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Abstract
Annotated Probabilistic Temporal (APT) logic programs are a form of logic programs that allow
users to state (or systems to automatically learn) rules of the form “formula G becomes true K
time units after formula F became true with L to U% probability.” In this paper, we develop a
theory of abduction for APT logic programs. Specifically, given an APT logic program Π, a set
of formulas H that can be “added” to Π, and a goal G, is there a subset S of H such that Π ∪ S
is consistent and entails the goal G? In this paper, we study the complexity of the Basic APT
Abduction Problem (BAAP). We then leverage a geometric characterization of BAAP to suggest
a set of pruning strategies when solving BAAP and use these intuitions to develop a sound and
complete algorithm.
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1 Introduction

Statements of the form “formula G becomes true K time units after formula F became true
with L to U% probability” occur naturally in many different domains. For example, it is
common to talk about the probability that certain stock prices will increase or decrease
within a given amount of time after an economic announcement is made by the US Federal
Reserve. In the same vein, it is normal to say that there is a probability that certain diseases
will occur at specific levels within some amount of time after a natural disaster has occurred.
And in an all too common scenario for air-travelers, there is a certain probability that a
plane will take off within a time T after pushing back from the gate. All of these examples
can naturally be expressed as Annotated Probabilistic Temporal (APT) rules [19].

In this paper, we consider the problem of abduction in APT logic programs (APT-LPs).
There are many cases where abduction in such logic programs is critically needed. For instance,
[19] describes how APT logic programs describing the temporal and probabilistic behavior
of over 30 terrorist groups were automatically extracted from data about those groups. In
those APT logic programs, there are two types of predicate symbols—action predicates
describing actions the group takes (e.g., suicide bombing, kidnappings), and environmental
predicates describing the environment in which the group operates (e.g., whether the group
gets financial support from a foreign state, whether the group can participate in the electoral
process in its country, etc.). In such an application, APT-rules have action atoms in the rule
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1) interOrgConflict(Group1) efr
; armedAttack(Group1) : [2, 0.85, 0.95]

Group1 will use armed attacks as a strategy within two time units of being involved in
inter-organizational conflict with a probability between 0.85 and 0.95.

2) militaryW ing(Group1)
pfr
↪→ bomb(Group1) : [2, 0.86, 0.91, 0.7, 0.8]

Group1 will carry out a bombing exactly two time units after establishment of a standing
military wing with a probability between 0.86 and 0.91.

Figure 1 A sample APT program based on automatically extracted rules from [19] modeling the
behavior of a terrorist organization Group1.

head and environmental atoms in the rule body. Figure 1 provides a small set of such rules.
Clearly, defense experts are interested in understanding how they can modify the true set of
environmental atoms (subject to constraints specifying what can and cannot be made true) so
that a given goal (e.g., reduction of suicide attacks by 10% or more in the next quarter) can be
achieved, if possible. In a second application we are building, we are studying the relationship
between numerous social-cultural-economic and policy variables with educational outcomes
in over 220 countries.1 Here again, APT rules can describe the temporal relationship between
environmental atoms (e.g., percentage of education budget spent on primary education,
student-teacher ratio, provision of childcare facilities) and outcomes (e.g., percentage of
females enrolled in primary education), together with the probability that those relationships
hold. Here, policy makers want to understand what environmental atoms they can make
true (subject to some constraints) so that certain desirable outcomes occur during a given
time frame with some probability.

In this paper, we consider triples of the form 〈Π, H, g〉 where Π is an APT logic program,
H is a set of formulas that can be added (e.g., adding some childcare facilities might be
possible, but increasing the share of the education budget spent on primary education might
not), and g is a goal we wish to achieve (e.g., improve primary education female enrollment
by 10%). The Basic APT Abduction Problem (BAAP) tries to find (if possible) a set S ⊆ H
such that Π ∪ S is consistent and entails the goal. In the case of the terrorism and education
applications mentioned above, such sets S correspond to things we could do to try to ensure
the desired goal occurs at the desired time (with some probability).

