
Imperial College London

Department of Computing

Distributed Abductive Reasoning: Theory,
Implementation and Application

Jiefei Ma

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing of Imperial College London and

the Diploma of Imperial College, December, 2011

Declaration of Originality

I, Jiefei Ma, declare that this thesis is my own work and has not been submitted in any form for

another degree or diploma at any university or other institute of tertiary education. Information

derived from the published and unpublished work of others has been acknowledged in the text

and a list of references is given in the bibliography.

i

ii

Abstract

Abductive reasoning is a powerful logic inference mechanism that allows assumptions to be

made during answer computation for a query, and thus is suitable for reasoning over incomplete

knowledge. Multi-agent hypothetical reasoning is the application of abduction in a distributed

setting, where each computational agent has its local knowledge representing partial world and

the union of all agents’ knowledge is still incomplete. It is different from simple distributed

query processing because the assumptions made by the agents must also be consistent with

global constraints.

Multi-agent hypothetical reasoning has many potential applications, such as collaborative plan-

ning and scheduling, distributed diagnosis and cognitive perception. Many of these applications

require the representation of arithmetic constraints in their problem specifications as well as

constraint satisfaction support during the computation. In addition, some applications may

have confidentiality concerns as restrictions on the information that can be exchanged between

the agents during their collaboration. Although a limited number of distributed abductive sys-

tems have been developed, none of them is generic enough to support the above requirements.

In this thesis we develop, in the spirit of Logic Programming, a generic and extensible dis-

tributed abductive system that has the potential to target a wide range of distributed problem

solving applications. The underlying distributed inference algorithm incorporates constraint

satisfaction and allows non-ground conditional answers to be computed. Its soundness and

completeness have been proved. The algorithm is customisable in that different inference and

coordination strategies (such as goal selection and agent selection strategies) can be adopted

while maintaining correctness. A customisation that supports confidentiality during problem

solving has been developed, and is used in application domains such as distributed security

policy analysis. Finally, for evaluation purposes, a flexible experimental environment has been

built for automatically generating different classes of distributed abductive constraint logic pro-

grams. This environment has been used to conduct empirical investigation of the performance

of the customised system.

iii

iv

Acknowledgements

I would like to express my deepest gratitude to my co-supervisors Dr. Alessandra Russo and Dr.

Krysia Broda. This thesis would not have been possible without their advice, encouragement,

support and guidance. I am also very thankful to my second supervisor Dr. Emil Lupu, whose

constructive criticism and invaluable insights were very inspiring and motivational. I would like

to express my wholehearted gratitude to all of my supervisors and Professor Morris Sloman for

organising the financial support required for me to pursue my PhD studies.

I would also like to thank my PhD examiners Professor Marek Sergot (internal) and Professor

Antonis Kakas (external) from University of Cyprus for their very constructive criticism and

detailed comments that help improve this thesis.

I am grateful to the academic staff and researchers in the Department of Computing for their

guidance and technical advice, in particular Professor Keith Clark, Dr. Francesca Toni, Profes-

sor Murray Shanahan and Professor Morris Sloman. I am also grateful to Professor Ken Satoh

and Professor Hiroshi Hosobe of the National Institute of Informatics (Japan), and Dr. Jorge

Lobo and Dr. Seraphin Calo of the IBM T. J. Watson Research Center (USA) for their helpful

advice and discussions related to my PhD studies.

Many thanks to my fellow students and friends who have been part of Office 502 or in the Policy

research group, namely Dalal Alrajeh, Rudi Ball, Themis Bourdenas, Domenico Corapi, Robert

Craven, Luke Dickens, Changyu Dong, Anandha Gopalan, Sye-loong Keoh, Jim Kuo, Srdjan

Marinovic, Encrico Scalavino, Alberto Schaeffer-Filho, Vrizlynn Thing and Ryan Wishart, for

their friendship and support.

My most profound gratitude goes to my parents, MA Xincai and SHI Baolan, to

whom this thesis is dedicated. They provided me with constant care, encouragement and

inspiration to never give up.

The work presented in this thesis was partly funded by: the Imperial College London Deputy

Rector’s Award 2007–2010; the International Technology Alliance sponsored by the U.S. Army

Research Laboratory and the U.K. Ministry of Defence under Agreement Number W911NF-

06-3-0001.

v

vi

Contents

Acknowledgements v

1 Introduction 1

1.1 Motivations . 1

1.2 Summary of Contributions . 4

1.3 Thesis Overview . 7

2 Background 9

2.1 First-Order Logic Language and Semantics . 9

2.1.1 Herbrand Models . 12

2.2 Logic Programming . 13

2.2.1 Syntax . 13

2.2.2 Semantics . 14

2.2.3 Operational Semantics of Logic Programs 22

2.2.4 Constraint Logic Programming . 23

2.3 Abductive Logic Programming . 24

2.3.1 Abductive Reasoning . 24

vii

viii CONTENTS

2.3.2 Abductive Logic Programs . 25

2.3.3 Semantics for Abduction . 26

2.3.4 Abductive Proof Procedures . 28

3 Early Work – Distributed Abductive REasoning (DARE) 36

3.1 Introduction . 36

3.2 The Centralised Meeting Scheduling Example 38

3.3 DARE Framework and Algorithm . 41

3.3.1 Overview . 42

3.3.2 Distributed Algorithm . 44

3.3.3 Distributed Meeting Scheduling Example 52

3.4 DARE Implementation . 57

3.4.1 Impact of Openness . 58

3.4.2 Termination . 59

3.5 Limitations of DARE . 61

3.6 Conclusion . 63

4 Distributed Abductive REasoning with Constraints (DAREC) 65

4.1 Introduction . 65

4.2 Distributed Framework for Fixed Agent Systems 69

4.3 Distributed Algorithm . 73

4.3.1 Overview . 73

CONTENTS ix

4.3.2 Notations of State + Local Abductive Derivation 75

4.3.3 Local Abductive Inference Rules . 78

4.3.4 Coordination . 88

4.3.5 Example Trace . 96

4.4 Soundness and Completeness . 98

4.4.1 Soundness . 100

4.4.2 Completeness . 106

4.5 Discussions . 114

4.5.1 Usage of Agent Advertisements . 114

4.5.2 Extension for Open Agent Systems . 115

4.6 Conclusion . 116

5 Multi-agent Hypothetical Reasoning with Confidentiality (DAREC2) 119

5.1 Introduction . 119

5.2 Distributed Framework with Confidentiality . 124

5.3 Distributed Abduction with Confidentiality . 128

5.3.1 Customisation of the Local Inference Rules 129

5.3.2 Customisation of the Coordination . 135

5.3.3 Sample Execution Trace of DAREC2 . 137

5.4 Discussions . 139

5.4.1 Confidential Reasoning by DAREC2 . 139

5.4.2 Impact of the Usage of Agent Advertisements on Confidential Reasoning 140

x CONTENTS

5.4.3 Soundness and Completeness of DAREC2 141

5.5 Implementation of DAREC2 . 141

5.5.1 Agent Knowledge Specifications . 143

5.5.2 Overview of the Agent Architecture . 144

5.5.3 Agent Communications . 147

5.5.4 Protocols for Agent Joining, Leaving and Knowledge Update 148

5.5.5 Executions of the Server Thread and the Worker Threads 152

5.6 Related Work . 160

5.6.1 Centralised Abductive Systems . 160

5.6.2 Distributed Abductive Systems . 161

5.6.3 Speculative Multi-agent Reasoning Systems 163

5.7 Conclusion . 164

6 Experiments and Benchmarking 166

6.1 A Random Generator for Distributed Abductive Constraint Logic Programs

(GenDACLP) . 167

6.1.1 The Input and Output of the GenDACLP 168

6.1.2 Implementation of GenDACLP . 172

6.2 Experiments and Discussions . 177

6.2.1 Environmental Setup . 177

6.2.2 Experiments . 178

6.2.3 Other Experiments: . 185

6.3 Conclusion . 187

7 Distributed Policy Analysis 188

7.1 Introduction . 188

7.2 A Formal Framework for Centralised Policy Analysis 191

7.2.1 Operational Model . 191

7.2.2 System Specification . 193

7.2.3 Example Policy Analysis Tasks . 198

7.3 Extended Framework for Distributed Policy Analysis 201

7.3.1 Extending the Operational Model and the Language 201

7.3.2 Distributed Policy Analysis . 206

7.4 Discussions . 214

7.5 Conclusion . 216

8 Conclusion and Future Work 218

A Example Source Code 221

A.1 The Inequality Solver . 221

Bibliography 225

xi

xii

List of Tables

2.1 Kleene’s 3-Valued Logic . 20

2.2 Kleene’s Equivalence ↔k vs. Strong Equivalence ↔s 20

5.1 DAREC2 Inter-agent Communication Message Types 154

5.2 DAREC2 Inter-thread (between ST and WTs) Communication Message Types . 157

6.1 List of Input Parameters for GenDACLP . 168

6.2 Experiment A (Collected Data(: all the sets within a test used the same configuration

except the randomly number generator seed for the GenDACLP 181

6.3 Experiment B (Collected Data(: all the sets within a test used the same configuration

except the randomly number generator seed for the GenDACLP 184

7.1 Predicates in L = LΠ
I ∪ LΠ

O ∪ LΠ
S ∪ LG

d

E ∪ LDS . 194

xiii

xiv

List of Figures

3.1 Global Abductive Derivation . 46

3.2 Global Consistency Derivation . 46

4.1 Distributed Abduction . 74

4.2 Pseudo-code of DAREC Agent Execution . 93

4.3 DAREC Derivation Tree with Pseudo-ASystem Execution Strategy (Reduction

of Non-abducible Goal) . 109

4.4 DAREC Derivation Tree with Pseudo-ASystem Execution Strategy (Reduction

of Abducible or Non-abducible Constraint) . 110

4.5 Transformation of Derivations involving LD2 and TR 112

4.6 Transformation of Derivations involving LD1 and TR 113

5.1 DAREC2 Agent Internal Architecture . 145

5.2 Changing of Leader . 149

5.3 New Agent Joining the System . 150

5.4 Existing Agent Leaving the System . 151

5.5 Update of Agent Knowledge . 152

xv

5.6 Execution Flowchart of ST. Note that all the collaboration messages except query

contain the query ID, and the ST of each agent can use it to identify its corresponding

WT. 156

5.7 Usage of the State Buffer by a WT . 159

5.8 State Chart Diagram of WT’s Life Cycle . 160

5.9 Execution Flow Charts of WT . 165

6.1 Example Configuration File for GenDACLP (sample.config) 171

6.2 Example Output File for GenDACLP (total.pl) 172

6.3 Key Steps of the GenDACLP . 173

6.4 Pseudo-code for Filling Arguments . 174

6.5 Experiment A: Average Centralised/Distributed Computation Time vs. Number of

Agents (Size of the Overall Logic Program) . 180

6.6 Experiment A: Communication Cost vs. Messages Exchanged 182

6.7 Experiment A: Average Distributed Computation Time vs. Messages Exchanged . . . 182

6.8 Experiment B: Average Centalised/Distributed Computation Time vs. Number of

Agents . 183

6.9 Experiment B: Average Distributed Computation Time vs. Number of Agents 185

6.10 Experiment B: Communication Cost vs. Messages Exchanged 185

6.11 Experiment B: Average Distributed Computation Time vs. Messages Exchanged . . . 186

7.1 A Policy Enforcement Point . 189

7.2 Operational Model with Centralised PEP/PDP 192

7.3 Coalition Network with Multiple PEPs/PDPs 201

xvi

7.4 Operational Model with Multiple PEPs/PDPs 202

xvii

xviii

Chapter 1

Introduction

1.1 Motivations

Abductive reasoning is a powerful mechanism for reasoning with incomplete knowledge. It can

be viewed as a process of finding explanation for an observation, or as a process of generating

conditional proofs for a conclusion. The conditions of the proof are abduced assumptions that,

together with a given knowledge-base, imply the conclusion of the proof. Abduced assumptions

can be viewed, within the context of a knowledge-base, as an explanation of the conclusion.

Abductive Logic Programming (ALP) [KKT92] is the combination of abductive reasoning and

Logic Programming, in which the knowledge-base is a logic program paired with a set of integrity

constraints – queries that must never succeed – used to define constraints upon the assumptions

that can be abduced. ALP, as a general knowledge-based problem solving method, has been used

in a wide range of real world applications: in cognitive robotics [Sha05] for abducing higher-

level descriptions of the world from sense data, in planning [Esh88, Sha00] for abducing action

events that would result in a desired state of the world using a knowledge-base about effects of

actions on features of the world, in diagnostic analysis of system specifications [CLM+09, BN08]

for abducing system traces that would lead to property violations, and many others [Poo88,

MBD94, RMNK02].

These application problems have a corresponding formulation in the multi-agent context. For

1

2 Chapter 1. Introduction

example, several robots may collaboratively try to abduce an agreed higher-level description of

the state of the world, from their separate sense data, that is consistent with their collective

constraints on the abduced information. Similarly, parties of a coalition network supporting

joint-rescue operations for an earthquake-hit zone may collaboratively reason about the depen-

dency of their policies to abduce circumstances of policy violations, which would obstruct the

success of their rescue operation. In these distributed knowledge-based problem solving tasks

each agent has an incomplete knowledge of the problem domain. A robot’s sense data provides

only a partial description of the state of the world, and policies of a rescue party constitute only

part of the knowledge involved in a collective rescue operation. Communication overheads and

confidentiality concerns often prevent solutions for these tasks being engineered by centralising

the agents’ knowledge into a single computation point and using existing ALP proof procedures

[KM90b, DS98, FK97, KMM00, EMS+04b, KvND01]. Thus, distributed algorithms for ALP

need to be developed for solving problems that require distributed abductive reasoning.

Distributed Abductive reasoning can be seen as a sub-type of multi-agent reasoning [Dur01],

which has two basic characteristics: 1. each agent is an entity (or module) that has only partial

knowledge of the world and is capable of performing reasoning individually; 2. there are some

global constraints that need to be satisfied by the reasoning results of the agents. The first

characteristic implies that these agents need to cooperate and exchange their local reasoning

results, whereas the second characteristic implies that the coordination between the agent

reasoning and answer sharing is a must. The main difference between distributed abductive

reasoning and other multi-agent reasoning is that the union of all the agent knowledge may be

incomplete. Thus, agents can make shared assumptions during their reasoning, and exchange

conditional answers during cooperation. In addition, the shared assumptions must also satisfy

the global constraints. These properties of distributed abductive reasoning give new challenges

in agent coordination.

Multi-agent reasoning has been widely studied and several logic-based systems have been de-

veloped [CLM+03, II04, ACG+06, HSC07]. However, most of these systems do not consider the

special properties of distributed abductive reasoning. ALIAS [CLM+03] (stands for Abductive

LogIc AgentS) was the first system developed as the study of abductive reasoning to a multi-

1.1. Motivations 3

agent setting. In ALIAS, the agent reasoning is based on an distributed algorithm extended

from the Kakas-Mancarella abductive proof procedure, and the agent interactions such as coop-

eration and answer sharing are controlled through a specifically designed coordination language

called LAILA [CLMT01]. Although ALIAS has been shown to be applicable to a number of

problems [Cia02, CT04], it has several limitations. First, it assumes local consistency of global

constraints – the constraints only need to be satisfied by the shared assumptions with respect

to each agent’s partial knowledge, instead of the union of all agent knowledge. Secondly, the

distributed abductive algorithm cannot generate non-ground answers and lacks arithmetic con-

straint satisfaction support, which is necessary for many abductive reasoning applications, such

as planning involving time and cost, or reasoning over infinite domains. Thirdly, the aspect of

confidentiality is not considered, and thus there is no restriction on what information agents

can exchange during cooperation and answer sharing. Finally, since the agent interactions are

explicitly specified by the LAILA language as part of an agent’s knowledge base, the system

must assume a fixed group of agents.

The main focus of this thesis is to develop generic agent-based distributed abductive reasoning

system(s) that satisfy some or all of the following requirements:

• Consider global consistency: this means that the shared assumptions made by any agent

must satisfy the integrity constraints by all agents with respect to the union of all agent

knowledge.

• Support Open Agent Groups: this means that the group of agents in the system may

change over time, even during agent cooperation. The distributed abductive reasoning

must guarantee correctness of the final answer even if an agent joins or leaves the system

during the computation of the answer.

• Support Constraint Satisfaction: this means that the knowledge representation language

should be expressive enough to allow problem domains involving arithmetic constraints to

be specified, and the distributed algorithm should support constraint satisfaction during

inference.

4 Chapter 1. Introduction

• Respect Confidentiality: this means that public and private knowledge of the agents can

be distinguished and that during the inference process no private knowledge of an agent

can be disclosed to others.

1.2 Summary of Contributions

The contributions of this thesis can be summarised into three parts:

1. Theory: We have developed two distributed abductive reasoning systems, DARE and

DAREC.

(a) DARE is our early work in the study of multi-agent abductive reasoning, and is

inspired by ALIAS. DARE defines the notation of distributed abductive framework,

which allows distributed agent knowledge to be represented as abductive normal logic

programs and integrity constraints. Similar to ALIAS, DARE deploys an algorithm

that is an extension to the Kakas-Mancarella abductive proof procedure. Different

from ALIAS, DARE focuses on global consistency and assumes an open group of

agents. To our knowledge, DARE was the first distributed abductive reasoning

system that supports both of these two properties.

(b) Based on the experiences gained from the early study, a more powerful system

DAREC (standing for DARE with Constraints) has been designed to supplant

DARE. DAREC is similar to DARE in that it focuses on global consistency and

extends the distributed abductive framework to distributed abductive normal con-

straint logic programs and integrity constraints. DAREC is superior to DARE in

that it deploys a completely new, yet much more powerful and flexible, distributed

algorithm based on the ASystem proof procedure, which supports reasoning over

unbound domains and arithmetic constraints. To our knowledge, DAREC is the

first distributed abductive reasoning system that can compute non-ground (condi-

tional) answers and has (arithmetic) constraint satisfaction support. Soundness and

completeness of DAREC are also proven.

1.2. Summary of Contributions 5

(c) Finally, to focus on the confidentiality aspects and to demonstrate the flexibil-

ity of DAREC, a customisation of it called DAREC2 (standing for DAREC with

Confidentiality) has been developed. DAREC2 inherits all properties of DAREC,

and can guarantee confidential reasoning, i.e., no private knowledge of any agent

is disclosed during or after the distributed inference process. This is achieved by

two steps. First, syntactic features are added to the knowledge representation lan-

guage in order to allow public and private knowledge of agents to be specified and

distinguished. Secondly, special goal selection strategies and agent interaction strate-

gies, which can affect the execution of the distributed algorithm, are developed and

adopted to ensure no private information can be exchanged between agents during

cooperation. The resulting system satisfies all of the requirements aforementioned

in Section 1.1.

2. Implementation:

(a) We have produced a multi-threaded prototype of our most powerful system DAREC2

in YAP Prolog. The distributed algorithm has been implemented as a meta-interpreter

and each agent is implemented as a reasoning module. This system prototype can be

used in two ways. It can be used as a stand-alone distributed abductive query pro-

cessing system, i.e., reasoning modules contain distributed knowledge and respond

to queries submitted to the system. Alternatively, it can be used as a decoupleable

multi-purpose tool for larger multi-agent systems (MAS), e.g., each reasoning mod-

ule can be embedded into an agent (with some well-known agent architecture such

as BDI [RG95]) of a larger MAS to support the agent/system functionalities (e.g.,

distributed reasoning over BDI agents belief stores [SDDM09]).

(b) We have conducted experiments to study the performance of our distributed abduc-

tive reasoning against distributed programs with different structures and of different

scales. As part of the automated test-bed we have developed a distributed abductive

constraint logic program generator. This generator takes as input a set of tunable

parameters and (randomly) generates as output a set of logic programs that satisfy

6 Chapter 1. Introduction

the properties described by the input parameters. This generator is generic enough

to produce example inputs for benchmarking not only our distributed abductive rea-

soning systems but also any other (centralised) logic programming reasoning system.

3. Application:

(a) We have applied the DAREC2 system to a real world problem of distributed security

policy analysis, which is a generalisation of [CLM+09] in the distributed setting. In

this problem domain, a policy-managed distributed system consists of a set of nodes,

each of which has its own private policies and private domain knowledge. The anal-

ysis tasks, such as identifying conflicts in policies, need to be done in a decentralised

fashion to respect confidentiality. It can be demonstrated that DAREC2 can be used

to solve these tasks seamlessly.

The research work leading to this thesis has resulted in the following publications:

• Jiefei Ma, Alessandra Russo, Krysia Broda and Keith Clark: DARE: A System for Dis-

tributed Abductive REasoning, Journal of Autonomous Agents and Multi-Agent Systems,

16, 271-297, 2008

• Jiefei Ma, Alessandra Russo, Krysia Broda and Keith Clark: A Dynamic System for Dis-

tributed Reasoning, AAAI Spring Symposium, Technical Report SS-08-02, 31-36, AAAI

Press, 2008

• Robert Craven, Jorge Lobo, Jiefei Ma, Alessandra Russo, Emil Lupu, Arosha Bandara,

Seraphin Calo and Morris Sloman: Expressive Policy Analysis with Enhanced System

Dynamicity, Proceedings of the 4th International Symposium on Information, Computer

and Communications Security, 239-250, ACM, 2009

• Jiefei Ma, Alessandra Russo, Krysia Broda and Emil Lupu: Multi-agent Planning with

Confidentiality (Extended Abstract), Proceedings of the 8th International Conference on

Autonomous Agents and Multi-agent Systems, 1275-1276, 2009

1.3. Thesis Overview 7

• Jiefei Ma, Alessandra Russo, Krysia Broda, Hiroshi Hosobe and Ken Satoh: On the

Implementation of Speculative Constraint Processing, Post-Proceedings of the 10th Inter-

national Workshop on Computational Logic in Multi-Agent Systems, 178-195, 2009

• Jiefei Ma, Krysia Broda, Randy Goebel, Hiroshi Hosobe, Alessandra Russo and Ken

Satoh: Speculative Abductive Reasoning for Hierarchical Agent Systems. Proceedings of

the 11th International Workshop on Computational Logic in Multi-Agent Systems, 49-64,

2010

• Jiefei Ma, Alessandra Russo, Krysia Broda and Emil Lupu: Distributed abductive reason-

ing with constraints (Extended Abstract), Proceedings of the 9th International Conference

on Autonomous Agents and Multi-agent Systems, 1381-1382, 2010

• Jiefei Ma, Krysia Broda, Alessandra Russo and Emil Lupu: Distributed Abductive Rea-

soning with Constraints, Post-Proceedings of the 8th International Workshop on Declar-

ative Agent Languages and Technologies, 148-166, 2010

• Jiefei Ma, Alessandra Russo, Krysia Broda and Emil Lupu: Multi-agent Confidential

Abductive Reasoning, Technical Communications of the 27th International Conference

on Logic Programming, 175-186, 2011

1.3 Thesis Overview

This thesis is organised as follows.

Chapter 2 gives the background of abductive logic programming. Chapter 3 briefly describes

our early work of developing the first distributed abductive reasoning system (DARE). We

illustrate its algorithm through a distributed meeting scheduling example. We also summarise

the properties and limitations of DARE. Most of the lessons we learned from developing DARE

contributed to the design decisions of our new DAREC system.

Chapter 4 presents our main contribution – the general-purpose distributed abductive system

DAREC. We first focus on a set of fixed agents, and give definitions of the DAREC knowledge

8 Chapter 1. Introduction

modelling framework and the DAREC distributed reasoning algorithm (in terms of a set of

inference rules). The execution of the algorithm is illustrated through an ambient intelligence

example. The soundness and completeness of the algorithm are also given. We then show how

a “yellow-page” directory similar to the one used in DARE can be used by DAREC to improve

efficiency of the algorithm, and how the system can be extended to cope with an open set of

agents.

Chapter 5 focuses on the confidentiality aspect of distributed abductive reasoning. We show

how the flexible DAREC system is customised (into DAREC2) to address location awareness

and privacy awareness issues in the distributed knowledge modelling and to support confidential

reasoning. The ambient intelligence example used in Chapter 4 is further elaborated to illustrate

the extended framework and algorithm of DAREC2. The impact of the customisations to

the system’s properties such as soundness and completeness, in addition to confidentiality

maintenance during the execution of the algorithm, are also discussed. Finally, a Prolog-based

implementation of DAREC2 is also described.

Chapter 6 presents experimental results of the DAREC2 system. We first describe a system

that we have developed for randomly generating example knowledge bases for DAREC2, and

discuss how, by supplying different parameters, the system can also generate examples for the

benchmarking of any centralised (abductive) algorithm. Although we have conducted a number

of different experiments of DAREC2 with randomly generated distributed logic programs, in

this chapter we only describe and discuss three of the most interesting ones.

Chapter 7 describes a case study of distributed security policy analysis, which is an application

of DAREC2. We first describe an existing formal policy framework for modelling and analysing

centralised security policies, and show how this framework is extended to model systems where

policies and domain knowledge are distributed among, and are private to, different policy

enforcement points. We then illustrate, through a coalition example, the usage of DAREC2 for

solving policy analysis tasks in a distributed and confidential manner.

Finally, Chapter 8 summarises the contributions of the thesis, and discusses related and future

work.

Chapter 2

Background

2.1 First-Order Logic Language and Semantics

This section gives the syntax and semantics of first-order logic (FOL).

A FOL has the following basic (disjoint) elements:

• constants;

• variables;

• function symbols of the form f/n where f is the function name, and n is a positive integer

called the function arity;

• predicate symbols of the form p/m where p is the predicate name, and m is a non-negative

integer called the predicate arity;

• logic connectives ¬,∧,∨,→,↔;

• quantifiers ∃,∀.

By convention, constants, function names and predicate names are often strings starting with

a lowercase letter, such as a, bob, . . ., and variables are often strings starting with a uppercase

letter, e.g., X, Y,

9

10 Chapter 2. Background

Definition 2.1. The signature (or language) L of a FOL consists of a set of constants, a set

of function symbols and a set of predicate symbols.

Given a signature, a term is either a constant, a variable or a function such as f(t1, . . . , tn) where

f is a function name with arity of n and t1, . . . , tn are terms called the function arguments.

In some literatures, function symbols may have zero arity. In this case functions with zero

arguments are often treated as constants. A predicate is p(t1, . . . , tn) where p is a predicate

name with arity of n and t1, . . . , tn are terms called the predicate arguments. Sometimes a

vector of terms t1, . . . , tn can be abbreviated as ~t. An atomic formula (or atom in short) is a

predicate.

Definition 2.2. Given a signature L, a (well-formed) formula written in L is defined as follows:

• if A is an atom then A is a formula;

• if A and B are formula then so are (¬A), (A ∧B), (A ∨B), (A→ B) and (A↔ B);

• if A is a formula then so are (∃X.A) and (∀X.A) (variable X is said to be quantified or

bound by a quantifier ∃ or ∀).

The precedences (or binding powers) of the logic connectives are ordered as ¬ > ∧ > ∨ >→>↔.

When there is no confusion, brackets “(” and “)” may be dropped. A variable in a formula

A that is not bound is called a free variable (of A). A formula without any free variable is

closed; otherwise it is open. A closed formula is often called a sentence. The universal closure

(existential closure) of a formula A is the sentence ∀ ~X.A (∃ ~X.A) where ~X are the free variables

of A. Sometimes it is convenient to drop the variables when they are not considered during

discussions, i.e., ∀(A) (∃(A)). A (logic) theory is a set of sentences.

Definition 2.3. An interpretation (or structure) of a FOL signature L has the following in-

formation:

• a non-empty set of objects called the domain (DOM);

• for every constant c in L, an object in DOM;

2.1. First-Order Logic Language and Semantics 11

• for every function symbol f/n in L, a function that maps n objects to one object in DOM;

• for every predicate symbol p/n in L, a relation between n objects in DOM.

Given an interpretation, the meaning of a term is an object in the domain, and the meaning

of a closed formula is a truth value. An open formula has no meaning. An assignment (or

valuation) is a function that allocates an object in the domain to each free variable. We denote

the allocation of object o to a variable X with X 7→ o.

Definition 2.4. Given an interpretation I with domain DOM for a signature L and an as-

signment ϕ, the statement “a formula F in L is true with respect to I and ϕ” (denoted with

I, ϕ
 F) is defined as follows:

• I, ϕ
 p(t1, . . . , tn) if and only if the relation of p between (t1, . . . , tn) is in DOM;

• I, ϕ
 ¬A if and only if not I, ϕ
 A, i.e., I, ϕ 6
 A;

• I, ϕ
 A ∧B if and only if I, ϕ
 A and I, ϕ
 B;

• I, ϕ
 A ∨B if and only if I, ϕ
 A or I, ϕ
 B;

• I, ϕ
 A→ B if and only if I, ϕ
 B whenever I, ϕ
 A;

• I, ϕ
 A↔ B if and only if I, ϕ
 A→ B and I, ϕ
 B → A;

• I, ϕ
 ∀X.A if and only if I, ϕ[X 7→ o]
 A for every object o in DOM;

• I, ϕ
 ∃X.A if and only if I, ϕ[X 7→ o]
 A for some object o in DOM.

A sentence F is satisfiable if there exists some interpretation in which it is true. F is unsatisfiable

if there exists no interpretation in which it is true. F is valid if it is true in all possible

interpretations, in which case F is called a tautology.

Definition 2.5. A model of a sentence F is an interpretation in which F is true. A model of

a theory T is an interpretation in which all the sentences in T are true.

12 Chapter 2. Background

Definition 2.6. A sentence F is said to be entailed by a theory T (denoted with T |= F) if

and only if all the models of T are also the models of F . |= is called the logical entailment and

6|= is the contrary.

2.1.1 Herbrand Models

Given a theory T with a signature L, there can be infinitely many possible domains and

interpretations. There is a significant type of interpretation called the Herbrand interpretation.

Let C, F and P be the set of constants, set of function symbols and set of predicate symbols

of L, respectively. The Herbrand universe (U) is the set of all the ground terms constructed

from C and F . When F is not empty, U is infinite. For example, let c be the only constant in

C and f/1 be the only function symbol in F , then U = {c, f(c), f(f(c)), . . .}. The Herbrand

base (B) is the (possibly infinite) set of atoms constructed from U and P . For example, let p/1

be the only predicate symbol in P , then B = {p(c), p(f(c)), p(f(f(c))), . . .}.

Definition 2.7. A Herbrand interpretation (I) based on the Herbrand base of a given signature

L is an interpretation such that:

1. each constant is assigned to itself;

2. each function is assigned to its syntactic equivalence;

3. there is no restriction on how I may interpret the predicates.

Usually, a Herbrand interpretation is simply represented as a set of atoms that are assigned to

be true (i.e., an atom that is not in the set is assigned to be false). A Herbrand interpretation

that is a model of T is called the Herbrand model of T . The following theorem shows the

significance of Herbrand models.

Theorem 2.1. [vEK76] A theory T is satisfiable if and only if there is a Herbrand interpre-

tation I such that I |= T .

2.2. Logic Programming 13

2.2 Logic Programming

2.2.1 Syntax

In Logic Programming (LP), we only consider a special type of sentence called a clause. A

literal is either an atom A or the negation of an atom ¬A. The former is called a positive literal

and the latter is called a negative literal. The meaning of negation (¬) will be defined later in

Section 2.2.2. A clause has the following form

∀(H ← L1 ∧ · · · ∧ ¬Ln) (n ≥ 0)

where H is an atom, and each Li is a literal. Its notation can be conveniently written as a rule

by dropping the universal quantifier and replacing ∧ with “,”, e.g.,

H ← L1, . . . , Ln (n ≥ 0)

where H is called the head and L1, . . . , Ln is called the body. A rule with empty body (i.e.,

n = 0) is called a fact. A rule without the head is a denial. A denial with non-empty body

(i.e., n > 0) is called an integrity constraint, e.g.,

← L1, . . . , Ln (n > 0)

A denial with empty body (i.e., n = 0) is equivalent to falsity (i.e., ⊥).

Let R be a rule. We denote its head with head(R) and its body with body(R). In many

literatures, people tend to distinguish between a rule with a head and a denial. In this thesis,

unless stated otherwise, a rule usually refers to a rule with a head.

A definite clause (rule, denial) is a clause (rule, denial) whose body contains only positive

literals. A normal clause (rule, denial) is a clause (rule, denial) whose body may contain

negative literals.

Definition 2.8. A definite logic program is a finite set of definite rules.

14 Chapter 2. Background

Definition 2.9. A normal logic program is a finite set of normal rules.

It is obvious that any definite logic program is also a normal logic program. Thus, in the rest

of this thesis “logic program” usually refers to a normal logic program.

A term or a clause is ground if it does not contain any variable. A (ground) instance of a clause

is obtained by replacing all of its variables with ground terms. The ground instance of a given

logic program Π, denoted with ground(Π), is a (possibly infinite) set of all the possible ground

instances of its clauses.

2.2.2 Semantics

Note that in a clause, though the symbol “ ← ” is used, it does not always correspond to

the (reverse of) classical implication. It is definitional (e.g., the body literals defines the head

atom) and can be interpreted in different ways. Thus, we usually call a rule R a definition of

p/n if p/n is the predicate symbol of head(R). In addition, the negation “¬” does not always

correspond to the classical negation. With the closed world assumption (CWA) it is usually

interpreted as negation as failure (NAF). In extended logic programs it is even possible to allow

both classical negations and NAFs. But this type of logic programs are not considered in this

thesis. Therefore, the semantics of a given logic program depends on how these symbols are

interpreted. This section summarises some popular semantics of logic programs.

Semantics for Definite Logic Programs

Let us first consider definite logic programs. If “←′′ is considered as classical implication, then

a definite logic program is a logic theory, and Herbrand models can be used. However, for every

definite logic program there may be many Herbrand models, and we need to choose only one

from them to represent the semantics of the program. This is the minimal Herbrand model,

which is defined as follows.

2.2. Logic Programming 15

Theorem 2.2. [vEK76] Every definite logic program Π has at least one Herbrand model, which

is equivalent to the Herbrand base.

Theorem 2.3 (Model Intersection). [vEK76] If M1 and M2 are two Herbrand models for a

(definite) logic program Π, then M1 ∩M2 is also a Herbrand model of Π.

Definition 2.10 (Minimal Herbrand Model). Let Π be a definite logic program, a Herbrand

model M of Π is said to be minimal if and only if there does not exists a Herbrand model M′

of Π such that M′ ⊂M.

The next theorem (following from Theorem 2.2 and Theorem 2.3) describes an important

property for definite logic programs:

Theorem 2.4. [vEK76] Every definite logic program Π has a unique minimal Herbrand model,

which is equivalent to the intersection of all of its Herbrand models.

Apt et. al. [AvE82] have proposed a fixed-point approach for computing the unique minimal

Herbrand model for any given logic program. The key idea is to iteratively compute the set of

atoms that are implied by the rules and facts in the logic program.

Definition 2.11 (Immediate Consequence Operator). Given a definite logic program Π, the

immediate consequence operator TΠ is a function on the Herbrand interpretations of Π such

that

TΠ(I) = {H | H ← A1, . . . , An ∈ ground(Π) and {A1, . . . , An} ⊆ I}

If we start an iteration of the application of TΠ with the Herbrand interpretation ∅ (i.e., all atoms

being assigned to false), then we can obtain a sequence of interpretations ∅, TΠ(∅), TΠ(TΠ(∅)), . . .,

which can be enumerated with a standard notation:

TΠ ↑0 ≡ ∅

TΠ ↑i+1 ≡ TΠ(TΠ ↑i)

It can be shown [AvE82] that there is always a least fixed-point Iw such that TΠ(Iw) = Iw,

and let TΠ ↑ω≡
⋃∞
i=0 TΠ ↑i, then TΠ ↑ω is in fact equivalent to the unique minimal Herbrand

16 Chapter 2. Background

model of Π. We call this least fixed-point the least Herbrand model (LHM) of Π and denote it

with lhm(Π):

Theorem 2.5. [AvE82] Let Π be a definite logic program and lhm(Π) its least Herbrand model,

then:

• lhm(Π) is the least Herbrand interpretation such that TΠ(lhm(Π)) = lhm(Π);

• lhm(Π) = TΠ ↑ω

Semantics for Normal Logic Programs

Normal logic programs allow negation literals in the body of a rule. The immediate consequence

operator can be extended such that

T ′Π(I) = {H | H ← A1, . . . , An,¬B1, . . . ,¬Bm ∈ ground(Π) and

{A1, . . . , An} ⊆ I and {B1, . . . , Bm} ∩ I = ∅}

However, while the least Herbrand model (fixed-point) semantics is adequate for definite logic

programs, it does not work for all normal logic programs. For example, the following normal

logic program

Π1 =

 p← ¬q.

q ← ¬p.


has two minimal Herbrand models {p} and {q} but it does not have a least Herbrand model

(LHM). Moreover, the fixed-point computation does not terminate to give any of these (in fact,

the computation oscillates between { } and {p, q}).

Apt et. al. [ABW88] have identified a special class of (normal) logic programs called stratified

(normal logic) programs, which always have LHMs.

Definition 2.12. A normal logic program Π is stratified if and only if there exists a function

v which maps each predicate (symbol) P of Π to a natural number such that for every rule R

in Π, let Ph be the predicate of the head of R:

2.2. Logic Programming 17

• if Pb is the predicate of a positive body literal of R, then v(Ph) ≥ v(Pb);

• if Pb is the predicate of a negative body literal of R, then v(Ph) > v(Pb).

As a remark, all definite logic programs are stratified (e.g., we can assign the same value for all

the predicates). With the predicate ordering function v, a logic program Π can be partitioned

into disjoint sets Π0 ∪ · · · ∪ Πn such that for each rule R in Πi, let P be the head predicate of

R, then v(P) = i.

Definition 2.13 (Fixed-point Semantics for Stratified Logic Programs). Let Π = Π0∪· · ·∪Πn

be a stratified logic program, then

M0 = T ′Π0
↑ω (∅)

...

Mn = T ′Πn ↑
ω (Mn−1)

and lhm(Π) = Mn.

For example, the logic program

Π2 =

 p← ¬q.

q ← ¬r.


is stratified (i.e., v(p) = 2, v(q) = 1 and v(r) = 0), and it has a LHM of {q} (e.g., M0 = ∅,

M1 = {q}, M2 = {q}).

However, sometimes even if a logic program is not stratified, it may still have a LHM. For

example, the logic program

Π3 =

 p(1)← ¬q(1).

q(1)← ¬p(2).


is not stratified, but it has a LHM of {q(1)}. A more relaxed class of logic programs called the

locally stratified programs can be defined similarly to stratified programs by using a function

v′ which assigns the ordering to the (ground) predicate instances instead of to the predicate

18 Chapter 2. Background

symbols. For example, Π3 is locally stratified as v′(p(1)) = 2, v′(q(1)) = 1 and v′(p(2)) = 0. As

a remark, all stratified programs are locally stratified (but not vice versa).

For logic programs that are not stratified or locally stratified, fixed-point semantics does not

work. We summarise below some of the most popular semantics for logic programs with nega-

tions.

Clark Completion In the Clark Completion semantics [Cla78], “¬” in a logic program is

interpreted as negation as failure, which means ¬p is true (or p is false) if every possible proof

of p fails in finite time. The semantics of a logic program Π is given by a logic theory obtained

by the (Clark) completion of Π, usually denoted with comp(Π). Let ~X = ~t denote a list of

equalities between the elements in a list of variables ~X and a list of terms ~t of equal length n,

i.e., ~X = ~t is
∧
i∈[1,n] Xi = ti. Let a clause be in a form of p(~t) ← F where F represents its

body. The completion of a logic program (with signature L) is done as follows:

1. for every predicate p/n in L that has at least one definition in Π, let

p(~t1)← F1 (2.1)

... (2.2)

p(~tm)← Fm (2.3)

be all the definitions for p/n, the completion of p/n is the following sentence:

∀ ~X.p(~X)↔ (∃~Y1. ~X = ~t1 ∧ F ′1) ∨ · · · ∨ (∃~Ym. ~X = ~tm ∧ F ′m)

where each ~Yi is the set of variables appearing in Fi but not in ~ti, and each F ′i is obtained

by replacing “,” with ∧ in Fi. Note that each “¬” in such sentence is interpreted as the

classical negation and each “↔ ” is interpreted as the classical if and only if;

2. for every other predicate p/n in L that does not have a definition in Π, the completion

2.2. Logic Programming 19

of p/n is the following sentence:

∀ ~X.¬p(~X)

3. comp(Π) contains all the completions of the predicates in L, a set of the Clark Equality

Theory (CET) axioms [Cla78], and nothing else.

Since comp(Π) is a logic theory, a Herbrand model of comp(Π) is a model of comp(Π). However,

given a completed program there may not be a unique minimal Herbrand model. For example,

the completed program of Π1 is

comp(Π1) =

 p↔ ¬q.

q ↔ ¬p.


and there are two minimal Herbrand models: {p} and {q}.

Stable Model The stable model semantics [GL88] is defined by the means of a reduct for the

ground instance of a logic program. Let Λ be a set of (ground) atoms and Π be a (ground)

logic program, the reduct of Π, denoted with ΠΛ, is obtained from Π as follows:

1. remove any clause H ← A1, . . . , An,¬B1, . . . ,¬Bm in Π where {B1, . . . , Bm} ∩ Λ 6= ∅;

2. remove all the negative body literals from the remaining clauses in Π

Thus, ΠΛ is a definite logic program. Λ is a stable model of Π if and only if Λ = lhm(ΠΛ).

Again, it is possible that a logic program has two minimal stable models. For example, both

{p} and {q} are stable models of Π1.

3-valued Semantics In the Clark completion semantics, the models of a completed logic

program are in 2-valued logic, i.e., each atom can be either true (t) or false (f). Fitting [Fit85]

studied the models of the same completed program in 3-valued logic, where an atom may have

a third value called unknown (u). The 3-valued logic used by Fitting was one proposed by

20 Chapter 2. Background

∧ t f u
t t f u
f f f f
u u f u

∨ t f u
t t t t
f t f u
u t u u

↔ t f u
t t f u
f f f u
u u u u

Table 2.1: Kleene’s 3-Valued Logic

↔k t f u
t t f u
f f t u
u u u u

↔s t f u
t t f f
f f t f
u f f t

Table 2.2: Kleene’s Equivalence ↔k vs. Strong Equivalence ↔s

Kleene [Kle52]. In the Kleene’s 3-valued logic, the truth table of the logic connectives “ ∧ ”,

“ ∨ ” and “↔ ” are shown in Table 2.1.

However, in a given completed logic program, “ ↔′′ is interpreted as the strong equivalence

instead of the Kleene’s equivalence (See Table 2.2).

Fitting [Fit85] and Kunen [Kun87] also showed that all such models were fixed points of a

3-valued immediate consequence operator. An interpretation of a logic program Π is usually

represented by a pair of two sets I =
〈
T , F

〉
, where T is a set of atoms that are assigned t and

F is a set of atoms that are assigned f. Thus, let BΠ be the Herbrand base of Π, then all the

atoms in BΠ − (T ∪ F) are assigned u. A positive literal A is true in I if and only if A ∈ T ,

and is false if and only if A ∈ F ; otherwise it is unknown. A negative literal ¬A is true in I if

and only if A ∈ F , and is false if and only if A ∈ T ; otherwise it is unknown.

Definition 2.14 (3-valued Immediate Consequence Operator). Given a normal logic program

Π, the 3-valued operator T 3
Π is a function on the 3-valued interpretation I =

〈
T , F

〉
of Π such

that

T 3
Π(
〈
T , F

〉
) =

〈
T
′
F
′
〉

where

T
′
= {A | there is a clause A← L1, . . . , Ln ∈ ground(Π) such that all Li are true in I}

2.2. Logic Programming 21

and

F
′
= {A | for every clause A← L1, . . . , Ln ∈ ground(Π) at least one Li is false in I}

Let
〈
T 1, F 1

〉
∪
〈
T 2, F 2

〉
denote

〈
T 1 ∪ T 2, F 1 ∪ F 2

〉
. The 3-valued fixed-point interpretation of

any given normal logic program Π can be computed as:

T 3
Π ↑0 ≡ 〈∅, ∅〉 (i.e., all atoms are initially unknown)

T 3
Π ↑i+1 ≡ T 3

Π(T 3
Π ↑i)

and T 3
Π ↑ω≡

⋃∞
i=0 T

3
Π ↑i is the least 3-valued fixed-point interpretation (model) for Π. This is

known as the Fitting 3-valued semantics.

Gelder, Ross and Schlipf proposed [GRS91] another type of 3-valued semantics for normal logic

programs, called the well-founded semantics. The main difference between the two semantics

is how they assign values to atoms that positively depend on themselves in a logic program.

Let A� B denote that there is a clause in ground(Π) where the atom A is the head and the

atom B is a positive body literal. Let dgraph(ground(Π)) be a directed graph where the nodes

are the Herbrand base of ground(Π) and the edges are �. An atom A positively depends on

itself if and only if all the paths in dgraph(ground(Π)) starting from A will eventually visit A

again. In the Fitting semantics A is assigned with u, whereas in the well-founded semantics A

is assigned with f. For example, in the following program



p← q.

q ← p.

r ← ¬w.

w ← ¬r.


r and w are assigned u in both semantics. But p and q are assigned u in the Fitting semantics,

and are assigned f in the well-founded semantics.

22 Chapter 2. Background

2.2.3 Operational Semantics of Logic Programs

A query for a logic program is a conjunction of literals of the form

∃(L1 ∧ · · · ∧ Ln) (n > 0)

and can be conveniently written as a list, e.g.,

{L1, . . . , Ln}

Each Li is called a (sub-)goal. In some literatures, it may even be written as a denial in the

form of ← L1, . . . , Ln. However, it should not be confused with an integrity constraint which

is also written in a denial form (i.e., a query is an existential closure of a denial, whereas an

integrity constraint is a universal closure of a denial).

Given a logic program Π and a query Q, the querying task is to check whether P |=s Q, where

|=s is the logic entailment under some selected semantics.

Operationally, there are two main types of algorithms for computing the answers of a query with

respect to a logic program – top-down and bottom-up. Top-down algorithms, e.g., SLDNF [AvE82],

starts with the query and performs backward inference using the clauses in the program. In con-

trast, bottom-up algorithms, e.g., Answer Set Programming [Bar03], starts with a set of atoms

(known as the partial model) and computes the full model by performing forward inference

using the clauses in the program.

SLDNF stands for Selective Linear Definite-clause resolution with Negation by Failure. Given

a query← L1, . . . , Ln, a (successful) SLDNF computation can be described as a series of tuples

(← L1, . . . , Ln, ∅), (G1, θ1), . . . , (�, θ), where each Gi is a query, each θi is a set of variable

substitutions, and � denotes an empty query. Each tuple (Gi+1, θi+1) is obtained by means of

the following two derivation steps:

1. the computation selects a positive literal Li = H from Gi, and resolves H with a clause

2.2. Logic Programming 23

H ′ ← B1, . . . , Bm whereHθ′ = H ′θ′, thenGi+1 =← (L1, . . . , Li−1, B1, . . . , Bm, Li+1, . . . , Ln)θ,

and θi+1 = θi · θ′ (i.e., the composition of θi and θ′);

2. the computation selects a ground negative literal Li = ¬H from Gi, if all the SLDNF

computations for the query ← H fail (finitely), then Gi+1 =← L1, . . . , Li−1, Li+1, . . . , Ln.

After a successful SLDNF computation, the final set of substitutions θ obtained is the answer

for the original given query. Note that at each step, non-ground negative literals must not

be selected (in order to guarantee soundness). If at a step the current query contains only

non-ground negative literals, then the whole computation stops and is said to be floundered.

2.2.4 Constraint Logic Programming

Constraint programming [Bar99] is a programming paradigm in which relations between vari-

ables are expressed as constraints. A constraint can be an arithmetic constraint (i.e., arithmetic

expression connected by comparison operators) such as X ≥ Y and T = T1 + 5, or constraints

connected by boolean connectives such as (X > 4) ∧ (X < 6) and ¬(X − Y ≥ 2) ∨ (Y < X).

Given a set of constraints, the problem of finding the numerical assignments to the variables

that can make all the constraints true is called constraint satisfaction (CSP). Since 1978 [Lau78]

CSP has been a very hot research topic. CSP problems can be divided into different categories

depending on the domains of the variables, e.g., CSP over finite domain variables, CSP over

boolean variables, and CSP over variables with real/rational number domains. A large number

of sophisticated and efficient algorithms (solvers) have already been developed [Kum92, Lec09]

for these different type of CSPs.

Constraint Logic Programming [JM94] (CLP) is the integration of constraint programming into

logic programming. In a CLP program, a rule has the form

H ← L1, . . . , Ln, C1, . . . , Cm

where C1, . . . , Cm are constraints. During a top-down query computation process, a set of

24 Chapter 2. Background

constraints is collected and is solved (incrementally) by a CLP solver, such as CLP(FD) [DCV93]

for finite domain constraints, and CLP(R) [JMSY92] for constraints over real numbers.

