basic APT Abduction Problem (BAAP). We then leverage a geometric characterization of BAAP to suggest a set of pruning strategies when solving BAAP and use these intuitions to develop a sound and complete algorithm
    corecore