The organization and contributions of this paper are as follows. Section 2 briefly reviews
the syntax and semantics of APT-LPs from [19]. Section 3 defines the basic APT abduction
problem and shows the complexity of checking for the existence of a solution (which is
ΣP

2 -complete) and the complexity of checking whether a given set is a solution (which
is DP -complete). Section 4 provides a geometric intuition behind APT-LPs and derives
conditions to prune the search space for a solution to BAAP. Section 5 derives a sound and
complete algorithm for BAAP. Finally, Section 6 describes related work.

2 Preliminaries

We now briefly recall the syntax and semantics of APT-LPs from [19]. We assume the
existence of a finite set Lcons of constant symbols, a finite set Lpred of predicate symbols,

1 http://www.aaas.org/news/releases/2011/0113rwanda.shtml?sa_campaign=Internal_Ads%
2fAAAS%2fAAAS_News%2f2011-01-13%2fjump_page, Jan. 13, 2011.

ICLP 2011

http://www.aaas.org/news/releases/2011/0113rwanda.shtml?sa_campaign=Internal_Ads%2fAAAS%2fAAAS_News%2f2011-01-13%2fjump_page
http://www.aaas.org/news/releases/2011/0113rwanda.shtml?sa_campaign=Internal_Ads%2fAAAS%2fAAAS_News%2f2011-01-13%2fjump_page


242 Abduction in Annotated Probabilistic Temporal Logic

and an infinite set Lvar of variable symbols. Each predicate symbol p ∈ Lpred has an arity.
A term is any member of Lcons ∪ Lvar. If t1, . . . , tn are terms and p ∈ Lpred is a predicate
symbol with arity n, then p(t1, . . . , tn) is an atom. Every atom is a formula. If F and G are
formulas, then F ∧ G, F ∨ G and ¬F are formulas.2 A formula is ground iff no variables
occur in it. B denotes the Herbrand base, i.e., the set of all ground atoms. We assume an
arbitrarily large, but fixed size window of time τ = {1, . . . , tmax} .

I Definition 1 (Annotated formula). If F is a (ground) formula, t ∈ τ is a time point, and
[`, u] ⊆ [0, 1], then F : [t, `, u] is an (ground) annotated formula.

Intuitively, F : [t, `, u] says that F will be true at time t with a probability in the range
[`, u]. We assume the existence of a finite set F of symbols called frequency function symbols
denoting “frequency functions," which will be defined shortly.

I Definition 2 (APT rule/program). Let F and G be two (ground) formulas, ∆t be a time
interval, [`, u] ⊆ [0, 1], fr ∈ F be a frequency function symbol, and [α, β] ⊆ [0, 1].
1. F

fr
; G : [∆t, `, u] is called an (ground) unconstrained APT rule.

2. F
fr
↪→ G : [∆t, `, u, α, β] is called a (ground) constrained APT rule.

An (ground) APT program is a finite set of (ground) APT rules and annotated formulas.

We now define the semantics of APT-programs.

I Definition 3 (World). A world is any set of ground atoms. We use 2B to denote the set of
all worlds.

As a world is just an ordinary Herbrand interpretation, satisfaction of a formula F by a
world w, denoted w |= F , is defined in the usual way [14].

I Definition 4 (Thread). A thread is a mapping Th : τ → 2B.

Intuitively, Th(t) is the set of ground atoms which are true at time t according to Th.
We use T to denote the set of all possible threads and now define a tp-interpretation.

I Definition 5 (Temporal Probabilistic Interpretation). A temporal probabilistic (tp) inter-
pretation I is a probability distribution over the set of all possible threads, i.e., I : T → [0, 1]
and

∑
Th∈T I(Th) = 1.

A tp-interpretation I assigns a probability to each thread.

I Definition 6 (Satisfaction of an Annotated Formula). Let F : [t, `, u] be a ground annotated
formula, and I be a tp-interpretation. We say that I satisfies F : [t, `, u], denoted I |= F :
[t, `, u], iff ` ≤

∑
Th∈T ,Th(t)|=F I(Th) ≤ u.

A tp-interpretation satisfies an annotated formula iff it satisfies all its ground instances.
Each frequency function symbol in an APT rule denotes a frequency function (FF) which
tries to capture (within a thread) how often G is true ∆t units after F . FFs are defined
axiomatically by [19].