2.3 Abductive Logic Programming

2.3.1 Abductive Reasoning

Charles Peirce has identified [Pei31] three distinguished types of reasoning: deduction, abduction

and induction. Let B ← A be a rule read as “if A then B”:

deduction is to derive the conclusion B from the given premise A and the given rule B ← A;

abduction is to derive the possible “cause” A from the given observation B and the given

rule B ← A;

induction is to learn the possible rule B ← A from a large example set of A–B pairs.

Informally, abduction could be viewed as the reverse process of deduction: while deduction

can be used to predict the effects of given causes, abduction can be used to explain the effects

by the causes [Esh88, Sha89]. Abduction is therefore particularly suitable for reasoning over

incomplete knowledge. Consider the following example (derived from [Pea87]),


shoes wet← walked on grass, grass wet.

grass wet← rained.

grass wet← sprinkler on.



Given the above background knowledge, suppose that we are given the observation that the shoes

are wet. With abduction we can derive the following possible explanations: either someone

walked on the grass and it rained, or someone walked on the grass and the sprinkler was on.

It is possible that someone walked on the grass while it rained and the sprinkler was on. But

2.3. Abductive Logic Programming 25

we often prefer the minimal set of sufficient explanations as the results of abduction. The

explanations are also called assumptions, e.g., we do not know whether indeed it rained or not,

but if we assume it did then we can prove the observation is correct (together with another

assumption – someone indeed walked on the grass). Sometimes we want to restrict the possible

explanations for an observation independently from the background knowledge. This can be

done via integrity constraints. For example, if we add ← walked on grass, rained (read as “it

is impossible that one walks on the grass during/after raining”) to the example, then only the

explanation having sprinkler on will be accepted as the result of abduction.

2.3.2 Abductive Logic Programs

Abductive Logic Programming (ALP) [KKT92, KM90a] is the combination of logic programming

and abduction. The background knowledge and the integrity constraints are modelled as logic

programs. The observations are modelled as queries. Explanations or assumptions are usually

formed from a selected set of ground atoms.

Definition 2.15 (Abductive (Logic) Framework). An abductive (logic) framework is a

tuple 〈Π,AB, IC〉 where

• Π is a normal logic program called the background knowledge

• AB is the set of abducible predicates;

• IC is a set of integrity constraints.

In ALP, predicates are divided into two disjoint sets: abducible and non-abducible. An atom

with abducible predicate is called an abducible atom (or abducible in short). An atom with

non-abducible predicate is called a non-abducible atom (or non-abducible in short). Sometimes

we may abuse the notation of AB to represent the set of all ground abducible atoms constructed

from the abducible predicates. In most literatures, without lost of generality it is assumed that

no abducible atom may appear as the head of a rule in the background knowledge, i.e., no

abducible atom is defined. Any abductive framework with a defined abducible can always be

26 Chapter 2. Background

transformed into one without. Consider the following example where a logic program contains

a rule

a← p.

where a is an abducible. A new logic program can be obtained by replacing every occurrence

of a in the old framework with a new non-abducible a def , and adding a new rule a def ← a.

Since only non-abducibles can appear as the head of a rule, they are sometimes called defined

atoms (or defined in short).

Definition 2.16 (Abductive Explanation). Given an abductive logic framework 〈Π,AB, IC〉

and a query Q, the tuple 〈∆, θ〉 is an abductive explanation for Q if

1. ∆ is a set of abducible atoms and θ is a set of variable substitutions, i.e., ∆θ ⊆ AB;

2. Π ∪∆θ |=s Qθ

3. Π ∪∆θ is consistent with IC

where |=s is the logical entailment under a selected semantics.

The second condition means that the abductive explanation and the background knowledge

must be able to prove the query. The third condition means that the abductive explanation and

the background knowledge must be consistent with the integrity constraints. Many literature

defines consistency as Π ∪∆ |=s IC.

2.3.3 Semantics for Abduction

Like normal logic programs, many semantics have been proposed and studied for abductive

logic programs. Widely used semantics include the generalised stable model semantics and the

three-valued completion semantics.

2.3. Abductive Logic Programming 27

Generalised Stable Model

In [KM90c], Kakas and Mancarella proposed an extension to the stable model semantics for

abductive logic programs. Given an abductive (logic) framework F = 〈Π,AB, IC〉, the negation

transformed framework [EK89] is F∗ = 〈Π∗,AB∗, IC∗〉, where

• Π∗ is a definite logic program obtained from Π by replacing each negative literal ¬p(~t)

with a new positive literal p∗(~t) where p∗ is a new predicate;

• similarly IC ′ is a set of definite integrity constraints obtained from IC by replacing each

negative literal ¬p(~t) with a new positive literal p∗(~t), where p∗ is a new predicate;

• AB∗ extends AB with the set of new predicates introduced above;

• IC∗ is the union of IC ′ and the set of integrity constraints ← p(~t), p∗(~t) for each p∗ in

AB∗.

Definition 2.17. Given a negation transformed framework F∗ = 〈Π∗,AB∗, IC∗〉 and a set of

ground abducible atoms ∆ ⊆ AB∗, a model M is a generalised stable model for F∗ and ∆ if

and only if

• M is a stable model of Π∗ ∪∆;

• I is true in M for each I ∈ IC∗

Three-valued Completion

Abduction through predicate completion was first introduced by Console et al. [CDT91].

In [Teu96], Teusink generalised Fitting (3-valued) semantics for abductive logic programs, based

on the completion of abductive logic programs. Let 〈Π,AB, IC〉 be an abductive framework.

The completion of Π, denoted as comp(Π), is obtained similar to the Clark completion except

that ∀ ~X.¬a(~X) is not in the comp(Π) for any abducible predicate a even though a does not

appear as the head of any rule in the program. The completion of abducibles is done separately.

28 Chapter 2. Background

Let AB be the set of all (ground) abducible atoms constructable from the abductive framework.

Given a set of (ground) abducible atoms ∆, the two-valued interpretation of AB with respect

to ∆ (called the completion of ∆), denoted with I∆, is defined as

I∆ = {A | A ∈ ∆} ∪ {¬A | A ∈ AB and A /∈ ∆}

Definition 2.18. Given an abductive logic framework F = 〈Π,AB, IC〉 and a set of (ground)

abducible atoms ∆ ⊆ AB, let comp(Π) be the completion for Π and I∆ be the completion of ∆,

a model M is a 3-valued model for F + ∆ if and only if

• M is a three-valued (Fitting) model of comp(Π) ∪ I∆;

• I is true in M for each I ∈ IC∗

2.3.4 Abductive Proof Procedures

Over the past two decades, various proof procedures have been developed for abductive logic

framework, such as the Kakas-Mancarella proof procedure (KM) [KM90b], IFF [FK97], SLD-

NFA [DS92, DS98] for normal abductive logic programs, and ACLP [KMM00], CIFF [EMS+04b,

MTS+09], ASystem [KvND01] for constraint abductive logic programs. Among them, KM is

probably the earliest influential one, and ASystem is known as the latest and fastest implemen-

tation. In the next section, we will briefly describe these two proof procedures.

Kakas-Mancarella Proof Procedure

The Kakas-Mancarella proof procedure (KM) is based on the generalised stable model seman-

tics, i.e., it treats negative literals as abducibles (called the non-base abducibles, in contrast to

the base abducibles with abducible predicates). In addition, it assumes the additional require-

ment that each integrity constraint must contain at least one abducible.

KM was first described in [KM90b] and then was re-formulated in several literatures. We

describe it here following the convention used in [Ton95]. Both base and non-base abducibles

2.3. Abductive Logic Programming 29

are called assumptions. L denotes the complement of a literal L, i.e., if L = p(~t) then L = ¬p(~t),

and vice versa. The execution of KM interleaves the abductive derivations and the consistent

derivations.

Let F = 〈Π,AB, IC〉 be an abducible framework. An abductive derivation with respect to a

safe goal selection strategy Ξ is a sequence (G1,∆1), . . . , (Gn,∆n), where Gi (1 ≤ i ≤ n) is the

set of remaining goals and ∆i is a set of (ground) assumptions. Ξ is safe in the sense that it

selects an assumption goal only if it is ground. For i = 1, . . . , n− 1, Ξ selects a goal G from Gi.

Let Gi− = Gi − {G}, then (Gi+1,∆i+1) is obtained according to one of the following rules:

(A1) if L is not an assumption (i.e., a positive non-abducible), let H ← B be a clause in Π

such that L = Hθ, then Gi+1 = Bθ ∪ G−i θ and ∆i+1 = ∆i;

(A2) if L is an assumption such that L ∈ ∆i, then Gi+1 = G−i and ∆i+1 = ∆i;

(A3) if L is an assumption such that L /∈ ∆i and L /∈ ∆i, and if there exists a successful

consistency derivation (L,∆i ∪ {L}), . . . , (∅,∆′), then Gi+1 = G−i and ∆i+1 = ∆′.

A successful abductive derivation is an abductive derivation from (G1,∆1) to (∅,∆n) (n ≥ 1).

A consistent derivation with respect to Ξ is a sequence (A,∆1), (F1,∆1), . . . , (Fn,∆n), where F1

is the set of all denials of the form ← φ obtained by resolving A with the integrity constraints

in IC ∪ {← P,¬P | P is an atom in ground(Π)} (i.e., removing the L from the body of every

instantiated integrity constraint that contains L). If none of φ is empty, then for i = 1, . . . , n−1,

Ξ selects a denial← φ from Fi and a literal L from φ. Let φ− = φ−{L} and F−i = Fi−{← φ},

then (Fi+1,∆i+1) is obtained according to one of the following rules:

(C1) if L is not an assumption, let F ′ be the set of all denials of the form ← Bθ, φ−θ obtained

for each clause H ← B in Π such that L = Hθ, then Fi+1 = F ′ ∪ F−i and ∆i+1 = ∆i;

(C2) if L is an assumption such that L ∈ ∆i and φ− 6= ∅, then Fi+1 = {← φ−} ∪ F−i and

∆i+1 = ∆i;

(C3) if L is an assumption such that L ∈ ∆i, then Fi+1 = F−i and ∆i+1 = ∆;

30 Chapter 2. Background

(C4) if L is an assumption such that L /∈ ∆i and L /∈ ∆i, then

1. if there exists a successful abductive derivation from ({L},∆i) to (∅,∆′), then Fi+1 =

F−i and ∆i+1 = ∆′;

2. otherwise, if φ− 6= ∅, then Fi+1 = {← φ−} ∪ F−i and ∆i+1 = ∆i.

A successful consistency derivation is a consistency derivation from (A,∆) to (∅,∆n) (n ≥ 1).

If during an abductive derivation or consistent derivation the set of remaining goals contains

only non-ground abducibles, then it flounders and reports error.

Thus, given a query Q, if there is a successful abductive derivation from (Q, ∅) to (∅,∆), then

∆ is the abductive explanation computed by KM for Q with respect to F .

Under the generalised stable model semantics, KM is sound (Theorem 1 in [KM90b]) for locally

stratified programs, and is complete[KM90b] (Theorem 2) for programs that are allowed (i.e.,

to avoid floundering) and acyclic (i.e., to avoid looping).

Definition 2.19 (Allowedness). [Top87] A logic program is allowed if for each clause any

variable appearing in an abducible body literal also appears in a non-abducible body literal.

Lemma 2.1. [KM90b] Let F be an allowed abductive framework and Q be a ground query,

then no abductive derivation or consistency derivation of KM resulting from Q flounders.

Definition 2.20 (Level Mapping). [AB91] Let Π be a logic program and BΠ be the Herbrand

base of Π. A level mapping |.| is a function that maps each atom P ∈ BΠ and its negation to a

natural number, i.e., |.| : BΠ 7→ N, and |P | = |¬P |.

Definition 2.21 (Acyclic Programs). [AB91] A logic program Π is acyclic if and only if there

exists a level mapping |.| such that for each clause H ← L1, . . . , Ln in ground(Π), |H| > |Li|

for each i ∈ [1, n].

ASystem

ASystem [KvND01] extends its predecessor SLDNFA [DS98] by adding finite domain constraint

satisfaction support. It also adopts [vN04] some of the properties of other abductive sys-

2.3. Abductive Logic Programming 31

tems, such as formulating the proof procedure as a state rewriting process like in IFF [FK97]

with a set of inference rules inherited from SLDNFA, and collecting arithmetic constraints

along the derivation and solving them using an external constraint satisfaction solver like in

ACLP [KMM00]. ASystem adopts the three-valued completion semantics (for abductive logic

programs). In addition to having constraint satisfaction support, ASystem has two more ad-

vantages over KM: it allows non-ground abducibles to be collected (i.e., computing non-ground

explanations) and performs constructive negation instead of negation as failure. To see the

difference between these two kinds of negations, consider the following program

 p(X)← ¬q(X).

q(1).


The query p(X) has no answer with negation as failure, while it has an answer X 6= 1 with

constructive negation. We briefly describes next the ASystem proof procedure [vN04].

In ASystem, atoms can be abducibles, non-abducibles (or defined atoms), (in-)equality and (finite

domain) constraints. A goal can be either a literal or a denial of the form ∀ ~X. ← L1, . . . , Ln

(n > 0), where ~X are the universally quantified variables appearing in the denial, i.e., all other

variables appearing in the denial are existentially quantified implicitly.

Definition 2.22 (ASystem (Computational) State). An ASystem (computational) state

is a tuple S = 〈G,ST 〉 where G is a set of goals and ST is a tuple of four stores (∆,N , E , C):

• ∆ is a set of collected (possibly non-ground) abducibles;

• N is a set of collected denials (sometimes called the dynamic integrity constraints);

• E is a set of collected (in-)equalities;

• C is a set of collected finite domain constraints.

Definition 2.23 (Meaning of An ASystem State). Given an ASystem state S = 〈G,ST 〉,

each goal in G and each element in the four stores of ST can be viewed as a first order formulate,

and every free variable appearing in S is existentially quantified with the scope of the whole state.

32 Chapter 2. Background

The meaning of S, denoted with M(S), is the conjunction of all the formulas in S, i.e.,

M(S) =
∧
F∈G

F ∧
∧

F∈ST

F

A tuple of four empty stores 〈∅, ∅, ∅, ∅〉 is often denoted with ST ∅. Given a query Q, the initial

state is
〈
Q∪ IC,ST ∅

〉
(note that IC becomes part of the initial goals). A successful state is

one that has an empty set of goals (i.e., G = ∅) and the four stores (i.e., ST) are consistent. In

this case an ASystem answer 〈∆, θ〉 can be extracted, where θ is a set of substitutions induced

by ST .

Definition 2.24. An ASystem derivation tree for a query Q with respected to a goal selection

strategy Ξ is a tree in which

• each node is an ASystem state;

• the root node is the initial state;

• the children of a node are all the states that can be constructed from that node for the

Ξ-selected goal F according to a suitable inference rule.

The set of inference rules [vN04] are summarised below.

Given an abductive framework F = 〈Π,AB, IC〉, let Si = 〈Gi, (∆i,Ni, Ei, Ci)〉 be an ASystem

state, and let F be a goal selected by Ξ from Gi and thus G−i = Gi − {F}. A child state

Si+1 = 〈Gi+1, (∆i+1,Ni+1, Ei+1, Ci+1)〉 is obtained by modifying Si according to the application

of an inference rule on F . In the rule specification, only state component modifications are

described and OR denotes alternative modifications to Si.

There are five rules for a selected positive goal F :

(D1) if F = p(~u) is a non-abducible, let p(~vj)← Φj (j = 1, ..., n) be n rules in Π, then:

- Gi+1 = {~u = ~v1} ∪ Φ1 ∪ G−i

2.3. Abductive Logic Programming 33

OR
...

OR Gi+1 = {~u = ~vn} ∪ Φn ∪ G−i

(A1) if F = a(~u) is an abducible, let a(~vj) (j = 1, . . . , n) be n abducibles in ∆i, then:

- Gi+1 = {~u = ~v1} ∪ G−i

OR
...

OR Gi+1 = {~u = ~vn} ∪ G−i

OR ∆i+1 = {F} ∪∆i and Gi+1 = R∆i
∪RNi ∪ G−i , where

∗ R∆i
= {← ~u = ~v | j = 1, . . . , n},

∗ RNi = {∀ ~X.← ~u = ~w,Φ | ∀ ~X.← a(~w),Φ ∈ Ni}

(C1) if F is a (finite domain) constraint, let Cnew = {F} ∪ Ci:

- if Cnew is consistent, then Ci+1 = Cnew and Gi+1 = G−i

(E1) if F is an (in-)equality, let Enew = {F} ∪ Ei:

- if Enew is consistent, then Ei+1 = Enew and Gi+1 = G−i

(N1) if F = ¬p(~u) (i.e., is a negative literal), then:

- Gi+1 = {← p(~u)} ∪ G−i

If the selected goal F is a denial ∀ ~X.← Γ where Γ 6= ∅, then Ξ further selects a literal L from

Γ and thus Γ− = Γ− {L}. There are also five rules for the selected literal L:

(D2) if L = p(~u) is a non-abducible, then:

- Gi+1 = {∀~Y . ← Γ+ | p(~v) ← Φ ∈ Π and ~Y = ~X ∪ vars(p(~v)) ∪ vars(Φ) and Γ+ =

{~u = ~v} ∪ Φ ∪ Γ−} ∪ G−i

(A2) if L = a(~u) is an abducible, let F ′ = ~X.← a(~u),Γ− then:

- Gi+1 = {∀ ~X.← Γ+ | a(~v ∈ ∆i and Γ+ = {~u = ~v} ∪ Γ−} ∪ G−i , and Ni+1 = {F ′} ∪Ni

34 Chapter 2. Background

(C2) if L is a (finite domain) constraint such that vars(L) ∩ ~X = ∅ (i.e., it does not contain

any universal variable), let (L) be the negated constraint of L 1, then:

- if C+ = {L} ∪ Ci is consistent, then Gi+1 = G−i and Ci+1 = C+;

OR if C+ = {L} ∪ Ci is consistent, then Gi+1 = {∀ ~X.← Γ−} ∪ G−i and Ci+1 = C+

(E2) if L is an equality of the form t = s, let ~E be equational solved form of t = s (i.e., set of

substitutions that are obtained by unifying s with t and are in the form of equation whose

left-hand side is a universal variable if it contains one), then Gi+1 = {∀ ~X.← ~E,Γ−}∪G−i .

Furthermore, if ~E contains exactly one equation Y = r where Y is a variable and r is a

term, let θ be an substitution {Y/r},

– if Y is a universal variable (i.e., Y ∈ ~X), let ~X− = ~X − {Y }, then

- Gi+1 = {∀ ~X−.← Γ−θ} ∪ G−i

– if Y is an existential variable (i.e., Y /∈ ~X),

- if vars(r) ∩ ~X = ∅ and E+
i = {Y 6= r} ∪ Ei is consistent, then Gi+1 = G−i and

Ei+1 = E+
i

OR Gi+1 = {∀ ~X.← Γ−θ} ∪ G−i

(N2) if L = ¬p(~u) (i.e., is a negative literal) such that varsL ∩ ~X = ∅, then

- Gi+1 = {p(~u)} ∪ G−i

- Gi+1 = {← p(~u),∀ ~X.← Γ−} ∪ G−i

Note that rules C2 and N2 require that the selected literal does not contain any universal

variable. This should be guaranteed by a safe goal selection strategy Ξ. Recall that in KM,

Ξ is safe if it does not select any non-ground (base or non-base) abducibles. In ASystem, Ξ

is safe if it selects a constraint or negative literal from the body of a denial if the literal does

not contain any universal variable. If during an ASystem derivation a denial goal contains only

constraints or negative literals with universal variables, the derivation flounders and fails.

1The negated constraint L of a finite domain constraint L is obtained by switching the operator ({<,≥}, {>
,≤}) between the two expressions, e.g., X > Y ≡ X ≤ Y

2.3. Abductive Logic Programming 35

The ASystem proof procedure has been proven [vN04] sound and weakly complete with respected

to the three-valued completion semantics [Teu96] for abductive logic programs. It is weakly

complete because termination condition is required.

Theorem 2.6. [vN04] Let F = 〈Π,AB, IC〉 be an abductive framework, if 〈∆, θ〉 is an ASystem

answer extracted from a successful state and I∆θ is the completed abducibles, then

1. Π + I∆θ |=3 Qθ

2. Π + I∆θ |=3 IC

where + and |=3 denote operators of the three-valued completion semantics for abductive logic

programs [Teu96].

Theorem 2.7. [vN04] Given an abductive framework F = 〈Π,AB, IC〉 and a query Q. Sup-

pose Q has a finite ASystem derivation tree W .

1. if all branches of W are failed (e.g., due to inconsistency in store), then Π |=3 ∀(¬Q);

2. if Π ∪ ∃(Q) is satisfiable, then W contains a successful branch.

The termination condition required for ASystem is the same one required for SLDNFA, which is

based on abductive non-recursiveness for the abductive programs studied by Verbaeten [Ver99].

Theorem 2.8. [vN04] Given an abductive framework F = 〈Π,AB, IC〉, if Π is semi-acyclic [AB91]

with respect to a level mapping |.| and Π is abductive non-recursive [Ver99], then for all bounded

queries [AB91] Q with respect to |.|, the ASystem proof procedure is terminating with respect

to Q.

Chapter 3

Early Work – Distributed Abductive

REasoning (DARE)

3.1 Introduction

Abduction is a powerful inference mechanism that can generate conditional proofs. The con-

ditions are abduced assumptions, which together with a given knowledge base, will imply the

conclusion of the proof. The abduced conditions can be viewed as an answer, or as an explana-

tion, in the context of the knowledge base, of the conclusion. In abductive logic programming,

the knowledge base is represented as a logic program paired with a set of integrity constraints.

In distributed abduction, we focus on the problems where knowledge and constraints are dis-

tributed over a group of agents that co-operate to produce the proof. Each agent has its own

knowledge base and consistency constraints. The abduced conditions for the collective proof

may come from different agents but they must satisfy the relevant consistency constraints of all

the agents who have contributed to the abductive proof. We call this subset of the agents in the

group, who have contributed, the proof cluster. Moreover, because we have in mind applica-

tions where the group of agents is open, where agents can join and leave the group at will, we

have developed a distributed abductive inference algorithm, DARE, that can opportunistically

make use of new agents that arrive whilst a proof is in progress, dynamically extending the

36

3.1. Introduction 37

current proof cluster. It can also recover if an agent that has been contributing leaves the

group, dynamically reducing the current cluster and discarding any sub-proofs to which the

agent may have contributed.

This early work on DARE was inspired by ALIAS [CLM+03], and hence shares some com-

mon features with ALIAS. Both DARE and ALIAS are distributed extensions of the Kakas-

Mancarella proof procedure (KM) [KM90b, KKT92] for a single logic program knowledge base.

However, there are significant differences between DARE and ALIAS. In general terms, the

openness of the DARE architecture builds upon the directory mechanism that allows helper

agents to be recruited on-the-fly as and when they join the agents group. In contrast, in the

ALIAS system the knowledge about agents’ abilities is predefined as part of the background

knowledge of an agent using the LAILA [CLMT01] language. Because of this dynamic feature

of the system, the DARE abductive algorithm uses a more elaborate global consistency check

whereby new agents can be “recruited” for the consistency to be maintained within a cluster.

We will illustrate our DARE algorithm using a multi-agent meeting scheduling example. It is

the problem of finding the names of a subset of agents from an open group of agents who can

attend a meeting together and the time of that meeting. The problem is posed as a conjecture

to conditionally prove that there is a time at which some subset of the people, where each

is a representative of a particular interest group with particular expertise, can meet. The

abduced conditions are the names of the people who can attend. Each person is represented by

an agent that has knowledge about that person’s current commitments and their constraints

about which other people they are not prepared to meet. These constraints are used to filter

out unacceptable combinations of abduced names of attendees. Although quite simple, the

application illustrates the dynamic nature of the algorithm. At any moment in time the current

cluster of agents collaborating in trying to find the abductive proof are the putative attendees.

This subset changes not only as a result of their respective constraints but also because agents

can leave and join the wider group of available agents, and hence the current proof cluster,

whilst the proof is in progress.

The rest of the chapter is organised as follows. Section 3.2 gives a centralised version of the

38 Chapter 3. Early Work – Distributed Abductive REasoning (DARE)

multi-agent meeting scheduling example and illustrates the use of KM. Section 3.3 extends

the example with distributed settings and presents the DARE algorithm. Section 3.4 and

Section 3.5 discuss properties and limitations of this early work. Section 3.6 summaries the

lessons learned and the motivation for subsequent work.

3.2 The Centralised Meeting Scheduling Example

Throughout this chapter, standard abductive logic programming notations are used, and only

normal logic programs are considered. Terminology of the Kakas-Mancarella proof procedure

(KM) is adopted. For example, positive abducibles are considered base abducibles, whereas

negative literals are considered non-base abducibles. Both base and non-base abducibles can

be collected as abduced assumptions. To illustrate how KM works, a simple scheduling problem

example is considered.

Example 3.1. This simple centralised scheduling problem is about finding the names of people,

within a given organisation, that can attend a meeting and the day in the week of that meeting.

Let F = 〈Π,AB, IC〉 be an abductive logic framework and Q be a query defined below.

Π =



conveneMeeting(X)← studentCanAttend(X), tutorCanAttend(X),¬weekend(X).

studentCanAttend(X)← studentName(dan), free(dan,X).

studentCanAttend(X)← studentName(ben), free(ben,X).

tutorCanAttend(X)← tutorName(pat), free(pat,X).

free(dan,monday).

free(ben, tuesday).

free(pat,monday).

free(pat, tuesday).

weekend(saturday).

weekend(sunday).



3.2. The Centralised Meeting Scheduling Example 39

IC =

{
← tutorName(pat), studentName(dan).

}

AB = {tutorName, studentName}

and

Q = {conveneMeeting(X)}

In this example, the background knowledge Π states that a meeting can be convened for a day

X, different from Saturday and Sunday, provided that a tutor and a student can attend the

meeting on that day. The other rules and facts in Π together state that student Dan can attend

on Monday, student Ben can attend on Tuesday and tutor Pat can attend both Monday and

Tuesday. The integrity constraint, however, specifies that Pat and Dan cannot both attend the

meeting. Hence, the only consistent abductive answer for the given query is for X bound to

Tuesday and both Pat and Ben to attend the meeting.

The execution of KM takes as input the above abductive framework and query, and starts an

abductive derivation to prove the initial goal

G0 = Q = {conveneMeeting(X)}

with initially an empty set ∆0 = ∅ of abduced assumptions (collected base or non-base ab-

ducibles). The abductive derivation unifies conveneMeeting(X) with the head of the first rule

in Π and collects the body literals of this rule as new goals to prove, i.e.,

G1 = {studentCanAttend(X), tutorCanAttend(X),¬weekend(X)}

and ∆1 = ∆0.

40 Chapter 3. Early Work – Distributed Abductive REasoning (DARE)

The first goal studentCanAttend(X) is then removed from G1 after the abductive derivation

unifies it with the head of the second rule in Π. The body literals of this second rule are added

in front of current list of remaining goals so giving

G2 = {studentName(dan), free(dan,X), tutorCanAttend(X),¬weekend(X)}

and ∆2 = ∆1.

At this point the next goal is studentName(dan) and it is an abducible, so the abductive

derivation adds it temporarily to ∆2 and a consistency derivation is activated with the tempo-

rary set ∆′ = ∆2∪{studentName(dan)} of abduced assumptions. If the consistency derivation

is successful then the abductive derivation process continues its proof on the remaining goals

G3 = {free(dan,X), tutorCanAttend(X),¬weekend(X)} and the set ∆3 of abducibles given

by ∆′ possibly extended with assumptions accumulated during the consistency derivation (i.e.,

KM interleaves between the abductive derivation and the consistency derivation).

The consistency derivation takes the new temporary set ∆
′

of abduced assumptions and con-

siders all the integrity constraints that include the new assumption studentname(dan). In

our example, there is only one such integrity constraint. The resolvent of the integrity con-

straint with the abducible gives the denial ← tutorName(pat), which means the sub-goal

tutorName(pat) has to fail for the integrity constraint to be satisfied. tutorName(pat) is

itself abducible but not included in ∆′, so it cannot be proved and the consistency derivation

succeeds adding its complement ¬tutorName(pat) 1 to ∆′.

The abductive derivation can then continue its proof with

∆3 = {studentName(dan),¬tutorName(pat)}

and

G3 = {free(dan,X), tutorCanAttend(X),¬weekend(X)}

1Since ¬tutorName(pat) is a non-base abducible, in some literatures it may be annotated as tutorName ∗
(pat).

3.3. DARE Framework and Algorithm 41

Continuing the abductive derivation, the variable X gets unified with Monday, the proof of

tutorCanAttend(monday) generates a new set of goals tutorName(pat), free(pat,X). But the

abductive derivation then fails because the abducible goal tutorName(pat) cannot be proved

as its complement is already abduced in ∆3. At this point, since there is no other rule in Π

for proving tutorCanAttend(monday), the abductive derivation backtracks to the previous

branching point of its proof, which is where the set of goals was

G1 = {studentCanAttend(X), tutorCanAttend(X),¬weekend(X)}

and ∆1 = ∆0 = ∅, in order to find another way to prove studentCanAttend(X). This corre-

sponds to choosing the second rule for this non-abducible and starting the abductive derivation

again. Continuing in a similar way, it is easy to see that the answer to the initial query

Q0 = {conveneMeeting(X)} is

∆ = {studentName(ben), tutorName(pat),¬student(pat)}

with unification X = tuesday.

3.3 DARE Framework and Algorithm

Example 3.1 in the previous section shows a very simple snapshot of a scheduling problem. In a

real context, the background knowledge would be much bigger and the computation cost much

higher if expressed as a single agent (i.e., centralised) process. A distributed representation

of the knowledge base among personal agents, namely an agent process that has knowledge

about the person’s commitments and their constraints, would instead allow for more efficient

computations. Alternative abductive computations for a given goal (e.g. studentName(X))

could, in such a multi-agent context, be fired in parallel. So in case of failure of an abductive

derivation, alternative abductive answers, already computed in parallel, can be directly fetched

and used to continue a proof. To this aim, KM would need to be extended to allow for abductive

42 Chapter 3. Early Work – Distributed Abductive REasoning (DARE)

derivations over distributed knowledge and consistency derivations over distributed integrity

constraints. This section presents a distributed abductive inference algorithm, referred to as the

DARE algorithm, that computes abductive derivations by integrating local (i.e. agent-based)

explanations to goals, computed by individual agents, whilst preserving the consistency of the

combined answer within the context of the proof cluster (i.e. set of agents involved in the

proof). The algorithm extends the KM illustrated in the previous section to allow abductive

derivations over multiple agents (Ai), equipped with individual background knowledge Πi and

integrity constraints ICi, and consistency derivations over the integrity constraints of the agents

involved in the computation. The abductive computation of the DARE algorithm is cluster-

based: its aim is to identify a set of missing information ∆ that is consistent with the integrity

constraints of the agents in a given proof cluster, and that together with the knowledge base

of these agents explain a given (set of) goals. A proof cluster is formed dynamically during the

reasoning process as and when agent specific knowledge and related integrity constraints are

needed during an abductive (resp. consistency) derivation. For the DARE algorithm to work,

the existence of a shared predicate ontology among agents is assumed, which includes a given

set AB of abducible predicates. Predicates in the shared ontology are considered to be global

over the agents, whereas those not in the shared ontology are assumed to be renamed uniquely

with respect to each agent that defines them. It is also assumed that agents share the same set

AB of abducible predicates. Thus, the total knowledge of each agent (Ai) is represented as an

abductive framework Fi = 〈Πi,AB, ICi〉.

3.3.1 Overview

Within the DARE system, each agent is capable of performing local abductive reasoning to

explain (sub-)goals using its own background knowledge and integrity constraints; it can com-

municate with other agents to ask for help in explaining information that is outside the realm

of its own knowledge. The background knowledge of a given agent can in fact use in its rules

predicates that are defined in other agents. Incompleteness of information is therefore not only

related to abducible predicates but also to positive non-abducible predicates. Whereas for the

3.3. DARE Framework and Algorithm 43

first type of information, an agent is allowed to make assumptions in order to continue its proof,

for the case of positive non-abducible predicates, an agent can ask for help to any agent who has

advertised that predicate to be part of its reasoning capability. Note that not all information

(or non-abducible predicates) of an agent needs necessarily to be public. To preserve a certain

level of encapsulation of information, an agent has the ability to announce the information that

it will provide proof for. Advertised non-abducible predicates must be part of the pre-defined

shared ontology. Together with the background knowledge, an agent also has its own integrity

constraints. These are always kept private and never exported to other agents. Given the

encapsulation of the integrity constraints and the fact that agents collaborate to compute a

(global) abductive answers, a natural question is then how can the DARE algorithm guarantee

consistency of the abductive answer with respect to the integrity constraints of the other agents

involved in the proof. A local consistency check on locally abduced assumptions is clearly not

sufficient to assure that such assumptions would be consistent with the integrity constraints of

any other agent that can subsequently join an abductive proof. A more sophisticated process

for checking consistency is therefore needed. Before defining our DARE algorithm, we for-

malise the notions of DARE distributed abductive context and DARE distributed explanation

as a generalisation of the notions of abductive framework and abductive explanation given in

Section 3.2 to the case of a cluster of agents.

Definition 3.1 ((DARE) Distributed Abductive Context). Let Σ = {A1, . . . , An} be

a non-empty group of agents and let Πi and ICi be the normal logic program and set of de-

nial clauses that define the background knowledge and integrity constraints of agent Ai, re-

spectively, for each Ai ∈ Σ. A (DARE) distributed abductive context is the tuple DAC =〈
Σ, Π̂,AB, ÎC,Q, Ainit

〉
where Ainit is the agent in Σ that receives a top-level (i.e., initial)

query Q, Π̂ = {Π1, . . . ,Πn} and ÎC = {IC1, . . . , ICn}, and AB is a set of abducible predicates.

A distributed abductive context can evolve as agents may join or leave the current group, but

it is assumed that agent Ainit belongs to the context at all time. This is formally defined as

follows.

Definition 3.2 (Evolved (DARE) Distributed Abductive Context). Let DAC = 〈Σ, Π̂,AB,

44 Chapter 3. Early Work – Distributed Abductive REasoning (DARE)

ÎC,Q, Ainit〉 be a (DARE) distributed abductive context. An evolved (DARE) distributed ab-

ductive context is the tuple DAC′ =
〈

Σ′, Π̂′,AB, ÎC
′
,Q, Ainit

〉
, with Ainit belonging to the Σ′.

In an evolved distributed abductive context DAC′, the group of agents does not need to be the

same as that of the starting context DAC, with the exception of the initial agent Ainit. Within

the scope of this chapter it is also assumed that the program Πi and the integrity constraints

ICi of an agent Ai do not evolve. In fact, any evolution from Πi to Π′i or from ICi to IC ′i can

be considered as the leaving of agent Ai followed by the joining of agent A′i, providing that

Ai 6= Ainit.

Definition 3.3 ((DARE) Distributed Explanation). Let DAC =
〈

Σ, Π̂,AB, ÎC,Q, Ainit
〉

be a

(DARE) distributed abductive context, let C ⊆ Σ be a cluster of agents and let LCAB denote the

set of all ground literals with abducible predicates in AB and all negative ground literals with

non-abducible predicates that appear in
⋃
Aj∈C(Πj∪ICj). Then a (DARE) abductive explanation

of DAC with respect to the cluster C is a set of ground literals ∆ ⊆ LAB for which there exists

a ground instance Qθ of the query Q such that

• (
⋃
Aj∈C Πj) ∪∆ |= Qθ, and

• (
⋃
Aj∈C Πj) ∪∆ |=

⋃
Aj∈C IC

∆
j

where IC∆
j is the set of integrity constraints in Aj whose body literals unify with a literal in ∆.

3.3.2 Distributed Algorithm

The DARE algorithm uses two main phases, called respectively global abductive derivation

(GAD) and global consistency derivation (GCD), with two supporting phases, called respectively

local abductive derivation (LAD) and local consistency derivation (LCD), to compute an abductive

explanation. The full description of these four phases is given at the end of this section.

The global abductive derivation is the top-level reasoning process that initially takes in input

a (set of) goal(s) G and an agent A in the system and starts a derivation process for proving

3.3. DARE Framework and Algorithm 45

G. This derivation takes one literal (goal) L at a time from G and tries to abductively prove

it. If L is defined in A, the global abductive derivation proceeds locally as a KM abductive

derivation (Rule (2) of GAD). If L is not defined in A and it is a positive non-abducible predicate,

other agents, among those able to prove it, are invoked for help (Rule (3) of GAD). Whenever a

new agent joins an abductive derivation, a global consistency check is performed to make sure

that its addition to the proof cluster does not violate the current set of assumed abducibles

(Rule (1) of GAD). If L is a ground base abducible and L (i.e. the complement of L) has already

been assumed in ∆, then the current global abductive derivation fails and backtracks to any

earlier branching point (if any) in the proof (Rule (4) of GAD). If L is a ground base abducible

already included in ∆ then the global abductive derivation continues its abductive proof on

the remaining literals in the given initial goal G (see Rule (5) of GAD). This is also the case for

L non-base ground abducible already assumed in ∆. But, if the literal L to prove is a ground

base abducible not yet assumed, then it can be temporarily added to the set ∆ and checked

for consistency (Rule (6) of GAD). This is the point where in KM the abductive derivation

calls a consistency derivation. In the DARE algorithm, this corresponds to passing the newly

extended set of assumptions {L} ∪ ∆ to all the agents in the current proof cluster to make

sure that this new set of assumptions is still consistent with their integrity constraints. If the

literal L to prove is a non-base ground abducible not included in ∆, then the current agent A

can temporarily add it to ∆ and check for consistency first locally (i.e. whether it can actually

prove the complement of this literal), and then globally over the proof cluster to verify that the

integrity constraints of the agents collaborating in the proof are still consistent with the newly

extended set of assumptions {L} ∪∆ (Rule (7) of GAD). The overall process of the distributed

abductive derivation is diagrammatically represented in Figure 3.1.

Whereas the global abductive derivation succeeds when the given set G of goals has been

reduced to the empty set of literals (as all of its literals have been abductively proved), the

global consistency phase takes as input the current set of assumptions ∆ as its goal, and checks

it for consistency with respect to the integrity constraints of all the agents in the current cluster.

In essence this means considering one element L in ∆, choosing one agent A in the cluster, and

resolving L with the integrity constraints in A; if at least one of these integrity constraints fails,

46 Chapter 3. Early Work – Distributed Abductive REasoning (DARE)

Figure 3.1: Global Abductive Derivation

then the global derivation fails. Otherwise, the consistency check passes to the next agent in the

cluster, and so on through the entire cluster and for each literal in the given set ∆ of abduced

information. The global consistency process uses two additional supporting derivations – LAD

and a LCD. The resolution of the chosen literal L with the integrity constraints of the particular

agent A in the cluster is handled by that agent via a LAD but with the KM abductive derivation

step applied only between L and its integrity constraints instead of L and its rules (see Rule (2)

of GCD and step (3) of LAD). While checking the consistency of L with its integrity constraints

the agent A may make further assumptions which need themselves to be checked for consistency

over the cluster. A round of consistency checks over the cluster terminates when all the agents

have been considered once. If at the end of a round no additional assumptions have been made

during the LADs then the global consistency check terminates successfully. Of course, the global

consistency derivation fails as soon as a round of consistency checks does not finish as the initial

set of assumption ∆ does not satisfy the integrity constraints in one of the agents in the cluster.

The GCD process is diagrammatically represented in Figure 3.2.

Figure 3.2: Global Consistency Derivation

3.3. DARE Framework and Algorithm 47

At the beginning of a GCD, an agent A from the cluster is chosen which starts a LAD taking as

goals the current set ∆ that has to be checked for consistency and an empty set of temporary

assumptions. The first literal L is then resolved with all the integrity constraints in A that

contain L. The set of resolvents is then passed to a LCD in A. These become must-fail goals.

The LCD proceeds in a similar way as the KM consistency derivation. The main difference in

this case is Rule (5) of LCD. When the literal L to fail is a non-base ground abducible not yet

assumed, a global abductive derivation is called with goal L. In this case, although the GAD is

activated from within the context of a consistency check that is cluster-based, agents outside

the cluster can be invoked for help. This can be seen as a form of collaborative reasoning for

constraint satisfaction, whereby a current cluster of agents can dynamically expand to include

agents with reasoning capabilities that enable successful termination of local consistency checks

that would otherwise fail.

This brings us to the following main features of the DARE algorithm. Firstly, clusters can

expand during both global abductive and global consistency derivations. This expansion occurs

in particular cases: in the global abductive derivation when positive non-abducible literals need

to be proved and the current agent either fails to do so or does not have reasoning capability

(i.e. rules) for that type of information whereas other agents in the group do. These other

agents can then take part in the derivation process by joining the current cluster, provided that

their integrity constraints do not contradict the current set ∆ of assumptions; and in the local

consistency derivation, on the other hand, the task of “failing a non-based abducible with non-

abducible predicate” is, in a sense, similar to the task of succeeding a positive non-abducible

predicate. The local consistency derivation behaves in a similar way to the global abductive

derivation case. If the current agent cannot fail a non-base abducible, it can ask agents outside

the cluster to help in proving the complement of such an abducible in the attempt to successfully

complete its local consistency check. The second feature of this algorithm is negation as failure.

Its semantics is strictly related to the concept of cluster. Successfully proving a negative non-

abducible predicate for a given cluster C means that all the agents in C are not able to prove

its complement. Negation as failure has therefore, in this case, the same meaning as in [Cla78]

but with respect to a background knowledge given only by that of the agents in the cluster. On

48 Chapter 3. Early Work – Distributed Abductive REasoning (DARE)

the other hand, successful failure of proving a negative non-abducible means finding an agent

in the system who is able to prove the non-abducible. This reflects the standard concept that

failing to prove a negated literal is in essence equivalent to finding a proof for its complement.

Finally, the full algorithm with the four types of derivations is defined below. In the following, ∆

is the set of ground abducibles that are collected during the proof and C the set of agents in the

cluster formed during the proof. The output of a successful DARE computation is a final set ∆

and associated cluster C of the final distributed abductive context
〈

Σfin, Π̂,AB, ÎC,Q, Ainit
〉

.

The algorithm starts with the agent Ainit performing a global abductive derivation for the query

Ginit = Q with ∆init = ∅ and Cinit = ∅. The first step in this abductive derivation will add

agent Ainit to the cluster (Rule (1) of GAD).

Global Abductive Derivation

Let A be the current agent, ∆ be the current set of abduced literals, C be the current cluster

and G the current goal ({L1, . . . , Lk}). If G is (reduced to) the empty goal ∅ then the global ab-

ductive derivation succeeds and ∆ and C are returned. Otherwise, G
′

is obtained by removing

a literal L from G, and ∆′ and C ′ are obtained while applying one of the following rules:

1. If A /∈ C: if there exists a global consistency check on ∆ with C ′′ = A ∪ C, and ∆′

and C ′ are obtained after the global consistency derivation, then A continues the global

abductive derivation on G with ∆′ and C ′.

2. If L is a non-abducible: if a rule whose head can match with L exists in A, and the

instantiated body is B, then A continues the global abductive derivation on B ∪G′ with

∆′ = ∆ and C ′ = C.

3. If L is a non-abducible and Rule (2) does not apply, then if there exists a global abductive

derivation on {L} with ∆ and C by a helper agent H (whether in the group or in the

current cluster), and ∆′ and C ′ (Rule (1) and this rule together imply that H ∈ C ′) are

obtained after the derivation, then A continues the global abductive derivation on G′ with

∆′ and C ′.

3.3. DARE Framework and Algorithm 49

4. If L is a ground abducible and L is in ∆, the derivation fails.

5. If L is a ground abducible and L is in ∆, then the current agent continues the global

abductive derivation on G′ with ∆′ = ∆ and C ′ = C.

6. If L is a ground base abducible and neither L nor L is in ∆, if there exists a global

consistency derivation on {L} ∪ ∆ with C, and ∆′ and C ′ are obtained after the global

consistency derivation, then the current agent continues the global abductive derivation

on G′ with ∆′ and C ′.

7. If L is a non-base ground abducible and L /∈ ∆ then if there exists a local consistency

derivation on {← L} with ∆′′ = ∆ ∪ {L} and C by A, and if there exists a global

consistency derivation on ∆′′′ with C ′′′, where ∆′′′ and C ′′′ are obtained after the local

consistency derivation, then A continues the global abductive derivation on G′ with ∆′

and C ′, where ∆′ and C ′ are obtained after the global consistency derivation.

Global Consistency Derivation

The global consistency derivation consists of one or more consecutive consistency check rounds

to make sure the current ∆ is consistent among the agents in the current cluster C. The agents

in C are labelled as A1, . . . , An. For each round of consistency check:

1. Let ∆0 be the input to A1.

2. ∆k−1 is passed to Ak. If there exists a local abductive derivation by Ak on G = ∆k−1

with ∆ = ∅, and ∆k and Ck are obtained after the derivation:

• If k < n, then ∆k is passed to Ak+1 with cluster C = Ck

• If k = n, then the current consistency round succeeds.

If one consistency check round succeeds and ∆0 = ∆n, then the global consistency derivation

succeeds with ∆n and Cn. If one consistency check round succeeds but ∆0 ⊂ ∆n, then start

another consistency check round on ∆n and Cn.

50 Chapter 3. Early Work – Distributed Abductive REasoning (DARE)

Local Abductive Derivation

The local abductive derivation of an agent A is to make sure that the goals passed to A in

Rule (2) of GCD (a set of abducibles) do not violate any integrity constraint of A. Since the

set of goals contains only abducibles, the local abductive derivation by A can be simulated

as an operation such that A “re-abduces” one abducible from the goal, and checks its related

local integrity constraints. If a local abductive derivation succeeds, the obtained new set of

abducibles will contain the original goal and will be consistent with the integrity constraints of

A. Formally, let A be the current agent and ∆ be the current set of abducibles, and C be the

current cluster. The local abductive derivation succeeds if G is empty, and ∆ will be returned

with its associated cluster. Otherwise, G′ is obtained by removing a literal L from G, and ∆′

is obtained while applying one of the following rules:

1. If L is a ground abducible and L ∈ ∆, the derivation fails.

2. If L is a ground abducible and L ∈ ∆, then A continues the local abductive derivation

on G′ with ∆′ = ∆ and C ′ = C.

3. If L is a ground abducible and L /∈ ∆ and L /∈ ∆. Let ICL be the set of integrity

constraints containing L, and F be the set obtained by removing L from each constraint

in ICL. If there exists a successful local consistency derivation on F with ∆∪{L} and C,

and ∆′ and C ′ are obtained after the local consistency derivation, then A continues the

local abductive derivation on G′ with ∆′ and C ′.

Local Consistency Derivation

In the local consistency check, let A be the current agent and C be the current cluster. Let

F be the set of denial goals to be checked for consistency (i.e. must-fail goals). The local

consistency check succeeds if F is empty, and fails if F contains ← emptyset. Otherwise, let

F ′ ∪ {G} = F and G′ is obtained by removing a body literal L from G, ∆′ and C ′ are obtained

while applying one of the following rules:

3.3. DARE Framework and Algorithm 51

1. If L is a non-abducible: A resolvent of L is B ∪G′ where B is the instantiated body of a

rule in the (local) agent whose head can match with L. Let S be the set of all resolvents

of L, A continues the local consistency derivation on S ∪ F ′ with ∆′ = {L} ∪ ∆ and

C ′ = C.

2. If L is a ground abducible and L ∈ ∆, then A continues the local consistency derivation

on F ′ ∪ {G′} with ∆′ = ∆ and C ′ = C.

3. If L is a ground abducible and L ∈ ∆, then A continues the local consistency derivation

with F ′ and ∆′ = ∆ and C ′ = C.

4. If L is a ground base abducible and L /∈ ∆ and L /∈ ∆, then A continues the consistency

derivation with F ′ and ∆′ = ∆ ∪ L and C ′ = C.

5. If L is non-base ground abducible and L /∈ ∆, if there exists a successful global abductive

derivation on {L} with ∆ and C, then A continues the local consistency derivation on F ′

with ∆′ and C ′ where ∆′ and C ′ are obtained from the global abductive derivation.

Correctness of the DARE Algorithm

The correctness of the algorithm requires showing that given a distributed abductive context

DAC =
〈

Σ, Π̂,AB, ÎC,Q, Ainit,
〉

, and given a successful global abductive derivation, by Ainit,

of Q with a final set ∆ of abduced assumptions and a final cluster C of agents of an evolved

abductive context DAC ′, then ∆ is an abductive explanation of DAC ′ with respect to the

cluster C for the goal G. Formally,

Theorem 3.1. Let DAC be an initial distributed abductive context with goal G. Let ∆ be the

output of a global abductive derivation for an instance Qθ, returned by Ainit and computed by

the cluster C = {A1, . . . , An} of a final evolved abductive context DACfin such that Ainit ∈ C.