I Definition 7 (Frequency Function). Let Th be a thread, F and G be ground formulas, and
∆t > 0 be an integer. A frequency function fr is a mapping of quadruples (Th, F,G,∆t) to
[0, 1] such that:

2 Throughout this paper, negation ¬ is treated in a classical manner and not as non-monotonic negation.
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(FF1) If G is a tautology, then fr(Th, F,G,∆t) = 1.
(FF2) If F is a tautology and G is a contradiction, then fr(Th, F,G,∆t) = 0.
(FF3) If F is a contradiction, then fr(Th, F,G,∆t) = 1.
(FF4) If G is not a tautology, and either F or ¬G is not a tautology, and F is not a
contradiction, then there exist threads Th1, Th2 ∈ T such that fr(Th1, F,G,∆t) = 0 and
fr(Th2, F,G,∆t) = 1.

The rationale behind the above axioms is given in [19], which also introduces two useful FFs,
the point frequency function (pfr) and the existential frequency function (efr):

pfr(Th, F,G,∆t) = |{t : Th(t) |= F ∧ Th(t+ ∆t) |= G}|
|{t : (t ≤ tmax −∆t) ∧ Th(t) |= F}|

If there is no t ∈ [0, tmax −∆t] such that Th(t) |= F then we define pfr to be 1. Intuitively,
pfr expresses how frequently G follows F in exactly ∆t time points.

efr(T h, F, G, ∆t) = efn(T h, F, G, ∆t, 0, tmax)
|{t : (t ≤ tmax −∆t) ∧ T h(t) |= F}|+ efn(T h, F, G, ∆t, tmax −∆t, tmax)

Here efn(Th, F,G,∆t, t1, t2) = |{t : (t1 ≤ t ≤ t2) and Th(t) |= F and there exists t′ ∈
[t + 1,min(t2, t + ∆t)] such that Th(t′) |= G}|. If the denominator is zero (if there is no
t ∈ [0, tmax −∆t] such that Th(t) |= F and efn(Th, F,G,∆t, tmax −∆t, tmax) = 0) then we
define efr to be 1. Intuitively, efr indicates the frequency that G follows F within ∆t time
points.

We now define satisfaction of APT rules by tp-interpretations.

I Definition 8 (Satisfaction of APT rules). Let r be a ground APT rule with FF fr and I be
a tp-interpretation.
1) If r = F

fr
; G : [∆t, `, u], then we say that I satisfies r (denoted I |= r) iff

` ≤
∑
Th∈T I(Th) · fr(Th, F,G,∆t) ≤ u.

2) If r = F
fr
↪→ G : [∆t, `, u, α, β], then we say that I satisfies r (denoted I |= r) iff

` ≤
∑
Th∈T ,α≤fr(Th,F,G,∆t)≤β I(Th) ≤ u.

Intuitively, the unconstrained APT rule F fr
; G : [∆t, `, u] evaluates the probability that F

leads to G in ∆t time units as follows: for each thread, it finds the probability of the thread
according to I and then multiplies that by the frequency (in terms of fraction of times) with
which F is followed by G in ∆t time units according to frequency function fr. It then sums
up these products across all threads in much the same way as an expected value computation.
For constrained rules, the probability is computed by first finding all threads such that the
frequency of F leading to G in ∆t time units is in the [α, β] interval, and then summing up
the probabilities of all such threads. This probability is the sum of probabilities assigned
to threads where the frequency with which F leads to G in ∆t time units is in [α, β]. To
satisfy the constrained APT rule F fr

↪→ G : [∆t, `, u, α, β], this probability must be within the
probability interval [`, u]. A tp-interpretation I satisfies an APT-rule iff it satisfies all its
ground instances, and it satisfies an APT-program Π, denoted I |= Π, iff I satisfies all rules
and annotated formulas in it.

An APT program Π is consistent iff there exists a tp-interpretation I s.t. I |= Π. Π
entails an annotated formula f (resp., an APT rule r), denoted Π |= f (resp., Π |= r), iff
every tp-interpretation satisfying Π satisfies f (resp., r) as well.
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3 Abduction in APT Logic

Given an APT program modeling a particular situation, we may want to know how to act to
induce some goal condition at a given time in the future and within specified probability
bounds.

I Definition 9 (Basic APT Abduction Problem (BAAP)). An instance of the basic APT
abduction problem is a triple 〈Π, H, g〉, where Π is an APT program, H is a finite set of
annotated formulas and g is an annotated formula. S ⊆ H is a solution to BAAP iff Π∪ S is
consistent and Π ∪ S |= g.

Intuitively, Π models an environment, g is a goal we want to achieve, and H represents
possibilities for what we can do in order to achieve the goal. Note that g is an annotated
formula of the form G : [t, `, u], where G is an arbitrary boolean combination.

I Example 10. Suppose we have an instance 〈Π, H, g〉 of BAAP, where Π is the simple APT
program consisting of the following rules:

b
pfr
; a : [1, 0.68, 0.82]

c
pfr
; a : [1, 0.47, 0.7]

the set of abducibles is H = {b : [1, 0.3, 0.5], c : [1, 1, 1]}, and the goal is g = a : [2, 0.6, 0.85].
In addition, assume that for this problem tmax = 2. We must find a subset S of formulas
from H such that Π ∪ S is consistent and entails g, that is, a solution where a will be true
at time 2 with a probability in the range [0.6, 0.85]. Consider the subset S = {c : [1, 1, 1]}.
When this formula is added to Π, we have that the resulting program Π ∪ {c : [1, 1, 1]} is
consistent and entails a : [2, 0.68, 0.7], which entails the goal formula a : [2, 0.6, 0.85]. Thus,
S is a solution to this instance of BAAP.

Different preference criteria among solutions might be expressed in order to identify
“preferred” solutions. Due to space constraints, in this paper we restrict ourselves to the
Basic APT Abduction Problem defined above, thus no preference relation is considered.

Checking for the existence of a solution is ΣP2 -complete even for restricted classes of APT
programs.

I Theorem 11 (BAAP Existence). Let P = 〈Π, H, g〉 be an instance of BAAP. Deciding
whether a solution exists for P is ΣP2 -complete. ΣP2 -hardness holds even if Π is empty.

Checking if a given set is a solution to BAAP is DP -complete even for restricted classes
of APT programs.

I Theorem 12 (BAAP Checking). Let P = 〈Π, H, g〉 be an instance of BAAP. Deciding
whether S ⊆ H is a solution for P is DP -complete. Hardness holds even if Π is restricted to be
a program containing only annotated formulas, only unconstrained rules, or only constrained
rules.

It is easy to see that 〈Π, H, g〉 does not have solutions if at least one of Π and g is
inconsistent; thus, in the rest of this paper we assume that both Π and g are consistent. A
consistency checking algorithm is given in [19].
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4 Geometric Characterization of APT Abduction

In this section, we present a geometric characterization of abduction in APT logic. As shown
in [19], given an APT program Π, we can derive a linear program LC(Π) s.t. the solutions
of LC(Π) are in 1− 1 correspondence with the interpretations satisfying Π. Clearly, LC(Π)
defines a convex polytope denoted Polytope(Π). For any two polytopes P1 and P2, we write
P1 ⊆ P2 iff P1 is contained in P2, whereas P1 ∩ P2 denotes the intersection of P1 and P2.

We can apply this geometric interpretation to BAAP as follows: given an instance P =
〈Π, H, g〉 of the basic APT abduction problem, S ⊆ H is a solution of P iff Polytope(Π∪S) 6= ∅
and Polytope(Π ∪ S) ⊆ Polytope({g}). Intuitively, we can think of BAAP as the problem of
“cutting” Polytope(Π) by using half-spaces in H so that we obtain a non-empty polytope
which fits inside Polytope({g}).

The following simple proposition provides a sufficient condition for the intersection of the
polytope of an APT program and the polytope of an annotated formula to be empty. This
proposition will effectively provide a pruning condition that we can exploit when looking for
a solution.

I Proposition 4.1. Let Π be a consistent APT program and F : [t, `, u] a consistent annotated
formula. If [`′, u′] is a probability interval s.t. Polytope(Π) ⊆ Polytope({F : [t, `′, u′]}) and
[`′, u′] ∩ [`, u] = ∅, then Polytope({F : [t, `, u]}) ∩ Polytope(Π′) = ∅ for any Π′ ⊇ Π.

By leveraging the geometric characterization of the APT abduction problem, we can
make the following observations that play an important role in developing an algorithm for
BAAP.