Then ∆ is an abductive explanation of DACfin with respect to C such that:

• (
⋃
Aj∈C Πj) ∪∆ |=s Qθ, and

• (
⋃
Aj∈C Πj) ∪∆ |=s

⋃
Aj∈C IC

∆
j

52 Chapter 3. Early Work – Distributed Abductive REasoning (DARE)

where |=s is the logic entailment under the stable model semantics and IC∆
j is the set of integrity

constraints in Aj whose body literals unify with a literal in ∆.

An informal proof of this property by induction on the number of agents in the final cluster is

given in [MRBC08].

3.3.3 Distributed Meeting Scheduling Example

This section illustrates the DARE algorithm via the example of distributed meeting schedul-

ing. Building upon the initial example given in Section 3.2, let us consider now the case of a

scheduling problem among a certain number of agents. The initial group of agents includes a

convener, a tutor, a lecturer, several students, a nursery and a timetabler. The Convener is the

agent responsible for organising the meeting. A second lecturer (A8 below) may join during the

execution of the DARE algorithm. The student, lecturer and tutor agents are equipped with

various local rules that define when they may attend meetings and integrity constraints to spec-

ify who they are (not) prepared to meet with. The shared ontology includes all predicates with

the exception of free, day, tired, teaching, teachingJuniors and teachingSeniors, which are

uniquely renamed with the index of the agent that defines them. All shared predicates are adver-

tised, and the base abducible predicates are AB = {studentName, lecturerName, tutorName}

(as it was also the case in the Example 3.1).

The (initial) distributed abductive context of our example is the tuple DAC =
〈
{Σ, Π̂,AB, ÎC,Q, A1

〉
where Σ = {A1, . . . , A8} as described below, and the initial query Q is {conveneMeeting(T)}.

3.3. DARE Framework and Algorithm 53

A1 (Convener)

Π1 =



conveneMeeting(T)← day1(T), studentCanAttend(T),

tutorCanAttend(T), lecturerCanAttend(T).

day1(tuesday).

day1(wednesday).

day1(thursday).

day1(friday).


A2 (Tutor)

Π2 =

 tutorCanAttend(T)← tutorName(pat), free2(T).

free2(X)← nursery(X).


IC2 =

 ← tutorName(pat), studentName(dan).

← tutorName(pat), lecturerName(joe).


A3 (Student)

Π3 =



studentCanAttend(T)← studentName(ben), free3(T).

free3(monday).

free3(thursday).

free3(friday).


A4 (Student)

Π4 =


studentCanAttend(T)← studentName(dan), free4(T).

free4(monday).

free4(wednesday).


A5 (Nursery)

Π5 =

 nursery(wednesday).

nursery(friday).



54 Chapter 3. Early Work – Distributed Abductive REasoning (DARE)

A6 (Lecturer)

Π6 =

{
lecturerCanAttend(T)← lecturerName(joe), freeFromTeaching(T, joe).

}

A7 (Timetabler)

Π7 =



freeFromTeaching(T,X)← ¬teaching7(T,X).

teaching7(T,X)← teachingJuniors7(T,X).

teaching7(T,X)← teachingSeniors7(T,X).

teachingSeniors7(thursday, joe).

teachingJuniors7(wednesday, rob).


A8 (Lecturer)

Π8 =


lecturerCanAttend(T)← lecturerName(rob),¬tired8(T),

freeFromTeaching(T, rob).

tired8(thursday).


Typically, the convener is the agent that makes the initial query {conveneMeeting(T)} with

an empty set ∆1 = emptyset of assumptions and a cluster consisting of only himself (i.e

C1 = {A1}). A solution to this query will include a cluster C of the agents contributing to the

computation, an instance value for T , and an abductive explanation ∆ of the given DAC with

respect to the cluster C. If the only available agents are A1 . . . A7, then the above DAC has no

solution, since the tutor Pat does not wish to meet with the lecturer Joe, and the abductive

context does not include any other lecturer. If A8 joins the group then a possible solution is

∆ = {lecturerName(rob), tutorName(pat), studentName(ben)}

for the unification T = friday, and the cluster C = {A1, A2, A3, A5, A7, A8}. The tutor Pat is

only willing to work with Rob and Ben. The only common free day for Pat and Ben is Friday

and Rob can also meet on Friday. This solution is computed by the DARE algorithm in the

3.3. DARE Framework and Algorithm 55

following way.

1. Agent 1 (A1) can prove day1(tuesday) but not studentCanAttend(tuesday). Therefore

it applies step 3 of the GAD and recruits agents A3 and A4 who then carry out their own

step 1 of GCD. In this moment of the proof, there are not yet any abduced assumptions, so

step 1 in each of these agents succeeds trivially, and two different clusters C1 = {A1, A3}

and C2 = {A1, A4} are formed.

2. Student agent A3 (respectively A4) starts its GAD process, matching studentCanAttend

(tuesday) to the head of one of its program clauses to derive the sub-goal studentName(ben)

(respectively studentName(dan)), to which step 6 of the GAD is applied. For example,

agent A3 adds studentName(ben) to ∆ and attempts a GCD, which requires each agent

in its cluster, C1, to check that the abduced assumption does not violate any integrity

constraint of the agents in C1 (i.e. A1 and A3). This is clearly the case as neither agent

in C1 has integrity constraints. Similarly for agent A4 except that studentName(dan) is

abduced.

3. The student agents A3 and A4 continue independently their GAD on their next sub-goal

free3(tuesday) and free4(tuesday) respectively. Neither student agent can succeed this

subgoal, so A1 backtracks and requests help for studentCanAttend(wednesday). This

time A4 succeeds and returns ∆ = {studentName(dan)} after a successful GCD.

4. Agent A1 continues its GAD with the current set ∆ = {studentName(dan)} of ab-

ducibles. It requests help from A2 to prove the sub-goal tutorCanAttend(wednesday).

A2 temporarily abduces tutorName(pat) and activates a GCD which fails because of the

first integrity constraint of A2.

5. Agent A1 again backtracks and solves day1(thursday), which leads to A3 succeeding with

∆ = {studentName(ben)}. A similar computation as before follows, but this time using

A2. This results in the new abducible ¬lecturerName(joe) being added to ∆, so far

given by {studentName(ben), tutorName(pat)}, for the second integrity constraint of A2

to be satisfied. However, the free2(thursday) sub-goal of A2 will fail.

56 Chapter 3. Early Work – Distributed Abductive REasoning (DARE)

6. Agent A1 backtracks yet again and solves the sub-goal day1(friday). This time A2 suc-

ceeds to show tutorCanAttend(friday), with the set ∆ = {studentName(ben), tutorName

(pat),¬lecturerName(joe)} of abducibles and cluster C = {A1, A2, A3, A5}.

7. Agent A1 requests now help for its sub-goal lecturerCanAttend(friday) and A6 starts

a new GAD. Note that when performing step 1 (on joining the cluster) of its GAD, the

corresponding GCD succeeds, but in step 4 it fails since ¬lecturerName(joe) is in ∆.

The top-level goal fails as there are not more solutions for day1(T) in A1.

8. Suppose now that Agent A8 joins the group before the failure. A1 will notice this and re-

quest its help to solve lecturerCanAttend(friday). As part of a derivation, A8 adds to ∆

the abduced assumption lecturerName(rob) giving ∆ = {lecturerName(rob), studentName

(ben), tutorName(pat),¬lecturerName(joe)}, which does not violate any integrity con-

straints of any agents in the current cluster C = {A1, A2, A3, A5, A8}. A8 continues

then and applies step 7 (of its GAD) to solve ¬tired8(friday). This requires adding

¬tired8(friday) to ∆ and checking that tired8(friday) is not provable by any agent in

the cluster, which in this case succeeds trivially since the predicate tired8 is local to just

agent A8.

9. Agent 8 next solves the sub-goal freefromTeaching(friday, rob) by recruiting agent A7.

This gives the set of assumptions

∆ = {studentName(ben), tutorName(pat),¬lecturerName(joe),

lecturerName(rob),¬tired8(friday)}

and the binding T = friday which are returned to A1. The first GAD process is thus

terminated.

Suppose now that Pat has no integrity constraints and Dan will only attend the meeting

if Rob does. This can be expressed as an integrity constraint for Dan (i.e. in A4) by ←

studentName(dan),¬lecturerName(rob). When studentName(dan) is abduced as part of

solving the sub-goal studentCanAttend(wednesday) inA4, the GCD will require ¬lecturerName

3.4. DARE Implementation 57

(rob) to fail, which means the query lecturerName(rob) to succeed. Since lectureName is an

abducible predicate, lecturerName(rob) will succeed by being added to ∆. At some point in

the GAD of the top-level goal, the sub-goal lecturerCanAttend(wednesday) will succeed by

abducing lecturerName(joe). If this enriched set of abducibles were not desirable (i.e. only

the name of agents involved in the proof should be part of the scheduling solution) an addi-

tional integrity constraint ← lecturerName(X), lecturerName(Y),¬X = Y. could be added

to agent A1 to capture that at most one lecturer should attend. In this case since a GCD

goes always through all the agents in the current cluster, the GCD initiated by the the GAD

in agent A6 on the sub-goal lecturerName(joe) would fail when checking agent A1, and be

forced to backtrack to find another solution for lecturerCanAttend(wednesday). Since this

is impossible, further backtracking would be performed eventually finding Rob as the solution

with T bound to Friday.

3.4 DARE Implementation

DARE has been implemented in Qu-Prolog [CRZA05] and uses Pedro [RC10], a publish/sub-

scribe server, to support inter-agent communications. The system assumes the communication

between agents to be safe and reliable, namely that the messages sent between two agents cannot

be lost or corrupted, and each agent is rational and trusted by the others. As its main purpose

is to support coordinating collaborative reasoning, the handling of various network attacks or

fatal network failures is not considered, and the system does not allow for the possibility of

malicious agents interfering in the collaboration between other agents.

As mentioned already, the DARE system consists of an open group of agents. The group can

dynamically change even during a particular inference process. This can result in the agents

involved in the proof, the current proof cluster, to change. When a new agent joins, it will notify

all the existing agents and publish all of its advertisements (i.e., non-abducibles in the shared

ontology that are defined in the new agent’s background knowledge) through the Pedro server.

Each agent maintains a local “yellow-page” directory storing all other agents’ advertisements.

58 Chapter 3. Early Work – Distributed Abductive REasoning (DARE)

Upon receiving a joining notification from the new agent, each existing agent will send its own

advertisements to the new agent so that the new agent can initialise its own directory. This

directory can be used by its owner agent to identify potential helpers during a distributed

inference process.

A query can be submitted to any of the agents, Ai say, in the system, and the abductive answer,

if any, is returned by that same agent. The reasoning process starts within agent Ai. It tries

to construct an abductive answer using only its own knowledge by invoking a meta-interpreter

that implements the DARE algorithm. But during its abductive reasoning process, it can “ask

for help” from other agents in the group. Each query answer returned by the agent is associated

with the cluster of agents that have contributed to its proof. The main features of the DARE

agent architecture are its high level inter-agent communication, the internal concurrency of

the agents and the parallel search for alternative abductive proofs. The agents are internally

concurrent because they comprise several distinct time-shared threads of computation that

co-ordinate via internal thread-to-thread messages and a shared blackboard. The parallelism

arises because the agents can be distributed over a network of host computers allowing the

different agents requested to help with a sub-proof to search for sub-proofs in parallel. The

detailed multi-threaded DARE agent architecture is described in [MRBC08, MBCR08].

3.4.1 Impact of Openness

Allowing agents to join or leave the system during an inference process will not affect the

soundness of the final proof for a query. If an agent joins or leaves the system but not the

current proof cluster for a query, its background knowledge and integrity constraints are not

considered in the current proof and hence the proof is not affected. Once an agent joins a

proof cluster, the DARE algorithm will force it to check for consistency of the already abduced

assumptions before it can contribute to the inference process. If an agent in the current cluster

leaves before the proof is complete, the current DARE system implementation will discard any

sub-proof of a condition (i.e., sub-goal) provided by that agent, and will “backtrack” to the

point where a sub-proof of that agent was first used (usually this is the point where the leaving

3.4. DARE Implementation 59

agent joined the cluster).

However, the DARE algorithm is not complete (i.e., there exists some answers that the al-

gorithm cannot compute) due to the openness of agent group and the depth-first inference

strategy. Consider the following example involving two agents A1 and A2 whose background

knowledge are given as:

Π1 Π2

p← q. q ← a.

p← r.

r ← w. w ← b.

where a and b are abducibles. Suppose that initially the system only has A1, and the query p

is submitted to A1. A1 first tries to prove p by using the first rule in Π1. However, it fails to

prove q and no helper is available for q (yet). A2 then tries the second rule in Π1 and obtains

a new goal r. Suppose at this time A2 joins the system. Then by the time A1 is attempting to

prove w (for r), A1 can ask for help from A2 and a successful proof will be obtained for p with

the answer {b} and the cluster {A1, A2}. However, in the union of the background knowledge

Π1 ∪ Π2 there is another answer, i.e., {a}, but this answer cannot be computed by the DARE

algorithm. This is known as the situation where “the helper agent joins the system too late”.

3.4.2 Termination

There are two causes that will lead to non-terminating behaviour of the DARE algorithm.

Cyclic Sub-goals Outsourcing

Consider the following example involving a group of three agents A1, A2 and A3 whose back-

ground knowledge are given as:

Π1 Π2 Π3

p← q. p← r. p← w.

60 Chapter 3. Early Work – Distributed Abductive REasoning (DARE)

where all predicates are non-abducible in the shared ontology. Thus, all three agents will

advertise p. Suppose a query (goal) p is sent to A1. A1 cannot prove it by proving q so

it outsources p to A2 and A3. A2 (A3) cannot prove p either by proving r (w), therefore

A2 (A3) outsources p to A1 and A3 (A1 and A2). This generates a non-terminating loop of

outsourcing requests. The DARE implementation overcomes this problem by having an agent

pass a DontAsk in addition to the sub-goal and other proof information to its helpers. The

DontAsk list contains the identifier of the current agent, and those of the agents it is asking for

a sub-proof. In the case where a helper agent fails to prove the given goal, it will not forward

the goal to any agent in the DontAsk list. For example, in the previous scenario, when A1

outsources p to A2 and A3, the list DontAsk = {A1, A2, A3} is also passed to the two helpers.

When A2 and A3 fail to prove p, they will not outsource it to anyone else.

However, the DontAsk list technique cannot avoid the following looping situation, which is

caused by the cycles in the union of all the agent background knowledge:

Π1 Π2

p← q. q ← p.

In this scenario, the loop of outsourcing requests is between A1 asking A2 for help with q and

A2 asking A1 for help with p. This problem is inherited from KM, whose termination depends

on the acyclic condition of the logic program representing the background knowledge.

Rogue Agents that Oscillates between Joining and Leaving

Another non-terminating situation is caused by the openness of the DARE system. Consider

the following example with two agents A1 and A2 whose background knowledge are given as:

Π1 Π2

p← q, w. q ← a.

w.

3.5. Limitations of DARE 61

where a is an abducible. Suppose initially the system contains both agents and A1 is given a

query p. A1 asks for help from A2 for q, and A2 returns an answer a, which is used by A1 to

continue its proof. However, suppose A2 leaves while A1 is trying to prove w. This causes A1

to “backtrack” its inference to the point where it received an answer from A2 and tries to find

an alternative helper. If at this point A2 joins the system again (on time), then A1 will ask it

again. Therefore, if A2 keeps leaving and joining the system like this A1 will never be able to

progress its proof. Although this situation can be avoided by imposing a limit on the number

of times an agent can join the system during an inference process, the DARE implementation

does not enforce it.

3.5 Limitations of DARE

There are several limitations of the DARE system and algorithm, in addition to incompleteness.

This section will give a summary and brief discussion of them.

From the efficiency point of view, the DARE algorithm has performed a considerable amount

of redundant computation during the global consistency derivations. For example, in each

consistency check round, a set of abducibles is passed between the agents one by one to check

for consistency with respect to their local integrity constraints. And if at the end of a consistency

check round the set of abducibles has been expanded, a new round will be initiated. It can

be observed that the changes to the set of abducibles between consistency check rounds are

incremental. Thus, each agent should check only those abducibles that it has not seen before

at each round. We argue that this limitation is implementation specific, as we can tag each

abducible with the identifier of the agents that have checked it for consistency, to avoid any

agent having to check “self-tagged” abducibles during the global consistency derivation.

Another limitation is the inflexibility of the DARE algorithm. The algorithm interleaves four

derivations, and each new derivation initiated requires inter-agent communication. Consider the

situation where an agent A1 has a rule p← a, b, q in Π1, where a and b are abducibles and q is a

non-abducible that no agent can prove. Suppose that the current cluster has a number of agents,

62 Chapter 3. Early Work – Distributed Abductive REasoning (DARE)

each of which has integrity constraints for both a and b, respectively, but can be satisfied after

long computation. Given a query (goal) p, due to the adopted depth-first goal selection strategy,

A1 will first assume a which causes a long but successful global consistency derivation, and then

assume b which causes another long but successful global consistency derivation, and finally try

but fail to solve q, which makes the previous two global consistency derivations unnecessary.

Observing from this example, if we allow the global abductive derivation by an agent to continue

until all the abducibles are collected, then only one global consistency derivation needs to be

invoked and communication overhead may be significantly reduced. Thus, it is desirable to

allow flexible interleaving between the four derivations during the DARE algorithm execution.

The abductive computation is cluster-based instead of system-based, i.e., the proof and answer

for a query are based on the knowledge of a dynamically selected sub-group of agents in the

system, instead of all the agents in the system. An agent is “invited” to join a cluster only if it

can help provide sub-proofs for some goals of the cluster’s inference process. In some situations,

we may want to explicitly add some agents to a cluster for the sake of consistency check for

the assumptions made by the cluster. In the current implementation, the extra consistency

check agents can be added into the initial cluster of the top-level global abductive derivation.

For example, if we want to achieve system-wide consistency or abductive computation, we can

start the global abductive derivation for a given query with the set of all agents in the system

as the initial cluster. However, this is in fact against the openness assumption of the system,

which assumes that the group of the agents is unknown at the beginning.

Finally, since the DARE distributed abductive framework considers only normal logic programs

and the DARE algorithm performs negation as failure (as in SLDNF), the DARE system is

not applicable in many problem domains, in particular those involve reasoning over arithmetic

constraints and/or need to compute and exchange non-ground answers, such as planning and

scheduling with time and cost. This limitation will be discussed in more detail in 4.1.

3.6. Conclusion 63

3.6 Conclusion

This chapter describes our early work of developing a distributed abductive reasoning (DARE)

system by proposing a new distributed abductive algorithm and the architecture of its multi-

threaded distributed Qu-Prolog implementation. The DARE algorithm extends the Kakas-

Mancarella abductive proof procedure by allowing the background knowledge and integrity

constraints to be distributed over a group of agents of which a dynamically selected sub-group

co-operate to produce a proof. The system is open in that it allows new agents to join or leave

the group as they wish at any time. The abduced conditions for a collective proof can come

from different agents but they are guaranteed to be consistent with the integrity constraints of

all the agents who have contributed to the proof.

The DARE system has several potential applications such as the illustrated multi-agent schedul-

ing and the previously mentioned multi-robot planning and collaborative interpretation of sen-

sor data. We have also developed a distributed abductive planner [MRBL09] as an extension

to DARE, based in the abductive Event Calculus planner in [Sha00], for supporting collabora-

tive planning in the context of multiple robots. Because of the openness feature of the DARE

system the distributed abductive planner will allow plan repair and plan recovery to allow the

computation of executable plans, even when agents leave the system. For example, suppose

that a set of robots have collaboratively computed a plan (i.e., a sequence of actions as the

assumed abducibles) for a specific goal (i.e., an abductive query) using DARE, and suppose

one of the agents crashes or leaves before the plan can be executed, then the plan will no

longer be valid. In this case, DARE can backtrack to the point where this agent first joined

the collaborative planning, and re-plan (i.e., resume the distributed abductive inference) from

there without the agent. Implementing such a distributed abductive planner with plan repair

support is our future work.

However, DARE has a number of limitations, in particular the inflexibility of the algorithm

execution and the lacking of arithmetic constraint support, preventing it from being applied

in a larger problem domains. In our later work, we focused on addressing such limitations,

and developed a new distributed abductive reasoning system that is much more generic and

64 Chapter 3. Early Work – Distributed Abductive REasoning (DARE)

powerful, yet flexible. This system will be described in the following chapters.

Chapter 4

Distributed Abductive REasoning with

Constraints (DAREC)

4.1 Introduction

The DARE system allows agents to dynamically form clusters and perform collaborative ab-

duction over their distributed knowledge. The distributed proof procedure of DARE is based

on the Kakas-Mancarella proof procedure (KM), and hence inherits the limitation of not be-

ing able to make non-ground assumptions (i.e., assume non-ground abducibles). Note that

in KM, negative non-abducible literals are treated as (non-base) abducibles. Consequently,

DARE cannot accept non-ground negative queries. For example, consider a planning domain

with two agents α and β with Πα = {can fly(Pilot,Day)← free(Pilot),¬storm(Day).} and

Πβ = {storm(wed).}, respectively, and with ICα = ICβ = ∅ where free is the only abducible

predicate. Given a query can fly(X, Y), no answer can be computed by α and β in DARE,

because after reducing can fly(X, Y) to free(X),¬storm(Y), α cannot progress further as-

suming free(X) or ¬storm(Y), as they are not ground. One solution to this issue is to change

65

66 Chapter 4. Distributed Abductive REasoning with Constraints (DAREC)

Πα to be

Π′α =



can fly(Pilot,Day)← pilot(Pilot), free(Pilot), day(Day),¬storm(Day).

pilot(p1).

pilot(p2).

day(mon).

· · ·

day(sun).


This guarantees free(X) and ¬storm(Y) to be eventually grounded and thus assumed by

α. However, this solution may cause combinatorial explosion of agent interactions during the

collaborative reasoning, e.g., there are 2× 7 = 14 ways to ground free(X) and ¬storm(Day)

in this example. In addition, if we are dealing with applications with unbound domains (e.g.,

the names of the pilots are unknown in the example), then we may not be able to guarantee

the grounding of abducibles at all. Ideally, we would like to compute succinct answers of

the form free(X), Y 6= wed for the query can fly(X, Y) with respect to Πα and Πβ. To do

this, the abductive proof procedure needs to perform constructive negation instead of negation

as failure for negative literals. Another limitation of DARE is the lack of support for finite

domain and arithmetic constraints solving. Many applications of abduction, such as planning

and scheduling, require reasoning with constraints over time and cost.

Furthermore, operationally the execution of the DARE distributed proof procedure is somewhat

too rigid. For example, the collection of a new abducible is immediately followed by a global

consistency derivation (GCD), which consists of multiple rounds of consistency checks by all

the agents in the cluster. Little control can be imposed on the execution to reduce agent

communications. Consider the following example of three agents α, β and γ, with

Πα =

 p← q, r.

q ← a.

 ICβ = {← a, c.} ICγ = {← a, d.}

4.1. Introduction 67

and

ICα = Πβ = Πγ = ∅

where a is the only abducible. Suppose that α has to solve the goal p and the current cluster

contains all three agents, and a left to right goal selection strategy is adopted. Then during α’s

local abductive derivation (LAD), the abducible a can be selected before r, causing then a GCD

among three agents. Although the GCD is successful, it is unnecessary if α had first chosen r in

its LCD, i.e, r would fail and the LCD would backtrack without the need to check a with others.

The focus of this chapter is to present a new distributed abductive reasoning system, called

DAREC, that overcomes the limitations of DARE, thus supporting a wider class of distributed

knowledge-based problem solving tasks. Specifically, DAREC differs from DARE in the follow-

ing ways:

• DAREC allows the reasoning of inequalities over logical terms (e.g., f(a,X) 6= f(Y, b)

gives either Y 6= a or X 6= b) and the reasoning of finite domain constraints (i.e., a type

of Constraint Logic Programming constraints), by using an external inequality solver and

finite domain constraint solvers.

• DAREC handles negative literal goals as integrity constraints instead of (non-base) ab-

ducibles, and performs constructive negation. For example, a negative literal goal contain-

ing universal or existential variables (e.g., ∀Day.¬storm(Day) or ∃Day.¬storm(Day))

can be treated as an integrity constraint (e.g., ∀Day. ← storm(Day) or ∃Day. ←

storm(Day)). Given a fact storm(wed), the computation of ∀Day. ← storm(Day)

returns no answer (i.e., fails), and that of ∃Day. ← storm(Day) succeeds and gives

Day 6= wed.

• DAREC focuses collaborative abduction among a fixed set of agents, i.e., the cluster is

always equal to the set of all the agents in the system.

In addition, DAREC has a completely new distributed proof procedure, which is based on

ASystem [KvND01] instead of KM. The collaborative abduction can be seen as a distributed

68 Chapter 4. Distributed Abductive REasoning with Constraints (DAREC)

state rewriting/search process, where each state contains intermediate computational results

such as the remaining goals, the assumed abducibles with their constraints (e.g., inequalities

and CLP constraints), and the dynamically collected integrity constraints (e.g., derived from

negative goals) that need to be satisfied by all agents. This process involves local computations

by the agents and the interactions between agents through state passing:

1. after a query is sent to the system, an initial state containing only the query is created;

2. for any given state, an agent can apply a set of local abductive inference rules to rewrite

it into a set of new states, using its local knowledge and integrity constraints;

3. if a state generated during the local computation by an agent contains a goal that the

agent cannot reduce using its local knowledge, or contains an assumed abducible or a

dynamically collected integrity constraint that has not been checked by all the agents,

then the agent can pass the state to other agents for further processing;

4. if a state is generated without any remaining goal or unchecked abducible or unchecked

collected integrity constraint, then an answer can be extracted from it.

The coordination between the local computations is controlled by the agent interaction strategy

(e.g., when to pass a state) and the agent selection strategy (e.g., whom to pass a state to),

which are application dependent and customisable in order to optimise the agent collaboration

(e.g., reducing the number of interactions and communications).

The rest of this chapter is organised as follows. Section 4.2 defines the DAREC framework for

knowledge representation. Section 4.3 describes the DAREC distributed proof procedure and

illustrates it with a simple running example. Section 4.4 proves the soundness and complete-

ness of the system. Section 4.5 discusses several potential extensions to the system. Finally,

Section 4.6 concludes this chapter.

4.2. Distributed Framework for Fixed Agent Systems 69

4.2 Distributed Framework for Fixed Agent Systems

To model a distributed abductive reasoning problem for a given multi-agent system in DAREC,

a logical framework based on the DARE distributed abductive context is used. The framework

has the following assumptions:

1. It refers to fixed set of agents, each of which has a unique ID and represented as an

abductive framework. This assumption allows us to model distributed knowledge of the

multi-agent system.

2. All predicates are global to the agents, and the set of abducible predicates is agreed by all

agents. These two assumptions ensure that agents talk in the same language and cannot

generate hypotheses that are provable by others.

3. Any two agents can send peer-to-peer messages to each other. This ensures that the

communication graph for the multi-agent system is fully connected, and hence eliminates

the need to consider message routing problems.

Similarly to DARE, our main focus is on the correctness of the distributed abductive reasoning

system. It is further assumed that the agents and the communication channel are reliable, i.e.

there is no corruption or loss of messages.

Recall that an agent’s abductive framework is F = 〈Π,AB, IC〉, where Π is a finite set of rules

called the background knowledge, IC is a finite set of denials called the integrity constraints,

and AB is the set of abducible predicates. Π and IC together constitute the agent’s local

knowledge (or local expertise). When it is necessary, we may use the agent’s identifier, say

i, to suffix the agent’s framework and its components, i.e. Fi, Πi, ABi and ICi. The global

expertise (in contrast to local expertise) of a set of agents is represented by the notation of

global abductive framework.

Definition 4.1 ((DAREC) Global Abductive Framework). The (DAREC) global

abductive framework for a system of abductive agents, is a tuple
〈

Σ, F̂
〉

, where Σ is the set of

70 Chapter 4. Distributed Abductive REasoning with Constraints (DAREC)

all agent identifiers and F̂ is the set of abductive agent frameworks, i.e. {Fi | i ∈ Σ}. For any

pair of agents i, j ∈ Σ, ABi = ABj.

Note that the DAREC global abductive framework differs from the DARE distributed abductive

context in the following ways. First, it is independent of the query and the initial agent who

receives the query (i.e., they are not included in the tuple). Secondly, since the set of agents is

fixed, we do not consider evolved global abductive framework (until Section 4.5.2).

Consider the following ambient intelligent system in a sheltered home for elderly people, where

mobile or embedded devices are used for monitoring in house security and aiding the daily life

of the occupants.

Example 4.1. Ann and Bob live in the same care home, where a number of sensing devices are

installed. For example, a corridor sensor (cor) detects movements along the corridor, and a

window monitor (wm) can check which window(s) of the house are open/closed. There is also

a home controller (hm) that can respond to events taking place inside the house, such as setting

off an alarm if an intruder is detected, or notifying a nurse when a resident is in difficulty.

Bob has a mental condition. Unless taking regular medication, he tends to wander around the

house instead of staying in his room. So Bob is always carrying a personal device (bob) that

logs his medication intakes. Ann is in good health and can leave the house when necessary,

e.g. going to a dental appointment. Ann also carries a personal device (ann) which keeps her

calendar and appointments. All the sensing and personal devices (except the base sensors, like

the corridor sensor, which merely generate detected event notifications to hm) have reasoning

capability. About 12pm on Monday, cor detects movement and informs hm. hm then needs to

collaborate with various devices to explain the event before taking appropriate action.

The above system can be modelled using a global abductive framework, where each device is

an abductive agent, e.g.:

Fbob : Bob cannot be walking in the corridor if he has taken medicine in the past 2 hours. His

4.2. Distributed Framework for Fixed Agent Systems 71

most recent intake is at 11am.
Πbob =

{
takenMedicine(11).

}

ICbob =

 ← walkInCorridor(bob, T), takenMedicine(T1),

T − 2 ≤ T1, T1 ≤ T.





Fann : Ann has a dental appointment from 11am to 1pm.


Πann =


appointment(dental, 11, 13).

out(ann, T)←

appointment(A, T1, T2), T1 ≤ T, T ≤ T2.


ICann = ∅



Fwm : The window monitor has the status information of the windows on different floors.

Any open window (we assume that the fact open(Win) is asserted/retracted from the

background knowledge whenever the window Win is open/closed) on the 1st floor is a

possible point of entry for a potential intruder.



Πwm =



pointOfEntry(T)←

open(W), f loor(W, 1).

open(w1).

f loor(w1, 1).

f loor(w2, 2).


ICwm = ∅



Fhm : The home controller has knowledge about possible causes to known events. For example,

72 Chapter 4. Distributed Abductive REasoning with Constraints (DAREC)

movement in the corridor can be of either an occupant or an intruder.



Πhm =



movement(cor, T)←

occupant(X), walkInCorridor(X,T).

movement(cor, T)←

pointOfEntry(T), walkInCorridor(intruder, T).

occupant(X)←

X ∈ {ann, bob}.


IChm =

{
← walkInCorridor(X,T), X 6= intruder, out(X,T).

}



In order to explain the notified event of movement in the corridor (movement(cor, 12)), hm

needs to find out who could be walking in the corridor at 12. If it is Bob, then a nurse needs

to be notified (remotely). If it is an intruder, then the alarm needs to be set off. If it is Ann,

no action needs to be taken. All agents have the single abducible predicate walkInCorridor,

i.e. ABhm = ABwm = ABann = ABbob = {walkInCorridor}. Thus, the global abductive

framework for Example 4.1 is 〈{hm,wm, ann, bob}, {Fhm,Fwm,Fann,Fbob}〉.

Definition 4.2 ((DAREC) Global Abductive Answer). Given a (DAREC) global ab-

ductive framework
〈

Σ, F̂
〉

and a query Q, let Π̂ =
⋃
i∈Σ Πi, let ÎC =

⋃
i∈Σ ICi, and let

ÂB =
⋃
i∈ΣABi. A pair 〈∆, θ〉 is a (DAREC) global abductive answer for Q if and only

if:

• ∆θ ⊆ ÂB;

• Π̂ ∪∆θ |= Qθ;

• Π̂ ∪∆θ |= ÎC

where θ is the variable substitutions over the variables in Q, and |= is the logical entailment of

a selected semantics for the logic program formed by Π̂ ∪ ÎC.

4.3. Distributed Algorithm 73

4.3 Distributed Algorithm

4.3.1 Overview

Given a global abductive framework and a query, a global abductive task of the agents is to col-

laboratively compute the global abductive answers for the query. A new distributed algorithm

has been developed for such a task in DAREC. Operationally, the distributed computation by

the agents is a sequence of coordinated local abductive computations, i.e.,

distributed abduction = local abduction + coordination

The local abduction by an agent is a top-down (goal-directed) abductive inference, which

is extended from the ASystem proof procedure [KvND01] and can be described as a state

rewriting and search process. Each computational state (or state in brief) encapsulates the

intermediate computation results of a global abductive task, and contains information such

as remaining goals, assumed abducibles (i.e., hypotheses made), collected arithmetic constraints

and the collected consistency constraints (in denial form) that need to be satisfied by all the

agents. Thus, each state is sufficient to describe a new global abductive task that can subsume

the original one, i.e., every answer for the task described by the state is also an answer for

the original task. The first state of a global abductive task is called the initial state, and

contains only the query. A solved state is one that contains no remaining goals and the collected

constraints are all checked and satisfied by every agent, and from which global abductive answers

can be extracted. Each agent’s local abduction starts with a given root state, and involves a

series of inference steps. Each inference step replaces a state to a (possibly empty) set of states,

each given by a goal selected from the state and the application of an inference rule. The

objective of a local abduction is to search for solved states, and its execution is influenced by

the goal selection strategy adopted by the agent.

Differently from centralised abduction, a local abductive inference step may allow an agent to

collect a (non-abducible) goal as a delayed goal when it does not have sufficient background

knowledge to reduce it. Every new abducible or consistency constraint collected by the agent

74 Chapter 4. Distributed Abductive REasoning with Constraints (DAREC)

Figure 4.1: Distributed Abduction

has to be checked by all other agents. Thus, during local abduction a special type of non-solved

(intermediate) states may be generated, which contain delayed goals or collected abducibles/-

consistency constraints yet to be checked by other agents. These states are called transferable

states. For a generated transferable state, the owner agent can either process further the state

with a local inference step (e.g., to reduce remaining goals), or pass it to another agent (e.g.,

to deal with the delayed goals), according to an agent interaction strategy and an agent selec-

tion strategy. Note that each transferable state sufficiently describes a global abductive task,

thus the recipient agent can start its own local abduction (with the received state being the

root state) to continue the global search process independently. Let us remark that during the

agents’ collaboration for a given global abductive task, each agent may receive several states

and perform corresponding local abductions simultaneously, and any answer found from any

of these local abductions is an answer for the given task. Figure 4.1 visualises an example of

distributed abduction, where each of the local abductions is represented as a tree of states.

4.3. Distributed Algorithm 75

4.3.2 Notations of State + Local Abductive Derivation

In this section, we give formal definitions for the data structures used in the distributed algo-

rithm. As previously mentioned, a state may contain hypotheses and constraints that need to

be checked by all agents at least once. In order to record who has checked what, we introduce

the concept of tagging for literals or denials:

Definition 4.3 (Tagging). A tag is a pair (L, S), where L is either a literal or a denial, and

S is a (possibly empty) set of agent identifiers. Given a set τ of tags, a literal or denial L is

tagged by an agent α (or α has tagged L) if and only if (L, S) ∈ τ and α ∈ S.

Sometimes we also use LS to denote that a literal or denial L is tagged by the agents in S.

Tags are used during distributed abduction in one of the following ways:

• A goal may be tagged by the agents who have delayed it. Such information can be used

to prevent an agent from delaying the same goal more than once, and hence avoid the

non-progressive cyclic state-passing between agents. For example, suppose a system has

two agents α and β. Given a query containing only one goal p, we need to stop the agent

interactions cycling between α delays p then sends a state to β, and β delays p then sends

a state to α.

• An abducible may be tagged by the agents who have not checked its consistency with

respect to their local integrity constraints.

• A denial (collected consistency constraint) may be tagged by agents who have not checked

its satisfiability.

Examples of these usages will be given in Section 4.3.3.

Definition 4.4 ((DAREC) Computational State). A (DAREC) computational state (or

state in brief) is a tuple Θ =
〈
(G,Gd),ST , τ

〉
, where

76 Chapter 4. Distributed Abductive REasoning with Constraints (DAREC)

• each element in G is a remaining goal, and can be either a literal or a denial of the form

∀ ~X. ← φ1, . . . , φn (n > 0) where ~X is the set of universally quantified variables of the

denial 1;

• each element in Gd is a delayed goal and must be a non-abducible;

• ST is a tuple of four stores (∆,N , E , C), where

– ∆ is a set of abducibles;

– N is a set of denials ∀ ~X. ← φ1, . . . , φn (n > 0), where the ordering of φ1, . . . , φn

matters and φ1 is either an abducible or non-abducible;

– E is a set of (in-)equalities;

– C is a set of CLP constraints;

• τ is a set of tags. All free variables appearing in the state Θ are existentially quantified

within the scope of the whole state.

A denial in N is called a consistency constraint, and its first body literal is called its constrained

literal. More specifically, such a denial is called an abducible (consistency) constraint (on φ) if

its constrained literal φ is an abducible, or is called a non-abducible (consistency) constraint

(on φ) if φ is a non-abducible. Intuitively, an abducible constraint must be satisfied by all the

agents so that for every assumed instance of its constrained abducible, the rest of the denial

body must not be provable by any agent. For example, let ∀X.← a(X), p(X) be an abducible

constraint. If the abducible a(1) is assumed by the agents, then p(1) must not be provable by

any agent. A non-abducible constraint must be satisfied by all the agents so that for every

instance of its constrained non-abducible that is provable by some agent, the rest of the denial

body must not be provable by any of the agents. For example, let ∀X. ← p(X), q(X) be a

non-abducible constraint. If p(X) is provable by some agent with X = 1, then q(1) must not

be provable by any agent.

According to the cases in which tags can be used, only positive non-abducible goals, collected

abducibles, and non-abducible constraints of a state may be tagged. Note that other types

1i.e., ~X are variables appearing in the denial and are within the scope of the whole denial.

4.3. Distributed Algorithm 77

of goals, such as abducibles and arithmetic constrains can be reduced by any agent regardless

of their background knowledge, and hence we do not allow them to be delayed. Note also

that negative goals are always converted into denial goals (as described in the corresponding

local inference rules in Section 4.3.3), and denial goals cannot be delayed as they are in fact

constraints.

Note that a DAREC computational state is similar to an ASystem computational state, with

only the following differences:

• an ASystem state does not contain delayed goals;

• the denial set in an ASystem state contains only abducible constraints;

• nothing in an ASystem state can be tagged.

As mentioned earlier, a DAREC computational state can be of 3 different types. These are

defined as follows.

Definition 4.5 (Initial State). The initial state of a global abductive task for a query Q is

〈(Q, ∅), (∅, ∅, ∅, ∅), ∅〉.

To simplify notation, sometimes we use ST ∅ to denote the four empty stores of a state, i.e.,

ST ∅ = (∅, ∅, ∅, ∅).

Definition 4.6 (Solved State). A state Θ =
〈
(G,Gd), (∆,N , E , C), τ

〉
is a solved state if

G = Gd = ∅, E ∪ C is consistent and no element in ∆ ∪N is tagged according to τ .

After a solved state 〈(∅, ∅), (∆,N , E , C), τ〉 is obtained during distributed abduction, we can

extract the DAREC answers 〈∆, θ〉 from it where θ is the set of variable substitutions induced

by E ∪ C.

Definition 4.7 (Transferable State). A state Θ =
〈
(G,Gd), (∆,N , E , C), τ

〉
is a transferable

state of an agent α’s local abduction if one of the following conditions is satisfied:

• Gd is not empty;

78 Chapter 4. Distributed Abductive REasoning with Constraints (DAREC)

• an abducible in ∆ is tagged by some agent(s) according to τ ;

• a non-abducible constraint in N is tagged by some agent(s) according to τ .

Note that a transferable state can contain both delayed goals and tagged abducibles/constraints.

Also a transferable state may be further processed by the same agent (in contrast to passing

it to another agent) if it still contains remaining goals. The decision of whether to pass or to

process that state is based on the agent interaction strategy being adopted by the agent.

The search space of an agent’s local abduction, given a goal selection strategy and an agent

interaction strategy, can be described as a local abductive derivation tree:

Definition 4.8 (Local Abductive Derivation Tree). Given a goal selection strategy Ξ and

an agent interaction strategy Υ, the local abductive derivation tree for a local abduction by an

agent α a tree where:

• the root node is the root state of the local abduction,

• the children nodes are the states obtained by the application of a local inference rule to

the parent node according to Ξ and Υ.

.

4.3.3 Local Abductive Inference Rules

In this section, we will describe the set of local abductive inference rules of DAREC . There are

ten rules and they are extended from the rules of the ASystem [vN04] (which are summarised

in Section 2.3.4) with the following three features: (i) option to delay non-abducible goals,

(ii) update of tags, and (iii) handling of non-abducible constraints. Below is a table summary

of the rules. We will describe them in order.

4.3. Distributed Algorithm 79

Reduction of non-denial goals

Name: Comment: Relation to ASystem Rules

LD1 Resolve Non-abducible extended D1

LA1 Resolve Abducible extended A1

LC1 Reduce CLP Constraint reformulated C1

LE1 Reduce (In-)equality reformulated E1

LN1 Rewrite Negation reformulated N1

Reduction of denial goals

Name: Comment: Relation to ASystem Rules

LD2 Resolve Denial through Non-abducible extended D2

LA2 Resolve Denial through Abducible extended A2

LC2 Reduce Denial through CLP Constraint reformulated C2

LE2 Reduce Denial through Equality reformulated E2

LN2 Rewrite Denial through Negation reformulated N2

As we mentioned in Section 4.3.1, at each inference step a remaining goal is selected from a

given non-solved state, and a (possibly empty) set of next states are generated according to a

corresponding local inference rule. Here we assume that a safe goal selection strategy Ξ (as

the one defined for ASystem) is adopted, which never selects a non-safe goal that will cause

floundering.

Given a global abductive framework
〈

Σ, F̂
〉

, let Θi =
〈
(Gi,Gdi), (∆i,Ni, Ei, Ci), τi

〉
be a state

yet to be processed in the local abductive derivation by an agent α ∈ Σ, where Gi 6= ∅. Suppose

a goal φ is selected from Gi according to Ξ, and let G−i = Gi − {φ}.

If φ is not a denial goal, one of the following five local rules is chosen according to the type

of φ. For the sake of simplicity, only changes to the state components are described, and OR

denotes alternative modifications to Θi. Thus, the set of next states contains all the possible

states modified from Θi.

Inference Rule (LD1). If φ = p(~u) is a non-abducible that is not tagged by α, let p(~vj)← Φj

80 Chapter 4. Distributed Abductive REasoning with Constraints (DAREC)

(j = 1, . . . , n) be n rules in Πα, then:

– (local reduction) Gi+1 = {~u = ~v1} ∪ Φ1 ∪ G−i , and τi+1 = τi − {〈φ,S〉}

OR
...

OR (local reduction) Gi+1 = {~u = ~vn} ∪ Φn ∪ G−i , and τi+1 = τi − {〈φ,S〉}

OR (delay goal) Gi+1 = G−i , Gdi+1 = Gdi ∪ {φ}, and

– if 〈φ,S〉 ∈ τi, then τi+1 = {〈φ, {α} ∪ S〉} ∪ (τi − {〈φ,S〉});

– otherwise τi+1 = {〈φ, {α}〉} ∪ τi

This rule allows α to either resolve a non-abducible goal with a rule in Πα, or to delay it for

other agents to solve later. In the case where α delays φ, φ will become tagged by α. Note that

if α has delayed φ once (i.e, φ is already tagged by α), then it is not allowed to delay φ again.

This is important for eliminating the looping situations caused by some goal being infinitely

delayed. Consider the following example. Let Σ = {α, β}, and let us suppose that α applied

LD1 to delay a goal, say p, in some state Θ1 and sent Θ1 to β. Suppose also that during β’s

local abduction, β applied LD1 to delay p too and sent the new state Θ2 back to α. Then

when α selects p again during its new local abduction, p has already been tagged by α and

hence α is not allowed to delay p again or send the state back to β.

Inference Rule. (LA1) If φ = a(~u) is an abducible, let a(~vj)(j = 1, . . . , n) be n abducibles in

∆i, then:

– (reuse assumption) Gi+1 = {~u = ~v1} ∪ G−i

OR
...

OR (reuse assumption) Gi+1 = {~u = ~vn} ∪ G−i

OR (new assumption) ∆i+1 = {φ} ∪∆i and Gi+1 = R∆ ∪RN ∪RIC ∪ G−i , where

– R∆ = {← ~u = ~vj | j = 1, . . . , n},

4.3. Distributed Algorithm 81

– RN = {∀ ~X.← ~u = ~w,Φ | ∀ ~X.← a(~w),Φ ∈ Ni},

– RIC = {∀ ~X.← ~u = ~w,Φ− |← Φ ∈ ICα and Φ− = Φ− {a(~w)} and ~X = vars(Φ)},

and τi+1 = {〈φ,Σ− {α}〉} ∪ τi

This rule allows α to reuse an abducible already assumed, or to assume new abducible (make

new assumption). In the latter case (i.e. moving φ to ∆i), three sets of new denial goals are

generated: R∆ ensures that φ is different from any existing abducible in ∆i, RN ensures that

by adding φ to ∆i all the abducible constraints in Ni are still satisfiable, and RIC ensures that

φ is consistent with α’s local integrity constraints ICα. New tags 〈φ,Σ− {α}〉 indicate that all

other agents need to check φ with their local integrity constraints.

Example (Agent α applies LA1). 2

2In order to simplify the state tuple notation, we use LS to denote that a literal or a denial L in a state is
tagged by a set of agents S, and drop the tags component τ when describing a state tuple.

82 Chapter 4. Distributed Abductive REasoning with Constraints (DAREC)

Θi : given Σ = {α, β}, ICα = {← a(V), w(V)}

Gi = {a(X)}

Gdi = ∅

∆i = {a(Z){α,β}}

Ni = {∀Y.← a(Y), r(Y)}

Ei = ∅

Ci = ∅

⇓ ⇓

Θi+1 :

Gi+1 = ∅

Gdi+1 = Gdi

∆i+1 = ∆i

Ni+1 = Ni

Ei+1 = {X = Z}

Ci+1 = Ci

Θ′i+1 :

G′i+1 =


X 6= Z,

∀V.← X = V,w(V),

∀Y.← X = Y, r(Y)


Gdi+1

′
= Gdi

∆′i+1 = {a(X){β}, a(Z){α,β}}

N ′i+1 = Ni

E ′i+1 = Ei

C′i+1 = Ci

In this example, Θi+1 is obtained by reusing a(Z), and Θ′i+1 is obtained by making a new

assumption a(X) and dynamically generating the new goals R∆ = {X 6= Z}, RN = {∀Y. ←

X = Y, r(Y)}, and RIC = {∀V.← X = V,w(V)}. � End of example.

Inference Rule (LC1). If φ is a constraint, let Cnew = {φ} ∪ Ci:

– if Cnew is consistent, then Ci+1 = Cnew and Gi+1 = G−i .

Inference Rule (LE1). If φ is an (in-)equality, let Enew = {φ} ∪ Ei:

– if Enew is consistent, then Ei+1 = Enew and Gi+1 = G−i .

Inference Rule (LN1). If φ = ¬p(~u), then:

4.3. Distributed Algorithm 83

– Gi+1 = {← p(~u)} ∪ G−i .

Local rules LC1 and LE1 collect a consistent constraint or a consistent (in)equality to the

corresponding stores. Local rule LN1 simply converts a negative goal into a denial goal, so

that it can be processed by one of the remaining five local rules when it is selected.

If φ is a denial goal of the form ∀ ~X.← Γ where Γ is not empty, suppose that a (safe)

literal ϕ is selected from Γ according to Ξ, and let Γ− = Γ − {ϕ}. One of the following five

local rules is chosen according to ϕ, and the next state Θi+1 is obtained after the application

of the chosen rule. Note that if Γ is empty, no literal can be selected, and hence no inference

rule is applicable. In this case, the set of possible next states is empty.

Inference Rule (LD2). If ϕ = p(~u) is a non-abducible, let F = ∀ ~X.← p(~u),Γ−, then:

– Gi+1 = {∀~Y .← Γ+ | p(~v)← Φ ∈ Πα and ~Y = ~X ∪ vars(p(~v)) ∪ vars(Φ) and Γ+ = {~u =

~v} ∪ Φ ∪ Γ−} ∪ G−i , and Ni+1 = {F} ∪ Ni, and τi+1 = {〈F,Σ− {α}〉} ∪ τi.

Every denial goal is a global constraint, and must be satisfied by all agents in the system. If the

denial goal is to be reduced by α through a selected non-abducible literal, then α alone may not

be able to generate all the necessary new denial goals, which together imply the original denial

goal, because α may not have all the knowledge (i.e., definitions) about the non-abducible.

Thus, the denial goal has to be collected and tagged, so that it can be checked by other agents

later.