If Polytope(Π) ∩ Polytope({g}) = ∅, then the problem does not have a solution—no
matter how we slice Polytope(Π), it will never fit inside Polytope({g}). Alternatively, if
Polytope(Π) ⊆ Polytope({g}), then ∅ is a solution—we do not need to cut Polytope(Π)
as it already fits within Polytope({g}), i.e., Π |= g.
If neither of the above conditions holds, then we iterate over all possible subsets of H.
There are two possible reasons why a subset S of H may not be a solution:
1. Polytope(Π ∪ S) = ∅, that is, Π ∪ S is inconsistent. In this case, any superset of S is

also not a solution.
2. Polytope(Π ∪ S) 6= ∅, but Polytope(Π ∪ S) 6⊆ Polytope({g}). In this case, any subset

of S is also not a solution.
In addition, Proposition 4.1 allows us to say even more. If g = G : [t, `, u] and
[`′, u′] is a probability interval s.t. Polytope(Π ∪ S) ⊆ Polytope({G : [t, `′, u′]}) but
[`′, u′]∩ [`, u] = ∅, then Polytope(Π∪S) and Polytope({g}) are not overlapping. Thus,
any additional cuts to Π ∪ S would be useless, that is, any superset of S is also not a
solution. Intuitively, this is the case where Π has been cut too much by S.

5 Basic APT Abduction Algorithm

We now present a sound and complete algorithm for BAAP. We note that the search space
of possible solutions H = 2H is a lattice under ⊆. A brute-force algorithm to solve BAAP
would traverse this lattice, inspecting one element at a time and checking whether or not
that element is a solution. The algorithm would halt when it arrived at a solution (or when
all lattice elements had been considered).
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I Example 13. Suppose we have an arbitrary instance 〈Π, H, g〉 of BAAP, where |H| = 4.
H = 2H has 16 elements and is a complete lattice under the ⊆ ordering. All 16 elements
need to be considered, either implicitly or explicitly.

Instead of blindly choosing an element from this lattice, we can find a better way of
choosing an element S ∈ H such that (i) S has a good chance of being a solution, and (ii) if
it is not a solution, then we are able to prune the search space to avoid inspecting elements
of H that are definitely not solutions.

As for the first point, we note that bigger subsets of H make more cuts to Π, but they also
have a greater chance of being inconsistent with Π. For example, an extreme case would be
the entire set H. If Π∪H is consistent, then we can determine whether or not the abduction
problem has a solution without looking at any other subset of H; however, Π ∪H has a high
likelihood of being inconsistent. On the other hand, smaller subsets of H are more likely
to be consistent, but we risk not cutting Π enough to entail the goal. For example, ∅ is
consistent, but it is unlikely to be a solution unless Polytope(Π) ⊆ Polytope({g}). Thus, a
“medium-sized” set might be a good compromise between these two extremes.

Regarding the second point above, as already mentioned in the previous section, when
we find that a subset S ∈ H is not a solution, we can prune the search space by discarding
either all supersets or all subsets (or even both when Proposition 4.1 applies) of S. However,
as the following example will demonstrate, the amount of potential pruning depends on the
size of the subset chosen.

I Example 14. Consider again the instance of Example 13. Suppose we choose a “small” S1 ⊆
H, e.g., where |S1| = 1. If S1 is not a solution because Polytope(Π ∪ S1) 6⊆ Polytope({g}),
then we can discard only the empty set from the search space. On the other hand, suppose
we choose a “big” S2 ⊆ H, e.g., where |S2| = 3. If S2 is not a solution because Polytope(Π∪
S2) = ∅, then we can discard only H from the search space. Note that if S1 fails to be a
solution because Polytope(Π ∪ S1) = ∅, or S2 is not a solution because Polytope(Π ∪ S2) 6⊆
Polytope({g}), then the search space is pruned more, but these cases are less likely to
occur. Thus, in the worst case we will end up pruning only one element. If we choose an
S ⊆ H having cardinality 2 and it fails to be a solution, then it is guaranteed that at least 3
elements from the search space will be discarded, regardless of why S is not a solution. A
“medium-sized” set looks like a promising choice—because it is located in the center of the
lattice surrounded by many elements, it can provide the largest amount of pruning in the
worst case.

In the previous example, we saw that a subset S of H having cardinality 2 would be a
good choice. In addition, proceeding by choosing medium-sized, centrally-located sets will
move towards a solution in a binary search fashion, providing faster convergence. Identifying
such a medium-sized set is easy in the first iteration, but as we move through the search
space looking for a solution and pruning parts of the lattice, it becomes more difficult to
determine how to choose a good element to inspect. Following the same intuitions introduced
above, we would like to choose an element of the lattice from an area where there are many
other elements, and in addition, choose one that has a medium size among those.

To identify the medium-sized subsets from a populous region of the search space, we use
the scoring function defined below.

I Definition 15. Consider an instance 〈Π, H, g〉 of BAAP. Let P ⊆ 2H , S ∈ P, vmax =
max{|S′| : S′ ∈ P ∧ S ⊆ S′}, and vmin = min{|S′| : S′ ∈ P ∧ S′ ⊆ S}. We define
score(S,P) = (vmax − vmin)− abs(|S| − (vmax + vmin)/2).
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In the previous definition, (vmax − vmin) gives a measure of how many elements are
around S whereas abs(|S| − (vmax + vmin)/2) gives a measure of the distance from S to a
medium-sized element among those surrounding S. Note that in this definition, P is any
subset of 2H , and represents the remaining portions of the original search space H that have
not yet been pruned.

I Example 16. Once again, consider the instance of Example 13 and let P be the whole
search space H = 2H . For the top element of the lattice, vmax = 4, since the largest superset
in P is H itself, and vmin = 0, since the smallest subset in P is the empty set. Using the
scoring function from Definition 15, the score of the top element is (4−0)−abs(4−( 4+0

2 )) = 2.
Likewise, we can compute the scores of the remaining elements in the lattice: all sets of
cardinality 3 have score 3, all sets of cardinality 2 have score 4, sets of cardinality 1 have
score 3, and the score of the empty set is 2. As described in Example 14, the medium-sized
elements of size 2 in the middle of the lattice are the most preferable choices for pruning,
and have thus been assigned the highest score.

The observations made so far lead us to the algorithm reported below for solving the
basic APT abduction problem.

Algorithm 1 Basic Abduction
Input: Instance P = 〈Π, H, g = G : [t, `, u]〉 of the basic APT abduction problem
Output: A solution for P if it exists, false otherwise
1: if P olytope(Π) ∩ P olytope({g}) = ∅ then
2: return false
3: if P olytope(Π) ⊆ P olytope({g}) then
4: return ∅
5: H := 2H

6: while H 6= ∅ do
7: Choose S ∈ H having maximum score(S,H)
8: [`′, u′] = T ightest(Π ∪ S, G, t)
9: if [`′, u′] ∩ [`, u] = ∅ then
10: H := H− {S′ | S′ ∈ H ∧ S′ ⊇ S}
11: if [`′, u′] 6= ∅ then
12: if [`′, u′] ⊆ [`, u] then
13: return S

14: else
15: H := H− {S′ | S′ ∈ H ∧ S′ ⊆ S}
16: return false

The algorithm first checks whether no solution exists because Polytope(Π)∩Polytope({g}) =
∅ or if the empty set is a trivial solution (lines 1–4). These checks can be done by solving a
linear program as described in [19].

After that, in line 6 we begin to traverse the search space H, pruning as the algorithm
proceeds. In line 7 we choose a set S ∈ H with the maximum score. The function
Tightest(Π ∪ S,G, t) in line 8 returns the tightest interval [`′, u′] s.t. Polytope(Π ∪ S) ⊆
Polytope({G : [t, `′, u′]}) if Π∪ S is consistent, otherwise it returns ∅. Again, [19] shows how
this function can be computed by solving a linear program, providing different optimizations
that can be applied to significantly reduce the size of these constraints. In lines 9 and 10 the
search space is pruned by discarding every superset of S. Note that here we handle both the
case where Π ∪ S is inconsistent and the case where Polytope(Π ∪ S) and Polytope({g}) do
not overlap, i.e., when Proposition 4.1 can be applied. If S is a solution, then it is returned
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(lines 11–13). Line 15 examines the case where Π ∪ S is consistent but not a solution—here
every subset of S is discarded. If no solution can be found, then the algorithm returns false.