Example. Agent α applies LD2

84 Chapter 4. Distributed Abductive REasoning with Constraints (DAREC)

Θi : given Σ = {α, β},Πα =

 p(U)← r(U),

p(V)← w(V)


Gi = {← p(X), q(X)}

Gdi = ∅

∆i = ∅

Ni = ∅

Ei = ∅

Ci = ∅

⇓

Θi+1 :

Gi+1 =

 ∀U.← X = U, r(U), q(X),

∀V.← X = V,w(V), q(X)


Gdi+1 = Gdi

∆i+1 = ∆i

Ni+1 = {← p(X), q(X){β}}

Ei+1 = Ei

Ci+1 = Ci

In this example, ∀U.← X = U, r(U), q(X) and ∀V.← X = V,w(V), q(X) are new denial goals

obtained by resolving the non-abducible p(X) in the denial ← p(X), q(X) with Πα. The denial

is tagged by β and moved to Ni+1. � End of example.

Inference Rule (LA2). If ϕ = a(~u) is an abducible, let F = ∀ ~X.← a(~u),Γ−, then:

– Gi+1 = {∀ ~X.← Γ+ | a(~v) ∈ ∆i and Γ+ = {~u = ~v} ∪ Γ−} ∪ G−i , and Ni+1 = {F} ∪ Ni.

When a (global constraint) denial goal is to be reduced through an abducible, α can generate

all the necessary new denial goals using LA2, because α can see all the abducibles collected in

the state. However, this denial goal still needs to be kept in Ni+1, so that if a new instance of

the abducible is assumed later in the local abduction, additional denial goals can be generated.

4.3. Distributed Algorithm 85

But note that the denial goal collected by LA2 does not need to be tagged, as any agent can

generate all the necessary additional denial goals for it when a new abducible is assumed.

Example. Agent α applies LA2

Θi : given Σ = {α, β}

Gi = {∀X.← a(X), p(X)}

Gdi = ∅

∆i = {a(Y){α}, a(Z){α}}

Ni = ∅

Ei = ∅

Ci = ∅

⇓

Θi+1 :

Gi+1 =

 ∀X1.← X1 = Z, p(X1),

∀X2.← X2 = Y, p(X2)


Gdi+1 = Gdi

∆i+1 = ∆i

Ni+1 = {∀X.← a(X), p(X)}

Ei+1 = Ei

Ci+1 = Ci

In this example, ∀X1. ← X1 = Z, p(X1) and ∀X2. ← X2 = Y, p(X2) are new denial goals

obtained by resolving the abducible in the denial ∀X. ← a(X), p(X) with the two abducibles

in ∆i. The denial is also moved to Ni+1 but not tagged by any agent (unlike in LD2). �

End of example.

Inference Rule (LC2). If ϕ is a CLP constraint where vars(ϕ) ∩ ~X = ∅ (i.e., it does not

contain any universal variable of φ), let ϕ be the negated constraint of ϕ 3, then:

3The negated constraint ϕ of a finite domain constraint ϕ is obtained by switching the operator ({<,≥},
{>,≤}) between the two expressions, e.g., X > Y ≡ X ≤ Y .

86 Chapter 4. Distributed Abductive REasoning with Constraints (DAREC)

• (falsify constraint) if C+ = {ϕ} ∪ Ci is consistent, then Gi+1 = G−i and Ci+1 = C+ OR

• (satisfy constraint) if C+ = {ϕ} ∪ Ci is consistent, then Gi+1 = {∀ ~X. ← Γ−} ∪ G−i and

Ci+1 = C+.

Inference Rule (LE2). If ϕ is an equality of the form t = s,

1. if t = p(~u) and s = p(~v), then: Gi+1 = {∀ ~X.← ~u = ~v,Γ−} ∪ G−i ;

2. if t = p(~u) and s = q(~v), then: Gi+1 = G−i ;

3. if t ∈ vars(s) or s ∈ vars(t), then: Gi+1 = G−i ;

4. if t ∈ ~X (or s ∈ ~X), let θ = {t/s} (or θ = {s/t}) be a variable substitution, then:

Gi+1 = {∀~Y .← Γ−/θ} ∪ G−i , where ~Y = ~X − {t} (or ~Y = ~X − {s});

5. if t is an existential variable of φ (i.e., t /∈ ~X) and s does not contain universal variable

of φ (i.e., vars(s) ∩ ~X = ∅):

• (falsify equality:) if E+ = {t 6= s} ∪ Ei is consistent, then Gi+1 = G−i and Ei+1 = E+

OR

• (satisfy equality:) if E+ = {t = s} ∪ Ei is consistent, then Gi+1 = {∀ ~X. ← Γ−} ∪ Gi

and Ei+1 = E+;

6. symmetric to the above case (5) with s /∈ ~X and vars(t) ∩ ~X = ∅.

Note that the condition of LC2 where ϕ does not contain any universal variable of φ is guaran-

teed by the safe goal selection strategy Ξ. In LE2, cases (1)-(4) implement the Clark Equality

Theory (CET) [Cla78]. Cases (5)-(6) are similar to local LC2, i.e. treating the equality as an

arithmetic constraint. Note that if one side of the equality is an existential variable, then the

other side must not contain any universal variable if it is a non-variable term. This condition

is also guaranteed by Ξ. Note also that inequality t 6= s is not handled by LE2, as it is a

shorthand for ¬(t = s), which is handled by the local rule LN2.

Inference Rule (LN2). If ϕ = ¬ψ is a negative literal and ψ does not contain any universal

variable of φ (i.e., vars(ψ) ∩ ~X = ∅), then:

4.3. Distributed Algorithm 87

• (double negation) Gi+1 = {ψ} ∪ G−i OR

• (single negation) Gi+1 = {← ψ,∀ ~X.← Γ−} ∪ G−i .

There are two ways to satisfy a denial goal through a negative literal ϕ (= ¬ψ):

1. prove its negation ψ as a positive goal, or

2. make sure the rest of the denial body is not satisfiable.

In the second case, we also want to make sure ψ is not provable by any agent in order to avoid

duplicated solutions found in the former case. Again, Ξ guarantees the condition where φ does

not contain any universal variable.

Example. Agent α applies LN2

Θi : given Σ = {α, β}

Gi = {“∀Z.← ¬p(X,Y), q(Y,Z)′′}

Gdi = ∅

∆i = ∅

Ni = ∅

Ei = ∅

Ci = ∅

⇓ ⇓

Θi+1 :

Gi+1 = {p(X,Y)}

Gdi+1 = Gdi

∆i+1 = ∆i

Ni+1 = Ni

Ei+1 = Ei

Ci+1 = Ci

Θ′i+1 :

G′i+1 =


X 6= Z,

← p(X,Y),

∀Z.← q(Y,Z)


Gdi+1

′
= Gdi

∆′i+1 = ∆i

N ′i+1 = Ni

E ′i+1 = Ei

C′i+1 = Ci

88 Chapter 4. Distributed Abductive REasoning with Constraints (DAREC)

In this example, Θ1 is obtained by case one and Θ2 is obtained by case two. � End of example.

4.3.4 Coordination

Agent Interaction and State Transfer

A state transfer is the operation of a transferable state being passed from one agent to another.

After a transferable state is received, it needs to be pre-processed by the recipient before it can

be used by the recipient as the root of a new local abduction. This pre-processing is captured

by the following rule.

Transfer Rule (TR). Let Θt =
〈
(G,Gd), (∆,N , E , C), τ

〉
be the state received by an agent α

after a state transfer, then Θ0 =
〈
(F ∪ Gd ∪ G, ∅), (∆,N , E , C), τ ′

〉
is the root state for the new

local abduction by α , where F and τ ′ are obtained as follows. Let ∆new be the set of α-tagged

abducibles, i.e., {A | A ∈ ∆ and (A,S) ∈ τ and α ∈ S}, and let N new be the set of α-tagged

non-abducible constraints, i.e, {D | D ∈ N and (D,S) ∈ τ and α ∈ S}:

1. given an abducible A = a(~u), the set of resolvents of A with ICα is RA(ICα) = {∀~Y . ←

~u=~v,Φ− |← Φ ∈ ICα and Φ = {a(~v)} ∪ Φ− and ~Y = vars(Φ)};

2. given a non-abducible constraint D = ∀ ~X. ← p(~u),Φ where p(~u) is its constrained non-

abducible, the set of resolvents of the non-abducible constraint with Πα is RD(Πα) =

{∀ ~X~Y .← ~u = ~v,Φ′,Φ | p(~v)← Φ′ ∈ Πag and ~Y = vars(p(~v)) ∪ vars(Φ′)};

3. F is the union of all the resolvents of the α-tagged abducibles and α-tagged non-abducible

constraints, i.e.,
⋃
A∈∆new RA(ICα) ∪

⋃
D∈Nnew RD(Πα);

4. τ ′ is obtained by removing α from the tags τ , i.e., {(L,S) | (L,S) ∈ τ and L /∈ (∆new ∪

N new)} ∪ {(L,S ′) | (L,S) ∈ τ and L ∈ (∆new ∪N new) and S ′ = S \ {α}}.

The application of this rule forces the transferable state recipient agent to perform pending

checks of the state, i.e., check new assumptions (abducibles collected by others) against its

4.3. Distributed Algorithm 89

local integrity constraints (i.e., Step 1 and 3) and continue the reduction of global constraints

through a non-abducible (selected by another agent) using its local background knowledge (i.e.,

Step 2 and 3). It also moves the goals delayed by the sender to the pending goals set (i.e., by

the definition of Θ0), so that they can be selected and reduced by the recipient agent. The

tags by the recipient agent to the abducibles or non-abducible constraints are removed after

the processing (i.e., Step 4), and hence they do not need to be checked again in the future.

After the processing of the state, the recipient agent can start a new local abduction with the

new state independently from the sender.

Example. Recipient Agent α applies TR

Θi : given Σ = {α, β},Πα = {p(U, V)← r(U), w(V)}, ICα = {← a(Z),¬q(Z)}

Gi = ∅

Gdi = {q(X){β}}

∆i = {a(X){α}}

Ni = {∀Y.← p(X,Y){α}}

Ei = ∅

Ci = ∅

⇓

Θi+1 :

Gi+1 =


∀Z.← X = Z,¬q(X),

∀Y UV.← X = U, Y = V, r(X), w(Y),

q(X){β}


Gdi+1 = ∅

∆i+1 = {a(X)∅}

Ni+1 = {∀Y.← p(X,Y)∅}

Ei+1 = Ei

Ci+1 = Ci

In this example, ∆new = ∆i and N new = Ni for α. Therefore, ∀Z. ← X = Z,¬q(X) is

90 Chapter 4. Distributed Abductive REasoning with Constraints (DAREC)

generated by checking a(X) with ICα and ∀Y UV.← X = U, Y = V, r(X), w(Y) is generated by

the reduction of ∀Y.← p(X, Y) through p(X, Y) using Πα. Note that the tags for the elements

in ∆i and Ni are removed. � End of example.

Agent Interaction Strategy

During local abduction, an agent can process a transferable state either by selecting a remaining

goal to reduce locally, or by passing it to another agent. The decision is controlled by the agent

interaction strategy that is adopted by the agent. Agent interaction strategies can be arbitrary,

but have two extremes: a lazy strategy, which requires the agent to solve as many pending

goals as possible before sending it out, and an eager strategy, which encourages the agent to

send out state as soon as a goal is delayed, or a new abducible or a non-abducible constraint is

collected. None of these strategies can guarantee optimal performance in all applications. For

example, suppose in the local abduction by an agent α, there is a state with two goals p, q,

where p is only defined by an agent β and q is only defined by α. In the case where p requires

long computation and can succeed, but q requires little computation and will fail, then the lazy

strategy will give better performance. This is because by delaying p and trying to solve q first,

the state will become a failure state and no agent interaction is needed (i.e., no need for the

computation of p). However, in the case where p requires little computation and will fail, but

q requires long computation and can succeed, the eager strategy may do better as the agent

interaction can avoid the computation of q.

In the following description of our distributed algorithm, unless stated otherwise, we will assume

the lazy interaction strategy is used.

Agent Selection Strategy

After an agent decides to send out a transferable state, it needs to identify and select a state

recipient. A recipient candidate for a transferable state can be an agent who defines but has

not delayed a delayed goal in the state, or who tags an abducible or a non-abducible constraint

4.3. Distributed Algorithm 91

in the state. A transferable state may have several recipient candidates, and the sender agent

must select one of them to send the state to. Such a decision is controlled by the agent selection

strategy of the sender agent, which is often application dependent and will affect the performance

of the collaboration. For example, if no agent discloses what non-abducibles are defined in its

background knowledge, then the selection of a state recipient may be either randomised or

through some task allocation protocols such as Auction or Contract-Nets. Otherwise, if the

agents advertise all of the non-abducibles which they have definitions for in their background

knowledge, then the state recipient may be decided via a Matchmaking process over the delayed

goals. Furthermore, for a tagged abducible or a tagged non-abducible constraint, only those

agents who have an integrity constraint containing the abducible or have a definition for the

non-abducible in the local background knowledge can generate additional goals (See Rule TR).

This information may be used while deciding a suitable state recipient in order to reduce the

depth of agent interactions.

In the following description of our distributed algorithm, we will assume by default that no

agent advertisement is available, and a uniform agent selection strategy can be adopted. This

is defined as follows.

Definition 4.9 (Uniform Agent Selection Strategy). Given a global abductive frame-

work
〈

Σ, F̂
〉

, suppose that the agent identifiers Σ can be sorted lexicographically. Let Θ =〈
(G,Gd),ST , τ

〉
be a transferable state. The uniform agent selection strategy selects an agent

β ∈ Σ, such that

• request help for delayed goals: if Gd 6= ∅, and there is no delayed goal L ∈ Gd such that

〈L,Σ〉 ∈ τ (i.e., L has been delayed by every agent once), then let Ω =
⋃

[φ∈(G∪Gd) and 〈φ,S〉∈τ](Σ\

S), and β is the first agent in the list obtained by lexicographically sorting Ω;

• request consistency check for abducibles and non-abducible constraints: if Gd = ∅, and

Ω =
⋃
〈φ,S〉∈τ S is not empty, then β is the first agent in the list obtained by lexicographi-

cally sorting Ω.

Given a transferable state, if a (non-abducible) goal has been tagged (delayed) by all the agents,

92 Chapter 4. Distributed Abductive REasoning with Constraints (DAREC)

there will be no recipient candidate, and hence the transferable state can be discarded. This

is intended for avoiding the situation of indefinitely asking for help. Note that discarding such

states will not cause the loss of solutions during agent collaboration, because by the definition

of LD1, any agent that has tagged the non-abducible also has tried tried to reduce the non-

abducible using their background knowledge (and generated corresponding states).

Global Abduction and Agent Execution

Intuitively, the state transfers represent the interactions between the agents, and act as the links

between local abductions performed by different agents. Thus, the overall global abductive

inference can be visualised as a global abductive derivation tree, which consists of all the local

abductions by the agents (See again Figure 4.1 in Section 4.3.1):

Definition 4.10 (Global Abductive Derivation Tree). Given a global abductive framework〈
Σ, F̂

〉
with a safe goal selection strategy Ξ, an agent interaction strategy Υ and an agent

selection strategy Ψ, the global abductive derivation tree for a query Q is a tree where each node

represents a state and each arc represents either a local inference step or a state transfer, such

that:

• the root node is the initial state Θinit of Q;

• each node is obtained by the application of a local inference rule or by the application of

the transfer rule.

Definition 4.11. (Successful Global Abductive Derivation) Given a global abductive

derivation tree, a successful global abductive derivation is a finite path from the root of the tree

to a solved state leaf node of the tree.

Since each agent computation is in fact a search process where the search space is the local

abductive derivation tree, different search algorithms can be used for the agent execution, such

as depth-first and breath-first. Figure 4.2 is the pseudo-code for an example implementation

which processes the states in a depth-first fashion. Given a query, agents executing the code

can collaboratively construct a global abductive derivation tree.

4.3. Distributed Algorithm 93

PROC receive query(Q) BEGIN
Θ0 := create initial state(Q);
process state(Θ0); // start local abduction

END PROC
PROC receive state(Θ) BEGIN

Θ0 := apply trans rule(TR, Θ);
process state(Θ0); // start local abduction

END PROC
PROC process state(Θ) BEGIN

IF Θ is a solved state THEN
ANS := extract answers(Θ);
send ANS to the global query issuer4;

ELSE
// use agent interaction strategy
IF Θ is transferable state AND Θ should be sent THEN

// use agent selection strategy
NewAgent := select recipient(Θ);
IF NewAgent 6= null THEN

send Θ to NewAgent;
END IF

ELSE // local inference
// use safe goal selection strategy
G := select safe goal(Θ);
LRule := applicable local rule(G);
States := apply local rule(LRule, Θ);
FOREACH Θ′ IN States DO

process state(Θ′);
END FOREACH

END IF
END IF

END PROC

Figure 4.2: Pseudo-code of DAREC Agent Execution

Token-controlled Coordination Protocol

So far we have seen how the agents can interact and collaborate to search for answers for a

given query. However, there are still two open issues:

• (Completeness Concern) In many applications the query issuer may want a reply when

no answer can be found. Thus, the query issuer also needs to know when the distributed

computation has finished, i.e., the global abductive derivation tree has been searched

thoroughly.

94 Chapter 4. Distributed Abductive REasoning with Constraints (DAREC)

• (Performance Concern) During a local abduction several transferable states may be

derived and need to be sent out according to the adopted agent interaction strategy. If all

of them are sent out straightaway, then the communication channels between agents may

be quickly overloaded by the “message flood”. Furthermore, since each of these states will

initiate a new local abduction on the recipient agent, agents may be overloaded if they

receive too many states in a short period and have to manage too many local abductions

simultaneously.

To resolve these issues while allowing agents to perform concurrent computation, we propose

a token-controlled coordination protocol for global abduction. Within this protocol, there is a

token shared among all the agents. At any time, the token is associated with only one local

abduction (of some agent). An agent is allowed to send out a transferable state only if the

state belongs to one of its local abductions, and that local abduction is associated with the

token. The detailed steps of the protocol are summarised as follows. We assume that each agent

records three pieces of information for each local abduction it is managing – a unique ID for the

local abduction, the sender of the root state, and a foreign local abduction ID understandable

by the sender. We also assume that messages always arrive in order, i.e., if message A is sent

to agent α before message B, then α will receive A and then B.

1. To start a global abduction, the query issuer sends a query along with a state to an agent

in the system. This agent creates an initial state and starts a local abduction associated

with the token.

2. During a local abduction of an agent’s, if the agent derives a transferable state that needs

to be sent out, then

(a) if the local abduction has the token, then the agent sends out the transferable state

with the token and the local abduction’s ID, i.e., this local abduction will no longer

be associated with the token;

(b) otherwise, it buffers the transferable state;

and in both cases the agent can continue remaining local abduction(s).

4.3. Distributed Algorithm 95

3. Upon receiving a state with the token and a foreign local abduction ID, the recipient agent

initiates a new local abduction with the token, and records the foreign local abduction ID

and the state sender.

4. If an agent derives a solved state, it sends the extracted answer to the query issuer

regardless if it has the token or not, and continues local abduction(s), i.e., to search for

more solutions.

5. If an agent finishes a local abduction (i.e., no more states to process), then

(a) if this local abduction is associated with the token (note that this implies that there

is no buffered transferable state for this local abduction), then the agent returns the

token with an End Of Search (EOS) message, which contains the recorded foreign

local abduction ID, to the sender agent of the (pre-processed) root state of this local

abduction;

(b) otherwise, the agent waits for the token;

and in both cases the agent can continue remaining local abduction(s).

6. Upon receiving an EOS message with the token, the agent looks up the local abduction

whose ID can be found in the EOS message, and

(a) if there are buffered transferable states for the local abduction, then one of them is

sent out with the token (similarly to 2(a));

(b) else if there is no buffered state and the local abduction has finished (i.e., continued

from 5(b)), then the agent returns an EOS message with the token to the root state

sender of this local abduction (similarly to 5(a));

(c) otherwise, the agent simply associates the token back to the local abduction;

and in all cases the agent can continue remaining local abduction(s).

With this protocol and the assumption that messages arrive in order, the query issuer will know

the whole global abduction has finished once it receives the EOS message from the agent it has

96 Chapter 4. Distributed Abductive REasoning with Constraints (DAREC)

issued the query to. In addition, if no answer is received before the EOS message, the query

can be sure that there is no global abductive answer for the query.

4.3.5 Example Trace

Let’s look at a (simplified) possible global abductive derivation for Example 4.1. Let Q =

{movement(cor, 12)} be a global query received by hm, and let us assume the adoptions of a

left-to-right safe goal selection strategy, the lazy agent interaction strategy and the uniform

agent selection strategy. The following diagram outlines the communications between the

agents:

The states generated during the global abductive derivation are described below:

1. hm creates the initial state: [Θ0=
〈
({movement(cor, 12)}, ∅),ST ∅

〉
]

2. [Θ1 =
〈
({occupant(X), walkInCorridor(X, 12)}, ∅),ST ∅

〉
,Θ2 = 〈({pointOfEntry(12),

walkInCorridor(intruder, 12)}, ∅),ST ∅
〉
]

3. [Θ3=
〈
({X ∈ {ann, bob}, walkInCorridor(X, 12)}, ∅),ST ∅

〉
,Θ2]

4. [Θ4= 〈({walkInCorridor(X, 12)}, ∅), (∅, ∅, ∅, {X ∈ {ann, bob}})〉 ,Θ2]

5. [Θ5 =
〈
({“← X 6= intruder, out(X, 12)”}, ∅), ({walkInCorridor(X, 12){ann,bob,wm}},

∅, ∅, C4)〉 ,Θ2]

6. [Θ6= 〈({“← out(X, 12)”}, ∅), (∆5, ∅, {X 6= intruder}, C4)〉 ,Θ2]

7. [Θ7=
〈
(∅, ∅), (∆5, {“← out(X, 12)”{ann,bob,wm}}, E6, C4)

〉
,Θ2]

4.3. Distributed Algorithm 97

8. hm sends Θ7 to ann:

[Θ8 = 〈({“∀T1, T2.← X = ann, appointment(T1, T2), T1 ≤ 12, 12 ≤ T2”}, ∅),

({walkInCorridor(X, 12){bob,wm}}, {“← out(X, 12)”{bob,wm}}, E6, C4)
〉
]

9. [Θ9 = 〈({“∀T1, T2.← appointment(T1, T2), T1 ≤ 12, 12 ≤ T2”}, ∅),

(∆8,N8, E6 ∪ {X = ann}, C4)〉 ,Θ10= 〈(∅, ∅), (∆8,N8, E6 ∪ {X 6= ann}, C4)〉]

10. [Θ11 = 〈({“← 11 ≤ 12, 12 ≤ 13”}, ∅), (∆8,

N8 ∪ {“∀T1, T2.← appointment(T1, T2), T1 ≤ 12, 12 ≤ T2)”{hm,bob,wm}}, E9, C4)
〉
,Θ10]

11. ann eventually discards Θ11 as the failure goal cannot succeed: [Θ10]

12. ann passes Θ10 to bob:

[Θ12 = 〈({“∀T1.← X = bob, takenMedicine(T1), 10 ≤ T1, T1 ≤ 12”}, ∅),

({walkInCorridor(X, 12){wm}}, {“← out(X, 12)”{wm}}, E10, C4)
〉
]

13. [Θ13 = 〈({“∀T1.← takenMedicine(T1), 10 ≤ T1, T1 ≤ 12”}, ∅),

(∆12,N12, E10 ∪ {X = bob}, C4)〉]

14. [Θ14 = 〈({“← 10 ≤ 11, 11 ≤ 12)”}, ∅),

(∆12,N12 ∪ {“∀T1.← takenMedicine(T1), 10 ≤ T1, T1 ≤ 12”{hm,ann,wm}}, E13, C4)
〉
]

15. bob eventually discards Θ14 as the failure goal cannot succeed.

16. bob has no remaining state so B sends an EOS message to ann.

17. ann has no more remaining state either so ann sends an EOS message to hm, who has one

remaining state: [Θ2]

18. [Θ15=
〈
({walkInCorridor(intruder, 12)}, {pointOfEntry(12){hm}}),ST ∅

〉
]

19. [Θ16 =
〈
({“← intruder 6= intruder, out(intruder, 12)”},Gd15),

({walkInCorridor(intruder, 12){ann,bob,wm}}, ∅, ∅, ∅)
〉
]

20. [Θ17=
〈
(∅,Gd15), (∆16, ∅, ∅, ∅)

〉
]

21. hm passes Θ17 to wm:

[Θ18=
〈
({pointOfEntry(12){hm}}, ∅), ({walkInCorridor(intruder, 12){ann,bob}}, ∅, ∅, ∅)

〉
]

22. [Θ18= 〈({open(W), f loor(W, 1)}, ∅), (∆18, ∅, ∅, ∅)〉]

23. [Θ19= 〈({floor(w1, 1)}, ∅), (∆18, ∅, ∅, ∅)〉]

24. [Θ20= 〈(∅, ∅), (∆18, ∅, ∅, ∅)〉]

98 Chapter 4. Distributed Abductive REasoning with Constraints (DAREC)

25. wm passes Θ20 to ann (to check ∆18):

[Θ21=
〈
(∅, ∅), ({walkInCorridor(intruder, 12){bob}}, ∅, ∅, ∅)

〉
]

26. ann succeeds the checking without expanding ∆21 or N21;

27. ann passes Θ21 to bob:

[Θ22 = 〈({“∀T1.← X = intruder, takenMedicine(T1), 10 ≤ T1, T1 ≤ 12”}, ∅),

({walkInCorridor(intruder, 12)∅}, ∅, ∅, ∅)
〉
]

28. bob succeeds the checking without expanding ∆22 or N22;

29. bob extracts answer from Θ22 and returns it to the query sender.

4.4 Soundness and Completeness

In this section, we give the soundness and completeness theorems of the DAREC distributed

proof procedure, and present the proofs. First, we define the meaning of a DAREC com-

putational state, which is a closed first-order formula representing all the elements and the

tagging information of the state. Let D be a collected integrity constraint in a state. We

use ab con(D) (or nab con(D)) to denote the fact that D is an abducible constraint (or a

non-abducible constraint). Let α be an agent, we use Rab
φ (ICα) to denote the set of resol-

vents of an abducible φ = a(~u) with respect to the set of integrity constraints ICα, i.e.,

Rab
φ (ICα) = {∀~Y . ← ~u=~v,Φ− |← Φ ∈ ICα and Φ = {a(~v)} ∪ Φ− and ~Y = vars(Φ)}, and

we use Rnab
D (Πα) to denote the set of resolvents of a non-abducible constraint D = ∀ ~X. ←

p(~u),Φ (where p(~u) is its constrained non-abducible) with respect to the set of rules Πα, i.e.,

Rnab
D (Πα) = {∀ ~X~Y .← ~u = ~v,Φ,Γ | p(~v)← Φ′ ∈ Πα and ~Y = vars(p(~v)) ∪ vars(Φ)}.

Definition 4.12 (Meaning of a DAREC Computational State). The meaning M(Θ) of

a DAREC computational state Θ =
〈
(G,Gd), (∆,N , E , C), τ

〉
with respect to a global abductive

framework
〈

Σ, F̂
〉

is a formula such that:

M(Θ) = ∃.(Fexp ∧ Fimp)

4.4. Soundness and Completeness 99

where

Fexp =
∧

L∈(G∪Gd∪∆∪E∪C)

L ∧
∧

D∈N∧ab con(D)

D

and

Fimp =
∧

[F∈
⋃

(A∈∆∧(A,S)∈τ∧α∈S)R
ab
A (ICα)]

F ∧
∧

[F∈
⋃

(D∈N∧nab con(D)∧(D,S)∈τ∧α∈S) Rnaf (D,Πα)]

F

The meaning of a DAREC state contains two parts – the explicit part Fexp, representing the

conjunction of the elements in the state, and the implicit part Fimp, represent the meaning of

the tags for collected abducibles and non-abducible constraints. Thus, if none of the abducibles

and non-abducible constraints is tagged, Fimp is equivalent to >. Note that the tags of any

delay goal in the state do not have any formal meaning for the state, i.e., it is only used for

execution control (of the distributed algorithm). Note also that non-abducible constraints that

are not tagged in the state do not have any formal meaning for the state either.

Example. Let Σ = {α, β} with

Πβ =

{
w(X, Y)← d(X), e(Y).

}

and

ICβ =

{
← a(X), f(X).

}
where a is the only abducible predicate. Given a DAREC state in a local abduction by α

Θ =
〈
({q(X)}, {p(X)β}), ({a(X)β}, {∀Y.← a(Y), r(Y),∀Y.← w(X, Y)β}, ∅, {X > 4})

〉
then

M(Θ) = ∃X.q(X) ∧ p(X) ∧X > 4∧

∀Z.← Z = X, f(X) ∧ ∀U, V, Y.← U = X, V = Y, d(X), e(Y)

Note that ∀Z.← Z = X, f(X) is from the β-tagged abducible and is syntactically equivalent to

100 Chapter 4. Distributed Abductive REasoning with Constraints (DAREC)

∀Z.¬(Z = X ∧ f(X)), and ∀U, V, Y. ← U = X, V = Y, d(X), e(Y) is from the β-tagged non-

abducible constraint and is syntactically equivalent to ∀U, V, Y.¬(U = X∧V = Y ∧d(X)∧e(Y)).

Note also that the tag on p(X) by β does not result in any sub-formula of M(Θ).

The definition of the meaning of an ASystem state is exactly the same as the Fexp in the

meaning of a DAREC state, since there are no tags in ASystem states. Consequently, the

following proposition holds.

Proposition 4.1. Every DAREC state without tags for abducibles or non-abducible constraints

has corresponding ASystem state with equivalent meanings.

For example, let ΘD = 〈({q(X)}, {p(X)β}), ({a(X)}, {∀Y.← a(Y), r(Y),∀Y.← w(X, Y)},

∅, {X > 4})〉 be a DAREC state, then its corresponding and equivalent ASystem state is

ΘA = 〈{q(X), p(X)}, ({a(X)}, {∀Y.← a(Y), r(Y),∀Y.← w(X, Y)}, ∅, {X > 4})〉

4.4.1 Soundness

We will first give the meaning of a computed DAREC answer, and then give the soundness

theorem and proof.

Definition 4.13. (Completion of Hypotheses) Given a global abductive framework
〈

Σ, F̂
〉

,

let 〈∆, θ〉 be an answer computed by the DAREC algorithm for a query Q such that ∆θ is ground,

then the completion of the hypotheses ∆θ is given by a formula δ, which is the conjunction of

the literals {A | A ∈ ÂB ∧ A ∈ ∆θ} ∪ {¬A | A ∈ ÂB ∧ A /∈ ∆θ}, where ÂB =
⋃
i∈ΣABi.

Theorem 4.1. (DAREC Soundness) Given a global abductive framework
〈

Σ, F̂
〉

and a

query Q, if there is a successful global abductive derivation for Q with global abductive answer

〈∆, θ〉, then:

1. comp(Π̂) ∪ {δ} |=3 Qθ;

2. comp(Π̂) ∪ {δ} |=3 I for every I ∈ ÎC.

where δ is the completion of ∆θ, Π̂ =
⋃
i∈Σ Πi, and ÎC =

⋃
i∈Σ ICi.

4.4. Soundness and Completeness 101

Proof Outline

To prove the soundness, we need to show that the global background knowledge (i.e., the union

of all the agent background knowledge) together with the completion of the hypotheses entail

the query and the global integrity constraints (i.e., the union of all agent’s integrity constraints).

The proof for the first property is similar to the ASystem soundness proof [vN04], and uses

the meaning of the states. Informally, given a successful global abductive derivation, we first

show that (the meaning of) the initial state entails the query, and then show that every state is

entailed by its successor state. The final state, which contains the hypotheses and the variable

substitutions, will then entail the query by a chain of implications. For the second property,

we need to show that each integrity constraint that contains an assumed abducible is checked

at least once during the derivation.

The first part of the proof uses the following two lemmas.

Lemma 4.1. Let Θ0 be the initial state for a query Q, then

|=3 M(Θ0)→ Q

Proof of Lemma 4.1: This is trivial. The initial state contains Q as the only remaining

goal(s); all other stores are empty and nothing is tagged. Thus,M(Θ0) ≡ Q and |=3 M(Θ0)→

Q.

� End of Proof for Lemma 4.1 .

Lemma 4.2. Given a successful global abductive derivation, let Θi+1 be the successor state of

Θi, then

comp(Π̂) |=3 M(Θi+1)→M(Θi)

Proof of Lemma 4.2: In a global abductive derivation, each state is obtained by the

application of a local inference rule (i.e., LD1, LA1, LN1, LE1, LC1, LD2, LA2, LN2, LE2 and

LC2), or the transfer rule (i.e., TR), on its predecessor state. We need to show that after each

102 Chapter 4. Distributed Abductive REasoning with Constraints (DAREC)

of these rules, the meaning of the new state implies the meaning of the old state under the

completion of Π̂. Note that Lemma 4.2 has been proven [vN04] for ASystem derivations with

ASystem states and the ASystem inference rules (i.e., D1, A1, N1, E1, C1, D2, A2, N2, E2 and

C2).

The DAREC local rules LN1, LE1, LC1, LA2, LN2, LE2 and LC2 are a reformulation of the

ASystem inference rules N1, E1, C1, A2, N2, E2 and C2, respectively, and they do not modify

the tags in any give state, i.e., let Θi = Fexpi ∧ Fimpi and Θi+1 = Fexpi+1 ∧ Fimpi+1, then

Fimpi ≡ Fimpi+1. We first assume Fimpi = Fimpi+1 = > (i.e., no abducible or non-abducible

constraint is tagged in Θi and Θi+1), then Θi and Θi+1 can be seen as ASystem states (by

Proposition 4.1), and Θi+1 is the successor of Θi after one of the seven ASystem inference

rules. Thus, in this case Lemma 4.2 holds. In the case of Fimpi 6= >, Lemma 4.2 still holds

according to the tautology (A → B) → (A ∧ C → B ∧ C), where A = Fexpi+1, B = Fexpi and

C = Fimpi = Fimpi+1.

Now we only need to show that Lemma 4.2 holds for LD1, LA1, LD2 and TR:

Case of LD1 : Let φ be a non-abducible goal selected from Θi for the application of LD1.

Θi+1 is obtained either by moving φ to the set of delayed goals or by replacing it with

its resolvent of a rule in Π̂. If φ is delayed, then M(Θi+1) ≡ M(Θi) (because the new

tag added to φ has no meaning in M(Θi+1)), and hence |=3 M(Θi+1)→M(Θi). If φ is

not delayed, then LD1 behaves exactly the same as the ASystem inference rule D1, and

hence comp(Π̂) |=3 M(Θi+1)→M(Θi), i.e., Lemma 4.2 holds for LD1.

Case of LA1 : Let φ = a(~t) be an abducible goal selected from Θi for the application of

LA1. Θi+1 is obtained either by unifying φ with an existing abducible, say ϕ = a(~u)

in ∆i (i.e., reuse assumption), or by adding φ to ∆i (i.e., create new assumption) and

adding new goals to Gi. For the former case, the set of equalities ~t = ~u generated with

the unification between φ and ϕ is added to Ei. Therefore, |=3 M(Θi+1) → M(Θi) by

the Clark’s Equality Theory (CET). For the latter case, since LA1 does not remove any

existing tag in the state, without loss of generality let us assume M(Θi) does not have

tags for abducibles or non-abducible constraints. Let ΘA
i be the corresponding ASystem

4.4. Soundness and Completeness 103

state of Θi and ΘA
i+1 the new ASystem state obtained by applying the ASystem inference

rule A1 (for the case of collecting new abducible) on φ with respect to Π̂ and ÎC, then

we have

M(ΘA
i+1) =M(ΘA

i) ∧ Fnew

where

Fnew = F∆i
∧ FNi ∧ FÎC

and

F∆i
=

∧
F∈{~u 6=~v|a(~v)∈∆i}

F

and

FNi =
∧

F∈{∀ ~X.←~u=~w,Φ|∀ ~X.←a(~w),Φ∈Ni}

F

and

FÎC =
∧

F∈Rabφ (ÎC)

F

According to the definition of LA1 (let α be the agent applying LA1), we have

M(Θi+1) =M(Θi) ∧ F ′new

where

F ′new = F∆i
∧ FNi ∧ FICα ∧ F ′imp

and

FICα =
∧

F∈Rabφ (ICα)

F

and (from the new tags added for φ after it is moved to ∆i+1)

F ′imp =
∧

F∈Rabφ (ÎC\ICα)

F

It is easy to see that F ′new ≡ Fnew follows from FICα ∧ F ′imp ≡ FÎC, and thus with the

assumption M(ΘA
i) ≡ M(Θi), we have M(ΘA

i+1) ≡ M(Θi+1). Since Lemma 4.2 holds

104 Chapter 4. Distributed Abductive REasoning with Constraints (DAREC)

for A1 (i.e., |=3 M(ΘA
i+1) →M(ΘA

i)), we have |=3 M(Θi+1) →M(Θi), i.e., Lemma 4.2

also holds for LA1.

Case of LD2 : The proof is very similar to that for the case of LA1. Let φ = ∀ ~X.← p(~t),Γ

where p(~t) is the selected non-abducible literal to reduce. Since LD2 does not remove any

existing tag in the state either, without loss of generality let us assume M(Θi) does not

have tags for abducibles or non-abducible constraints, and let ΘA
i be the corresponding

ASystem state of Θi. According to the definition of the ASystem inference rule D2 (with

respect to Π̂ and ÎC), the meaning of the next ASystem state ΘA
i+1 is obtained by replacing

φ in M(ΘA
i) with the conjunction of resolvents of p(~u) with Π̂, i.e.,

Fnew =
∧

F∈Rnabφ (Π̂)

F

According to the definition of LD2,M(Θi+ 1) is obtained by replacing φ inM(Θi) with

the following formula (let α be the agent applying LD2):

F ′new = FΠα ∧ F ′imp

where

FΠα =
∧

F∈Rnabφ (Πα)

F

and (from the new tags added to φ after it is moved to Ni+1)

F ′imp =
∧

F∈Rnabφ (Π̂\Πα)

F

It is easy to see that F ′new ≡ Fnew, and hence M(ΘA
i+1) ≡ M(Θi+1). Since Lemma 4.2

holds for D2, we have |=3 M(ΘA
i+1) →M(ΘA), and hence |=3 M(Θi+1) →M(Θi), i.e.,

Lemma 4.2 also holds for LD2.

Case of TR : this is trivial as the application of TR (by an agent α) effectively moves part

of Fimp to Fexp in M(Θi), by resolving the collected abducibles and non-abducible con-

4.4. Soundness and Completeness 105

straints tagged by α with ICα and Πα, respectively, and removing all of α’s tags (for

the abducibles and the non-abducible constraints). Therefore, M(Θi+1) ≡ M(Θi) and

|=3 M(Θi+1)→M(Θi), i.e., Lemma 4.2 holds for TR.

� End of Proof for Lemma 4.2 .

Proof of Theorem 4.1: Let Θ0, . . . ,Θn be a successful global abductive derivation for Q

where Θ0 is the initial state and Θn is the final solved state.

For Property (1) of Theorem 4.1, by the definition (Definition 4.13) of the completion δ of

hypotheses ∆θ where θ is induced by M(Θn), we have

|=3 δ →M(Θn)

By Lemma 4.2 (i.e, comp(Π̂) |=3 M(Θi+1) →M(Θi)) and the transitivity of implications, we

have

comp(Π̂) |=3 M(Θn)→M(Θ0)

Hence, we have

comp(Π̂) |=3 δ →M(Θ0)

Using the transitivity of implications again with Lemma 4.1 (i.e., |=3 M(Θ0)→ Q), we have

comp(Π̂) |=3 δ → Qθ

which is equivalent to

comp(Π̂) ∪ {δ} |=3 Qθ

For Property (2) of Theorem 4.1, without loss of generality let I =← a(~t),Γ be a ground in-

stance of an integrity constraint of agent α, where a(~t) is an abducible 5. If a(~t) /∈ ∆θ, then the

property trivially holds for I. Now assuming that a(~t) ∈ ∆θ, let us consider two cases: 1. if a(~t)

5By definition, each integrity constraint must have at least one positive abducible.

106 Chapter 4. Distributed Abductive REasoning with Constraints (DAREC)

was collected by α, then by the definition of LA1, there is a goal F =← Γ added by α to an

intermediate state. 2. if a(~t) was collected by a different agent β, then it must be tagged by α

after β applied LA1. Since in the final state Θn it is no longer tagged by α, α must have applied

TR to remove the tag and add the goal F to an intermediate state. Let Θi (0 < i < n) be such

an intermediate state where F was added (in either case). Then comp(Π̂) |=3 M(Θi) → F .

By Lemma 4.2 and the transitivity of implications, we have comp(Π̂) |=3 M(Θn) → F , and

consequently comp(Π̂) |=3 δ → F . By the assumption we also have |=3 δ → a(~t). Hence,

comp(Π̂) |=3 δ → (a(~t) ∧ F)

By the tautology A ∧ ¬B → ¬(A ∧B) where A is a(~t) and B is F , we have

comp(Π̂) |=3 δ → I

and finally

comp(Π̂) ∪ {δ} |=3 I

� End of Proof for Theorem 4.1 .

4.4.2 Completeness

Given an abductive framework and a query, an abductive inference algorithm is said to be

complete with respect to a logic program semantics if and only if it can compute a set of answers

that is logically equivalent to the set of all the possible answers for the query with the framework

under the chosen semantics. Similar to the ASystem algorithm, the DAREC (distributed

abductive) algorithm uses the Fitting three-valued semantics [Fit85]. This is because both

the ASystem and DAREC algorithms are based on top-down computation, and may be non-

terminating during query computation due to the presence of loop (e.g., p ← p) in the given

abductive framework. Thus, the completeness of the ASystem algorithm and the DAREC

algorithm is based on a termination condition as summarised in Section 2.3.4. For the reader’s

4.4. Soundness and Completeness 107

convenience, we give it here:

Theorem 4.2. [vN04] Given an abductive framework F = 〈Π,AB, IC〉, if Π is semi-acyclic [AB91]

with respect to a level mapping |.| and Π is abductive non-recursive [Ver99], then for all bounded

queries [AB91] Q with respect to |.|, the ASystem proof procedure is terminating with respect

to Q.

Theorem 4.3. (DAREC Completeness) Let
〈

Σ, F̂
〉

be a global abductive framework. If

there is a finite global abductive derivation tree T for the query Q, and comp(Π̂) ∪ ÎC ∪ ∃Q is

satisfiable under the three-valued semantics [Fit85], then T contains a successful branch.

Proof Outline

For the DAREC completeness proof, the idea is to show that any DAREC (global abductive)

derivation tree can be reduced to an equivalent ASystem derivation tree, and then use the

ASystem’s completeness theorem. The reduction has two steps. First, we show that any

DAREC derivation tree obtained with a fixed execution strategy (i.e., fixed agent interaction

strategy and goal selection strategy) can be reduced to an equivalent ASystem derivation tree.

Secondly, we show that any DAREC derivation tree obtained without the fixed execution

strategy can be transformed to one that is obtained with the strategy.

The fixed execution strategy is defined as follows.

Definition 4.14 (Pseudo-ASystem Execution Strategy). A pseudo-ASystem execution

strategy for the DAREC distributed proof procedure is one that given a DAREC state:

1. if there is a tagged non-abducible goal in the set of remaining goals, then the goal will be

selected and LD1 will be applied (i.e., local inference);

2. if there is any (non-abducible) goal in the set of delayed goals, or if there is any tagged

abducible or tagged non-abducible constraint, then this (transferable) state will be passed

to another agent (i.e., state transfer).

108 Chapter 4. Distributed Abductive REasoning with Constraints (DAREC)

The first property of the pseudo-ASystem execution strategy describes a special type of goal

selection strategy, such that every agent resumes the reduction of a non-abducible goal that

has been delayed (by others) as soon as it can. The second property describes an eager agent

interaction strategy, such that every agent sends out transferable states instead of performing

local inference on them, so that other agents can resume the reduction of a delayed goal, or

resume the check for a tagged abducible or a tagged non-abducible constraint in the state as

soon as they can. Thus, the main effect of the pseudo-ASystem execution strategy is to let the

agents eliminate any tag in a state as soon as possible during the collaboration.

Given a DAREC derivation tree TDfix obtained with the pseudo-ASystem execution strategy,

we have the following observations:

• After the first agent applies LD1 on a non-abducible goal, a sequence of state transfers

follows such that each of the remaining agents in the system will in turn (a) receive a state

containing a tagged non-abducible goal, (b) select and apply LD1 to the goal (i.e., the goal

will be delayed and tagged by the agent thereby creating a new transferable state), and

(c) passes the new transferable state to the next agent that has not tagged the goal. The

part of TDfix reflecting these derivation steps is shown in Figure 4.3a, and can be collapsed

by removing the nodes and edges involving goal delays and state transfers (Figure 4.3b).

Note that all the remaining states in the collapsed part of TDfix do not contain any tagged

goal.

• After a new abducible or a new non-abducible constraint is collected by some agent, a

sequence of state transfers follows such that each of the remaining agents in the system

will in turn (a) receive a state containing a tagged abducible or a tagged non-abducible

constraint, (b) apply TR to resolve the abducible with the local integrity constraints, or

resolve the non-abducible constraint with the local background knowledge, and (c) if the

abducible or the non-abducible constraint is still tagged then pass the new transferable

state to the next agent that tags it. The part of TDfix reflecting these derivation steps

is shown in Figure 4.4a and Figure 4.4b, and can be collapsed by removing the nodes

and edges involving state transfers (Figure 4.4c and Figure 4.4d). Note that all the

4.4. Soundness and Completeness 109

G = {G} ∪ G−

Gd = ∅

G = D1 ∪ G−

Gd = ∅
G = G−

Gd = {G}

G = {G} ∪ G−

Gd = ∅

G = D2 ∪ G−

Gd = ∅
G = G−

Gd = {G}

G = {G} ∪ G−

Gd = ∅

G = Dn ∪ G−

Gd = ∅

LD1 by agent 1

(reduce G) (delay G)

TR by agent 2
(state transfer)

LD1 by agent 2

(reduce G) (delay G)

TR by agent n
(state transfer)

LD1 by agent n
(reduce G)

(a) Reduction of Non-abducible (Expanded)

G = {G} ∪ G−

Gd = ∅

G = D1 ∪ G−

Gd = ∅

G = D2 ∪ G−

Gd = ∅

G = Dn ∪ G−

Gd = ∅

LD1 by agent 1
(reduce G)

LD1 by agent 2
(reduce G)

LD1 by agent n
(reduce G)

(b) Reduction of Non-abducible (Collapsed)

Figure 4.3: DAREC Derivation Tree with Pseudo-ASystem Execution Strategy (Reduction of
Non-abducible Goal)

remaining states in the collapsed part of TDfix do not contain any tag to an abducible or

a non-abducible constraint.

Thus, if we apply the above two types of reductions to TDfix, then we will obtain a new tree

collapse(TDfix), whose nodes (i.e., DAREC states) do not contain any tag. By Proposition 4.1, all

the nodes in collapse(TDfix) can be replaced by their corresponding ASystem states. In addition,

all the edges (i.e., the applications of the DAREC local inference rules) in collapse(TDfix) can

be replaced by the applications of the ASystem inference rules. Note that the edge of LA1

(LD2) connecting any two states (the parent and the child) can be replaced by that of A1 (D2)

because the child state is equivalent to the one obtained by applying A1 (D2) to the parent

state with respect to Π̂ and ÎC. It is easy to see that the resulting tree is exactly an ASystem

derivation tree.

Proposition 4.2. Every DAREC global abductive derivation tree obtained with the pseudo-

ASystem execution strategy can be reduced to an equivalent ASystem derivation tree.

110 Chapter 4. Distributed Abductive REasoning with Constraints (DAREC)

G = {A} ∪ G−
∆ = ∆0
N = N0

G = Rab
A (IC1) ∪ R∆0

∪ RN0
∪ G−

∆ = {A{2..n}} ∪∆0
N = N0

G = Rab
A (IC2) ∪ Rab

A (IC1)

∪R∆0
∪ RN0

∪ G−

∆ = {A{3..n}} ∪∆0
N = N0

G = Rab
A (ICn) ∪ · · · ∪ Rab

A (IC2) ∪ Rab
A (IC1)

∪R∆0
∪ RN0

∪ G−

∆ = {A∅} ∪∆0
N = N0

LA1 by agent 1
(collect A)

TR by agent 2
(state transfer)

TR by agent n
(state transfer)

(a) Reduction of Abducible (Expanded)

G = {D} ∪ G−
N = N0

G = Rnab
A (Π1) ∪ G−

N = {Gd{2..n}} ∪ N0

G = Rnab
A (Π2) ∪ Rnab

A (Π1) ∪ G−

N = {Gd{3..n}} ∪ N0

G = Rnab
A (Πn) ∪ · · · ∪ Rnab

A (Π2) ∪ Rnab
A (Π1)

∪G−

N = {Gd∅} ∪ N0

LD2 by agent 1
(reduce D)

TR by agent 2
(state transfer)

TR by agent n
(state transfer)

(b) Reduction of Non-abducible Constraint (Ex-
panded)

G = {A} ∪ G−
∆ = ∆0
N = N0

G = Rab
A (ÎC) ∪ R∆0

∪ RN0
∪ G−

∆ = {A∅} ∪∆0
N = N0

LA1 by agents 1..n
(collect A)

(c) Reduction of Abducible (Collapsed)

G = {D} ∪ G−
N = N0

G = Rnab
A (Π̂) ∪ G−

N = {Gd∅} ∪ N0

LD2 by agents 1..n
(reduce D)

(d) Reduction of Non-abducible
Constraint (Collapsed)

Figure 4.4: DAREC Derivation Tree with Pseudo-ASystem Execution Strategy (Reduction of
Abducible or Non-abducible Constraint)

4.4. Soundness and Completeness 111

Now let us look at an arbitrary DAREC derivation tree TDarb obtained without the pseudo-

ASystem execution strategy. Again, only the applications of LD1, LA1, LD2 and TR can add

or remove tags to or from the states, so we only need to consider their derivation steps in TDarb.

Let Θi →Rule
G Θi+1 denote a derivation step where G (optional) is the selected goal and Rule

(optional) is the applied inference rule, and let Θi Rules Θn denote a sequence of multiple

derivation steps and Rules (optional) denote a list of applied inference rules:

1. (Reduction of a non-abducible constraint): suppose in TDarb there is a segment of

a derivation Θ1 →LD2
D Θ2 Θ3 →TR Θ4 Θ5 →TR Θ6 where D is a non-abducible

constraint first collected in Θ2, and the meanings of the states are as shown in Figure 4.5a.

Since any application of TR does not change the meaning of a state, i.e., it merely moves

part of the implicit formulas (derived from the tags for D) to the explicit part of the

state meaning, we can “move forward” the applications of TR along the derivation, as

shown in Figure 4.5b. Thus, the original segment of derivation in TDarb is replaced by

Θ1 →LD2
D Θ2 sequence of TR Θ′3 Θ′4 Θ′5, where M(Θ2) = M(Θ′3), M(Θ3) =

M(Θ4) = M(Θ′4), and M(Θ5) = M(Θ6) = M(Θ′5). Note that the new derivation

conforms to one that is obtained with the pseudo-ASystem strategy, and hence may be

collapsed.

2. (Collection of a new abducible): a derivation of this operation involves one application

of LA1 and multiple applications of TR for any new abducible to be assumed. The

transformation of such derivation is exactly the same as for the case (1).

3. (Reduction of a non-abducible): suppose in TDarb there is a sub-tree (shown in Fig-

ure 4.6a) which involves the reduction of a selected non-abducible goal G by two agents

with two applications of LD1 and one application of TR:

(a) G was delayed by agent 1 resulting in a transferable state Θ3, but agent 1 continued

to process Θ3 to Θ4 instead of sending Θ3 out to another agent (as with the pseudo-

ASystem execution strategy);

(b) agent 2 later received the state Θ4 with G in it, but agent 2 processed other goals in

Θ4 instead of G (as with the pseudo-ASystem execution strategy) resulting in Θ6;

112 Chapter 4. Distributed Abductive REasoning with Constraints (DAREC)

M
(Θ

1
)

=
D
∧
M

D
is

a
n
o
n
-a

bd
u
c
ib
le

co
n
stra

in
t
g
o
a
l;

M
is

th
e
re
m
a
in

in
g
m
ea

n
in

g
o
f
sta

te
,

in
c
lu
d
in

g
g
o
a
ls,

a
bd

u
c
ib
le
,
co

n
stra

in
ts,

e
tc
.

M
(Θ

2
)

= ∧
F
∈
R

n
a
b

D
(
Π

1
)
F
∧
M

∧
∧

F
∈
R

n
a
b

D
(
Π

2
)

F
∧
···∧

∧
F
∈
R

n
a
b

D
(
Π
n

)

F

︸
︷︷

︸
f
r
o
m

t
a
g
s
,
b
e
lo

n
g
s

t
o

i
m

p
li

c
i
t

p
a
r
t

M
(Θ

3
)

=
M
′
∧

∧
F
∈
R

n
a
b

D
(
Π

2
)

F
∧
···∧

∧
F
∈
R

n
a
b

D
(
Π
n

)

F

︸
︷︷

︸
f
r
o
m

t
a
g
s
,
b
e
lo

n
g
s

t
o

i
m

p
li

c
i
t

p
a
r
t

M
(Θ

4
)

= ∧
F
∈
R

n
a
b

D
(
Π

2
)
F
∧
M
′

∧
∧

F
∈
R

n
a
b

D
(
Π

3
)

F
∧
···∧

∧
F
∈
R

n
a
b

D
(
Π
n

)

F

︸
︷︷

︸
f
r
o
m

t
a
g
s
,
b
e
lo

n
g
s

t
o

i
m

p
li

c
i
t

p
a
r
t

M
(Θ

5
)

=
M
′′
∧

∧
F
∈
R

n
a
b

D
(
Π
n

)

F

︸
︷︷

︸
f
r
o
m

t
a
g
s
,
b
e
lo

n
g
s

t
o

i
m

p
li

c
i
t

p
a
r
t

M
(Θ

6
)

= ∧
F
∈
R

n
a
b

D
(
Π
n

)
F
∧
M
′′

L
D

2
b
y

a
g
e
n
t

1
o
n
D

m
u
ltip

le
d
e
riv

a
tio

n
ste

p
s

(b
y

a
g
e
n
t

1
),

d
o

n
o
t

in
v
o
lv

e
T

R
,

re
w

rite ∧
F
∈
R

n
a
b

D
(
Π

1
)
F
∧
M

to
M
′

T
R

b
y

a
g
e
n
t

2
o
n
D

m
u
ltip

le
d
e
riv

a
tio

n
ste

p
s

(b
y

a
g
e
n
ts

3
..(n

-1
)),

m
a
y

in
v
o
lv

e
T

R
,

m
o
v
e
d ∧

F
∈
R

n
a
b

D
(
Π

3
)
F
∧
···∧ ∧

F
∈
R

n
a
b

D
(
Π
n
−

1
)
F

to
th

e
e
x
p
lic

it
p
a
rt,

a
n
d

re
w

rite
it

w
ith

∧
F
∈
R

n
a
b

D
(
Π

2
)
F
∧
M
′

to
M
′′

T
R

b
y

a
g
e
n
t

n
o
n
D

(a)
O

rig
in

al
D

eriva
tion

M
(Θ

1
)

=
D
∧
M

M
(Θ

2
)

= ∧
F
∈
R

n
a
b

D
(
Π

1
)
F
∧
M

∧
∧

F
∈
R

n
a
b

D
(
Π

2
)

F
∧
···∧

∧
F
∈
R

n
a
b

D
(
Π
n

)

F

︸
︷︷

︸
f
r
o
m

t
a
g
s
,
b
e
lo

n
g
s

t
o

i
m

p
li

c
i
t

p
a
r
t

M
(Θ
′3
)

= ∧
F
∈
R

n
a
b

D
(
Π

1
)
F
∧
···∧ ∧

F
∈
R

n
a
b

D
(
Π
n

)
F
∧
M

M
(Θ
′4
)

=
M
′
∧ ∧

F
∈
R

n
a
b

D
(
Π

2
)
F
∧
···∧ ∧

F
∈
R

n
a
b

D
(
Π
n

)
F

M
(Θ
′5
)

=
M
′′
∧ ∧

F
∈
R

n
a
b

D
(
Π
n

)
F

L
D

2
b
y

a
g
e
n
t

1
o
n
D

se
q
u
e
n
c
e

o
f

T
R

b
y

a
g
e
n
ts

2
..n

(in
tu

rn
)

m
u
ltip

le
d
e
riv

a
tio

n
ste

p
s,

re
w

rite ∧
F
∈
R

n
a
b

D
(
Π

1
)
F
∧
M

to
M
′

m
u
ltip

le
d
e
riv

a
tio

n
ste

p
s,

re
w

rite
M
′
∧ ∧

F
∈
R

n
a
b

D
(
Π

2
)
F
∧
···∧ ∧

F
∈
R

n
a
b

D
(
Π
n
−

1
)
F

to
M
′′

(b
)

R
e-ord

ered
D

erivation

F
igu

re
4.5:

T
ran

sform
ation

of
D

erivation
s

in
volv

in
g

L
D

2
an

d
T

R

4.4. Soundness and Completeness 113

M(Θ1) = G ∧M

G is a non-abducible goal;
M is the remaining meaning

of state, including goals,
abducible, constraints, etc.

M(Θ2) = B1 ∧M M(Θ3) = G ∧M

M(Θ4) = G ∧M′

M(Θ5) = G ∧M′

M(Θ6) = G ∧M′′

M(Θ7) = B2 ∧M′′ M(Θ8) = G ∧M′′

LD1 by agent 1

(reduce G) (delay G)

multiple derivation steps
(rewrite M to M′)

TR by agent 2

multiple derivation steps
(rewrite M′ to M′′)

LD1 by agent 2

(reduce G) (delay G)

(a) Original Derivation

M(Θ1) = G ∧M

G is a non-abducible goal;
M is the remaining meaning

of state, including goals,
abducible, constraints, etc.

M(Θ2) = B1 ∧M M(Θ3) = G ∧M

M(Θ′4) = G ∧M

M(Θ′5) = B2 ∧M M(Θ′8) = G ∧M

M(Θ′6) = B2 ∧M′ M(Θ′9) = G ∧M′

M(Θ′7) = B2 ∧M′′ M(Θ′10) = G ∧M′′

LD1 by agent 1

(reduce G) (delay G)

TR by agent 2

LD1 by agent 2

reduce G delay G

multiple derivation steps
(rewrite M to M′)

multiple derivation steps
(rewrite M to M′)

multiple derivation steps
(rewrite M′ to M′′)

multiple derivation steps
(rewrite M′ to M′′)

(b) Re-ordered Derivation

Figure 4.6: Transformation of Derivations involving LD1 and TR

(c) agent 2 then reduced G in Θ6 by resolving it with a rule G← B2 ∈ Π2 (i.e., resulting

in Θ7) and by delaying it (i.e., resulting in Θ8).

Observe the fact that along the derivation Θ3 Θ4 → Θ5 Θ6, the non-abducible

goal G was not selected to reduce at all. Thus, this derivation could be transformed

(see Figure 4.6b) in such a way that (i) Θ3 was sent to agent 2, and G was immediately

selected to reduce before M was rewritten (i.e., as with the pseudo-Asystem execution

strategy), and then (ii) both the new goal D2 (in Θ′5, . . . ,Θ
′
7) and the delayed goal G (in

Θ′8, . . . ,Θ
′
10) were not selected to reduce until M was rewritten to M ′′. Finally (iii) if

in the new sub-tree rooting from Θ′8 there is another application of TR and LD1, the

same transformation is applied recursively to this sub-tree. It is easy to see that the

transformed derivation of the reduction of G is equivalent to the application of LD1 with

the pseudo-ASystem strategy, and hence may be collapsed.

In summary, the following holds for every DAREC global abductive derivation tree.

Proposition 4.3. Every DAREC global abductive derivation tree obtained with an arbitrary

execution strategy can be transformed to an equivalent DAREC global abductive derivation tree

114 Chapter 4. Distributed Abductive REasoning with Constraints (DAREC)

obtained with the pseudo-ASystem execution strategy.

Proof of Theorem 4.3: Let
〈

Σ, F̂
〉

be a global abductive framework, and let TD be a

finite DAREC global abductive derivation tree for a given query Q obtained with an arbitrary

execution strategy. By Proposition 4.3 there is a finite DAREC global abductive derivation tree

TDfix transformed from and equivalent to TD and is obtained with the pseudo-ASystem execution

strategy. By Proposition 4.2, TDfix can be reduced to an equivalent ASystem derivation tree TA.

Thus, by the completeness theorem of ASystem [vN04], if comp(Π)∪ÎC∪∃Q is satisfiable, then

TA must contain a successful branch, consequently TDfix and TD must also contain a successful

branch.

� End of Proof for Theorem 4.3 .

4.5 Discussions

4.5.1 Usage of Agent Advertisements

In DARE, it is assumed that all agents advertise the non-abducible predicates for which they

have definitions to a yellow-page directory. During collaboration, when an agent needs help to

reduce a non-abducible, the agent can look up suitable helper agents from the directory and

pass the query to the suitable agents. Although in DAREC, a state is passed instead and it is

sent to only one other agent (because the recipient can also send it to others if it cannot reduce

a delayed goal), the availability of a yellow-page directory can help to reduce communications

between agents. For example, suppose that an agent α collects a non-abducible constraint

“ ← p”, and the only other agent β in the system has not advertised p (i.e., β does not have

any definition for p), then the non-abducible constraint does not need to be tagged by β, and α

does not need to send the new state to β to check if there is no other tagged abducibles or non-

abducible constraints in the new state. Similarly, if all the agents also advertise the abducible

predicates regulated by their integrity constraints, then when a new abducible is collected,

4.5. Discussions 115

it does not need to be tagged by agents that do not have integrity constraints regulating it.

Agent selection strategies can make use of such a yellow-page directory, whose availability is

application dependent, in order to improve overall efficiency of global abduction.

4.5.2 Extension for Open Agent Systems

So far we have presented the DAREC system for closed MAS (i.e. a fixed set of agents). In

fact, DAREC is very easy to extend to open MAS, where agents may join or leave during

collaborative reasoning (such as in DARE). First, we assume that whenever an agent joins

or leaves the system, all other agents will be notified. Secondly, we extend the state to be〈
(G,Gd),ST , τ, S

〉
, where S is a set of agent IDs (similar to the concept of cluster in DARE).

Before a state is passed from an agent α to another β, α adds β’s ID to S if S does not contain

it. For example, let A 1 B 2 C 3 D 4 B 5 C 6 A be a sequence of state transfers

between four agents, then S0 = {A at the beginning (of A’s local abduction), S1 = {A,B}

before 1, S2 = {A,B,C} before 2, and S3 = {A,B,C,D} before 3 (and will remain as it

is):

• When a new agent α joins, for every existing agent β, for any state Θ in its local abduc-

tions, β adds α’s tag to all the abducibles in ∆ and all the non-abducible constraints in

N of Θ. Thus, Θ will become a transferable state if it is not one, and will need to be

passed to α to check before it can be rewritten into a solved state.

• When an existing agent α leaves, the following two steps are needed:

1. (Clean Up Local Computations) for every other remaining agent β:

(a) β removes all of its local abductions that start with a root state whose S contains

α, and if a token is associated with any of these local abductions, the token will

be discarded;

(b) β removes all of its buffered transferable states whose S contains α;

(c) for every remaining state Θ in β’s local abductions, β removes any tags by α in

Θ.

116 Chapter 4. Distributed Abductive REasoning with Constraints (DAREC)

2. (Resume Global Computation) If there is an existing agent γ who has sent out

a transferable state Θ to α, and α was added to S of Θ by γ just before the state

transfer, then γ regains the token automatically. Note that if such an agent γ exists,

the global token must be lost in step 1(a) because the token must be associated with

a descendent state of Θ. Note also that if γ does not exist, it implies that α has not

yet been sent any state and token (i.e., it has not participated in the collaboration).

Thus, the token must still be held by another agent, and there is no need to create

a new one.

In the example, assuming that C leaves, then D, B and A will discard all the local

abductions they have done after 3, and B will regain the token so it can continue its

local abductions started before 2.

Any agent that has not received any state can leave any time without affecting the collaboration

at all. However, if an agent joins “too late” in the collaboration, it may miss the opportunity

to help others (a state with a non-abducible goal that has been delayed by everyone once

may be discarded before the new agent can have a chance to process it) and hence will affect

the completeness. In addition, the following situation can cause problem to the collaboration

in open MAS: an agent repeatedly joins the system, modifies the state, and then leaves the

system. In this case the collaboration may not terminate. But this is not an intrinsic problem

of the distributed algorithm and it could be avoided by imposing special restrictions in the

implementation, e.g. forbid buggy agents from joining and leaving too many times.

4.6 Conclusion

In this chapter, we have presented DAREC – the first general purpose distributed abductive

reasoning system that guarantees global consistency and supports constraint satisfaction. The

DAREC distributed algorithm is a distributed state rewriting process that is extended from

the ASystem algorithm. Therefore, it can accept non-ground negative queries, compute non-

ground answers and perform constructive negation. During collaborative reasoning, agents

4.6. Conclusion 117

interact through state passing, which is controlled by the application dependent agent interac-

tion strategy and agent selection strategy. This algorithm design allows concurrent computation

to be performed and inter-agent communications to be reduced. We have proven the sound-

ness and completeness of the DAREC distributed algorithm with respect to the three-valued

completion semantics for abduction, and described how the system can be extended for open

agent systems.

Although the DAREC distributed algorithm is extended from the ASystem algorithm, it is

not a simple combination of the ASystem inference rules and tags handling (i.e., the extended

local inference rules LD1, LA1, LD2, LA2, and the transfer rule TR). More importantly, the

DAREC distributed algorithm focuses on the coordination of abduction which guarantees global

consistency of the answers. The coordination consists of the agent selection strategy, the agent

interaction strategy, and the token controlled protocol, which also allows parallel abductive

search among the agents (i.e., agents can perform their local abductions concurrently and

communicate asynchronously) without overloading the agents and the communication channel.

Therefore, the relationship between the DAREC algorithm and the ASystem algorithm can be

seen as

DAREC Algorithm = (ASystem Algorithm + Tags Handling) + (Agent

Selection/Interaction Strategies + Token Controlled Protocol).

Both DARE and DAREC allow parallel computation during distributed abduction. However,

the types of parallelism are different. In DARE, during agent interaction after a query is sent

to several helper agents, the helper agents compute the answers for this query in parallel. The

computed answers will be returned to the query sender and will be used by the query sender’s

local proof. In DAREC, the agent interaction is different. First, a (transferable) state (which

can sufficiently describe a global abductive task) instead of a query is passed between agents.

Secondly, the state is sent to one helper agent only. Thirdly, the helper agent does not need to

return the computed answers to the state sender, as any computed answer is an answer for the

global abductive task. The parallelism of a DAREC algorithm computation comes from the

118 Chapter 4. Distributed Abductive REasoning with Constraints (DAREC)

fact that the state sender agent continues its local abduction after sending out the state to the

helper agent, which will start and perform a new local abduction in parallel.

DAREC has many advantages over the superseded DARE system. However, it does not con-

sider confidentiality concerns in the distributed knowledge. In the next chapter, we will study

how DAREC can be customised, through the goal selection strategy and the agent interaction

strategy, to allow confidential abductive reasoning.

Chapter 5

Multi-agent Hypothetical Reasoning

with Confidentiality (DAREC2)

5.1 Introduction

In DAREC , the distributed agent knowledge is represented by a global abductive framework.

Under such a framework, all non-abducibles are assumed to be global and shared by all agents.

For example, if an agent has a rule p ← B1 in its background knowledge, and another agent

has p ← B2, then both rules are considered to be the definitions of the same non-abducible

predicate p.

However, there are potential applications that do not necessarily assume this. For example, if

there are two agents a and b, such that

Πa = {free← no lecture.}

and

Πb = {free← no appointment.}

The non-abducibles free and no lecture in Πa probably means “agent a is free” and “agent

119

120 Chapter 5. Multi-agent Hypothetical Reasoning with Confidentiality (DAREC2)

a has no lecture to give”, respectively; whereas the non-abducibles free and no appointment

in Πb probably means “agent b is free” and “agent b has no appointment”, respectively. Thus,

the predicate free in Πa is different from that in Πb, i.e., there is a predicate naming conflict

between the two agents. In these applications, there is a need to resolve predicate naming

conflicts and to distinguish between each agent’s local predicates.

One solution to this problem would be to enforce each agent’s local predicate to be renamed

in such a way that the agent’s unique identifier is appended after the predicate name. For

example, after the renaming process a and b will have the following new rules:

Πa = {free a← no lecture a.}

and

Πb = {free b← no appointment b.}

However, this solution has two drawbacks. First, the local predicate renaming process cannot be

performed by DAREC by default, as the system does not know which predicates are local to a

particular agent. Therefore, the burden of predicate renaming is left to the user while modelling

the agent knowledge. Secondly, suppose that there is an agent c that needs to convene anyone

who is free for a meeting, then c has to have the following (ground) rules in Πc:

Πc =

 schedule meeting with(a)← free a.

schedule meeting with(b)← free b.


Such knowledge representation is not preferred as it is not succinct, and c must know how many

other agents are available in the system. In addition, whenever there is a change to the set

of agents, c has to update his background knowledge. A better representation of the problem

5.1. Introduction 121

would be

Πc = {schedule meeting with(X)← free(X).}

Πa = {free(a)← no lecture a.}

Πb = {free(b)← no appointment b.}

However, in this case we have the same (old) problem: we cannot decide whether free/1 is a

shared predicate or a local predicate based on its predicate name.

There seems to be a general solution to all of the above issues – let us enforce in the language

that:

• every non-abducible predicate has non-zero arity, and

• the first argument of any non-abducible atom is always an agent identifier or a variable

that can only bind to agent identifiers. Thus, this argument is called the agent identifier

argument (or agent ID argument);

• any atom with the agent ID argument being a variable is considered to be global, and

is shared by all agents; whereas any atom with the agent ID argument being ground is

consider to be local to only the agent with that ID.

For example, the background knowledge of the agents in the example would become (let us

mark the agent ID argument with underline):

Πc = {schedule meeting with(c,X)← free(X).}

Πa = {free(a)← no lecture(a).}

Πb = {free(b)← no appointment(b).}

Note that the non-abducible free(X) in Πc has its agent ID argument being non-ground, so

any definition of free (with arity of 1) in any agent’s background knowledge can be used as its

definition to resolve it during inference (although this may involve agent interactions). Note

122 Chapter 5. Multi-agent Hypothetical Reasoning with Confidentiality (DAREC2)

also that the non-abducible free(a) in Πa (or free(b) in Πb) has its agent ID argument being

ground, thus it is local to agent a (or b), i.e., only agent a (or b) can have definitions for free(a)

(or free(b)).

This solution has an additional advantage – it allows the reasoning over agent ID arguments.

For example, suppose that the convener c wants to schedule meeting with only academics, then

Πc will become

Πc =


schedule meeting with(c,X)← academic(c,X), free(X).

academic(c, a).

student(c, b).


Thus, given a query schedule meeting with(c,X) to c, after the collaborative reasoning there

should be only one answer, with X = a.

With this solution, we have the following observation during the agent collaborations:

Unnecessary Interaction : Suppose there is an additional rule busy(a) ← ¬free(a) in Πa,

and during one of agent a’s local abductions a needs to reduce the selected non-abducible

goal busy(a). According to the DAREC inference rule LD1 and LN1, the goal will be

reduced to ¬free(a), which will then be converted to← free(a). Subsequently, according

to LD2 (applies twice),← free(a) is resolved to be← no lecture(a), and both denials are

collected as non-abducible constraints and become tagged by all other agents, so that the

agents will check them for consistency in the subsequent collaboration. Clearly, the checks

by agents rather than a are unnecessary, as they will not have definitions for free(a) and

no lecture(a) in their background knowledge.

Confidentiality Concern : Suppose there is an additional rule special meeting(c,X) ←

student(c,X), free(X), bad attendance(c,X). in Πc, and during one of agent c’s local

abductions c needs to solve a denial goal ∀X. ← special meeting(c) (e.g., “no special

meeting can be scheduled”). Assuming that a left to right safe goal selection strategy is

used, the denial will eventually be reduced to “← free(b), bad attendance(c, b). Accord-

5.1. Introduction 123

ing to LD2, it will become tagged by b and will be collected in a transferable state, which

can be passed to b so b will continue processing it. However, c may not want b to know

the reason for the “special meeting” during scheduling (i.e., bad attendance), but this

information can be inferred by b after it receives a state containing the collected denial.

To adopt a solution for addressing all the issues discussed above, we have customised DAREC

for applications which requires the separation of shared and confidential knowledge modelling,

and the support for reasoning over them. Specifically, a new type of atom, called askable of

the form p(~u)@ID (similar to the askable literal in [SIIS00] and the identification-based literal

in [BSW08]), is introduced. Syntactically, an askable atom is the same as a non-abducible

p(ID, ~u), but has a special characteristic such that its first argument ID can only be an agent

identifier. Thus, at knowledge representation level, askable atoms and their definitions can be

used to model shared knowledge, whereas other non-abducibles atoms and their definitions can

be used to model confidential knowledge. In addition, the DAREC distributed algorithm is also

customised, mainly through the optimisation of local inference rules and fixing special agent

interaction and goal selection strategies, so that it is aware of different types of atoms and can

handle them correctly. The main challenges are to make sure no confidential information of an

agent’s can be inferred or disclosed to others during the collaboration, and to deal with askable

atoms correctly when its first argument is not ground, i.e., it can be a universal or existential

variable. The new system is called DAREC2 (e.g., DAREC with Confidentiality).

In summary, DAREC2 differs from DAREC in the following ways:

• it allows askable atoms to be used in agent knowledge;

• it has extended inference rules to handle askable goals;

• it enforces special goal selection and agent interaction strategies to guarantee confiden-

tiality during collaborative reasoning.

The rest of the chapter is organised as follows. Section 5.2 introduces the concept of askable

atoms, and gives updated definitions to the various concepts of a global abductive framework.

124 Chapter 5. Multi-agent Hypothetical Reasoning with Confidentiality (DAREC2)

Section 5.3 first describes the modifications to the local inference rules, and then describes the

customisations made in the coordination. Section 5.4 proves that the algorithm can maintain

confidentiality during execution, and discusses further possible optimisation and extensions. A

prototype implementation of DAREC2 in Prolog is described in Section 5.5. Related work of

DAREC and DAREC2 is discussed in Section 5.6. Finally, Section 5.7 concludes the chapter.

5.2 Distributed Framework with Confidentiality

Since DAREC2 is a customisation of DAREC, many of the DAREC assumptions regarding the

targeted multi-agent systems are inherited:

• the set of agents is fixed;

• agents agree on the same set of abducible predicates;

• the communication graph of the agents is fully connected, and the communication chan-

nels are reliable.

DAREC2 does not require all (non-abducible) predicates to be global. It assumes that (a) ev-

ery non-abducible predicate symbol has non-zero arity, and (b) the first argument of a non-

abducible atom must be either an agent identifier or a variable. This special argument is called

the agent identifier argument (or ID argument in brief). The set of non-abducible predicates

can therefore be further categorised into two types:

• Public non-abducible predicates: They are non-abducible predicates which may ap-

pear in the local expertise (i.e., background knowledge and integrity constraints) of dif-

ferent agents.

• Local non-abducible predicates: They are non-abducible predicates which can only

appear in one agent’s local expertise. The agent whose local expertise containing a local

non-abducible predicate is called the owner of the predicate. Without loss of generality,

5.2. Distributed Framework with Confidentiality 125

it is further assumed that every local non-abducible predicate name is always suffixed

with the owner agent’s ID, and the first argument of an atom with local non-abducible

predicate is always the owner agent’s ID, i.e., p id(id, ~u) where id is the owner agent’s ID,

and ~u is a vector of the atom’s remaining arguments.

In order to distinguish between these two types of predicates and to simplify notation, we

introduce two syntactic sugars into to the DAREC2 knowledge representation language:

Definition 5.1 (Askable Atom). An askable atom is an atom with public non-abducible

predicate, i.e., p(ID, ~u), and is often written as p(~u)@ID.

Definition 5.2 (Private Atom). A private atom of an agent ag is an atom with a local

non-abducible predicate of the agent, i.e., p ag(ag, ~u), and is often written as p(~u) in Πag or

ICag.

An askable literal is either an askable atom, or the negation of an askable atom, i.e., ¬(p(~u)@ID),

or simply ¬p(~u)@ID. Similarly, a private literal is either a private atom or the negation of a

private atom.

An atom is defined to be askable to indicate that it has an operational meaning: during collab-

orative reasoning, if an askable atom is a goal to be reduced and its ID argument is ground, i.e.,

equal to the ID of some agent α, then this goal should only be resolvable with the background

knowledge of agent α (Πα). In words, only α can (be asked to) reduce this goal. This implies

that only Πα should contain definitions of the askable atom. Thus, the following restrictions

on the appearance of askable atoms in different agent local expertise are assumed in DAREC2 :

• if p(~u)@ID appears as the head of a rule in the background knowledge of an agent α

(Πα), then ID must be ground and equal to α;

• if p(~u)@ID (or ¬p(~u)@ID) appears as a body literal of a rule or integrity constraint in

the local expertise of an agent α (Πα∪ICα), then ID can be either a variable or an agent

identifier, which may or may not be equal to α.

126 Chapter 5. Multi-agent Hypothetical Reasoning with Confidentiality (DAREC2)

An atom is defined to be private to indicate that during collaborative reasoning it cannot be

revealed to any other agents through state transfers. Private atoms of an agent, and their

definitions in the agent’s background knowledge, can be used to model the part of private or

confidential knowledge of the agent. How these private atoms are defined, or how they are used

to define askable atoms by the agent, are not disclosed during or after the collaboration.

For the rest of this chapter, a (DAREC2) global abductive framework simply refers to a DAREC

global abductive framework that allows the usage of askable and private atoms. For example,

a rule is A← L1, . . . , Ln (n ≥ 0) where A is either an askable atom or a private atom, and each

Li is a literal. A non-abducible (atom) constraint is called an askable (atom) constraint if the

constrained atom is an askable atom, i.e., of the form ∀ ~X.← p(~u)@ID,Φ, and is called a private

(atom) constraint if the constrained atom is a private atom, i.e., of the form ∀ ~X.← p(~u),Φ.

Now let us look at how Example 4.1 (simple ambient intelligent system) in Chapter 4 can be

represented in DAREC2. For the convenience of the reader, we include the original example

description here.

Example 5.1. Ann and Bob live in the same care home, where a number of sensing devices are

installed. For example, a corridor sensor (cor) detects movements along the corridor, and a

window monitor (wm) can check which window(s) of the house are open/closed. There is also

a home controller (hm) that can respond to events taking place inside the house, such as setting

off an alarm if an intruder is detected, or notifying a nurse when a resident is in difficulty.

Bob has a mental condition. Unless taking regular medication, he tends to wander around the

house instead of staying in his room. So Bob is always carrying a personal device (bob) that

logs his medication intakes. Ann is in good health and can leave the house when necessary,

e.g. going to a dental appointment. Ann also carries a personal device (ann) which keeps her

calendar and appointments. All the sensing and personal devices (except the base sensors, like

the corridor sensor, which merely generate detected event notifications to hm) have reasoning

capability. About 12pm on Monday, cor detects movement and informs hm. hm then needs to

collaborate with various devices to explain the event before taking appropriate action.

5.2. Distributed Framework with Confidentiality 127

The global abductive framework 〈{hm,wm, ann, bob}, {Fhm,Fwm,Fann,Fbob}〉 with ABhm =

ABwm = ABann = ABbob = {walkInCorridor} can be reformulated as follows (with confiden-

tiality concerns):

Fbob : Bob cannot be walking in the corridor if he has taken medicine in the past 2 hours, and

his most recent intake is at 11am. However, Bob does not want others to know this effect

of the medicine to him, and he wants to keep his log of medicine intake private. Thus,

the non-abducible predicate takenMedicine is considered local.

 Πbob =
{
takenMedicine(11).

}
ICbob =

{
← walkInCorridor(bob, T), takenMedicine(T1), T − 2 ≤ T1, T1 ≤ T.

}


Fann : Ann has a dental appointment from 11am to 1pm. She does not mind others knowing

she is away, but she does not want others to know the reason, and she definitely wants

to keep all of her doctor appointments confidential. Thus, out is considered public and

appointment is considered local.

 Πann =

 appointment(dental, 11, 13).

out(T)@ann← appointment(A, T1, T2), T1 ≤ T, T ≤ T2.


ICann = ∅



Fhm : The home controller has knowledge about possible causes to known events. For example,

movement in the corridor can be of either an occupant or an intruder. Let us assume that

only the home controller has information about the current occupants and other devices

of the house, and does not need to disclose this information to other devices. However,

in order to prove that the movement can be caused by an intruder, it needs to infer that

there is a possible point of entry, which can only be proven by the window monitor. Thus,

128 Chapter 5. Multi-agent Hypothetical Reasoning with Confidentiality (DAREC2)

occupant and monitor are considered local; whereas pointOfEntry is considered public.



Πhm =



movement(cor, T)@hm←

occupant(X), walkInCorridor(X,T).

movement(cor, T)@hm←

monitor(M), pointOfEntry(T)@M,walkInCorridor(intruder, T).

occupant(X)← X ∈ {ann, bob}.


IChm =

{
← walkInCorridor(X,T), X 6= intruder, out(T)@X.

}



Fwm : The window monitor has the status information of the windows on different floors. Any

open window on the 1st floor is a possible point of entry for a potential intruder. Since

the window monitor only needs to give feedback to the home controller regarding point

of entry, the windows status information can remain private. Thus, floor and open are

considered local.
Πwm =



pointOfEntry(T)@wm← open(W), f loor(W, 1).

open(w1).

f loor(w1, 1).

f loor(w2, 2).


ICwm = ∅



5.3 Distributed Abduction with Confidentiality

The main objective of the DAREC2 distributed algorithm (which is a customisation of the

DAREC distributed algorithm) is to provide support for askable and private atoms, and main-

tain confidentiality during collaboration without degrading the system performance. Here we

define what we mean by confidentiality.

Property 5.1 (Confidential Reasoning). Given a global abductive task, a DAREC dis-

tributed algorithm (or its customisation) guarantees confidential reasoning if and only if no

private predicate or atom of any agent can be seen by another agent during or after the com-

putation.

5.3. Distributed Abduction with Confidentiality 129

In this section, we present the DAREC2 distributed algorithm. We will prove that it guarantees

confidential reasoning in Section 5.4.1.

5.3.1 Customisation of the Local Inference Rules

Let us first consider the following observations from the application of the existing DAREC

local inference rules with selected goals involving private or askable atoms during an agent’s

(α’s) local abduction:

1. Any private atom of α’s is defined only in Πα. Thus, it should not be delayed when it is

selected to reduce, as no one else can be expected to help in resolving it.

2. If an askable goal is selected and its ID argument is equal to α, then α should not delay

it either as only Πα may have definitions for the askable atom, i.e., no one else is able to

help.

3. If a denial goal ∀ ~X. ← φ,Φ is selected where φ is either a private atom of α’s or an

askable atom whose ID argument is equal to α, then after new denial goals are generated

by resolving φ with Πα, the denial should not need to be collected into the set of dynamic

integrity constraints or be tagged by all other agents, as no other agent can generate new

denial goals from it by resolving φ.

4. If a denial goal ∀ ~X. ← p(~u)@β,Φ is collected as a dynamic integrity constraint, where

β is an agent identifier different from α, then the denial does not need to be tagged by

any agent other than β. This is because everyone except β does not have any definition

for p(~u)@β in its background knowledge, and trivially satisfies the denial. Furthermore,

the denial does not need to be tagged by β, as the ID argument of its constrained atom

p(~u)@β clearly indicates that it has to be checked by β. Thus, such denial goals can be

treated as delayed goals rather than global integrity constraints.

5. Recall that in DAREC, tags of delayed (non-abducible) goals have no semantic meanings

and they are only used to avoid indefinite state transfers due to repeated delay of some

130 Chapter 5. Multi-agent Hypothetical Reasoning with Confidentiality (DAREC2)

goal by all agents. Suppose now only askable goals can be delayed (i.e., as follows from

observation (1)), then the tags of delayed goals can be replaced by the finite domain

constraints of the ID argument generated from the delayed goals. For example,

Example 5.2. Consider a system with only two agents α and β, where

Πα =

 p(X)@α← q(X).

q(1).

 and Πβ =

 p(X)@β ← r(X).

r(2).


Let Θ1 be a state in a local abduction by α containing only one goal p(X)@ID where ID

is a variable. By LD1 of DAREC, two states Θ2 and Θ3 could be generated: in Θ2 the

goal is replaced with ID = a, q(X), and in Θ3 the goal p(X)@ID is delayed and is tagged

by α. Then after Θ3 is sent to β, by LD1 again two states Θ4 and Θ5 could be generated:

in Θ4 the goal is replaced with ID = b, r(X), and in Θ5 the goal p(X)@ID is delayed

again and is tagged by both α and β. Given any agent selection strategy that is aware of

the tags (e.g., the uniform agent selection strategy (Definition 4.9)) Θ5 will not be sent to

α again (and will be discarded as there is no suitable candidate recipient), and hence the

algorithm will terminate. On the other hand, even if the adopted agent selection strategy

is not aware of the tags so that Θ5 is sent to α, α will not generate any new state from

Θ5 by reducing or delaying p(X)@ID again, since it has already been tagged by α. Thus,

the algorithm will still terminate.

In fact, instead of tagging the delayed goal p(X)@ID with α in Θ3, we could try to add

an inequality ID 6= α to the set of collected inequalities (i.e., E3). Similarly, instead of

tagging the same goal with β in Θ5, we can also try to add an inequality ID 6= β to E5.

However, ID ∈ {α, β} 1 and ID 6= α are inconsistent with ID 6= β. Thus, Θ5 will not

be generated as a child state of Θ3, and the algorithm will terminate without invoking the

agent selection strategy at all.

Using ID argument constraints instead of tags has another advantage – it gives delayed

(askable) goals some semantic meaning, i.e., p(~u)@ID with ID ∈ Σ and ID 6= α is

1This constraint comes from the definition of ID argument and can be enforced by the DAREC2 distributed
algorithm (see description later).

5.3. Distributed Abduction with Confidentiality 131

equivalent to
∨

[ID∈(Σ\{α})] p(~u)@ID, or p(ag1, ~u) ∨ · · · ∨ p(agn, ~u)︸ ︷︷ ︸
{ag1,...,agn}=Σ\{α}

.

In order to support a reasoning process that is aware of askable and private literals, and

optimise it according to the above observations, the DAREC local inference rules are extended.

In particularly, LD1 and LD2 are extended to be LDP1, LDP2, LDA1 and LDA2, where LDP1

and LDP2 are for positive and denial goals of private atoms, respectively, and LDA1 and LDA2

are for positive and denial goals of askable atoms, respectively. We will present the new rules

in order. But we first give the definition of a DAREC2 state, which extends that of a DAREC

state.

Definition 5.3 (DAREC2 Computational State). A DAREC2 computational state (or

state in brief) Θ is
〈
(G,Gd),ST , τ

〉
, where

• G is a set of remaining goals;

• Gd is a set of delayed goals, each of which is either an askable atom or an askable atom

constraint;

• ST = (∆,N , E , C) is a tuple of four stores, where

– ∆ is a set of abducibles;

– N is a set of abducible constraints;

– E is a set of (in-)equalities;

– C is a set of CLP constraints;

• τ is a set of abducible tags.

All free variables appearing in the state Θ are existentially quantified within the scope of the

whole state.

A DAREC2 state differs from a DAREC state in the following ways:

• askable atom constraints are treated as delayed goals;

132 Chapter 5. Multi-agent Hypothetical Reasoning with Confidentiality (DAREC2)

• the set of collected dynamic integrity constraints contains only abducible constraints;

• only abducibles can be tagged.

Consequently, a DAREC2 solved state is a state in which there is no delayed goal or abducible

tag, and the four stores are consistent. A DAREC2 transferable state is a state that contains a

delayed goal or an abducible tag.

Given a (DAREC2) global abductive framework
〈

Σ, F̂
〉

, let Θi =
〈
(Gi,Gdi), (∆i,Ni, Ei, Ci), τi

〉
be a state yet to be processed in the local abduction by agent α ∈ Σ, where Gi 6= ∅. Suppose a

goal φ is selected from Gi according to a safe goal selection strategy Ξ, and let G−i = Gi \ {φ}.

Inference Rule (LDP1). If φ = p(~u) is a private atom, let p(~vj) ← Φj (j = 1, . . . , n) be n

rules in Πα, then:

– (local reduction) Gi+1 = {~u = ~v1} ∪ Φ1 ∪ G−i

OR
...

OR (local reduction) Gi+1 = {~u = ~vn} ∪ Φn ∪ G−i

Inference Rule (LDP2). If φ = ∀ ~X. ← ϕ,Γ− is a denial goal and ϕ = p(~u) is a selected

private atom, then:

– Gi+1 = {∀~Y .← Γ+ | p(~v)← Φ ∈ Πα and ~Y = ~X ∪ vars(p(~v)) ∪ vars(Φ) and Γ+ = {~u =

~v} ∪ Φ ∪ Γ−} ∪ G−i .

These two rules are very similar to LD1 and LD2, except that:

• in LDP1, private goals cannot be delayed, and hence cannot be tagged (i.e., no need to

modify τi);

• in LDP2, private atom constraints do not need to be collected or tagged (i.e., no need to

modify Ni or τi).

5.3. Distributed Abduction with Confidentiality 133

In contrast, LDA1 and LDA2 are less similar to LD1 and LD2, because they need to deal with

the generation of CLP constraints over ID arguments (i.e., to replace the tags of delayed goals),

and more importantly they have to correctly handle non-ground ID arguments according to

their quantifiers while processing askable constraints.

Inference Rule (LDA1). Let α be the current agent processing Θi. If φ = p(~u)@ID is an

askable atom, one of the following cases applies:

• ID is ground:

* (local reduction) if ID = α, let p(~vj)@α← Φj (j = 1, . . . , n) be n rules in Πα, then

– Gi+1 = {~u = ~v1} ∪ Φ1 ∪ G−i

OR
...

OR Gi+1 = {~u = ~vn} ∪ Φn ∪ G−i

* (delay goal) if ID 6= α, then Gi+1 = G−i and Gdi+1 = {φ} ∪ Gdi

• ID is a variable:

– (accept task) if {ID = α} ∪ Ei ∪ Ci is satisfiable, then Gi+1 = {p(~u)@α} ∪ G−i ;

OR (delegate task) if {ID 6= α} ∪ Ei ∪ {ID ∈ Σ} ∪ Ci is satisfiable, then Gi+1 = G−i ,

Gdi+1 = {φ} ∪ Gdi , and Ei+1 = {ID 6= α} ∪ Ei

Note that the ID variable of any positive askable goal is existentially quantified. The accept

task in LDA1 is to bind the ID argument of an askable goal to the current agent’s identifier,

and to use the current agent’s background knowledge to reduce this goal (e.g., Θ2 and Θ4 in

Example 5.2 are generated in this way). The delegate task in LDA1 delays the askable goal so

it can be (later) reduced by another agent (e.g., Θ3 in Example 5.2 is generated in this way).

Inference Rule (LDA2). Let α be the current agent processing Θi. If φ = ∀ ~X.← ϕ,Γ− is a

denial goal and ϕ = p(~u)@ID is a selected askable atom in the body of φ, one of the following

cases applies:

• ID is ground:

134 Chapter 5. Multi-agent Hypothetical Reasoning with Confidentiality (DAREC2)

* (reduce local constraint) if ID = α, then Gi+1 = {∀~Y . ← Γ+ | p(~v)@α ← Φ ∈

Πα and ~Y = ~X ∪ vars(p(~v)) ∪ vars(Φ) and Γ+ = {~u = ~v} ∪ Φ ∪ Γ−} ∪ G−i ;

* (collect remote constraint) if ID 6= α, then Gi+1 = G−i and Gdi+1
= {φ} ∪ Gdi ;

• ID is an existential variable (i.e., ID /∈ ~X), then

– (accept constraint) if {ID = α} ∪ Ei ∪ Ci is satisfiable, then Gi+1 = {∀ ~X. ←

p(~u)@α,Γ−} ∪ G−i ;

OR (delegate constraint) if {ID 6= α}∪ Ei ∪{ID ∈ Σ}∪ Ci is satisfiable, then Gi+1 = Gi,

Ei+1 = {ID 6= α} ∪ Ei and Gdi+1 = {φ} ∪ Gdi ;

• ID is a universal variable (i.e., ID ∈ ~X), then

– (instantiate constraint) let Σ− = {β | β ∈ Σ and {ID = β}∪Ei∪Ci is satisfiable},

and Gnew = {∀ ~X−. ← p(~u)@β,Γ− | β ∈ Σ− and ~X− = ~X − {ID}}, then Gi+1 =

Gnew ∪ G−i

LDA2 reduces a denial goal by reducing the selected askable atom in the denial. If the ID

argument of the askable is ground, then the denial only needs to be checked by the agent with

matching identifier. If this agent is the current agent, the denial must be reduced by resolving

the askable atom with the current agent’s local background knowledge (i.e., the reduce local

constraint case); otherwise, the denial is considered as a remote (integrity) constraint and can

only be delayed by the current agent (i.e., the collect remote constraint case). If the ID argument

is an existential variable, then the current agent can either take the responsibility to satisfy the

denial goal by binding its identifier to the existential variable (i.e., the accept constraint case),

or declare that it will not be responsible for satisfying the denial goal by adding an inequality

to the state ensuring that the existential variable can never be bound to its identifier (i.e., the

delegate constraint case). Finally, if the ID argument is a universal variable, then all the agents

must satisfy the denial goal. This is enforced by generating one instance of the denial goal for

each agent in the system (i.e., by binding the universal variable to all the agent identifiers in

turn).

5.3. Distributed Abduction with Confidentiality 135

With respect to the transfer rule, since askable atom constraints are treated as delayed goals

and are not tagged in a DAREC2 state, a minor simplification to TR is needed (i.e., there is

no need to process tagged non-abducible constraints):

Transfer Rule (TR’). Let Θt =
〈
(G,Gd), (∆,N , E , C), τ

〉
be the state received by an agent α

after a state transfer, then the root state for the new local abduction by α is Θ0 = 〈(F∪Gd∪G, ∅),

(∆,N , E , C), τ ′〉, where F and τ ′ are obtained as follows:

1. Let ∆new be the set of α-tagged abducibles, i.e., {A | A ∈ ∆ and (A,S) ∈ τ and α ∈ S};

2. Given an abducible A = a(~u), the set of resolvents of A with ICα is RA(ICα) = {∀~Y . ←

~u=~v,Φ− |← Φ ∈ ICα and Φ = {a(~v)} ∪ Φ− and ~Y = vars(Φ)};

3. F =
⋃
A∈∆new RA(ICα);

4. τ ′ is obtained by removing α from the tags τ , i.e., {(L,S) | (L,S) ∈ τ and L /∈ ∆new} ∪

{(L,S ′) | (L,S) ∈ τ and L ∈ ∆new and S ′ = S − {α}}.

The rest of the DAREC local inference rules LA1, LN1, LE1, LC1, LA2, LN2, LE2 and LC2

can be applied to a DAREC state exactly in the same way as for a DAREC state. Hence, the

set of local inference and transfer rules for DAREC2 is given by LA1, LDP1, LDA1, LN1, LE1,

LC1, LA2, LDP2, LDA2, LN2, LE2, LC2 and TR’.

5.3.2 Customisation of the Coordination

The general DAREC distributed algorithm does not fix any agent interaction strategy or fix

any goal selection strategy (as long as it is safe). However, such flexibility of the algorithm

cannot guarantee the confidentiality property. This is illustrated by the following cases:

1. During a local abduction by an agent α, after a goal (e.g., an askable p(~u)@β s.t. β 6= α)

is delayed, the state becomes a transferable state and may be sent to another agent, if

the adopted agent interaction strategy decides to do so (e.g., the eager agent interaction

136 Chapter 5. Multi-agent Hypothetical Reasoning with Confidentiality (DAREC2)

strategy). However, if the set of remaining goals is not empty and contains private (atom)

goals of α, then these private goals will be sent along with the state, and hence can be

revealed to the state recipient agent.

2. Let F = ∀ ~X.← a(~u),Γ be a denial goal selected to reduce on the abducible a(~u). During

the application of LA2 F is collected as a dynamic integrity constraint (i.e., abducible

constraint) for the new state. However, if Γ contains private atoms of α, then these atoms

can be seen by all other agents, as the collected denial F will remain in (the descendants

of) the new state.

3. Similarly to case (2), if a denial goal F = ∀ ~X. ← p(~u)@β,Γ (β 6= α) is delayed, and if

Γ contains private atoms of α, then these atoms can at least be seen by agent β when β

receives a state and processes the delayed goal.

To avoid cases (2) and (3), we need to make sure no abducible constraint can be collected and

no askable constraint can be delayed if they contain some private atoms as body literals. This

can be controlled by the secure goal selection strategy given in Definition 5.4. To avoid case

(1), we need to make sure no transferable state containing private goals can be sent out by an

agent. This can be controlled by the lazy agent interaction strategy given in Definition 5.5.

This behaves as the opposite of the eager agent interaction strategy – it allows a transferable

state to be sent out only if the state does not contain any remaining goal, i.e., the agent tries

to process a state with its maximum efforts.

Definition 5.4 (Secure Goal Selection Strategy). A safe goal selection strategy Ξ adopted

by an agent α is secure if and only if for a given denial goal ∀ ~X. ← Φ selected to be reduced,

Ξ never selects from Φ an abducible or an askable whose ID argument is not equal to α, if Φ

contains a private literal of α’s.