I Theorem 17. Let P be an instance of BAAP. If P has a solution, then Algorithm Basic
Abduction returns one solution of P , otherwise the algorithm returns false.

I Example 18. Suppose we have an instance 〈Π, H, g〉 of BAAP that we want to solve
using Algorithm Basic Abduction, where Π is the simple APT program given in Example 10,
H = {f1 = b : [1, 0.4, 0.8], f2 = c : [1, 0.8, 1.0], f3 = c : [1, 1, 1], f4 = b : [1, 1, 1]}, and g = a :
[2, 0.6, 0.85]. First, we check whether the problem has no solution because Polytope(Π) ∩
Polytope({g}) = ∅, or a trivial solution if Polytope(Π) ⊆ Polytope({g}). Since neither of
these conditions are true, we begin searching H in line 6. As described in Example 16, in
the initial lattice, elements of cardinality 2 have the maximum score of 4, so we choose
the first such set S = {f1, f2}. Next, computing Tightest(Π ∪ S,G, t) on line 8 returns
[`′, u′] = [0.68, 0.9]. We now check to see if S is a solution, and if not, what elements we can
prune from H. Because [`′, u′] ∩ [0.6, 0.85] 6= ∅ on line 9, we cannot prune any supersets of S.
However, because [`′, u′] 6⊆ [0.6, 0.85] we can prune all subsets of S on line 14, removing the
sets {f1}, {f2}, and ∅ from H. We now begin the loop on line 6 again with our pruned H.
This time, the maximum score is 2.5 for subsets of cardinality 2 or 3, so we choose one of these
elements—the next subset of cardinality 2—S = {f1, f3}. This time, Tightest(Π ∪ S,G, t)
on line 8 returns [`′, u′] = [0.68, 0.7]. Again, [`′, u′] ∩ [0.6, 0.85] 6= ∅ on line 9, so we continue
to the next test on line 12. Since [0.68, 0.7] ⊆ [0.6, 0.85], Polytope(Π ∪ S) ⊆ Polytope({g}),
so we return S = {b : [1, 0.4, 0.8], c : [1, 1, 1]} as a BAAP solution.

6 Related Work and Conclusion

Though abduction has been extensively studied [3, 7, 16, 8], there is no work that we are
aware of that studies abduction in the context of both probabilities and time.

There has been important work on abduction in temporal logic. [2] presents a non-
deterministic algorithm to find explanations for temporal phenomena based on a framework
called STP. [5] is another important paper that uses constraint checking methods and
compilation methods to achieve greater efficiency. [6] develops an SLDNF-based procedure
to perform temporal abduction in logic programs based on the Abductive Event Calculus
[6, 9, 21, 12] using a notion of partial plans. [1] provides an abduction mechanism that allows
the definition of preferences over abductive explanations. However, none of these frameworks
involves uncertainty.

Abduction has also been studied in the context of uncertainty. However, all past work on
abduction in such settings has been devised under various independence assumptions [18, 17, 4].
The only exceptions are [24, 23] which perform abduction in possible worlds-based probabilistic
logic systems such as those of [11], [15], and [10] where independence assumptions are not
made. In this paper, no independence assumption is made, and moreover, none of the above
frameworks include time in addition to probabilities. The first implementation of abductive
logic programs without independence assumptions is contained in [23, 22].

In this paper, we have shown how abduction can be performed in the context of logic
programs containing both probabilistic and temporal information. We have formally defined
the Basic APT Abduction Problem (BAAP). We have shown that the problem of determining
existence of a solution to BAAP is ΣP2 -complete whereas checking if a given set is a solution
to BAAP is DP -complete. We have developed strategies to prune the search space for a
solution and have given an algorithm to compute a solution to BAAP.
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Much work remains to be done. It is only recently that practical algorithms to compute
consistency and entailment in logic programs with probability and time have been developed
based on randomized algorithms [20]. Likewise, it is only recently that algorithms to compute
abductive explanations to probabilistic logic programs without independence assumptions
have been devised [23, 22]. Scalable implementations of algorithms for BAAP are necessary.
We are developing randomized and sampling-based algorithms for BAAP in the spirit of [13]
which scale well to very large numbers of possible worlds and threads. We are also developing
an application of APT Abduction to the problems described in this paper.
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