Definition 5.5 (Lazy Agent Interaction Strategy). Given a transferable state Θ = 〈(G,Gd),

ST , τ〉 such that either Gd 6= ∅ or τ 6= ∅, an agent with the lazy agent interaction sends out Θ

if and only if G = ∅.

5.3. Distributed Abduction with Confidentiality 137

Finally, since in DAREC2 , delayed goals and askable constraints are no longer tagged, the

uniform agent selection strategy (Definition 4.9) will also need to be modified to make use of

the constraint reasoning over ID arguments:

Definition 5.6 (Uniform Agent Selection Strategy for DAREC2). Given a global ab-

ductive framework
〈

Σ, F̂
〉

, suppose that the agent identifiers Σ can be sorted lexicographically.

Let Θ =
〈
(∅,Gd), (∆,N , E , C), τ

〉
be a transferable state, the uniform agent selection strategy

for DAREC2 selects an agent β ∈ Σ, such that

• request help for delayed goals: If Gd 6= ∅, let Ω̂ be a set of agent identifiers such that

Ω̂ = {id | Q@ID ∈ Gd and id ∈ Σ and {ID = id} ∪ E ∪ C is satisfiable} ∪ {id | ∀ ~X.←

Q@ID,Γ ∈ Gd and ID /∈ ~X and id ∈ Σ and {ID = id} ∪ E ∪ C is satisfiable}. If

∅ /∈ Ω̂ (i.e., each delayed goal must be have at least one candidate helper agent), then let

S = {id | Ω ∈ Ω̂ and id ∈ Ω}. β is the first agent in the list obtained by lexicographically

sorting S.

• request consistency check for abducibles and non-abducible constraints (remain the same):

if Gd = ∅, and Ω =
⋃
〈φ,S〉∈τ S is not empty, then β is the first agent in the list obtained

by lexicographically sorting Ω.

5.3.3 Sample Execution Trace of DAREC2

The execution trace of DAREC2 for Example 5.1 given the queryQ = {movement(cor, 12)@hm}

is very similar to that for DAREC shown in Section 4.3.5, except that some states will have

different contents in their stores. This is because the two executions both assume the lazy agent

interaction strategy and the uniform agent selection strategy. Here we present the DAREC2

execution trace and give extra comments on the places that are different from the DAREC

execution trace.

1. hm created the initial state Θ0 =
〈
({movement(cor, 12)@hm}, ∅),ST ∅

〉
. After the application

of LDP1, Θ0 was rewritten into two states: Θ1 = 〈({occupant(X), walkInCorridor(X, 12)}, ∅),

ST ∅〉 and Θ2 = 〈({monitor(M), pointOfEntry(T)@M,walkInCorridor(intruder, 12)}, ∅),ST ∅〉:

138 Chapter 5. Multi-agent Hypothetical Reasoning with Confidentiality (DAREC2)

(a) For Θ1, after the applications of LDP1, LC1 and LA1, Θ1 became a transferable state Θ3 =

〈({← X 6= intruder, out(12)@X}, ∅), ({walkInCorridor(X, 12){ann,bob,wm}}, ∅, ∅, {X ∈ {ann, bob}})〉.

However, since the set of remaining goals is not empty, Θ3 is not allowed to be sent out

yet. After the applications of LN2, LE1 and LDA2, the remaining denial goal became

← out(12)@X and was moved to the set of delayed goals, and the additional constraints

E = {X 6= intruder,X 6= hm} were added to the set of collected inequalities. The resulting

state Θ4 = 〈(∅, {← out(12)@X}), (∆3, ∅, E , C3)〉 could not be further processed by hm.

(b) For Θ2, after the applications of LDP1, LDA1, LA1, LN2 and LE1, Θ2 became a transfer-

able state Θ5 = 〈(∅, {pointOfEntry(12)@wm}), ({walkInCorridor(intruder, 12){ann,bob,wm}},

∅, ∅, ∅)〉, which could not be further processed by hm.

2. hm sent Θ4 to ann after invoking the uniform agent selection strategy. After the application

of TR, a new state Θ6 = 〈({← out(12)@X}, ∅), ({walkInCorridor(X, 12)bob,wm}, ∅, E4, C4)〉 was

obtained. Subsequently, after the application of LDA2, two new states were obtained as the

ID argument X of the askable literal out(12)@X in the denial goal was existentially quantified:

Θ7 = 〈({∀T1, T2. ← appointment(T1, T2), T1 ≤ 12, 12 ≤ T2}, ∅), (∆6, ∅, {X = ann} ∪ E4, C4)〉

and Θ8 = 〈(∅, {← out(12)@X}), (∆6, ∅, {X 6= ann} ∪ E4, C4)〉.

(a) for Θ7, the remaining denial goal could not be satisfied, and was hence discarded (after a

few local inference steps);

(b) for Θ8, it could not be further processed by ann so Θ8 was passed to the next helper agent;

3. ann sent Θ8 to bob after invoking the uniform agent selection strategy. After the application

of TR, a new state Θ9 = 〈({∀T1. ← X = bob, takenMedicine(T1), 10 ≤ T1, T1 ≤ 12,←

out(12)@X}, ∅), ({walkInCorridor(X, 12)wm}, ∅, E8, C4)〉. Subsequently, after the application

of LE2 on the first remaining denial goal, two new states are obtained: Θ10 = 〈({∀T1. ←

takenMedicine(T1), 10 ≤ T1, T1 ≤ 12,← out(12)@X}, ∅), ({walkInCorridor(X, 12)wm}, ∅,

{X = bob} ∪ E8, C4)〉 and Θ11 = 〈({← out(12)@X}, ∅), ({walkInCorridor(X, 12)wm}, ∅, {X 6=

bob} ∪ E8, C4)〉:

(a) for Θ10, the first remaining denial could not be satisfied, so Θ10 was discarded (after a few

local inference steps);

(b) for Θ11, the union of the inequality store and the constraint store contains {X 6= bob,X 6=

5.4. Discussions 139

ann,X ∈ {ann, bob}}, and hence became inconsistent. Thus, the state Θ11 was also

discarded.

4. Recall that hm still had a transferable state Θ5. hm sent Θ5 to wm after invoking the uniform

agent selection strategy. After the application of TR, a new state Θ12 = 〈({pointOfEntry(12)@wm},

∅), ({walkInCorridor(intruder, 12){ann,bob}}, ∅, ∅, ∅)〉 is generated by wm. Subsequently, af-

ter the applications of LDA1 and LDP1 by wm, the remaining goal was reduced success-

fully giving the transferable state Θ13 = 〈(∅, ∅),ST12〉. This state was passed to ann and

bob in turn so that they could check the collected abducible. The subsequent derivation

succeeded without adding any new element to Θ13, and finally generated the solved state

Θ13 = 〈(∅, ∅), ({walkInCorridor(intruder, 12)}, ∅, ∅, ∅)〉.

5.4 Discussions

5.4.1 Confidential Reasoning by DAREC2

The main difference between DAREC2 and the generic DAREC distributed algorithm includes

the changes to a subset of the inference rules, and fixing a goal selection strategy and an agent

interaction strategy. In this section, we prove that the DAREC distributed algorithm can

guarantee confidential reasoning (Property 5.1).

Proposition 5.1. Private atoms of an agent are never contained in any transferable state

exchanged between agents during the execution of the DAREC2 distributed algorithm, and thus

DAREC2 guarantees confidential reasoning.

Proof of Proposition 5.1: To prove this proposition, we will use proof by contradiction.

First, we assume that during the agent collaboration, a transferable state Θ =
〈
(G,Gd), (∆,N , E , C), τ

〉
containing a private atom P of an agent α is passed between two agents. By definition, P can

only appear in Πα ∪ ICα, thus only α could add P to a state. Without loss of generality, we

may further assume that Θ was generated by α, and that the state transfer took place between

α and another agent, say β.

140 Chapter 5. Multi-agent Hypothetical Reasoning with Confidentiality (DAREC2)

By the definition of lazy goal selection strategy, the set of remaining goals G of Θ must be

empty. Thus, P must appear either in Gd or in N .

Case 1: assume that P appears in Gd. By the definition of LDP1, P is not allowed to be

delayed if it is a positive private atom goal, so P must appear as a body literal of some askable

constraint in Gd. Let this askable constraint be F = “∀ ~X. ← Q@ID,Γ” where Q@ID is an

askable and P ∈ Γ. F could only have been added to Gd by the application of LDA2 when

Q@ID was selected by a secure goal selection strategy Ξ. By the definition of LDA2, ID must

either be ground and not equal to α, or be an existentially quantified variable that cannot be

bound to α. In either case, since Q@ID was selected by Ξ, Γ must not have contained any

private atom of α’s, which contradicts the assumption that P ∈ Γ. Hence, P cannot appear in

Gd.

Case 2: assume that P appears in N , i.e., P appears as a body literal of an abducible constraint

in N . Such an abducible constraint must have been collected into N by the application of LA2

when an abducible was selected by the secure goal selection strategy Ξ. However, according to

Ξ, when the abducible was selected, the denial should not have contained any private atom of

α. But this contradicts to the assumption of Case 2. Hence, P cannot appear in N either. �

End of Proof for Proposition 5.1 .

5.4.2 Impact of the Usage of Agent Advertisements on Confidential

Reasoning

As we discussed in Section 4.5.1, the usage of agent advertisements in DAREC can help reduce

unnecessary agent interactions during the collaboration. This is also true in DAREC2 . How-

ever, in the case of DAREC2, agents should only advertise the set of askable atoms that they

have definitions for and the set of abducible atoms that they have integrity constraints for. For

example, in the execution trace of DAREC2 in Section 5.3.3, if the agent advertisements were

available, then the abducible walkInCorridor(X, 12) would only be tagged by bob, and in

Step 4 the state Θ12 would not need to be sent to ann. The usage of such agent advertisements

5.5. Implementation of DAREC2 141

does not affect the confidential reasoning property guaranteed by DAREC2 , as the private

atoms are not advertised.

5.4.3 Soundness and Completeness of DAREC2

DAREC2 is a customisation of DAREC. The askable and private atoms in DAREC2 are equiv-

alent to the non-abducible atoms in DAREC. Same as the DAREC algorithm, the DAREC2

algorithm is sound with respect to the three-valued semantics. However, the DAREC algorithm

is not complete with respect to the three-valued semantics. This is due to the secure safe goal

selection strategy. Consider the following situation with two agents a and b, such that

Πa Πb

p(X)← ¬q(X), r(X)@b. r(1)@b.

where p and q are local predicates of a’s, and r is a public predicate of b’s. Suppose a is given

a query p(X). There is an answer X = 1 for the query with respect to Πa ∪ Πb. However,

the DAREC2 algorithm cannot compute it. There is because during a’s local abduction, a

denial goal ∀X.← ¬q(X), r(X)@b is obtained. When it is selected to reduce, the goal selection

strategy must be safe so that the literal ¬q(X) cannot be selected, as the literal contains

universally quantified variable. However, the goal selection strategy must also be secure so that

r(X)@b cannot be selected, as there is a private literal in the denial goal. Therefore, the denial

goal cannot be reduced and local abduction flounders. This incompleteness of the DAREC2

is caused by the secure safe goal selection strategy. One mean to avoid this situation is to

impose an allowedness condition to the agent background knowledge – all variables occurring

in a clause must also occur in a positive private body literal.

5.5 Implementation of DAREC2

In this section, we describe a prototype implementation of DAREC2. A DAREC2 system con-

sists of a set of abductive agents, each of which can be implemented as a reasoning module,

142 Chapter 5. Multi-agent Hypothetical Reasoning with Confidentiality (DAREC2)

that can respond to queries from outside the system, or to internal collaboration requests from

other agents within the system, and return answers once they are found. This modular imple-

mentation design has two advantages. First, these agents can be run as standalone programs,

in which case the whole distributed system can execute as a distributed theorem prover for

decentralised knowledge. Alternatively, each agent as a module can be integrated into the ar-

chitecture (e.g., BDI) of an agent of a bigger multi-agent system, in order to aid their tasks, such

as distributed cognitive perception and collaborative planning, by providing the hypothetical

reasoning capabilities.

DAREC2 could be implemented in different programming languages. Our current prototype

uses Prolog as the main implementation language. This is because Prolog not only provides

the best integration between Constraint Programming and Logic Programming, but also has a

very efficient mechanism for unification, making it an excellent tool for implementing theorem

provers. Among many existing Prolog systems, we have chosen YAP-6 2 as the development

system, due to its following advantages:

• It is considered the fastest open source Prolog implementation, and has been actively

supported.

• It provides many important features and libraries essential to the implementation of

DAREC2 . For example, it has constraint solvers for finite domain constraints (CLP(FD))

and for Real domain constraints (CLP(R)) ported from the SWI-Prolog, and the socket

programming library for implementing TCP communications between agents.

• It has multi-threading support, which is essential for the development of distributed

software.

Before presenting the details of the implementation, we discuss some general properties and

features used. As aforementioned, the availability of a “yellow-page” like directory, that records

information about the non-abducible (or askable in the case of DAREC2) predicates that are

defined in the various agents and information about the integrity constraints for abducibles

2http://www.dcc.fc.up.pt/~vsc/Yap/

http://www.dcc.fc.up.pt/~vsc/Yap/

5.5. Implementation of DAREC2 143

defined in the various agents, can be used to implement application specific agent selection

strategies that will reduce unnecessary agent interactions. Such information can be automati-

cally generated by the agents from their local expertise, and the disclosure of such information

does not violate the confidential reasoning property that is guaranteed by the DAREC2 dis-

tributed algorithm. Our current DAREC2 implementation also makes use of such a directory

and its relevant facilities.

Both DAREC and DAREC2 assume a fixed set of agents during collaborative reasoning. How-

ever, in practice the set of the agents in the system may change before or after the collaborations,

e.g., the set may expand during initial system set up. In our implementation, we enforce that

there is always a leader agent in the system. Such a leader may either be appointed (e.g., the

first agent running in the system) or be elected by the existing agents (e.g., after the ex-leader

leaves) using some leader election algorithms. The leader acts as the portal of the system.

Thus, any new agent wishing to join the system or any agent wishing to leave the system must

report to the leader, and external queries should be sent to the leader.

The rest of this section is organised as follows. Section 5.5.1 describes the agent knowledge

specification files as the input to DAREC2 agents. Section 5.5.2 gives an overview of the internal

architecture of a DAREC2 agent. Section 5.5.3 and Section 5.5.4 describe the communications

between agents and the protocols for which the agent system is set up (e.g., agent joining,

leaving and knowledge update). Finally, Section 5.5.5 describes the execution of each agent for

their collaboration in a global abductive task.

5.5.1 Agent Knowledge Specifications

In our implementation, we allow an agent to change its local expertise (i.e., background knowl-

edge and integrity constraints) at runtime. However, the set of abducible predicates is fixed

before runtime (i.e., it is agreed by all the agents). At the beginning an agent takes two files –

a topic file containing the declarations of abducible predicates, and a theory file containing the

initial local expertise of the agent. Both files are in Prolog syntax.

144 Chapter 5. Multi-agent Hypothetical Reasoning with Confidentiality (DAREC2)

Within the topic file, an abducible predicate is declared using abducible/1. For example, to

declare the abducible predicate symbol walkInCorridor with arity of two, the following fact

is included in the topic file.

abducible(walkInCorridor(,)).

The theory file for an agent is a Prolog program. The rules in the background knowledge are

written as Prolog clauses, e.g.,

free(D)@alice :- day(D), \+ appointment(D).

day(D) :- D in 1..7.

appointment(3).

Each integrity constraint is also written as a Prolog clause, but always with the head being ic,

e.g.,

ic :- happens(A1, T), happens(A2, T), A1 =/= A2.

Note that in the theory file, negation ¬ is written as \+ and inequality is written as =/=. CLP

atoms are written using the convention of CLP (FD) and CLP (R).

5.5.2 Overview of the Agent Architecture

Our DAREC2 agent implementation is a multi-threading implementation, which allows each

agent to perform multiple global abductive tasks simultaneously. The key components of the

agent implementation are shown in Figure 5.1.

There are two types of threads: a persistent server thread (ST) and one or more worker threads

(WT). The main functionality of the ST is to respond to incoming messages (e.g., queries, agent

advertisements, control signals for collaborations), manage WTs (e.g., create a WT for a new

task), and maintain local storages. Its execution will be described in detail in Section 5.5.5.

The main functionality of a WT is to perform local abduction in search for solutions (i.e., the

5.5. Implementation of DAREC2 145

Figure 5.1: DAREC2 Agent Internal Architecture

solved states). It can also send out collaborative requests (containing information such as the

transferable state) to other agents, and return solutions to the query issuer(s). Its execution

will be described in detail in Section 5.5.5.

There are three storage-like components: the Local Expertise (store), the State Buffer (store)

and the Directory. The Local Expertise store contains information of predicate types, agent

background knowledge and integrity constraints. It is updated by ST, and is used by the WTs.

The State Buffer temporarily stores transferable states and solved states that cannot be sent

immediately, e.g., due to waiting for control token (described in Section 4.3.4). We would like

to point out that in our current implementation, there is an option for the system to perform

either the “push” or the “pull” style of query answering. In the “push” answering, any solved

state found by a WT can be sent back to the query issuer regardless of whether the owning

WT has a control token or not. This is good for applications where all solutions are required

as soon as possible. However, if there are many solutions for a query, then the communication

channel may be overloaded. In contrast, in the “pull” answering, a solved state can be sent

back only if the owning WT has a control token. This is good for applications that want to

control how many answers are needed and when to receive them. The usage of the State Buffer

will be described in more detail in Section 5.5.5.

146 Chapter 5. Multi-agent Hypothetical Reasoning with Confidentiality (DAREC2)

The Directory is mainly used by the WTs for selecting (helper) agents during collaboration. It

has two sub-components:

Address Book : Agents in the system communicate through TCP messages. Each agent has

two types of identifier: a unique alias name and a unique network address. An alias

is a string constant (e.g., “ann” , “hm”, “a1”, “a2”) that is mainly used for knowledge

representation, i.e., in the agent knowledge specification. A network address is mainly

used for low level TCP communication and consists of an IP address and a port number.

Note that there may be several agents running on the same host machine on a network,

thus the port number is used to further distinguish between these agents, i.e., each pair

of IP address and port number uniquely identified an agent on the network. The Address

Book records the mapping between agent aliases and agent network addresses. During the

collaboration, if an agent wishes to send a message (e.g., containing transferable state) to

another agent, say with alias “helper”, then the sender agent first looks up the network

address of “helper” from the Address Book, and then sends out the message using TCP.

Yellow Pages : Agents can advertise two types of information to all others: the (defined)

askable atoms for which they have definitions, and the abducibles for which they have

integrity constraints. The Yellow Pages records the agent advertisements, each of which

is a pair 〈Alias, Atom〉 where Alias is the alias of the advertising agent and Atom is

either an askable or abducible. Note that the askable atom in each advertisement always

has the form P@A where A must be ground and be an agent alias (because it is the

head of a rule in that agent’s background knowledge). Thus, an askable (abducible)

advertisement is one that contains an askable (abducible) atom. In addition, the atom in

each advertisement is in its canonical form, i.e., each variable in it is replaced by a new

constant. By default, skolem constants start with “$k” and have a number as suffix, e.g.,

5.5. Implementation of DAREC2 147

“$k1”, “$k2”, . . . Below are some examples of atoms and their canonical forms:

Original Atom Canonical Form

free(mon)@alice free(mon)@alice

hapens(pickup, T) happens(pickup, $k1)

before(T1, T2) before($k1, $k2)

equal(X,X) equal($k1, $k1)

Each agent’s advertisements can be automatically generated from its local expertise. For

the agent with alias “ag”:

1. collect all the askable heads of the rules in the background knowledge;

2. collect all the (positive) abducible body literals of the integrity constraints;

3. transform the collected atoms to their canonical form and remove duplicates;

4. for each remaining atom SA, the pair 〈ag, SA〉 is an advertisement by “ag”.

In addition, the Directory also records the alias of the current leader in the system.

5.5.3 Agent Communications

Agents communicate through peer-to-peer messages only. Each message has the following

format:

p2p(FromAddr, ToAddr, MsgType, Payload)

where FromAddr and ToAddr are the network addresses of the sender and the recipient, respec-

tively, and MsgType is a constant indicating the type of the message so that the recipient can

understand how to parse the content Payload of the message upon receiving it. Note that a

simple broadcast communication from an agent to a set of recipients can be implemented as the

sender passing a peer-to-peer message to each of the recipients (in turn).

148 Chapter 5. Multi-agent Hypothetical Reasoning with Confidentiality (DAREC2)

5.5.4 Protocols for Agent Joining, Leaving and Knowledge Update

Although the collaborative reasoning assumes the set of agents to be fixed, during runtime

agents may join or leave the system, e.g., during initial system set up or changes to the larger

MAS that uses DAREC2 to aid its functionality. In addition, in a dynamic MAS environment,

agents must be able to update their knowledge. In order to guarantee the collaboration as-

sumptions and maintain the consistency during collaborations, the changes to the set of agents

and the agent knowledge must not occur when the system is engaged in any global abduc-

tive reasoning tasks. Thus, agent joining/leaving and knowledge update must follow a set of

pre-defined protocols, which are described next.

System Leader

As briefly discussed earlier in the Chapter, our implementation ensures that there is always a

leader (agent) in the system. The leader behaves in the same way as other agents during collab-

oration, but has extra responsibilities, such as handling the changes to the system and receiving

external queries (i.e., initiating a global abductive task for each received query). In order to

make sure that the set of agents and the agent knowledge do not change when the system is

engaged in any collaborative reasoning, the leader maintains a numeric variable OngoingTasks

for counting the number of global abductive tasks being performed by the system. This vari-

able, initially being zero, is incremented whenever the leader initiates a global task, and is

decremented whenever a task is finished (see Section 5.5.5). Thus, an agent is allowed to join,

leave or update its knowledge only when OngoingTasks is equal to zero.

The leader in a system can be either appointed or elected. Leader appointment occurs in two

cases. At the initial system set up, the first agent to come alive in the system will be assumed

(to be appointed) the role of being the leader. At the system runtime, the administrator can

send a control message to the current leader, asking it to abdicate the role and to pass it to a

specified agent in the system. Leader election often occurs when the current leader has to leave

the system. The current implementation adopts a very simple algorithm: the agent aliases are

5.5. Implementation of DAREC2 149

assumed to be lexicographically sortable, and the agent (other than the leaving leader) with

the smallest alias is “elected” as the next leader. Note that the changing of leader can only take

place when the system is not engaged in any global reasoning tasks. The process is illustrated

in Figure 5.2.

Figure 5.2: Changing of Leader

The main responsibilities of a leader include:

• deciding whether a new agent can join the existing system (see Agent-Joining Protocol)

• handling the departure of an existing agent (see Agent-Leaving Protocol)

• deciding whether an existing agent can commit knowledge update (see Knowledge-Update

Protocol)

• coordinating agent collaboration in a Global Abductive Task, e.g., receiving queries and

aggregating solutions (see ST and WT executions).

Agent-Joining Protocol

When a new agent wishes to join the system, it first needs to report to the system leader,

and then synchronise its advertisements with others if it is allowed to join the system. Upon

receiving a joining request, the leader makes two checks: it makes sure that the new agent

150 Chapter 5. Multi-agent Hypothetical Reasoning with Confidentiality (DAREC2)

alias does not clash with any existing agent’s alias, and that the system is not too busy (i.e.,

OngoingTasks > 0) to accept the new agent. If the two checks are passed, the leader will

inform the new agent, and initiates the Directory synchronisation between all the agents. The

detailed protocol is shown in Figure 5.3

Figure 5.3: New Agent Joining the System

Agent-Leaving Protocol

Similar to the agent-joining protocol, any existing agent wishing to leave the system needs to

report to the leader. However, the leaving agent does not need approval from the leader, as

its departure may not be controllable by the leader (or any other agent) in the system. Upon

receiving the agent departure signal message, the leader needs to check whether the system is

engaged in any global reasoning task. If this is the case, in order to guarantee the consistency

of the answers (for the tasks), an exception handling procedure must be invoked to cancel

any computation involving the leaving agent. In DAREC2 a global abductive answer must

be checked by all the agents in order to guarantee consistency, therefore all the agents will

5.5. Implementation of DAREC2 151

be involved at one time or another. Any computation of a global abductive task before the

leaving agent actually gets involved does not need to be cancelled. However, identifying these

computations can introduce computational overhead although it is easy to implement. In the

current implementation, this procedure simply terminates any ongoing tasks, and informs the

query issuer(s) about the computation failure due to changes to the system. The query issuer(s)

can then decide whether to query again. The detailed protocol is shown in Figure 5.4.

Figure 5.4: Existing Agent Leaving the System

It is worth pointing out that such an agent-leaving protocol can be used for implementing an

agent failure (due to crashing or loss of communication connection) handling protocol:

• Each agent regularly pings others.

• If a no longer reachable non-leader agent is detected, the leader will be informed and will

execute the agent-leaving protocol for the non-reachable agent.

• If the leader is no longer reachable (this is more serious), the leader election algorithm

will be invoked (by the first agent who detects the leader failure), and the elected agent

will execute the leaving protocol for the ex-leader.

Knowledge Update Protocol

Agents may update their local expertise at system runtime. However, such knowledge update

must not occur when the system is engaged in any global task, in order to guarantee consistency.

152 Chapter 5. Multi-agent Hypothetical Reasoning with Confidentiality (DAREC2)

Thus, each agent wishing to update its local expertise must first report to the leader, and the

leader will check whether the system is busy. If there is no ongoing global task, then the

leader will inform the requesting agent of the approval, so that it can commit the update.

Note that the knowledge update request message may also contain the changes of the agent

advertisements (e.g., what to add or delete). Thus, if the update request is approved, the leader

will also inform all the agents to synchronise their Directory about the advertisement changes.

The detailed protocol is shown in Figure 5.5.

Figure 5.5: Update of Agent Knowledge

5.5.5 Executions of the Server Thread and the Worker Threads

Each agent has a single server thread (ST) and zero or more worker threads (WT). The ST is

persistent along the lifetime of the agent, whereas each WT lives only during the collaboration

of a global (abductive) task for a given query.

The ST has the following main responsibilities:

5.5. Implementation of DAREC2 153

• During agent start up, it creates the initial local expertise of the agent (i.e., loading the

topic and theory files), and reports to the (ST of the) leader agent to join the system.

• During agent shut down, it performs clean up (i.e., terminating any existing local abduc-

tive tasks), and reports to the (ST of the) leader agent to leave the system.

• At system runtime, it responds to different inter-agent messages from the joining, leaving

and knowledge update protocols. Its behaviour depends on whether the agent is assuming

the role of the leader.

• During global abductive tasks, it receives global queries (if the agent is the leader) and

collaboration requests, and it creates and coordinates WTs for local computations.

The WT’s responsibility is simply to perform local (abductive) tasks. Note that each global

(abductive) task may consist of multiple local tasks performed by each agent, and the total

number of such local tasks of all agents could be very big depending on the query and the agent

local expertise. If each WT of an agent is responsible for a single local task, e.g., like in the

implementation of DARE for maximising local concurrent computation, the agent may soon

face a problem of running out of WTs (as each agent has limited computational resources). To

address this problem, in the implementation of DAREC2 each WT of an agent is allowed to

engage in multiple local tasks at the same time, but at any time only one of them is active

and all of them must belong to the same global task of a global query. Thus, instead of simply

running an abductive meta-interpreter, each WT also needs to manage the different local tasks

it owns in an efficient way, and to implement the token-controlled collaboration (with other

WTs) described in Section 4.3.4.

Table 5.1 gives a summary of the inter-agent communication messages that are sent or received

by the ST of a DAREC2 agent.

The Life and Reactive Behaviour of the Server Thread (ST)

The ST of an agent maintains the following information, which is used for fulfilling its respon-

sibilities:

154 Chapter 5. Multi-agent Hypothetical Reasoning with Confidentiality (DAREC2)

Type Used In Sender/Receiver Description
leadership

Changing Leader
from old leader (ST) to new
leader (ST)

inform the agent to accept lead-
ership

update leader from new leader (ST) to non-
leader agents (ST)

inform other agents about the
change of leader

req joining

Joining Protocol

from new agent (ST) to leader
(ST)

request for joining the system

den joining from leader (ST) to new agent
(ST)

joining request denied

perm joining from leader (ST) to new agent
(ST)

joining request permitted

agent joined from leader (ST) to existing
agents (ST)

inform existing agents about the
new agent

leaving
Leaving Protocol

from leaving agent (ST) to leader
(ST)

inform the leader about its de-
parture

agent left from leader (ST) to remaining
agents (ST)

inform remaining agents about
the gone agent

req update

Update Protocol
from knowledge update agent
(ST) to leader (ST)

request for knowledge update

den update from leader (ST) to knowledge
update agent (ST)

update request denied

perm update from leader (ST) to knowledge
update agent (ST)

update request permitted

query

Collaboration

from (external) query issuer to
leader (ST)

send a query to the leader

trans state from one agent (WT) to another
agent (ST)

state transfer between two agents

solved state from one agent (WT) to another
agent (ST)

centralise solved states to the
leader

eos from one agent (WT) to another
agent (ST)

token-control signal

answer from leader (ST) to query issuer forward solved states to the
query issuer

next from (external) query issuer to
leader (ST) or from leader (ST)
to an agent (ST) that previously
sent a solved state

demand more answers

discard from (external) query issuer to
leader (ST) or from leader (ST)
to other agents (ST)

abandon all remaining computa-
tions for the query

abort from leader (ST) to another
agent (ST)

terminate all local computations

Table 5.1: Summary of the Inter-agent Communication Message Types

5.5. Implementation of DAREC2 155

• If the agent is assuming the role of the leader, then its ST maintains the counter OngoingTasks,

which is accessible by the ST only.

• If the agent is assuming the role of the leader, then the agent is responsible for receiving

global queries and creating the global tasks. Our implementation allows the system (or

the leader) to accept queries even when the system is engaging in some ongoing global

tasks. Thus, being able to track local computations for different global tasks is necessary

for the collaboration and coordination. In our implementation, for each query received,

the leader will generate a unique (numerical) ID for it and its global task. This query

ID is also associated to every agent’s local computations that belong to the global task.

Thus, the ST of the leader maintains the mapping of received queries and the query IDs,

as a set of tuples 〈QueryID,Query, IssuerAddr〉.

• If the agent is assuming the role of the leader, then the agent is also responsible for

forwarding the solved states found by any agent in the system. If the query issuer demands

more solutions, then the leader has to inform the agent who has returned the last solved

state to continue the search (i.e., returning a token to that agent). Thus, the leader also

maintains the tuples 〈QueryID, TokenWaitingAgentAddr〉.

• Regardless of whether the agent is the leader or not, its ST is responsible for controlling

a set of WTs that perform local computations. Each WT has its unique thread ID, and

owns one or more local tasks for the same global task. Thus, the ST records a set of tuples

〈WTID,QueryID〉 that can be used for keeping track of local computations within the

agent.

The execution of the ST can be seen as a reactive process, which can be described as the

flow-chart given in Figure 5.6.

The Life and Operational Behaviour of a Worker Thread

A WT is created (by the ST) when the agent starts to participate in the global task for a

given query, and is terminated either when it has done all of its computation, or when the

156 Chapter 5. Multi-agent Hypothetical Reasoning with Confidentiality (DAREC2)

Figure 5.6: Execution Flowchart of ST. Note that all the collaboration messages except query

contain the query ID, and the ST of each agent can use it to identify its corresponding WT.

global task ends (i.e., the ST receives discard or abort for the query). The execution of a WT

can be seen as the running of an abductive meta-interpreter, which is interruptible by the ST.

The interactions between a WT and its ST are through inter-thread messages of the format

(Type, Content), which are summarised in Table 5.2. In addition, every WT can send three

types of collaboration inter-agent messages (i.e., trans state, solved state and eos) to the

ST of other agent, during collaboration to implement the token-control protocol.

As aforementioned, in order to avoid the explosion of WT creation for (the global task of) a

query, each WT in an agent is responsible for all the local tasks for a query, i.e., it can be

engaged in several local tasks at the same time, but only one of the local tasks can be active

at any time. During the active local task, it is possible that a generated outgoing transferable

or solved state cannot be sent immediately, i.e., due to waiting of the token. Even when the

active local task is finished, the reply message eos may not be sent immediately for the same

5.5. Implementation of DAREC2 157

Type Content Description
init State signal a newly created WT to start a local task

with the given state
push State interrupt the corresponding WT and urge it

to start a new local task with the given state
token none assign the token to the corresponding WT,

and hence signal it to send the next buffered
state or reply, if there is any

kill none signal the WT to free up resources and termi-
nate

Table 5.2: Summary of the Inter-thread Communication Message Types from ST to its WT

reason. Thus, these states and the reply need to be stored in the BufferStore component of

the agent. Furthermore, when the computation of the currently active local task is finished, a

proactive WT (as currently implemented) continues to work on the next local task even though

there are still some buffered outgoing states and/or reply of the current task. In addition, a

simple WT (as currently implemented) without clever task scheduling algorithms always treats

the new local task as the most urgent, i.e., it will suspend the currently active local task and

start to work on the new task. Therefore, the main challenge of implementing the WT, apart

from the interruptible meta-interpreter, is to manage resources (e.g., memory) correctly and

efficiently between the switching of local tasks.

The Meta-Interpreter: Prolog has a powerful backtracking mechanism, which allows logic

inference to be performed in a very efficient depth-first search way. Thus, we have implemented

an abductive meta-interpreter that deploys a depth-first search for the computation of a local

abductive task. The pseudo-code of the meta-interpreter is very close to the one described in

Figure 4.2 (the process state procedure), with only the following differences:

• The solved states are sent to the leader instead of the query issuer. If the WT does

not own a token, then the state will be buffered first (i.e., implementing the pull style

answering mechanism).

• It uses the lazy agent interaction strategy by default.

• It uses the uniform agent selection strategy for DAREC2 by default.

158 Chapter 5. Multi-agent Hypothetical Reasoning with Confidentiality (DAREC2)

• It uses a simple left-to-right secure goal selection strategy.

• It uses the set of DAREC2 local inference rules.

• In addition to the standard components of a DAREC2 computational state, the actual

state processed by the meta-interpreter contains two more pieces of information: the

original query and the query ID. The former is used for answer extraction in the case of

a solved state (i.e., bindings for the variables appearing in the original query), and the

latter is used to identify which query (or its global task) the current state belongs to.

Note that the eager agent interaction strategy and a heuristic agent selection strategy that

is based on the helpfulness of candidate agents3 are also implemented for the purposes of

benchmarking. There are options to switch between these strategies for the system. Note

also that during a local computation, the meta-interpreter uses the existing Prolog libraries

CLP (FD) and CLP (R) for solving CLP constraints, and uses our implemented inequality

solver for solving collected inequalities. The source code of the inequality solver is given in the

Appendix A.1.

Usage of the State Buffer Each WT has a reserved space in the State Buffer for keeping

its buffered transferable/solved states and the buffered EOS replies for its finished local tasks.

While the transferable states and the EOS replies must be sent in the order they were generated

during a local task, the solved states (from any local task) should be sent as soon as the

WT receives a token, in order to reduce the time taken for the query issuer to wait for an

answer. When the WT receives a new local task, its current computation will be suspended –

intermediate execution data (e.g., backtracking data used by the depth-first meta-interpreter)

and the currently buffered transferable states and EOS replies are backed up – and it will start

another computation of the local task. After this local task is finished, a previously suspended

computation will be restored so that the WT can continue to work on it. Thus, the space used

3The helpfulness of a candidate state recipient agent is the sum of the number of abducibles in the state that
the agent needs to check, and number of the delayed goals in the state that the agent can potentially help to
solve. Thus, the heuristic agent selection strategy will select one of the candidate agents that have the biggest
helpfulness, instead of depending on the lexicographical ordering of the agent aliases.

5.5. Implementation of DAREC2 159

by each WT in the State Buffer has three components (see Figure 5.7): the Solutions Store

(SS), the Current Workbench (CW) and the Suspended Workbenches (SW).

Figure 5.7: Usage of the State Buffer by a WT

The SS is a simple first-in-first-out (FIFO) queue, buffering the solved states that are computed

by the local tasks performed by the current WT and are waiting to be sent back to the leader

(upon receiving the token message by the current WT from the ST). The CW is also a FIFO

queue, but it stores two things – transferable states and EOS replies. It is possible that these

states and replies are generated by different local tasks, but those belonging to the same local

task are always buffered as a sequence in the queue, with the EOS reply being the last element of

the sequence. The SW is a stack (i.e., first-in-last-out) of suspended workbenches. Intuitively,

while a WT is performing a local task, any generated transferable state is first buffered on the

CW. If the WT receives a new local task, then it will save the CW to the SW, and use a new

workbench to buffer any new transferable state. If the current task is finished, a EOS will be

added to the CW (e.g., the third element in the current workbench queue in Figure 5.7), and

if there are some suspended workbenches in SW, the last one will be popped from the SW and

merged with the CW (i.e., appending all its elements to the CW. E.g., the fourth element in the

current workbench queue in Figure 5.7), and the WT can then resume its previously suspended

local task. The state chart diagram of the life cycle of a WT is given in Figure 5.8, and the

flow charts of the execution of each state are given in Figures 5.9.

Note that the previous agent (which is sent an EOS reply in Figure 5.9c) of a local task being

owned by the current agent, is the owner agent of the transferable state which has been received

by current agent and used as the root state of the local task. Note also that (in Figure 5.9c)

after a WT in the leader agent informs its ST about the end of a global task, the ST will

160 Chapter 5. Multi-agent Hypothetical Reasoning with Confidentiality (DAREC2)

Figure 5.8: State Chart Diagram of WT’s Life Cycle

decrement the OngoingTasks counter.

5.6 Related Work

5.6.1 Centralised Abductive Systems

In addition to the Kakas-Mancarella proof procedure (KM) [KM90b] and ASystem [ANDB01,

KvND01, NK01], other well-known top-down logic programming based abductive proof proce-

dures and systems include SLDNFA [DS92, DS98], IFF [FK97], ACLP [KM95, KM97, KMM00],

CIFF [EMS+04b, EMS+04a, MTS+09] and SCIFF [AGL+05, AC05, ACG+08, GAL09].

We chose to extend ASystem into the DAREC (and DAREC2) distributed abductive algorithm

due to the following considerations. Both KM and ACLP rely on the interleaving of abductive

and consistency derivations, which would make the co-operation strategy between agents less

flexible as discussed in our presentation of DARE (see Chapter 3). IFF, CIFF and SCIFF, on

the other hand, use a special IFF-theory for representing the abductive logic framework – the

program consists of the if-and-only-if definitions (i.e., the completion of the rules [Cla78]) for

5.6. Related Work 161

predicates. In a multi-agent system, since the rules cannot be centralised, it is not possible

to complete them to obtain such an IFF-theory. Although ASystem extends SLDNFA and

incorporates several ideas from IFF and ACLP, such as performing the abductive inference

as a state rewriting process and using an independent solver for CLP constraints during the

inference, it does not inherit the above mentioned shortcomings.

Abductive reasoning can also be performed using bottom-up answer set programming (ASP)

based algorithms such as SModels [NS97, SN01], DLV [LPF+06] and Clasp [GKNS07]. These

systems represent abductive problems as disjunctive logic programs (i.e., in which rules can

have disjunction of atoms as the head). The computation of abductive answers is done in two

steps: first, the logic program is grounded (with some preprocessor), and then the stable models

of the ground program are computed. Abductive answers, i.e. sets of ground abducibles, are

extracted from the computed stable models.

Although bottom-up algorithms are generally accepted to be more efficient than top-down

algorithms, and do not suffer from “loops” caused by cyclic logic programs, they cannot work

with logic programs with unbound domains as the logic program cannot always be grounded

before the model computation. Furthermore, in a multi-agent system since the rules cannot be

centralised, the overall program cannot be grounded. These issues present new challenges in

extending centralised bottom-up algorithms for multi-agent abduction, and no solution has been

proposed yet. Note that the distributed ASP system in [EGG+09] focuses on distributing the

model computation (i.e., parallel computation) of centralised knowledge to improve performance

instead of the computation over distributed knowledge, which is the main focus of this thesis.

5.6.2 Distributed Abductive Systems

ALIAS [CLM+03] is the only other multi-agent abductive system that is closely related to

DAREC (and DAREC2). However, the two systems have many significant differences. First,

ALIAS extends KM to the multi-agent context, and, because of the limiting features of KM, it

cannot handle non-ground (negative) queries, non-ground abducibles and CLP constraints. Sec-

ondly, in ALIAS the knowledge base of agents uses a special language called LAILA [CLMT01]

162 Chapter 5. Multi-agent Hypothetical Reasoning with Confidentiality (DAREC2)

for specifying statically and a priori, the communications with other agents. Finally, consis-

tency of the abduced assumptions is only required locally (i.e., with respect to each agent’s

knowledge base). On the other hand, DAREC (and DAREC2) can accept non-ground (neg-

ative) queries, compute non-ground answers and support reasoning over CLP constraints. In

DAREC (and DAREC2) the collaboration among agents is dynamically defined, by means of

the yellow page directory that allows an agent to dynamically identify other helper agents. The

notion of consistency of the abduced assumptions is global with respect to the overall knowl-

edge base of all the agents (i.e., global consistency) in DAREC (and DAREC2). In the case of

DAREC2, shared and private knowledge can be distinguished in knowledge specification, and

confidentiality is maintained. Also, the communications between agents may be guided by the

reasoning results of the ID arguments in askable goals during distributed inference.

Another (less) related multi-agent abductive system is MARS proposed by Bourgne et. al. [BIM10].

In MARS, each agent has a local abductive task and it needs to refine its local hypotheses to be

consistent with respect to all other agents’ knowledge. Different to DAREC (and DAREC2),

agents in MARS may not be fully connected and they can only communicate with their neigh-

bours. In addition, each agent’s background knowledge is presented as a causal theory, and

local abduction is done through inverse entailment with a consequence finding algorithm [NII03].

Agents refine their hypotheses through learner-critic style interactions with their neighbours:

1. The learner agent computes all the new consequences (called the context) entailed by its

background knowledge and a proposed hypothesis, and passes them to all of its neighbours

(the critics). 2. Each critic agent then checks the received context for consistency with respect

to its own background knowledge. If an inconsistency is found, the learner agent will be in-

formed and the negation of the proposed hypothesis will be assumed (by the learner agent).

Otherwise, the critic agent will compute all the new consequences entailed by the received

context and its background knowledge, and propagate them (with the received context) to its

neighbours, who then act as the new critics. 3. Such a recursive chain of interactions termi-

nates (successfully) when no new consequences can be found by all the critics, in which case

the learner agent can formally assume the proposed hypothesis.

5.6. Related Work 163

5.6.3 Speculative Multi-agent Reasoning Systems

Speculative reasoning is another example of abduction-based multi-agent reasoning systems. It

was first proposed by Satoh [SIIS00] to address two important issues arising during the query-

answer interactions between logic programming based agents (each of which has its knowledge as

a logic program and computes answers for received queries with a top-down inference algorithm).

First, answers may not be returned in timely fashion due to either the physical communication

channel delays or the long computation process by the queried agent. Secondly, the queried

agent may not return all the answers at once (e.g., an answer is returned as soon as it is found),

and it may also need to revise its previous answer that has already been sent to the querying

agent during the collaboration. In a speculative computation system, after a goal is sent out

as an external query, the sender agent may use some default answers of the goal to continue

its local inference, and hence prevent the agent from wasting idle CPU cycles while waiting for

a returned answer. When a new or revised answer is returned, the query sender agent may

reuse previous computation as much as possible by discarding only the part of the computation

that was done using old and inconsistent answers for the query, and by revising the part of

the computation that was done using old but consistent answers to use the returned answer.

Abduction is used during local inference to support the answer revision process, e.g., answers

used for sent goals are treated as assumptions. The first such system [SIIS00] was developed

for master-slave structured systems (i.e., there is only one agent that can send queries) where

an answer to a (ground) query is simply either yes or no. Since then it has been extended for

hierarchical MAS [SY02] (i.e., each agent can have only one parent and can send queries to its

children only), and for constraint processing [SCH03, HSM+10] where the answers can be a set

of constraints over the variables in the (non-ground) query, and finally for hierarchical MAS

to support negation and non-ground answers with constraints [MBG+10]. In all these system,

goals that can be sent out as queries are called askable goals and have the form A@S where A

is an atom and S is an agent identifier. Their operational meaning is very similar to that of

the askable atoms in DAREC2. However, whereas in speculative computation when an askable

goal is selected, the agent identifier must be ground, in DAREC2 it can also be a variable

with quantifier. Furthermore, in speculative computation (and in DARE) agent interactions

164 Chapter 5. Multi-agent Hypothetical Reasoning with Confidentiality (DAREC2)

are query answering, whereas in DAREC (and DAREC2) they are state passing.

5.7 Conclusion

In this chapter we have presented the DAREC2 system for multi-agent abductive reasoning

with confidentiality. In DAREC2 , non-abducible predicates are divided into two sets: public

and local. Thus, agents can specify their confidential knowledge with private atoms (with

public predicate) and their shared knowledge with askable atoms (with local predicate). The

DAREC2 distributed abductive algorithm is built on from that of DAREC. Optimisations and

small modifications are made to the local inference rules in order to handle askable (atom) goals

and private (atom) goals correctly and efficiently. The new algorithm can guarantee confidential

reasoning through the use of the secure safe goal selection strategy and the lazy agent interaction

strategy. A prototype of the system has been implemented in Prolog. In Chapter 6 we will

describe our experimental results of the system prototype, and in Chapter 7 we will provide a

case study of using DAREC2 for a real world application – distributed policy analysis.

5.7. Conclusion 165

(a) Execution Flow Chart for the
Idle State of WT

(b) Execution Flow Chart for the Interrupt Handling State of WT

(c) Execution Flow Chart for the Working State of WT

Figure 5.9: Execution Flow Charts of WT

Chapter 6

Experiments and Benchmarking

In order to test our DAREC2 system prototype and study its performance, collections of dis-

tributed logic programs (LPs) of various sizes and structures are needed. Each collection

represents the agents’ knowledge of a DAREC2 framework. However, it is always difficult to

find testing LPs required for specific experiments. Therefore, we have developed an experimen-

tal environment for DAREC2. This environment can randomly generate distributed abductive

LPs according to a list of parameters such as the number of agents, and the size and structure

of their LPs. It also provides a facility that supports the auto-execution of the system for

each experiment. Each auto-execution consists of generating input knowledge files, launching

DAREC2 agents, submitting queries and collecting answers. During the execution of DAREC2,

profiling information, such as execution time and communication cost, are collected to allow

us to investigate the scalability of the system. It is worth pointing out that our environment is

general enough for generating centralised LPs. Therefore, it can also be used to provide testing

data sets for systems such as ACLP and ASystem.

The rest of this chapter is organised as follows. Section 6.1 describes how the distributed LP

generator works and how different types of LPs can be produced. Section 6.2 describes the

auto-testing structure of our environment and discusses some of the DAREC2 experimental

results. Section 6.3 concludes this chapter.

166

6.1. A Random Generator for Distributed Abductive Constraint Logic Programs (GenDACLP)167

6.1 A Random Generator for Distributed Abductive Con-

straint Logic Programs (GenDACLP)

A general-purpose generator for distributed abductive constraint logic programs, called Gen-

DACLP, has been developed in Java. Although arbitrary logic programs (LPs) can be randomly

produced by the generator according to a set of tunable parameters, the LPs that are useful for

our experiments are those where the distributed computation (by the DAREC2 agents) always

terminates and never flounders.

In order to guarantee flounder-free for a DAREC2 computation, the union of the distributed LP

generated for each agent must satisfy the allowedness condition [DC89] – any variable appearing

in a rule must also appear either in the head or in a positive body literal. On the other hand,

in order to guarantee termination for a distributed abductive task, both the query and the

union of all agents’ LPs need to satisfy the abductive non-recursive property [Ver99]. However,

since the LPs are generated independently from the queries, in practice it is not feasible to

check this property for arbitrarily generated LPs with respect to all the possible queries. In

fact, as shown in [Ver99] the sole cause of non-terminating derivations is repeated reductions

of the same abducible constraint. For example, suppose p(X) ← a(f(X)) is a rule in a LP

where a/1 is the only abducible predicate, and suppose that during the inference (by SLDFNA,

ASystem or DAREC2) for some query, an abducible constraint ∀X.← a(X),¬p(X) is collected.

Then if at some point later in its derivation an abducible a(X) is assumed, the checking of the

abducible constraint will generate a new goal p(X), whose further reduction will cause a(f(X))

to be assumed and the same abducible constraint be checked again, i.e., the inference will not

terminate and keep assuming new abducibles a(X), a(f(X)), a(f(f(X)),

An easy and practical way to prevent such situation from arising is to enforce that in the Her-

brand Base of the LP the set of all abducible atoms is always finite. The current implementation

of GenDACLP simply ensures that in the generated LPs:

• all constants are integers, and

168 Chapter 6. Experiments and Benchmarking

• there is no function symbol.

Thus, every generated LP will satisfy the abductive non-recursive property and DAREC2 will

terminate given any (bounded) query [Ver99] (so will SLDNFA and ASystem). Another advan-

tage of generating LPs with such conditions is that the experiment environment can also be

used for other theorem provers employing top-down or bottom up algorithms.

6.1.1 The Input and Output of the GenDACLP

The set of tunable parameters that the generator can accept is summarised in Table 6.1 (the

overall program is the union of all the agent’s LPs):

Table 6.1: List of Input Parameters for GenDACLP

Key Name Value Type Description

randomSeed positive int a seed to the random number generator

(i.e., same seed will guarantee same gen-

erated logic programs, provided that other

parameters remain unchanged).

progStruct String currently the possible values are:

• stratified: the overall program is

stratified;

• acyclic: the overall program is

acyclic;

• arbitrary: the overall program

is randomly generated and does

not necessarily satisfy either of the

above properties.

6.1. A Random Generator for Distributed Abductive Constraint Logic Programs (GenDACLP)169

numAbduciblePredicates non-negative int number of abducible predicates in the

overall program

numPublicPredicates non-negative int number of public predicates (i.e., used for

askable atoms) in the overall program

numLocalPredicates non-negative int number of local predicates (i.e., used for

private atoms) per agent

numConstants positive int number of constants (enumerated as nat-

ural numbers) in the overall program (i.e.,

they constitute the Herbrand Universe)

numAgents positive int number of agents

numAskableRules non-negative int number of rules defining askable atoms

numPrivateRules non-negative int number of rules defining private atoms

numICRules non-negative int number of integrity constraints (i.e., writ-

ten as rules whose heads are ic)

abducibleICs boolean true if each integrity constraint to be gen-

erated contains at least one positive ab-

ducible

avgRuleBodySize positive int average number of body literals in each

rule (applies also to the integrity con-

straints)

avgArgumentSize positive int average number of arguments of each

predicate (applies to abducible, public

and local predicates)

negationBias float within [0, 1] average numNegLits
totalBodyLits

of all the rules: with

the value 0 (1), all the body literals will

be positive (negative).

abducibleBias float within [0, 1] average numAbducibleLits
totalBodyLits

of all the rules

170 Chapter 6. Experiments and Benchmarking

askableBias float within [0, 1] average numAskableLits
totalBodyLits−numAbducibleLits of all

the rules

constraintBias float within [0, 1] average numClpConstraints
numPrivateLits+numClpConstraints

of

all the rules

variableBias float within [0, 1] average numV ariables
numArguments

of all the atoms

variableCoupling float within [0, 1] average 1 − totalV ariables
totalPostivePrivateLitArguments

of

all the rules

With these parameters, different type of LPs with specific structure (e.g., stratified and acyclic)

can be generated, including and not limited to the following:

• ground LPs can be generated by setting variableBias = 0;

• definite LPs can be generated by setting negationBias = 0;

• constraint LPs can be generated by setting constraintBias to some positive value;

• abductive LPs can be generated by setting abduciblePredicate to some positive value;

• distributed LPs can be generated by setting numAgents to some positive value greater

than 1.

All the generated LPs satisfy the allowedness conditions. In order to guarantee that the gen-

erated distributed LPs are suitable for the testing and benchmarking of our DAREC2 system

prototype, some of the parameters must satisfy the following conditions:

• progStruct is acyclic (in order to guarantee termination);

• abducibleICs is true (as this is one of the requirements of DAREC2).

6.1. A Random Generator for Distributed Abductive Constraint Logic Programs (GenDACLP)171

Running GenDACLP

The generator is implemented in Java. The values for the tunable parameters are specified in

a knowledge configuration file, where each line has the format of Key=Value, as the input for

the generator. An example is given in Figure 6.1.

1 randomSeed = 23421

2 progStruct = acyclic

3 numAbduciblePredicates = 2

4 numPublicPredicates = 3

5 numLocalPredicates = 5

6 numConstants = 20

7 numAgents = 3

8 numAskableRules = 18

9 numPrivateRules = 30

10 numICRules = 6

11 abducibleICs = true

12 avgRuleBodySize = 4

13 avgArgumentSize = 2

14 negationBias = 0.3

15 abducibleBias = 0.2

16 askableBias = 0.2

17 constraintBias = 0.2

18 variableBias = 0.7

19 variableCoupling = 0.7

Figure 6.1: Example Configuration File for GenDACLP (sample.config)

Given a knowledge configuration (e.g., sample.config), the initial output of GenDACLP is

a Prolog file (e.g., total.pl in Figure 6.2) containing a set of abducible declarations (e.g.,

lines 2–3 in total.pl) and all the clauses for the specified number of agents (e.g., the rest of

total.pl). In the output file, agent identifiers are integers starting from 0, and the clauses

are partitioned for the agents. For example, sample.config specifies three agents, and hence

in total.pl the clauses are divided into three parts: lines 5–21, lines 23–39 and lines 41–60.

Each part contains the randomly generated integrity constraints (e.g., lines 5–6), private rules

(e.g., lines 7–15) and askable rules (e.g., 16–21) in order. Note that each private atom has

a predicate name starting with l and ending with n where n is the owner agent’s identifier.

To produce input files for DAREC2, GenDACLP can further “slice” total.pl into four files,

where the first file (i.e., the topic file) contains only the abducible declarations, and each of the

other three files contains the clauses for an agent (i.e., the theory file).

172 Chapter 6. Experiments and Benchmarking

It is easy to see that total.pl is the union of all agents’ background knowledge and integrity

constraints. Therefore, it can be used by some centralised theorem prover (e.g., ASystem),

while the topic file and the theory files are used by the agents of DAREC2. The answers

computed by the two systems are expected to be the same.

1 % Topic File: 2

2 abducible(a1(_, _, _)).

3 abducible(a2(_, _)).

4 % Agent 0: 17

5 ic :- a2(15, 15).

6 ic :- a2(X0 , X0), l3_0(X0, 7, X0), l1_0(X0).

7 l1_0 (0) :- a2(1, 13), a2(14, 8).

8 l1_0 (3) :- a2(10, 17), p3(18, 19)@2 , \+ a2(17, 18).

9 l2_0 :- l4_0(X1, 15, X1), l4_0(X1, 15, 2), \+ l4_0(18, X1, X1), l4_0(X1, X1 , X1).

10 l2_0 :- l4_0(X2 , 4, X0), l4_0(4, 4, 0), l4_0(0, X1, 6), l4_0(X0, X2 , X2), X2 #=< X0.

11 l3_0(6, 0, 14).

12 l4_0(14, 4, 19).

13 l5_0 :- \+ a1(11, X0, X0), l4_0(X0 , X0, X0), \+ l4_0(13, 1, X0).

14 l5_0 :- a1(11, 19, 6), l2_0 , \+ l4_0(7, 7, 1).

15 l5_0 :- l4_0(X0 , X0 , X0), a1(X0 , X0, X0), p3(X0, X0)@X0.

16 p1(0, 16)@0 :- l2_0 , a1(15, 1, 1), a2(10, 3), a1(17, 4, 0).

17 p1(X0 , X0)@0 :- X0 in 9..18, l2_0.

18 p1(X1 , X1)@0 :- l4_0(X0 , X1 , X0), l4_0(4, X0, X1).

19 p2(11)@0 :- p1(16, 2)@0 , l2_0 , p1(13, 14)@0 , a1(8, 15, 6).

20 p3(18, X0)@0 :- a1(X0, X0, 9), a1(X0, X0, 3), l4_0(X0 , 15, 12), X0 #=< X0, 11 #=< X0.

21 p3(3, 17)@0 :- \+ a1(15, 12, 8).

22 % Agent 1: 17

23 ic :- a1(16, 1, 6).

24 ic :- a1(X0 , 9, 14), \+ l3_1(X0, 2, 0), a1(X0, 17, 1), a1(14, X0, 3), X0 #< X0, l3_1(1, X0 , X0), \+ l1_1(X0).

25 ic :- a1(X0 , X0 , 16), p3(2, X0)@X0 , l5_1 , l1_1(X0), X0 in 1..2.

26 l1_1 (7) :- l5_1 , 10 #< 0, a2(16, 15), \+ l2_1.

27 l2_1 :- \+ l4_1(X1, X1 , X1), l4_1(X0, X0, X1), l4_1(X0, X1, X1), a1(13, 14, X0), l4_1(X1, X0, X1), X1 #=< X0.

28 l2_1.

29 l3_1(16, 2, 14) :- l2_1 , 5 #< 14, 9 #=< 4, \+ p1(9, 9)@1 , 16 #< 9, 18 #=< 0, 8 #=< 18.

30 l4_1(3, 0, 1).

31 l4_1(6, 15, 5).

32 l5_1 :- X0 in 2..2, a1(3, X0, X0), p3(4, X0)@X0 , l4_1(X0 , 6, 1).

33 l5_1 :- \+ l2_1 , l4_1(13, X0, 13), a1(X0, 3, X0), l2_1 , l4_1(X0, X0 , X1), p1(4, X1)@X1.

34 l5_1 :- l2_1 , l4_1(X0, X0, X0), \+ l4_1(X0 , 8, 1).

35 l5_1 :- p3(14, 1)@2 , \+ l4_1(12, 8, 14).

36 p1(6, 5)@1 :- a2(7, 5), \+ l4_1(7, 1, 19).

37 p1(8, 8)@1 :- \+ a1(5, 1, 7).

38 p1(X0 , X0)@1 :- a2(15, 9), l4_1(X0, X0 , X0), l2_1 , a2(14, X0).

39 p2(2)@1 :- l4_1(14, X1, 11), \+ l1_1(X1), \+ l2_1 , X1 in 11..15 , l4_1(11, X1 , 15), a2(X1, 11), \+ a2(X1, X1).

40 % Agent 2: 20

41 ic :- a2(X0 , X0), X0 #< 17, l1_2(X0), l2_2.

42 l1_2 (11) :- \+ p1(0, X0)@X0 , \+ a1(5, X0, X0), l4_2(X0, X0, X0), l2_2 , a2(12, X0), p3(X0, X0)@X0 , l5_2.

43 l1_2 (13) :- l2_2 , \+ l5_2 , l5_2.

44 l1_2 (4) :- l5_2 , a2(1, 8), p1(2, 15)@0 , a2(0, 6).

45 l1_2 (9) :- p3(16, 0)@1, l5_2.

46 l2_2 :- \+ l4_2(9, 17, 17), \+ l4_2(3, 3, 9), \+ a1(8, 18, 5).

47 l2_2 :- l4_2(15, X0 , 17), l4_2(X1, X1, X1).

48 l2_2 :- l4_2(4, X0, X0).

49 l3_2(11, 11, 15) :- \+ l2_2.

50 l3_2(15, 2, 17).

51 l3_2(6, 19, 3) :- l1_2 (18), 14 #=< 3, \+ l4_2(4, 6, 11).

52 l5_2 :- 4 #=< 12, l4_2(12, 15, 18), \+ l4_2(3, 1, 2), \+ p3(4, 15)@1, l2_2.

53 p1(16, 11)@2 :- \+ l2_2 , l4_2(X0, 9, X0), X0 in 1..5, l4_2(X1, 9, X1), a2(X0, X1).

54 p1(17, 17)@2 :- l4_2(X0 , X0 , X0), a2(X0 , X0).

55 p1(3, 11)@2 :- 15 #< 13, \+ a1(10, 14, 10), \+ l4_2(16, 1, 16), a1(15, 15, 14), l2_2 , a1(11, 9, 11).

56 p1(X0 , X0)@2 :- X0 in 1..10, \+ l2_2 , X0 #=< 17, l2_2.

57 p1(X0 , X0)@2 :- a2(X0, X0), l2_2 , a2(1, 3), \+ a1(X0, X0 , 9), l4_2(X0, 15, X0), a1(X0, X0, 17), \+ a2(8, X0).

58 p2(6)@2.

59 p2(X0)@2 :- l1_2(X1), l4_2(X0 , X1, X1), l1_2(X0), p1(X1 , X0)@X1.

60 p3(X0 , X0)@2 :- l4_2(X0 , 15, X0).

Figure 6.2: Example Output File for GenDACLP (total.pl)

6.1.2 Implementation of GenDACLP

The process for generating the distributed LPs from a set of given parameters consists of the

following five steps (see Figure 6.3):

6.1. A Random Generator for Distributed Abductive Constraint Logic Programs (GenDACLP)173

Figure 6.3: Key Steps of the GenDACLP

1. Generate Predicates: during this step, the specified numbers of abducible predicates,

public predicates and local predicates are generated. For example, if N abducible (pub-

lic or local) predicates with average argument size of M are required, predicate names

a1, . . . , aN (p1, . . . , pN or l1, . . . , lN) will be created, and the arity of each of them is an

integer randomly selected from [0, 2×M]. Note that there are only three fixed constraint

predicates for CLP (FD) atoms, they are #</2 (less than), #=</2 (less than or equal

to), and domain/3 (e.g, domain(X, 1, 10)). The predicates greater than and greater than

or equal to are not needed as they are symmetric to less than and less than or equal to,

respectively.

2. Generate Rules: during this step, specified numbers of rules defining askable atoms or

private atoms or as integrity constraints are randomly created. However, all the literals

appearing in these rules have empty arguments, which will be filled in at the next step.

174 Chapter 6. Experiments and Benchmarking

Moreover, different algorithms need to be used in order to guarantee that the rules created

at this step constitute an overall LP with a specified program structure, e.g. stratified

and acyclic. These algorithms will be described shortly.

3. Fill Arguments: during this step, the arguments of all the literals appearing in the

overall LP are defined, so that the allowedness condition is satisfied. The pseudo-code of

this algorithm is shown in Figure 6.4.

PROC fill arguments BEGIN
setOfConstants = [0, numConstants];
FOREACH rule in the overall logic program DO

numPosArgs = total number of arguments in the positive non-constraint body literals in
rule;

maxNumV ars = ceiling(numPosArgs× variableBias× (1− variableCoupling));
setOfV ariables = {X0, . . . , XmaxNumV ars};

// 1. fill arguments for positive body literals, and collect variables that
// can be used for filling arguments of negative or constraint literals

setOfSafeV ars = empty;
FOREACH posBodyLiteral in rule DO

FOREACH argument of posBodyLiteral DO
IF nextRandomFloat() < variableBias THEN

argument = a variable randomly selected from setOfV ariables;
add argument to setOfSafeV ars;

ELSE
argument = a constant randomly selected from setOfConstants;

END IF
END FOREACH

END FOREACH
// 2. fill arguments for remaining literals

FOREACH remainingLiteral in rule DO
FOREACH argument of remaingLiteral DO

IF remainingLiteral is an askable head AND argument is the ID argument THEN
argument is left unassigned;

ELSE IF nextRandomFloat() < variableBias THEN
argument = a variable randomly selected from setOfSafeV ars;

ELSE
IF argument is an ID argument THEN

argument = (a constant randomly selected from setOfConstants) mod
numAgents;

ELSE
argument = a constant randomly selected from setOfConstants;

END IF
END IF

END FOREACH
END FOREACH

END FOREACH
END PROC

Figure 6.4: Pseudo-code for Filling Arguments

6.1. A Random Generator for Distributed Abductive Constraint Logic Programs (GenDACLP)175

4. Partition Rules: this step has three sub-steps: (a) randomly distribute all the rules to

the specified number of agents; (b) instantiate the agent ID argument of the head atom of

every askable rule (i.e., bind it to the alias of the rule’s owner agent); (c) resolve naming

conflicts of the local predicate (i.e., for every private atom appearing in a rule of an agent

say ag, rename its local predicate by appending ag). Note that the last sub-step has no

effect on the testing of DAREC2. It is useful if the overall LP is tested by a centralised

theorem prover.

5. Split Overall LP: this step does not involve any computation and simply splits the

overall LP into one topic file shared by all the agents and one theory file for each agent.

Generating Acyclic LPs

For a generated logic program P to be acyclic, there must exist a (partial) ordering of all

the predicates appearing in P , such that for every rule in P , the predicate of the head must

be greater in the ordering than all the predicates in the body. Checking the satisfiability of

this condition for a given LP is not straightforward, as it requires the construction of the

directed graph(s) representing the dependency relationships between all the predicates, and

loop detection over the graphs. However, to generate a LP that satisfies the condition is easier

– we first order all the predicates, and generate the rules one by one ensuring that for each rule

only the predicates smaller than that of the head can be selected to construct the body literals.

The key steps of the algorithm used by GenDACLP for generating an acyclic LP are as follows

(note that each integrity constraint is in fact a rule with a special atom ic as the head, and

every query to the program will have the implicit sub-goal ¬ic in it):

1. Order Predicates: in this step every predicate is assigned an integer value indicating

its rank. Let MIN be zero and let MAX be the total number of predicates to be used

for program generation. The rank assignment is done as follows:

(a) all abducible and constraint predicates have the rank of MIN ;

(b) ic has the rank of MAX+1;

176 Chapter 6. Experiments and Benchmarking

(c) let L be a shuffled list of all the public and local predicates; each predicate in L is

assigned a rank equal to its position in L, i.e, from 1 to MAX.

2. Generate Askable Rules: in this step, the specified number of askable rules are gen-

erated as follows:

(a) a public predicate PH is randomly selected to construct the head atom;

(b) the number of body literals is a random number in [0, 2 × avgRuleBodySize], and

each body literal L is generated as follows:

i. let N1 be the next random float number in [0.0, 1.0); L is positive if and only if

N1 > negationBias, and

ii. let N2 be the next random float number in [0.0, 1.0); if N2 < abducibleBias

then an abducible predicate is randomly selected to construct L; otherwise

iii. let N3 be the next random float number in [0.0, 1.0); if N3 < askableBias then

an askable predicate whose rank is smaller than that of PH is randomly selected

to construct L; otherwise,

iv. let N4 be the next random float number in [0.0, 1.0); if N4 < constraintBias

then a constraint predicate is randomly selected to construct L; otherwise

v. a local predicate whose rank is smaller than that of PH is randomly selected to

construct L.

3. Generate Private Rules: in this step, the specified number of private rules are gen-

erated as in step (2), except that a local predicate is randomly selected to construct the

head atom.

4. Generate Integrity Constraints: in this step the specified number of integrity con-

straints are generated as in step (2), except that the head atom is always ic.

Generating Stratified and Arbitrary LPs

The algorithm used for generating acyclic LPs can be easily modified to generate LPs with

other structures. For example:

6.2. Experiments and Discussions 177

• to generate an arbitrary LP, the predicates do not need to be ordered, and the selection

of public or local predicate for constructing a body literal can be completely random (i.e.,

without comparing its rank with that of the head);

• to generate a stratified LP, two small modifications are needed. First, in step (1) instead

of giving a total order to the (public and local) predicates, we can give a partial order to

them, e.g., randomly select an integer from [1,MAX] and assign it to a predicate. By

doing so, it is possible for two predicates to have the same rank, in which case they are

in the same stratum. Secondly, in step (2)(b)(iii) and step (2)(b)(iv) while selecting a

public or local predicate to construct the body literal, the rank of the selected predicate

must be smaller than or equal to (strictly smaller than) that of head atom if the literal

is positive (negative).

6.2 Experiments and Discussions

6.2.1 Environmental Setup

Experiments of the DAREC2 system implementation can be automated with GenDACLP. Each

experiment consists of a series of test cycles, each of which has the following step:

1. generation of distributed LPs: this is done by providing a knowledge configuration

file and running GenDACLP;

2. launching of agents: this is done by starting an agent on a network for each theory file

generated (the first agent is assigned the role of leader);

3. query computation: this asks the system to compute all solutions for all the possible

askable goals of the leader (i.e, each advertisement made by the leader is a query);

4. data collection: this involves the logging of system profiling information, such as the

time spent and message exchanges;

178 Chapter 6. Experiments and Benchmarking

5. system shut down.

A network of up to 30 machines inter-connected through Ethernet was used for the experiments.

The network was reliable, and the latency was small, e.g., with on average 0.15 milliseconds

ping time between two machines. Each machine had 4 GB of RAM and an Intel Core2 Duo

processor running at 3.00 GHz. All the machines ran Ubuntu 10.04, and the DAREC2 code

was executed with YAP Prolog 6.2.1. The profiling information collected included the total

time spent on each test, and the total number and the total size of messages exchanged. Note

that for the tests where there were more than 45 agents, each machine may host more than one

agent. Note that also in order to guarantee termination, only acyclic LPs were used.

6.2.2 Experiments

The objectives of our experiments are two-fold: to check for correctness of the system im-

plementation, and to study how the system performance is affected by distributed LPs with

different sizes or structures.

For the first objective, we can first run DAREC2 with the generated distributed LPs, then run

ASystem with the union of the LPs and compare the answers computed by the two systems for

some given queries. Any inconsistency between these answers would indicate an (implementa-

tion) bug of DAREC2. Indeed, we performed this step for every conducted experiment, and we

discovered and fixed several bugs at the early stage.

For the second objective, we can generate distributed LPs by fixing a subset of the tunable

parameters (such as the total number of abducible predicates and the variable bias), and grad-

ually changing the rest of parameters (such as the number of agents or the number of rules

per agent). We can then run DAREC2 with these sets of generated LPs and compare their

execution time and communication costs. However, there are 16 numeric parameters that we

can investigate, and the designs of experiments (i.e., deciding what and how parameters should

be fixed, and how the others should be adjusted) could be infinite. In this chapter, we only

describe and discuss two of the experiments that we have conducted and found most interesting.

6.2. Experiments and Discussions 179

Basic Settings

In these two experiments, we fixed the following parameters:

• avgRuleBodySize = 4: on average each rule has four body literals;

• avgArgumentSize = 2: on average each predicate has two arguments;

• variableBias = 0.7: each predicate argument has a 0.7 chance being a variable;

• variableCoupling = 0.5: on average each variable appears in a rule twice;

• negationBias = 0.25: on average one in four body literals is negative;

• abducibleBias = 0.2: on average one in five body literals is abducible;

• askableBias = 0.2;

• constraintBias = 0.1;

• numICRules = 0: i.e., no integrity constraints

• numConstants = 100;

• numAbducibles = 5;

• numPublicPredicates = 10.

Note that in the experiments we did not test DAREC2 with integrity constraints. It allowed

us to focus more on the structure of the agent background knowledge, and would not affect

the plausibility of the experiments due to the following reason. The integrity constraints of

an agent ag’s abductive framework can be “compiled” into its background knowledge Πag.

For example, for each integrity constraint ← L1, . . . , Ln of ag’s we can transform it as a rule

ic ← L1, . . . , Ln into Πag where ic is a (new) private atom, as long as we also add a single

rule consistent@ag ← ¬ic to Πag and append the goal consistent@ag to the global query.

This means that the computation for checking integrity constraints can be “converted” into the

computation of checking a negative non-abducible (i.e., ¬ic). Therefore, during the experiments

180 Chapter 6. Experiments and Benchmarking

we could compensate the computation for integrity constraint checking by increasing the value

of the variableBias parameter, without generating the integrity constraints.

In each experiment, we increased the number of agents gradually, and the remaining param-

eters (i.e., numLocalPredicates, numAskableRules and numPrivateRules) were either fixed

or computed according to some heuristics (see experiment descriptions). For each GenDA-

CLP configuration file of the experiment, we randomly generated three sets of distributed LPs

(i.e., using different random seeds). Each set was tested by both DAREC2 and our YAP-

implementation of ASystem. We call such a run a test.

Experiment A: fixes the size of each agent’s LP, and increases the number of agents

In this experiment, each agent had 10 local predicates, 30 private rules (i.e., each private atom

of an agent had about three definitions in that agent) and 30 askable rules (i.e., each askable

atom had about three definitions in each agent). Thus, each agent had the same size of LP (with

60 rules). We increased the number of agents from 1, 3, 5, . . . up to 27, and hence increased

the size of the overall LP. For each test, up to 50 queries were randomly generated, each of

which had the form of p(~X)@id (i.e., all arguments except the ID were variables). The agents

were asked to compute all the solutions. The aim of this experiment was to study how well the

system can scale with respect to the number of agents.

Figure 6.5: Experiment A: Average Centralised/Distributed Computation Time vs. Number of
Agents (Size of the Overall Logic Program)

6.2. Experiments and Discussions 181

Tests Number of
Agents

Number of
Queries

Number of
Answers

Cent. Time
(ASystem)
[milliseconds]

Dist. Time
(DAREC2)
[milliseconds]

Number of
Messages

Total Traf-
fic (bytes)

test1/set1 1 10 7 10 24 24 1795
test1/set2 1 9 11 3 42 31 2552
test1/set3 1 10 6 2 19 22 1561
test10/set1 19 50 102 3790 839 414 46698
test10/set2 19 50 39 1483 419 230 22686
test10/set3 19 50 44 191 435 250 25756
test11/set1 21 50 47 410 512 262 26698
test11/set2 21 50 45 625 441 238 24116
test11/set3 21 50 59 687 470 274 26983
test12/set1 23 50 35 2104 486 226 24311
test12/set2 23 50 41 1791 502 244 23055
test12/set3 23 50 70 4465 570 362 39839
test13/set1 25 50 42 809 561 238 24743
test13/set2 25 50 42 991 571 262 34033
test13/set3 25 50 55 478 1534 332 45254
test14/set2 27 50 66 202 600 360 44189
test14/set3 27 50 53 391 1045 268 27236
test2/set1 3 29 24 115 734 137 14205
test2/set2 3 30 19 68 122 110 10341
test2/set3 3 29 32 13 122 135 13093
test3/set1 5 47 40 92 226 213 20018
test3/set2 5 47 76 2963 634 351 36956
test3/set3 5 50 50 145 257 240 23349
test4/set1 7 50 31 189 262 206 20482
test4/set2 7 50 53 341 289 256 26094
test4/set3 7 50 52 132 267 244 24261
test5/set1 9 50 36 350 335 228 23023
test5/set2 9 50 49 343 334 240 23701
test5/set3 9 50 60 638 449 272 27708
test6/set1 11 50 40 991 404 224 21559
test6/set2 11 50 37 107 452 226 23783
test6/set3 11 50 47 260 367 252 26626
test7/set1 13 50 36 2197 3503 222 22884
test7/set2 13 50 51 1260 740 288 31786
test7/set3 13 50 63 4087 407 302 33604
test8/set1 15 50 78 226 378 306 30987
test8/set2 15 50 40 2025 612 232 24326
test8/set3 15 50 48 655 432 290 34935
test9/set1 17 50 33 466 362 224 22639
test9/set2 17 50 36 1010 384 230 24145
test9/set3 17 50 47 1945 484 252 25309

Table 6.2: Experiment A (Collected Data(: all the sets within a test used the same configuration
except the randomly number generator seed for the GenDACLP

The data collected during this experiment is shown in Table 6.2. The execution time of all the

tests (taking the average of all the sets’ in each test) in this experiment are given in Figure 6.5.

We used power regression1 for the trend lines of the data series, and the lines fit both the average

centralised computation time series (dotted curve) and the average distributed computation

time series (solid curve) better than those using linear regression. We can observe that the

increase in time for distributed abduction over increasing number of agents (i.e., increasing size

of the overall LP) actually decelerates (i.e., the exponent of x is less than 1 in Figure 6.5),

which is opposite to the case for centralised abduction (i.e., abduction is known to have big

complexity). We conjecture that this is due to the parallel computation (i.e., agents perform

local abductions concurrently) during distributed abduction. There is another observation

from this figure: the average distributed computation time series increases steadily, whereas

the average centralised computation time series fluctuates noticeably. We conjecture that this is

1Power regression can be used to compare measurements that increase at a specific rate.

182 Chapter 6. Experiments and Benchmarking

due to the fact that centralised abduction was affected more by other activities (such as garbage

collection in Prolog) in the host machine, as the resources (CPU and memory) of the host were

limited and fixed while the size of problem increased. In contrast, in distributed abduction

agents performed local abductions with equal-size LPs that were much smaller than the overall

LP. Thus the problem size of each local abduction remained more or less the same and the

agents had less stress for the usage of resources (i.e., fewer garbage collections took place). In

addition, since both the centralised and distributed abductive algorithms were implemented as

interpreters in Prolog, the smaller the logic program was, the less overhead would incur (e.g.,

due to scanning through the rules) during their executions.

Figure 6.6: Experiment A: Communication Cost vs. Messages Exchanged

Figure 6.7: Experiment A: Average Distributed Computation Time vs. Messages Exchanged

6.2. Experiments and Discussions 183

Figure 6.6 and Figure 6.7 show the relationship between the total communication cost (in

bytes) and number of messages exchanged during distributed abduction, and the relationship

between the total computation time (in milliseconds) and the numbers of message exchanged,

respectively. As expected, both the communication cost and the computation time are pro-

portional to the number of messages exchanged. This indicates that in distributed abduction,

the performance was affected by the number of inter-agent communications (i.e., sending and

receiving messages) significantly.

Experiment B: fixes the size of the overall LP, and increases the number of agents

while fixing the number of askable rules in each agent

In this experiment, the size of the overall LP was fixed to be 1380 rules, and the number of

agents increased from 5, 7, . . . up to 23. For each test, each agent’s LP had n = 1380/numAgents

number of rules, where 30 of them were askable rules. The number of local predicates for each

agent was calculated by (n − 30)/3. Thus, on average each agent had three definitions for

each askable or private atom. Note that between the tests, the number of askable rules in an

agent’s LP was fixed, whereas the number of (local predicate and) private rules decreased as

the number of agents increased. By fixing the number of askable rules in each agent, we tried to

ensure a certain amount of agent interaction during the distributed computation, as the aim of

this experiment was to study the importance of parallel computation in distributed abduction.

Figure 6.8: Experiment B: Average Centalised/Distributed Computation Time vs. Number of Agents

184 Chapter 6. Experiments and Benchmarking

Tests Number of
Agents

Number of
Queries

Number of
Answers

Cent. Time
(ASystem)
[milliseconds]

Dist. Time
(DAREC2)
[milliseconds]

Number of
Messages

Total Traf-
fic (bytes)

test01/set1 5 47 35 3232 373 211 22023
test01/set2 5 45 31 16395 332 199 20571
test01/set3 5 45 48 641 249 237 24342
test02/set1 7 50 62 25588 603 292 33206
test02/set2 7 50 48 209 262 242 24440
test03/set1 9 50 36 1176 325 240 23937
test03/set2 9 50 46 2080 472 258 26465
test03/set3 9 50 42 2455 345 240 25448
test04/set1 11 50 38 31005 398 254 26904
test04/set2 11 50 65 1056 379 294 33370
test04/set3 11 50 69 1948 375 284 29668
test05/set1 13 50 46 1300 414 276 31376
test05/set2 13 50 58 1995 354 256 26123
test05/set3 13 50 33 5668 364 220 21781
test06/set1 15 50 26 1781 387 214 23651
test06/set2 15 50 57 2521 435 288 32119
test06/set3 15 50 50 2800 427 258 24454
test07/set1 17 50 44 11067 410 242 25614
test07/set2 17 50 35 1010 408 216 22898
test07/set3 17 50 40 2248 409 238 24751
test08/set1 19 50 45 13972 521 298 32441
test08/set2 19 50 44 494 472 278 32389
test08/set3 19 50 39 1601 839 232 23153
test09/set2 21 50 55 3585 451 262 26903
test09/set3 21 50 66 10183 507 288 29656
test10/set2 23 50 40 13161 501 248 27248
test10/set3 23 50 37 2194 460 222 23949

Table 6.3: Experiment B (Collected Data(: all the sets within a test used the same configuration
except the randomly number generator seed for the GenDACLP

The data collected during this experiment is shown in Table 6.3. Figure 6.8 shows the compar-

ison of the average computation time between centralised abduction and distributed abduction

over the number of agents, and Figure 6.9 gives a clearer relationship between the average

distributed computation time and the number agents. As we can see in Figure 6.9, the increase

in time for distributed abduction over increasing number of agents still decelerates (e.g., like

in Experiment A, where the exponent of x is less than 1). In Figure 6.8 we can see that the

average computation time for centralised abduction fluctuates without clear increasing or de-

creasing trend. We believe this is because the size of the overall LPs remains the same and

the fluctuation in time is caused by variation of the overall LPs (which were generated ran-

domly). However, in Figure 6.8 distributed abduction always performed better than centralised

abduction. This again shows that parallel computation in DAREC2 helps it scale better than

ASystem.

Figure 6.10 and Figure 6.11 give the total communication cost, the total computation time,

and the number of message exchanged during distributed abduction. Their relationships are

consistent with those in Experiment A.

6.2. Experiments and Discussions 185

Figure 6.9: Experiment B: Average Distributed Computation Time vs. Number of Agents

Figure 6.10: Experiment B: Communication Cost vs. Messages Exchanged

6.2.3 Other Experiments:

In addition to Experiment A and Experiment B, we have also conducted other similar experi-

ments by adjusting some of the fixed parameters. However, they are not described here either

because their data gives the same conclusions as those given by Experiment A and Experiment

B, or because their data contains too much noise (i.e., some measurements regarding the com-

putational time are too far away from the trend lines). The noise is most likely caused by the

external activities occurring in the hosts while the hosts were running the DAREC2 agents.

Since the network used for conducting the experiments was part of the departmental under-

graduate teaching lab, other users might have logged into the hosts and have been running

186 Chapter 6. Experiments and Benchmarking

Figure 6.11: Experiment B: Average Distributed Computation Time vs. Messages Exchanged

their (computationally intense) processes during our experiments. As a future work, we need

to find a better network reserved specifically for our testing and run these experiments again

in order to reduce noise.

We have also conducted experiments of comparing DAREC with different agent interaction

strategies. In these experiments, we modified the DAREC2 system to adopt the eager agent

interaction strategy and a safe goal selection strategy. For each set of the generated distributed

logic programs, we first ran the original DAREC2 (i.e., the one with the lazy agent interaction

strategy and the secure safe goal selection strategy), and then ran the modified DAREC2. The

overall computational time and the total message number were recorded during the experiments.

The collected data showed that the modified DAREC2 was always slower than the original

DAREC2 – the time taken by the former was between 1.3 and 29.96 times that taken by

the latter. The data also showed that there were always more messages exchanged during

the modified DAREC2 computation than the original DAREC2 computation – the number

of messages exchanged by the former was between 1.14 and 28.71 times that by the latter.

However, these experiments are not described in detail here because the modified DAREC2

cannot guarantee confidential reasoning (i.e., it is just another customisation of DAREC).

6.3. Conclusion 187

6.3 Conclusion

In this chapter, we have described our experiments with the DAREC2 system prototypes. In

particular, we have presented a flexible random generator (GenDACLP) for (distributed) logic

programs, which is used for generating testing data sets (i.e., distributed agent knowledge)

for the testing of DAREC2. As aforementioned, by configuring the input parameters this

generator can produce logic programs with different structures and properties, which can also

be used for the testing or benchmarking of other reasoning systems that are based on logic

programming. Large numbers of different experiments with DAREC2 can be easily designed

and conducted by the auto-testing environment we have developed. However, we have only

discussed in this chapter two of them. In addition to the main objectives of DAREC2 , which

are to support correct distributed reasoning and to maintain confidentiality during reasoning,

all of our experiments have shown that the performance of distributed abduction benefits a lot

from the concurrent computation of the DAREC2 algorithm execution.

Chapter 7

Distributed Policy Analysis

7.1 Introduction

Policy-based management is a popular and promising paradigm for managing distributed net-

works and systems [Str03]. It separates the system specification and the system implementation.

Thus, administrators can control the system through its exposed high level functionalities with-

out needing to worry about its low level implementation. Policies [SL02] are rules governing

the system behaviour, and they can help the target system adapt to new environments without

further human interventions. There are two main types of policies: authorisation and obliga-

tion. Authorisation polices define what operations are allowed with certain conditions, and

obligation policies define what operations need to be performed after being triggered by events

or the satisfaction of certain conditions.

A typical policy-based management system (PBMS) has a policy enforcement point (PEP)

and a policy decision point (PDP) [YPG00] (see Figure 7.1). Any action to be executed by

the system must be initiated with a request, which is intercepted by the PEP. The decision of

either approving or declining the request is computed by the PDP, which has access to a policy

repository and relevant system domain information. Finally, the action is performed by the

PEP in the case of approval.

188

7.1. Introduction 189

Figure 7.1: A Policy Enforcement Point

Since most policies are specified by human administrators, it is desired to check whether there

are errors in the policies or whether the system will behave as expected given the policies. In a

complex PBMS where the size of policies or the size of the system domain is large, this becomes

a difficult task that requires automated support. In this chapter, we will look at one such

formal policy framework described in [CLM+09]. Within this framework, both authorisation

and obligation policies specified in a policy language, for example Ponder or XACML, can be

reformulated in a first-order logic language. The system domain is dynamic (i.e., subjects to

changes upon events) and is formulated with Event Calculus [KS86] (EC). Various analysis

tasks over the policies and the system domain can be solved using abductive reasoning. These

analysis tasks include:

• modality conflict: checks if there is a request approved and declined at the same time, or

if there is an obligation for an action lacking permission to fulfil it;

• separation of duty: checks if two conflicting actions (in terms of roles) can be permitted

at the same time;

• coverage gaps: checks if there is a request neither approved nor declined by the policies;

190 Chapter 7. Distributed Policy Analysis

• policy comparison: checks whether two sets of policies are equivalent, or one subsumes

the other;

• behaviour simulation: provides a system execution trace and determines which policy

decisions arise at the final state.

The existing framework [CLM+09] assumes a central repository of all the policies and the system

domain (i.e., a centralised PEP/PDP). Analysis tasks are modelled as abductive queries, and

abductive reasoning is used, either to prove the queries (in the case of the last two types

of tasks), or, in the other cases, to find possible system execution traces (in terms of action

requests) that would lead the system from a given initial state to the target (violating) state

described by the analysis queries.

However, in many systems where confidentiality becomes a primary concern we cannot assume

a centralised repository. For example, during an international joint-rescue operation for an

earthquake-hit zone, a (temporarily formed) coalition network may involve a US sensor network

control server and a set of personal assistant devices (PDAs) for a team of UK paramedics.

The US control server contains private authorisation policies regulating the access of sensing

data, and the UK PDAs have private obligation policies to retrieve data from the US fabric

under certain situations. Any potential (modality) conflict in these two private sets of policies

must be resolved before the operation in order to guarantee seamless collaboration. In this

case, confidentiality concerns preclude the possibility of centralising all the policies (and any

private domain information on which the policy evaluation may depend), and the existing

policy framework becomes inadequate for policy analysis over these systems, as non-distributed

abductive reasoning algorithms are not applicable. Let us be clear: we are dealing here not just

confidentiality at runtime of the actual agents, but also confidentiality restrictions at analysis

time.

Distributed policy analysis is needed. To address the aforementioned issues, the existing policy

framework needs to be extended, so that

• the operational model can cope with multiple PEPs/PDPs, each of which may operate

7.2. A Formal Framework for Centralised Policy Analysis 191

independently with respect to its own set of policies and its own local domain;

• the policy specification and system domain description language can allow the specifica-

tion of distributed knowledge, and the separation between shared and private knowledge.

In this chapter, we describe how the DAREC2 language can help to extend the existing frame-

work, and how the DAREC2 algorithm can be used to perform distributed confidential policy

analysis.

The rest of the chapter is organised as follows. Section 7.2 gives an introduction to the existing

policy framework [CLM+09] for centralised policy analysis. In Section 7.3, we first describe how

the operational model and language are extended from the existing framework, and then show

how distributed policy analysis can be performed using DAREC2 using a running example.

Section 7.4 discusses two further possible extensions to the new framework, and Section 7.5

gives final conclusions.

7.2 A Formal Framework for Centralised Policy Analysis

In this section, we briefly introduce the formal policy framework developed in [CLM+09]. We

will first describe the operational model of the framework, and then present the policy specifi-

cation language and the domain description language, and finally give policy analysis examples.

7.2.1 Operational Model

As aforementioned, the operational model [CLM+09] (Figure 7.2) of a policy managed system

(or simply the regulated system) assumes a centralised PEP/PDP. A system execution trace

is a sequence of system states, each of which is associated with a time point. System domain

properties may persist over states by default, or be affected by occurred events. There are two

types of events: non-regulatory events that are exogenous to the system (e.g., power failure),

and regulatory events that are the result of a PEP/PDP step. The PEP/PDP step at a system

state consists of the following sub-steps:

192 Chapter 7. Distributed Policy Analysis

1. an action request, called the regulatory input, arises (e.g., as the fulfilment of an existing

obligation) and is intercepted by the PEP;

2. the PEP invokes policy evaluation at the PDP;

3. the PDP has access to the policy repository and the current system domain. The evalua-

tion of the policies relevant to the request depends on the existing policies and the system

state information. The latter can be divided into two parts: the state of the domain called

the non-regulatory state, and the state of the PEP/PDP (e.g., whether the conditions of

a policy are satisfied or whether an existing obligation is fulfilled) called the regulatory

state.

4. after policies are evaluated by the PDP, the PEP acts accordingly, either by executing

the action or by denying the action (i.e., two types of regulatory events).

In addition to the centralised PEP/PDP assumption, the current operational model does not

allow concurrent actions, i.e., at any time only one of regulatory and non-regulatory events can

occur.

Figure 7.2: Operational Model with Centralised PEP/PDP

7.2. A Formal Framework for Centralised Policy Analysis 193

7.2.2 System Specification

The language [CLM+09] used for specifying the system policies and system domain is a first-

order logic language L. All terms in L are divided according to sorts subject, target, action,

time, fluent and event. The predicates for L are summarised in Table 7.1.

Policy Specification

There are two types of policies: authorisation and obligation. Policies are expressed as logical

rules. An authorisation (policy) rule describes a permission, e.g., what subject can perform

what action on what target at what time and under what certain conditions. Such a permission

can be either positive or negative, and is modelled as:

permitted(Su, Ta,Ac, T)← L1, . . . , Lm, C1, . . . , Cn.

denied(Su, Ta,Ac, T)← L1, . . . , Lm, C1, . . . , Cn.

where each Li is a literal representing a condition and each Cj is an (arithmetic) constraint over

time variables (i.e., variables of the sort time). The predicates allowed in the policy conditions

are those in {req} ∪ LΠ
S ∪ {holds, happens, clipped} ∪ Lstat. Note that each of these condition

literals, except those formed from a predicate in Lstat, has its associated time variable (as the

last argument) constrained by C1, . . . , Cn. Thus, it is required that every variable appearing in

C1, . . . , Cn must also appear in L1, . . . , Lm. In addition, the evaluation of a policy rule should

not depend on a future condition. Therefore, it is required that for each time argument Ti of

the condition Li, it holds that C1, . . . , Cn |= Ti ≤ T , and if Li’s predicate is happens, then Li,

C1, . . . , Cn |= Ti < T .

Example 7.1. “If a file was declassified at least 3 days ago then it is allowed to be deleted

now.”

permitted(X, file(Y), delete, T)←

do(Z, file(Y), declassify, T1), T1 ≤ T − 3days.

194 Chapter 7. Distributed Policy Analysis

Type Predicate Description

Regulatory Input
(LΠ

I)
req(Su, Ta,Ac, T) the request of an action Ac by

a subject Su on the target Ta
at time T

Regulatory Out-
put (LΠ

O)
do(Su, Ta,Ac, T) the execution of a system ac-

tion
deny(Su, Ta,Ac, T) the denial of a system action

Regulatory State
(LΠ

S)
permitted(Su, Ta,Ac, T) a positive permission

denied(Su, Ta,Ac, T) a negative permission
obl(Su, Ta,Ac, Ts, Te, T) an obligation is initiated at

time T for the subject Su to
perform an action Ac on the
target Ta between Ts and Te
(exclusive)

fulfilled(Su, Ta,Ac, Ts, Te, T) the obligation has been ful-
filled at time T (e.g., the
action has been performed
within the time frame)

violated(Su, Ta,Ac, Ts, Te, T) the obligation has been vio-
lated at time T (e.g., the ac-
tion has not been performed
after the expiration time)

cease obl(Su, Ta,Ac, Tinit, T2, Te, T) the obligation has been ceased
at time T (e.g., it has been
either fulfilled or violated).
Tinit is the time when the obli-
gation instance was initiated.

Non-Regulatory
Event (LDE)

occurred(E, T) an exogenous event to the sys-
tem

Non-Regulatory
State (LDS)

holds(F, T) a fluent F holds at time T

initially(F) the fluent F initially holds
(i.e., at time 0)

happens(E, T) an event E takes place at time
T

clipped(T1, F, T) the fluent F has been
“clipped” (e.g., ceased by an
event) between T1 and T

initiates(E,F, T) the event E initiates a fluent
F at time T

terminates(E,F, T) the event E terminates a flu-
ent F at time T

Static (LStat) user defined predicates used
for describing static proper-
ties/relationships that do not
change between states.

Table 7.1: Predicates in L = LΠ
I ∪ LΠ

O ∪ LΠ
S ∪ LG

d

E ∪ LDS : The arguments Su, Ta, Ac, F and E
are of the sorts subject, target, action, fluent and event, respectively, and the arguments
T , T1, Ts, Te, Tinit are of the sort time.

7.2. A Formal Framework for Centralised Policy Analysis 195

Example 7.2. “If a node has already broadcasted one message within the past 5 seconds, then

it is not allowed to broadcast any message now.”

denied(node(X),message(Y), broadcast, T)←

do(node(X),message(Z), broadcast, T1), T1 ≥ T − 5seconds, T1 ≤ T.

An obligation (policy) rule describes what action (by whom and to whom) must be performed

within a specific time frame, once the specified conditions are satisfied. It is modelled similarly

to the authorisation rules but with obl as the head:

obl(Su, Ta,Ac, Ts, Te, T)← L1, . . . , Lm, C1, . . . , Cn.

Example 7.3. “A client node must provide a digital certificate within 5 seconds of establishing

a connection to the server.”

obl(client(X), server(Y), send(certificate(C)), Ts, Te, T)←

do(client(X), server(Y), connect, T1),

T = T1 + 0.01second, Ts = T, Te = Ts + 5seconds.

There are three rules describing the different status for an obligation:

fulfilled(Su, Ta,Ac, Ts, Te, T)← (7.1)

obl(Su, Ta,Ac, Ts, Te, Tinit),

do(Sub, Tar, Act, T ′),

¬cease obl(Su, Ta,Ac, Tinit, Ts, Te, T ′),

Tinit ≤ Ts ≤ T ′ < Te, T
′ < T.

196 Chapter 7. Distributed Policy Analysis

violated(Su, Ta,Ac, Ts, Te, T)← (7.2)

obl(Su, Ta,Ac, Ts, Te, Tinit),

¬cease obl(Su, Ta,Ac, Tinit, Ts, Te, Te),

Tinit ≤ Ts < Te ≤ T.

cease obl(Su, Ta,Ac, Tinit, Ts, Te, T)← (7.3)

do(Su, Ta,Ac, T ′), Ts ≤ T ′ < T ≤ Te.

cease obl(Su, Ta,Ac, Tinit, Ts, Te, T)← (7.4)

do(Admin, Su, revoke(Su, Ta,Ac, Ts, Te), T
′), Ts ≤ T ′ < T ≤ Te.

Rule 7.3 and Rule 7.4 say that for any obligation instance created at Tinit, if its regulated

action (e.g., Ac by Su on Ta) is performed at T ′, or it is revoked at T ′, then it is considered to

be ceased within time interval (T ′, Te], where T ′ ∈ [Ts, Te). Rule 7.1 says that if the regulated

action of a “not-yet-ceased” obligation instance (created at Tinit) is performed at time T ′ within

the specified time interval [Ts, Te], then the obligation instance is considered to be fulfilled after

T ′. On the other hand, Rule 7.2 says the obligation instance is considered to be violated from

Te if its regulated action has not been performed between Ts and Te (exclusive).

The behaviour of the PEP may vary from system to system, and can be modelled using policy

regulatory rules, which are the same as authorisation rules but with either do or deny as the

head. For example, the default basic availability policy regulatory rule says “an action will be

executed if it is permitted by a policy rule” can be specified as:

do(Su, Ta,Ac, T)←

req(Su, Ta,Ac, T), permitted(Su, Ta,Ac, T). (7.5)

and the default positive/negative availability policy regulatory rules say “an action will be

7.2. A Formal Framework for Centralised Policy Analysis 197

executed as long as there is no policy rule forbidding it” are specified as:

do(Su, Ta,Ac, T)←

req(Su, Ta,Ac, T),¬denied(Su, Ta,Ac, T). (7.6)

deny(Su, Ta,Ac, T)←

req(Su, Ta,Ac, T), denied(Su, Ta,Ac, T). (7.7)

Note that sometimes these rules are called blanket rules, which can be used for specifying

default permissions for those actions without explicit authorisation policy rules or for resolving

permission conflicts.

Domain Description

The system domain is dynamic, in the sense that the values of its properties may persist by

default and may change due to the occurrence of relevant events. The dynamicity of the domain

is modelled using a simplified version of the Event Calculus (SEC) [Kow92, Sha99]:

holds(F, T)← (7.8)

initially(F),

¬clipped(0, F, T), T > 0.

holds(F, T)← (7.9)

happens(E1, T1), initiates(E1, F, T1),

¬clipped(T1, F, T), T1 < T.

198 Chapter 7. Distributed Policy Analysis

clipped(T1, F, T)← (7.10)

happens(E2, T2), terminates(E2, F, T2),

T1 < T2 < T.

There are two types of events that can affect domain properties: non-regulatory (or exoge-

nous, represented with occurred), and regulatory output (represented with do and deny). The

following three rules generalise them:

happens(occ(Ev), T)← (7.11)

occurred(Ev, T).

happens(do(Su, Ta,Ac), T)← (7.12)

do(Su, Ta,Ac, T).

happens(deny(Su, Ta,Ac), T)← (7.13)

deny(Su, Ta,Ac, T).

Finally, the effect of the events on domain properties can be described using the domain de-

pendent rules:

initiates(E,F, T)← L1, . . . , Lm, C1, . . . , Cn.

terminates(E,F, T)← L1, . . . , Lm, C1, . . . , Cn.

where L1, . . . , Lm, C1, . . . , Cn are the same as those in an authorisation rule, except that each

Li must have a predicate in {holds} ∪ Lstat.

7.2.3 Example Policy Analysis Tasks

Given a target system, the initial state and history of exogenous events can be defined as a set

H of facts initially and occurred. Thus, the total system specification Π is P ∪Pobl aux∪Preg ∪

7.2. A Formal Framework for Centralised Policy Analysis 199

EC ∪D∪H∪S, where P is the set of authorisation policy and obligation policy rules, Pobl aux is

the fixed auxiliary rules for obligation (i.e., Rules 7.1–7.4), Preg is the set of policy regulatory

rules describing the behaviour of PEP/PDP (e.g., Rule 7.5 or Rule 7.6 and Rule 7.7), EC is

the set of domain independent EC rules (i.e., Rules 7.8–7.10 and Rules 7.11–7.13), D is the set

of event effect rules and S is the set of static state properties expressed in Lstat. The existing

framework requires that Π is locally stratified.

The operational model of the system does not allow concurrent actions. This is expressed as

an integrity constraint:

← happens(E1, T), happens(E2, T), E1 6= E2. (7.14)

A policy analysis task can be informally defined as follows. Given a system specification, the

property (of the set of policies) is expressed as a query, which is to be proven or explained. In

the case of explaining the query, a possible explanation is a sequence of system actions that can

lead the system from its initial state to a goal state that satisfies the property (described by

the query). A sequence of system actions can be represented as a sequence of action requests.

The corresponding system trace, which is a series of system states, can be derived from the

sequence of action requests and the system specification.

For example, a modality conflict “is there a case where a subject is obliged to perform some

action but does not have the permission?” can be expressed as the following query (note that

the first two goals in the query ensure that the obligation instance has not yet been fulfilled or

revoked):

200 Chapter 7. Distributed Policy Analysis

∃Su, Ta,Ac, Ts, Te, Ti, T.[

obl(Su, Ta,Ac, Ts, Te, Ti)∧

¬cease obl(Su, Ta,Ac, Ti, Ts, Te, T)∧

denied(Su, Ta,Ac, T) ∧ Ts < T

]

A static SoD analysis between two roles (role1 and role2) can be expressed as:

∃Su, Ta, T.[

permitted(Su, Ta, assign(role 1), T)∧

permitted(Su, Ta, assign(role 2), T)

]

If any system trace can be found for the above queries, it is an indication of a flaw in the

policies.

In the existing formal policy framework [CLM+09], policy analysis tasks are solved by ab-

duction. For example, let the abductive framework be 〈Π,AB, IC〉, where Π is the system

specification, AB = {req}, and IC contains only the integrity constraint Rule 7.14. Then

given a policy property query Q, the abductive (policy analysis) task is to find a set of system

requests ∆, such that Π ∪ ∆ |= Q and Π ∪ ∆ |= IC, where |= is the logical entailment un-

der a selected semantics. Initially, the framework proposed the use of stable model semantics.

However, since in practice ASystem is used for solving the actual analysis tasks, the (Fitting’s)

3-valued semantics is used instead.

7.3. Extended Framework for Distributed Policy Analysis 201

7.3 Extended Framework for Distributed Policy Analy-

sis

As briefly described in Section 7.1, a coalition network (e.g. Figure 7.3) may consist of entities

belonging to different parties (e.g., the US sensor fabric control server and the UK paramedic

team PDAs). Each entity abstracted as a node has its own PEP/PDP and its private policies

regulating operations performed within it (e.g., authorisation policies of the US control server

regulating the access of sensing data), and may have private knowledge of its local domain

state (e.g., live intelligence in the area collected by the UK PDAs). In this case, the overall

network system consists of multiple PEPs/PDPs, and the policies and private knowledge cannot

be centralised. Consequently, policy analysis tasks cannot be performed using (centralised)

abductive reasoning.

Figure 7.3: Coalition Network with Multiple PEPs/PDPs

7.3.1 Extending the Operational Model and the Language

Despite the existence of multiple PEPs/PDPs, if we only consider the serialised execution 1 of

the overall system, i.e., there are no concurrent events and only one PEP/PDP can be active

1For any execution of the overall system with concurrent events, a serialised version of execution can be
obtained by adopting logical clock synchronous protocols (e.g., Lamport Timestamps [Lam78]).

202 Chapter 7. Distributed Policy Analysis

at any time, the operational model (Figure 7.4) of the overall system is very similar to that in

Figure 7.2 for a centralised PDP/PEP.

Figure 7.4: Operational Model with Multiple PEPs/PDPs

The main difference between the two operational models is that in the former model, at each

PEP/PDP step by a node, say X, only the request at X (i.e., the action that should be

performed at X if permitted) can be intercepted by X’s PEP, and the policy evaluation by X’s

PDP can only use the policies and local domain knowledge of X, plus some shared knowledge.

There are two types of shared knowledge. One is the common static knowledge known to

everyone (e.g., number of days in a week, the domain independent EC rules), and the other is

a subset of local knowledge belonging to some node Y (i.e., its originator) that Y is willing to

share with others (e.g., the US control center may disclose the types of sensor data available).

The common static knowledge can be duplicated at each node to form part of its local domain

knowledge. Shared knowledge cannot be duplicated, as it may be dynamic and depend on the

local state of its originator (e.g., the types of sensor data available may change over time).

Thus, the existing logic language also has to be extended for the new operational model with

two requirements:

1. location awareness, i.e., to allow the indication of where an event takes place and the

originator of shared knowledge, and

2. the distinction between shared and local (i.e., private) knowledge.

7.3. Extended Framework for Distributed Policy Analysis 203

The DAREC2 language has all the necessary features to achieve these requirements: private

knowledge is expressed using local predicates (and private atoms), whereas shared knowledge

is expressed using public predicates (and askable atoms). Instead of being modelled as a single

abductive framework, a system with the new operational model can be modelled as a DAREC2

global abductive framework
〈

Σ, F̂
〉

, where each Fi ∈ F̂ is the abductive framework for the

node i ∈ Σ.

The background knowledge Πi of a node i’s abductive framework is a specification of the sub-

system for i defined as follows. First, policies and behaviour of the PEP/PDP are private to i.

Therefore, each of the policy rules Pi and the policy regulatory rules Pregi has the form (i.e.,

its head is a private atom):

[permitted/denied/do/deny](Su, Ta,Ac, T)← L1, . . . , Lm, C1, . . . , Cm.

or

obl(Su, Ta,Ac, Ts, Te, T)← L1, . . . , Lm, C1, . . . , Cm.

but each condition Li can be either a private literal (i.e., positive or negative private atom) like

in the old framework or an askable literal (i.e., positive or negative askable atom) of the form

holds(F, T)@ID or happens(E, T)@ID.

Secondly, the effects of an event on the local domain state of i need to be known only by i.

Thus, each rule in Di has the form (i.e., its head is a private atom):

[initiates/terminates](E,F, T)← L1, . . . , Lm, C1, . . . , Cm.

and similar to the policy rules each Li can be a private literal or an askable literal of the form

holds(F, T)@ID. The initial state of i also needs to be known by i only, and thus it is described

by a set of private atoms initially(F).

Thirdly, the occurrence of a (non-)regulatory event at node i is expressed with a private atom

204 Chapter 7. Distributed Policy Analysis

of the form occured(E, T) or do(Su, Ta,Ac, T) or deny(Su, Ta,Ac, T). However, it is possible

that an event of i’s may affect the local domain state of another node (e.g., the action of

getting sensor data executed at the US control center may cause the requesting UK PDA to

have sensor data). Therefore, it is necessary that i “exposes” this event as shared knowledge so

that other nodes can reason about it with their local domain states. This can be done through

the knowledge exposure rules, each of which has an askable atom as the head and a private

atom as the body (i.e., turning a piece of private knowledge to be shared knowledge), e.g.,:

happens(do(Su, video sensor, get data), T)@us control←

happens(do(Su, video sensor, get data, T).

Similarly, a local domain property (i.e., fluent) that i wishes to expose as shared knowledge can

be declared using a similar knowledge exposure rule:

holds(sensor status(Sensor, Status), T)@us control←

holds(sensor status(Sensor, Status), T).

Note that these “exposed” atoms can be used as conditions in a private policy rule or an event

effect rule in any other node.

Finally, to allow node i to reason about (the effects of) events exposed by other nodes to its

local domain state, the following EC rules are added to EC (Rules 7.8–7.10 and Rules 7.11–7.13)

resulting in EC ′:

holds(F, T)← (7.15)

happens(E1, T1)@ID, ID 6= i,

initiates(E1, F, T1),

¬clipped(T1, F, T), T1 < T.

7.3. Extended Framework for Distributed Policy Analysis 205

clipped(T1, F, T)← (7.16)

happens(E2, T2)@ID, ID 6= i,

terminates(E2, F, T2),

T1 < T2 < T.

The set EC ′ of EC domain independent rules, and the set of auxiliary obligation status rules

(Rules 7.1–7.4) are the same in all the nodes, and are assumed to be duplicated as the local (or

private) knowledge at i and at other nodes (for any other node j, replace ID 6= i with ID 6= j

for Rule 7.15 and Rule 7.16).

In summary, the background knowledge of node i is Πi = Πprivate
i ∪ Πexposure

i , where Πprivate
i =

Pi ∪ Pregi ∪ Di ∪ Hi ∪ Si ∪ Pobl aux ∪ EC ′, and Πexposure
i is the set of knowledge exposure rules

for i. Let us remark that every rule in Πprivate
i has a private atom as the head, whereas every

rule in Πexposure
i has an askable atom as the head.

In the old framework, there is only one abducible predicate req and it is agreed by all the nodes.

Hence, ABi = {req}. In addition, no concurrent event is allowed. Therefore, ICi contains the

following

← req(Su, Ta,Ac, T), happens(E, T)@ID, ID 6= i. (7.17)

← req(Su, Ta,Ac, T), happens(E, T),¬regulated(Su:Ta:Ac,E). (7.18)

where regulated is defined in Si as:

regulated(Su:Ta:Ac, do(Su1, Ta1, Ac1))← Su:Ta:Ac = Su1:Ta1:Ac1.

regulated(Su:Ta:Ac, deny(Su1, Ta1, Ac1))← Su:Ta:Ac = Su1:Ta1:Ac1.

206 Chapter 7. Distributed Policy Analysis

7.3.2 Distributed Policy Analysis

Given a system with multiple PEPs/PDPs as a global abductive framework
〈

Σ, F̂
〉

, the same

set of policy analysis tasks in [CLM+09] can be performed in a distributed fashion by using

DAREC2. That is, given the same query Q as for centralised policy analysis, we use DAREC2

to find a sequence of system action requests ∆ such that
⋃
i∈ΣFi ∪∆ |= Q and

⋃
i∈ΣFi ∪∆ |=⋃

i∈Σ ICi under the 3-valued semantics.

To illustrate distributed policy specification and distributed policy analysis, let us consider the

following example scenario involving Role-Based Access Control (RBAC) and Separation of

Duties (SoD).

Example 7.4. In a US-UK joint operation, a bomb squad and two commanders (one from

each country) are involved. To be able to use highly dangerous explosive to destroy sensitive

targets, there must be a bomb setter (i.e., a squad member with the setter role) and a bomb

detonator (i.e., a squad member with the detonator role). Assignment of roles can only be

performed by the commanders, and is performed dynamically during the operation. SoD is

implemented in two levels: 1. no one is allowed to arm and then detonate a bomb; 2. no

commander can manage (e.g., (un)assign) both roles. The second SoD can be implemented

explicitly be forcing each commander to manage one role throughout the operation. Then the

first SoD must be guaranteed by the policies of role assignments by the two commanders, which

may not be disclosed to each other, as their conditions may depend on private information

(metric). Before the operation starts, it is required to check that with the two commanders (and

their policies), the squad team can always fulfil their objectives by using bombs (i.e., modality

conflict and behaviour simulation), and the separation of duties property is ensured.

In this example, there are three entities (nodes), each of which has its own PEP/PDP, i.e., the

commanders (us cmd and uk cmd) regulate role assignment actions with their policies, and

squad employs RBAC for controlling the usage of explosive.

7.3. Extended Framework for Distributed Policy Analysis 207

Distributed System Specification

Let us elaborate the example further. For simplicity, we only describe the policies and domain

properties relevant to the aforementioned two analysis tasks.

Node squad has local knowledge about its members and the commanders, e.g., Hsquad contains:

initially(member(X))← X ∈ {alpha, beta}. (7.19)

initially(commander(X))← X ∈ {us cmd, uk cmd}. (7.20)

By enforcing RBAC, a member can set up/detonate a bomb if and only if he is assigned the

corresponding role, e.g., Psquad contains:

permitted(X, bomb, arm, T)← (7.21)

holds(member(X), T), holds(hasRole(X, setter), T).

permitted(X, bomb, detonate, T)← (7.22)

holds(member(X), T), holds(hasRole(X, detonator), T).

The role assignment actions (performed by a commander) can affect its local domain state,

e.g., Dsquad contains:

initiates(do(Su, Ta, assign(Role)), hasRole(Ta,Role), T)← (7.23)

holds(commander(Su), T), holds(member(Ta), T).

Suppose the UK commander, uk cmd, can assign the detonator role to soldiers. It uses the

basic availability policy regulatory rule (7.5), i.e., “a soldier can be assigned a role if he is

permitted by at least one local policy”. In addition, it maintains a local credential level database

of the soldiers, and has a positive authorisation policy “the detonator role can be assigned to a

208 Chapter 7. Distributed Policy Analysis

soldier with credential level greater than 4”. Thus, Preguk cmd contains

do(Su, Ta,Ac, T)← (7.24)

req(Su, Ta,Ac, T), permitted(Su, Ta,Ac, T).

and Puk cmd contains

permitted(uk cmd, Ta, assign(detonator), T)← (7.25)

holds(credential level(Ta, L), T), L > 4.

and Huk cmd contains

initially(credential level(alpha, 3)). (7.26)

initially(credential level(beta, 5)). (7.27)

and Πexposure
uk cmd contains

do(uk cmd, Ta, assign(Role), T)@uk cmd← (7.28)

do(uk cmd, Ta, assign(Role), T).

Now suppose the US commander, us cmd, can assign the setter role to soldiers. It uses the

positive availability rule (7.6), i.e., “a soldier can be assigned a role if it is not prohibited by any

local policy”. In addition, it tries to implement SoD by having a local negative authorisation

policy “a soldier cannot be assigned to the setter role if it has been assigned the conflicting

detonator role”. Thus, Pregus cmd contains

do(Su, Ta,Ac, T)← (7.29)

req(Su, Ta,Ac, T),¬denied(Su, Ta,Ac, T).

7.3. Extended Framework for Distributed Policy Analysis 209

and Pus cmd contains

denied(us cmd, Ta, assign(setter), T)← (7.30)

conflicting(setter, Role),

do(Cmd, Ta, assign(Role), T1)@Cmd, T1 < T.

and Sus cmd contains

conflicting(setter, detonator). (7.31)

and Πexposure
us cmd contains

do(us cmd, Ta, assign(Role), T)@us cmd← (7.32)

do(us cmd, Ta, assign(Role), T).

Finally, the global abductive framework for the whole system is Fdis =
〈

Σ, F̂
〉

, where Σ =

{squad, uk cmd, us cmd}, F̂ = {Fsquad,Fuk cmd,Fus cmd} andABsquad = ABuk cmd = ABus cmd =

{req}.

Example Distributed Analysis Tasks

In this scenario, there are two policy analysis tasks: to check if the squad team can use bombs,

and to check if the SOD constraint can be violated.

The first task can be seen as a type of modality conflict check or behaviour simulation, and

210 Chapter 7. Distributed Policy Analysis

can be initiated by submitting a query (“Can two different members of the squad be allowed to

arm and detonate bombs respectively?”):

∃X, Y, T.[

permitted(X, bomb, arm, T)∧

permitted(Y, bomb, detonate, T)∧

X 6= Y

]

to node squad.

The second task is SoD analysis, and can be initiated by submitting the query (“Can any

member of the squad be allowed to arm and detonate bombs at the same time?”):

∃X,T.[

permitted(X, bomb, arm, T)∧

permitted(X, bomb, detonate, T)

]

to node squad.

Let us fix the sort of time to be integers ranging between 0 and 5. Below is an abstracted

DAREC2 derivation for the first query2:

1. squad has the initial state Θ0, which has

G0 =


permitted(X, bomb, arm, T),

permitted(Y, bomb, detonate, T),

X 6= Y


2Note that in the actual DAREC2 system specification, constants alpha, beta, uk cmd and us cmd are re-

placed with their unique integer identifiers, e.g., 1, 2, 3, 4, respectively, since the built-in finite domain constraint
solver can deal with integers only.

7.3. Extended Framework for Distributed Policy Analysis 211

as the goals, and all other state stores are empty.

2. After the local computation by squad (each private atom goal is resolved first with Psquad,

and then with EC, and then with Hsquad ∪ Dsquad), a new state Θ1 is obtained, which

contains the delayed goals of

Gd1 =

 do(Su1, X, assign(setter), T1)@Su1,

do(Su2, Y, assign(detonator), T2)@Su2


and collected the inequalities and constraints of

E1 ∪ C1 =


T ∈ [0..5], T1 ∈ [0..5], T2 ∈ [0..5], T1 < T, T2 < T,

X ∈ {alpha, beta}, Y ∈ {alpha, beta}, X 6= Y

Su1 ∈ {us cmd, uk cmd}, Su2 ∈ {us cmd, uk cmd}


3. squad passes Θ1 to uk cmd, and uk cmd performs local computation on Θ1. uk cmd first

tries to bind Su1 to itself for the first goal, and then resolves the goal (first with Preguk cmd ,

then with Puk cmd, then with Huk cmd, then with ICuk cmd). This binds X to beta, as alpha

does not have the right credential level. Note that this binding causes the binding of Y

to alpha, due to the inequality X 6= Y and the constraint Y ∈ {alpha, beta}. A new state

Θ2 contains the remaining goals

G2 =


do(Su2, alpha, assign(setter), T2)@Su2,

∀E.← happens(E, T1)@squad

∀E.← happens(E, T1)@us cmd


and with the collected abducible

∆2 =

{
req(uk cmd, beta, assign(detonator), T1)

}

and the collected abducible denials

212 Chapter 7. Distributed Policy Analysis

N2 =

 ∀Su, Ta,Ac, T.← req(Su, Ta,Ac, T1),

Su:Ta:Ac 6= uk cmd:beta:assign(detonator)


uk cmd then tries to bind Su2 to itself for the first goal in Θ2, but eventually fails to

resolve it. Therefore, a new inequality Su2 6= uk cmd is added to Θ2 (this results in

binding Su2 to us cmd as there is already a constraint Su2 ∈ {uk cmd, us cmd} in Θ2),

which is then passed to us cmd.

4. us cmd performs local computation for the received state. It tries to resolve the goal

do(us cmd, alpha, assign(setter), T2), and succeeds by abducing req(us cmd, alpha,

assign(setter), T2 and collects T2 < T1. It then tries to reduce the denial goal ∀E. ←

happens(E, T1)@us cmd, and collects T2 6= T1. The new state Θ3 has remaining goals

of

G3 =


∀E.← happens(E, T2)@squad

∀E.← happens(E, T2)@uk cmd

∀E.← happens(E, T1)@squad


and abducible denials of

N3 =



∀Su, Ta,Ac, T.← req(Su, Ta,Ac, T1),

Su:Ta:Ac 6= uk cmd:beta:assign(detonator)

∀Su, Ta,Ac, T.← req(Su, Ta,Ac, T2),

Su:Ta:Ac 6= us cmd:alpha:assign(setter)


and assumed abducibles of

∆3 =

 req(uk cmd, beta, assign(detonator), T1),

req(us cmd, alpha, assign(setter), T2)


with the collected constraints and inequalities of

7.3. Extended Framework for Distributed Policy Analysis 213

E3 ∪ C3 =

 T ∈ [0..5], T1 ∈ [0..5], T2 ∈ [0..5],

T1 < T, T2 < T, T1 6= T2


.

5. Θ3 is passed to uk cmd and squad for the reduction of G3. This succeeds without changing

the rest of Θ3.

Finally, for this query DAREC2 can return one answer:

(∃T1, T2, T.)

req(uk cmd, beta, assign(detonator), T1),

req(us cmd, alpha, assign(setter), T2),

T1 < T, T2 < T, T1 6= T2.

Note that during the distributed policy analysis computation, the uk cmd’s credential level

database and each party’s policy rules as well as the policy regulatory rules are never disclosed

to others. This conforms to the DAREC2’s confidential reasoning property.

For the second query, DAREC2 can also compute one answer:

∃T1, T2, T.[

req(uk cmd, beta, assign(detonator), T1)∧

req(us cmd, beta, assign(setter), T2)∧

T1 < T ∧ T2 < T, T2 < T1

]

Note that T2 < T1 is collected after us cmd resolves its goal (see Step 4) with Pus cmd (which

214 Chapter 7. Distributed Policy Analysis

allows us cmd to assign the setter role as long as the target has not been assigned the detonator

role). This indicates a violation of the SoD constraint, which could occur if beta first requests

the setter role from us cmd, and then requests the detonator role from uk cmd (i.e, T2 < T1).

Therefore, the two commanders should be informed and need to revise their local policies.

7.4 Discussions

Interaction between PDPs

Figure 7.4 reflects that during a PEP/PDP step by some node, its PDP cannot interact with

the PDPs of other nodes. In practice, it is possible that the decision for a permission by one

node depends on the decision for another permission by another node. For example, suppose

there is a policy rule in us control such that “A UK PDA can get sensor data from the sensor

fabric if the PDA allows the control center to listen to all of its communication.”. This could

be expressed as follows if the language were extended to allow a regulatory state predicate to

be shared (e.g., permitted and denied):

permitted(X, sensor fabric, get data, T)@us control←

holds(owner(X, uk), T), type(X, pda),

permitted(us control,X, listen communication, T)@X.

DAREC2 can still be used to analyse such policies. However, there is a potential problem due to

the fact that different PEPs/PDPs may have their own policy regulatory rules describing their

behaviour. Suppose pda1 is a UK PDA and its PEP is described by the positive availability

rule:

do(Su, Ta,Ac, T)←

req(Su, Ta,Ac, T),¬denied(Su, Ta,Ac, T).

7.4. Discussions 215

i.e., an action is executed as long as no local policy rule prohibits it. Then the action do(us control,

pda1, listen communication, T) should be allowed to be executed at pda1, but the evaluation of

permitted(us control, pda1, listen communication, T)@pda1 would give answer no, if a simple

knowledge exposure rule:

permitted(Su, Ta,Ac, T)@pda1← permitted(Su, Ta,Ac, T).

was used by pda1. In this particular example, the correct knowledge exposure rule that should

be used instead is:

permitted(Su, Ta,Ac, T)@pda1← ¬denied(Su, Ta,Ac, T).

Therefore, if we allow PDPs of different nodes to interact with each other, it is the user’s

responsibility to ensure that the correct knowledge exposure rules are specified for each node.

Confidentiality of Local Requests

There are some situations in which, during the analysis tasks, the nodes may want to keep

some or all of their internal actions and action requests (i.e., assumed abducibles) confidential.

For example, granting permission for a UK PDA to get sensor data by the US control center

may trigger an internal logging action at the US control center, and the US control center may

not wish to expose such information during distributed analysis. To cope with this situation,

the language can be extended to allow the distinction between shared and private abducibles.

This can be done easily by extending the abducible predicates like we did for the non-abducible

predicates. However, as a safe condition of the system specification, an action can be considered

private to a node only if it has effects on the node’s local state only. In order to guarantee that

none of the assumed private requests can be disclosed during the distributed reasoning com-

putation, the DAREC2 algorithm will have to be extended too. Since the DAREC2 algorithm

is a collaborative state rewriting process by a given set of nodes, one possible approach could

be to let each node keep track of the set of assumed requests for each state it has processed

216 Chapter 7. Distributed Policy Analysis

(rewritten). This is similar to the idea proposed in [MRBL09]. However, this approach may

introduce a big space overhead, as most of the states will have the same set of assumed requests.

A different approach could be to let each node record and encrypt its assumed private requests

in the states, and decrypt them only when the states need to be processed again by the same

node. Since the assumed requests (and their actions) by a node cannot have effect to other

nodes’ local domains, other nodes do not need to decrypt and reasoning about them in order

to process the states containing them. The implementation of these extensions will be part of

our future work.

7.5 Conclusion

In this chapter we have presented an application for DAREC2 – distributed security policy

analysis. This work is an extension to an existing formal policy framework [CLM+09] for cen-

tralised policy analysis. First, we have extended the operational model and policy language

of the existing framework for systems with multiple PEPs/PDPs, each of which operates in-

dependently with its local policies and domain knowledge. As we have shown, the new policy

specification language is based on the DAREC2 language, which supports location awareness

of distributed knowledge and separation of shared and private knowledge of each node. This

is important for applications in distributed systems, where confidentiality is often one of the

major concerns. Secondly, we have applied DAREC2 to perform policy tasks in a distributed

manner. The DAREC2 algorithm can be applied to distributed policy analysis in the same way

a centralised abductive system (e.g., ASystem) is applied to centralised policy analysis, but

in addition can guarantee that the private knowledge of each node remains confidential to the

node during the computation, i.e., during the analysis. There is a need to keep local system

requests private to the node performing them. This is not yet supported by DAREC2, but a

further extension for the separation of shared and private abducibles has been discussed.

Knowledge exposure rules (i.e., rules with askable atom as the head) are the “linkages” between

knowledge bases, and they need to be specified carefully in order to guarantee the correct sys-

7.5. Conclusion 217

tem model in which PDPs can interact with each other. Some of the analysis tasks require the

completeness of the solving algorithm. Since the completeness of DAREC2 depends on termi-

nation, it is necessary that the overall system (i.e., policy and domain) specification satisfies the

allowedness and abductive non-recursive properties. However, the latter property is difficult

to check as the overall system specification is assumed to be distributed. As future work we

will try to identify conditions for knowledge exposure rules that can guarantee termination of

DAREC2 execution without analysing the overall system specification.

Chapter 8

Conclusion and Future Work

Abductive logic programming is a powerful inference tool that has been used in a wide range

of applications. However, most existing work of abductive algorithms is based on centralised

computation over a single repository of knowledge. Little work has been done for abductive

problems in a distributed setting, where communication overheads or confidentiality concerns

preclude the possibility of centralised knowledge and computation. Although the ALIAS system

has been developed to address issues in the cooperation and competition between logic-based

abductive reasoning agents, its distributed algorithm has many limitations and it does not

consider confidentiality aspects. The main contribution of this thesis is the development of a

general purpose distributed abductive reasoning system called DAREC. DAREC is the first

computational logic-based multi-agent system that supports collaborative abductive reasoning

over distributed constraint logic programs and guarantees global consistency. The distributed

algorithm of DAREC extends ASystem, and its soundness and completeness (upon termina-

tion) with respect to the (Fitting’s) three-valued semantics have been proved in this thesis. An

extension of DAREC to open agent systems (i.e., where agents may leave or join the system

during collaborative reasoning) has been described. DAREC2, a customisation of DAREC

with special goal selection and agent interaction strategies, is the first distributed abductive

system that considers confidentiality. DAREC2 allows shared and private knowledge of agents

to be distinguished in the knowledge specification, and guarantees that no private knowledge

218

219

is disclosed during collaborative reasoning. A prototype implementation of DAREC2 has been

given in this thesis. As for the evaluation of the system, we have presented its experimental

results obtained from a specifically developed auto-testing environment, and a case study of

its application in distributed security policy analysis. Therefore, our work also contributes

to the research of policy based management in distributed networks. In addition, during the

implementation and experiments of DAREC2, an efficient Prolog-based inequality solver and a

general purpose generator for distributed or centralised (abductive) (constraint) logic programs

have also been developed, which can be used independently of DAREC2, e.g., for the imple-

mentation of other logic programming based theorem provers and the generation of their test

cases.

The work presented in this thesis leaves a number of possible future research issues in knowledge

representation, algorithm optimisation and potential applications.

First of all, since we have developed an auto-testing environment for DAREC2, we would like

to conduct extensive experiments to study how the performance of distributed abduction is

affected by different classes of distributed programs with different structures and properties.

In particular, we will implement various goal selection strategies, agent interaction strategies

and agent selection strategies for DAREC2, and provide options for the user to choose between

these strategies during the execution of DAREC2.

There are application domains where there is a need for distinguishing between shared and

private abducibles. Take distributed policy analysis as an example. During a distributed

analysis task, the nodes may want to keep some or all of their internal actions and action

requests (i.e., expressed as assumed abducibles) of a system execution trace confidential. This

has already been mentioned in Section 7.4 of Chapter 7, and a solution through cryptography

(e.g., agents may exchange states containing encrypted private abducible or non-abducible

atoms) has been proposed. As future work, we would like to implement such extension, and

study its practical impact to the performance of distributed abduction.

The current system prototype of DAREC2 is a proof of concept for distributed abduction

with confidentiality. Hence, it was not implemented with low level optimisations in mind. To

220 Chapter 8. Conclusion and Future Work

improve its execution efficiency and make it practical for real world applications, many optimi-

sations such as efficient data structures (e.g., internal representations of integrity constraints

and state) studied in Nuffelen’s ASystem implementation [vN04], predicate tabling techniques

implemented in XSB [SW10], and heuristics or strategies for solution search adopted by high

performance classical planning systems (e.g., GraphPlan [BF97] and FastForward [HN01]), may

be adopted. As future work, we would like to investigate the feasibility of these optimisations

and incorporate them into the DAREC2 implementation. In order to provide portability of the

system, we would also like to implement DAREC2 in a cross-platform language such as Java.

In addition to distributed policy analysis, we have identified two other potential applications

of DAREC2. The first application is in the aforementioned ambient intelligence domain.

In [BCR09], Broda et. al. proposed a logical agent-based environment monitoring and control

system called SAGE. In this system, forward chaining deductive inference is used to map low

level sensor data to high level events, and then multi-agent abductive reasoning is needed to

provide possible explanations for these events. DAREC2 fits this purpose and can provide all

the necessary features that are required. The other application is in the domain of declara-

tive networking [LCG+09, AMC+09], in which network protocols are specified as distributed

logic programs, and are executed through distributed query processing. Similar to policy anal-

ysis, DAREC2 can be used in network protocol analysis where confidentiality is considered

and the overall knowledge cannot be centralised. For example, the Internet infrastructure

may consist of a set of inter-connected routers belonging to different organisations. Each of

these routers is running some routing protocol such as BGP [RLH06] for selecting the best

path to forward a received packet to its destination. Different policies, such as local prefer-

ences on paths or neighbouring routers, could be manually added to a router and could affect

the running protocol’s best path selection algorithm. These policies are often private to the

router or to the organisation it belongs to. We would like to investigate how DAREC2 can

be applied to perform confidential network protocol analysis, such as checking the convergence

property [GS05, LCG+09] or path oscillation situation during protocol execution.

Appendix A

Example Source Code

A.1 The Inequality Solver

1 /**

2 * @author Jiefei Ma

3 * @date March 2010

4 * Department of Computing , Imperial College London

5 *

6 * NOTE: this version can be run on SICStus4 or YAP6

7 */

8

9

10

11

12 :- if(current_prolog_flag(dialect , yap)).

13 %{

14 :- module(inequalities , [op(700, xfx , =/=), ’=/=’/2, inequalities /2]).

15 :- use_module(library(lists), [member/2, append /3]).

16 %}

17 :- elif(current_prolog_flag(dialect , sicstus)).

18 %{

19 :- module(inequalities , [’=/=’/2, inequalities /2]).

20 :- op(700, xfx , =/=).

221

222 Appendix A. Example Source Code

21 %}

22 :- endif.

23

24 :- use_module(library(atts)).

25 :- use_module(library(ordsets), [

26 ord_union /3,

27 list_to_ord_set /2

28]).

29

30 :- attribute aliens /1.

31

32 % public

33 X =/= Y :-

34 (var(X) ; var(Y)), !,

35 X \== Y,

36 reinforce_neq(X, Y),

37 reinforce_neq(Y, X).

38 X =/= Y :-

39 (unifiable(X, Y, Eqs) ->

40 (Eqs = [A = B] ->

41 A =/= B % no choice point

42 ;

43 member(A = B, Eqs), % backtrackable

44 A =/= B

45)

46 ;

47 true

48).

49

50 unifiable(X, Y, [X = Y]) :-

51 (var(X) ; var(Y)), !.

52 unifiable(X, Y, []) :-

53 atomic(X), atomic(Y), !, X == Y.

54 unifiable(X, Y, Eqs) :-

55 functor(X, F, A),

A.1. The Inequality Solver 223

56 functor(Y, F, A),

57 X =.. [F|ArgsX],

58 Y =.. [F|ArgsY],

59 all_unifiable(ArgsX , ArgsY , Eqs).

60 all_unifiable ([], [], []).

61 all_unifiable ([X|TX], [Y|TY], AllEqs) :-

62 unifiable(X, Y, Eqs),

63 all_unifiable(TX, TY , RestEqs),

64 append(Eqs , RestEqs , AllEqs).

65

66 reinforce_neq(A, B) :-

67 var(A), !,

68 (get_atts(A, aliens(S)) ->

69 (\+ strictmember(S, B) -> NewS = [B|S] ; NewS = S),

70 put_atts(A, aliens(NewS))

71 ;

72 put_atts(A, aliens ([B]))

73).

74 reinforce_neq(_, _).

75

76 strictmember ([H|T], X) :-

77 (X == H ->

78 true

79 ;

80 strictmember(T, X)

81).

82

83 % hook

84 verify_attributes(Var , Val , Goals) :-

85 get_atts(Var , aliens(S1)), !, % are we involved?

86 \+ strictmember(S1 , Val), % is it an alien?

87 ((var(Val), get_atts(Val , aliens(S2))) ->

88 % thanks Domenico Corapi for helping with fixing the bug , 2010/03/31

89 %(var(Val) ->

90 %get_atts(Val , aliens(S2)),

224 Appendix A. Example Source Code

91 % \+ strictmember(S2, Var) % this should be implied by the previous test

92 list_to_ord_set(S2, NewS2),

93 list_to_ord_set(S1, NewS1),

94 ord_union(NewS2 , NewS1 , S3), % copy forward aliens

95 put_atts(Val , aliens(S3)),

96 Goals = []

97 ;

98 generate_goals(S1 , Val , Goals)

99).

100 verify_attributes(_, _, []).

101

102 generate_goals ([], _, []).

103 generate_goals ([H|T], Val , Gs) :-

104 generate_goals(T, Val , Gs1),

105 (var(H) ->

106 Gs = Gs1

107 ;

108 Gs = [(Val =/= H)|Gs1]

109).

110

111 % hook

112 attribute_goal(Var , Goal) :-

113 get_atts(Var , aliens(S)),

114 list_to_ord_set(S, S1),

115 construct_body(S1 , Var , Goal).

116

117 construct_body ([H|T], Var , Goal) :-

118 (T = [] ->

119 Goal = (Var =/= H)

120 ;

121 construct_body(T, Var , G),

122 Goal = ((Var =/= H),G)

123).

124

125 % public

A.1. The Inequality Solver 225

126 inequalities(Var , Ineqs) :-

127 get_atts(Var , aliens(S)), !,

128 list_to_ord_set(S, S1),

129 collect_inequalities(S1 , Var , Ineqs).

130 inequalities(_, []).

131

132 collect_inequalities ([], _, []).

133 collect_inequalities ([H|T], Var , [N|Rest]) :-

134 (Var @=< H ->

135 N = (Var =/= H)

136 ;

137 N = (H =/= Var)

138),

139 collect_inequalities(T, Var , Rest).

Listing A.1: Source code of the Inequality Solver inequalities.pl

Bibliography

[AB91] Krzysztof R. Apt and Marc Bezem. Acyclic programs. New Generation Computing,

9(3/4):335–364, 1991.

[ABW88] Krzysztof R. Apt, Howard A. Blair, and Adrian Walker. Towards a Theory of

Declarative Knowledge, pages 89–148. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 1988.

[AC05] Marco Alberti and Federico Chesani. The computational behaviour of the SCIFF

abductive proof procedure and the SOCS-SI system. Intelligenza Artificiale,

2(3):45–51, 2005.

[ACG+06] Philippe Adjiman, Philippe Chatalic, François Goasdoué, Marie-Christine Rousset,

and Laurent Simon. Distributed reasoning in a peer-to-peer setting: Application to

the semantic web. Journal of Artificial Intelligence Research, 25:269–314, February

2006.

[ACG+08] Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma, Paola Mello,

and Paolo Torroni. Verifiable agent interaction in abductive logic programming:

the SCIFF framework. ACM Transactions on Computational Logic, 9(4), 2008.

[AGL+05] Marco Alberti, Marco Gavanelli, Evelina Lamma, Paola Mello, and Paolo Torroni.

The SCIFF abductive proof-procedure. In 9th Congress of the Italian Association

for Artificial Intelligence, pages 135–147, 2005.

[AMC+09] Peter Alvaro, William Marczak, Neil Conway, Joseph M. Hellerstein, David Maier,

and Russell C Sears. Dedalus: Datalog in time and space. Technical Report

226

BIBLIOGRAPHY 227

UCB/EECS-2009-173, EECS Department, University of California, Berkeley, Dec

2009.

[ANDB01] Ofer Arieli, Bert Van Nuffelen, Marc Denecker, and Maurice Bruynooghe. Coherent

composition of distributed knowledge-bases through abduction. In Proceedings

of the Artificial Intelligence on Logic for Programming, Logic for Programming,

Artificial Intelligence, and Reasoning 2001, pages 624–638, London, UK, 2001.

Springer-Verlag.

[AvE82] Krzysztof R. Apt and M. H. van Emden. Contributions to the theory of logic

programming. Journal of the ACM, 29:841–862, July 1982.

[Bar99] Roman Bartak. Constraint programming: In pursuit of the holy grail. In Proceed-

ings of the 8th Annual Conference of Doctoral Students (Invited Lecture), pages

555–564, 1999.

[Bar03] Chitta Baral. Knowledge Representation, Reasoning, and Declarative Problem Solv-

ing. Cambridge University Press, New York, NY, USA, 2003.

[BCR09] Krysia Broda, Keith Clark, Rob Miller 0002, and Alessandra Russo. Sage: A logical

agent-based environment monitoring and control system. In Ambient Intelligence,

European Conference, pages 112–117, 2009.

[BF97] Avrim Blum and Merrick L. Furst. Fast planning through planning graph analysis.

Artifical Intelligence, 90(1-2):281–300, 1997.

[BIM10] Gauvain Bourgne, Katsumi Inoue, and Nicolas Maudet. Abduction of distributed

theories through local interactions. In 19th European Conference on Artificial In-

telligence, pages 901–906, 2010.

[BN08] Moritz Y. Becker and Sebastian Nanz. The role of abduction in declarative autho-

rization policies. In Proceedings of the 10th International Conference on Practical

Aspects of Declarative Languages, PADL’08, pages 84–99, Berlin, Heidelberg, 2008.

Springer-Verlag.

228 BIBLIOGRAPHY

[BSW08] Steve Barker, Marek J. Sergot, and Duminda Wijesekera. Status-based access

control. ACM Transactions on Information System Security, 12:1:1–1:47, October

2008.

[CDT91] Luca Console, Daniele Theseider Dupré, and Pietro Torasso. On the relationship

between abduction and deduction. Journal of Logic and Computation, 1(5):661–

690, 1991.

[Cia02] Ann Ciampolini. A distributed medical diagnosis with abductive logic agents. In

Proceedings of Agents Applied in Health Care Workshop, 15th European Conference

on Aritificial Intelligence, 2002.

[Cla78] Keith L. Clark. Negation as failure. Logic and Data Bases, pages 293–322, 1978.

[CLM+03] Anna Ciampolini, Evelina Lamma, Paola Mello, Francesca Toni, and Paolo Tor-

roni. Cooperation and competition in ALIAS: A logic framework for agents that

negotiate. Annals of Mathematics and Artificial Intelligence, 37:65–91, 2003.

[CLM+09] Robert Craven, Jorge Lobo, Jiefei Ma, Alessandra Russo, Emil Lupu, and Arosha

Bandara. Expressive policy analysis with enhanced system dynamicity. In Pro-

ceedings of the 4th International Symposium on Information, Computer, and Com-

munications Security, ASIACCS ’09, pages 239–250, New York, NY, USA, 2009.

ACM.

[CLMT01] Anna Ciampolini, Evelina Lamma, Paola Mello, and Paolo Torroni. LAILA: a

language for coordinating abductive reasoning among logic agents. Computer Lan-

guages, Systems and Structures, 27:137–161, 2001.

[CRZA05] Keith L. Clark, Peter J. Robinson, and Silvana Zappacosta-Amboldi. Multi-

threaded communicating agents in qu-prolog (tutorial paper). In Computational

Logic in Multi-Agent Systems, 6th International Workshop, pages 186–205, 2005.

[CT04] Anna Ciampolini and Paolo Torroni. Using abductive logic agents for modeling

the judicial evaluation of criminal evidence. Applied Artificial Intelligence, 18(3-

4):251–275, 2004.

BIBLIOGRAPHY 229

[DC89] Hendrik Decker and Lawrence Cavedon. Generalizing allowedness while retaining

completeness of sldnf-resolution. In Proceedings of 3rd Workshop on Computer

Science Logic, pages 98–115, 1989.

[DCV93] Daniel Diaz, Philippe Codognet, and Domaine De Voluceau. A minimal extension

of the wam for clp(fd). In Proceedings of the Tenth International Conference on

Logic Programming, pages 774–790. MIT Press, 1993.

[DS92] Marc Denecker and Danny De Schreye. Sldnfa: An abductive procedure for normal

abductive programs. In Proceedings of the Joint International Conference and

Symposium on Logic Programming, pages 686–700, 1992.

[DS98] Marc Denecker and Danny De Schreye. Sldnfa: An abductive procedure for ab-

ductive logic programs. Journal of Logic Programming, 34(2):111–167, 1998.

[Dur01] Edmund H. Durfee. Mutli-agents systems and applications. chapter Distributed

Problem Solving and Planning, pages 118–149. Springer-Verlag New York, Inc.,

New York, NY, USA, 2001.

[EGG+09] Enrico Ellguth, Martin Gebser, Markus Gusowski, Benjamin Kaufmann, Roland

Kaminski, Stefan Liske, Torsten Schaub, Lars Schneidenbach, and Bettina Schnor.

A simple distributed conflict-driven answer set solver. In Logic Programming and

Nonmonotonic Reasoning, 10th International Conference, pages 490–495, 2009.

[EK89] Kave Eshghi and Robert A. Kowalski. Abduction compared with negation by

failure. In Proceedings of the Sixth International Conference on Logic Programming,

pages 234–254, 1989.

[EMS+04a] Ulrich Endriss, Paolo Mancarella, Fariba Sadri, Giacomo Terreni, and Francesca

Toni. Abductive logic programming with ciff: System description. In JELIA, pages

680–684, 2004.

[EMS+04b] Ulrich Endriss, Paolo Mancarella, Fariba Sadri, Giacomo Terreni, and Francesca

Toni. The CIFF proof procedure for abductive logic programming with constraints.

230 BIBLIOGRAPHY

In Proceedings of the Ninth European Conference on Logics in Artificial Intelli-

gence, pages 31–43, 2004.

[Esh88] Kave Eshghi. Abductive planning with event calculus. In International Conference

on Logic Programming/Symposium on Logic Programming, pages 562–579, 1988.

[Fit85] Melvin Fitting. A kripke-kleene semantics for logic programs. Journal of Logic

Programming, 2(4):295–312, 1985.

[FK97] Tzee Ho Fung and Robert A. Kowalski. The iff proof procedure for abductive logic

programming. Journal of Logic Programming, 33(2):151–165, 1997.

[GAL09] Marco Gavanelli, Marco Alberti, and Evelina Lamma. Integration of abductive

reasoning and constraint optimization in SCIFF. In Logic Programming, 25th

International Conference, pages 387–401, 2009.

[GKNS07] Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub.

Conflict-driven answer set solving. In Proceedings of the 20th International Joint

Conference on Artificial Intelligence, pages 386–392, 2007.

[GL88] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic pro-

gramming. In Proceedings of the Fifth International Joint Conference and Sympo-

sium on Logic Programming, pages 1070–1080, 1988.

[GRS91] Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded seman-

tics for general logic programs. Journal of the ACM, 38(3):620–650, 1991.

[GS05] Timothy G. Griffin and João L. Sobrinho. Metarouting. In Proceedings of the

ACM SIGCOMM 2005 Conference on Applications, Technologies, Architectures,

and Protocols for Computer Communications, pages 1–12, 2005.

[HN01] Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation

through heuristic search. Journal Artificial Intelligence Research, 14:253–302, 2001.

BIBLIOGRAPHY 231

[HSC07] Hiroshi Hosobe, Ken Satoh, and Philippe Codognet. Agent-based speculative

constraint processing. IEICE - Transactions on Information and Systems, E90-

D:1354–1362, September 2007.

[HSM+10] Hiroshi Hosobe, Ken Satoh, Jiefei Ma, Alessandra Russo, and Krysia Broda. Specu-

lative constraint processing for hierarchical agents. AI Communications, 23(4):373–

388, 2010.

[II04] Katsumi Inoue and Koji Iwanuma. Speculative computation through consequence-

finding in multi-agent environments. Annals of Mathematics and Artificial Intelli-

gence, 42(1-3):255–291, 2004.

[JM94] Joxan Jaffar and Michael J. Maher. Constraint logic programming: A survey.

Journal of Logic Programming, 19/20:503–581, 1994.

[JMSY92] Joxan Jaffar, Spiro Michaylov, Peter J. Stuckey, and Roland H. C. Yap. The clp(r)

language and system. ACM Transaction on Programming Languages and Systems,

14:339–395, May 1992.

[KKT92] Antonis C. Kakas, Robert A. Kowalski, and Francesca Toni. Abductive logic pro-

gramming. Journal of Logic and Computation, 2(6):719–770, 1992.

[Kle52] Stephen C. Kleene. Introduction to Metamathematics. Bibliotheca Mathematica.

North-Holland, 1952.

[KM90a] Antonis C. Kakas and Paolo Mancarella. Abductive logic programming. In Proceed-

ings of the Workshop Logic Programming and Non-Monotonic Logic, pages 49–61,

1990.

[KM90b] Antonis C. Kakas and Paolo Mancarella. Database updates through abduction.

In Dennis McLeod, Ron Sacks-Davis, and Hans-Jörg Schek, editors, Proceedings of

16th International Conference on Very Large Databases, pages 650–661. Morgan

Kaufmann, 1990.

232 BIBLIOGRAPHY

[KM90c] Antonis C. Kakas and Paolo Mancarella. Generalised stable models: A semantics

for abduction. In Luigia C. Aiello, editor, Proceedings of the Ninth European Con-

ference on Artificial Intelligence, pages 385–391, Stockholm, Sweden, 1990. Pitman

Publishing.

[KM95] Antonis C. Kakas and A. Michael. Integrating abductive and constraint logic

programming. In Proceedings of the Twelfth International Conference on Logic

Programming, pages 399–413, 1995.

[KM97] Antonis C. Kakas and Costas Mourlas. Aclp: Flexible solutions to complex prob-

lems. In Logic Programming and Nonmonotonic Reasoning, 4th International Con-

ference, pages 388–399, 1997.

[KMM00] Antonis C. Kakas, A. Michael, and Costas Mourlas. Aclp: Abductive constraint

logic programming. Journal of Logic Programming, 44(1-3):129–177, 2000.

[Kow92] Robert Kowalski. Database updates in the event calculus. Journal of Logic Pro-

graming, 12:121–146, January 1992.

[KS86] Robert Kowalski and Marek Sergot. A logic-based calculus of events. New Gener-

ation Computing, 4:67–95, January 1986.

[Kum92] Vipin Kumar. Algorithms for constraint-satisfaction problems: A survey. AI Mag-

azine, 13:32–44, April 1992.

[Kun87] Kenneth Kunen. Negation in logic programming. Journal Logic Programming,

4(4):289–308, 1987.

[KvND01] Antonis C. Kakas, Bert van Nuffelen, and Marc Denecker. A-System: Problem

solving through abduction. In Proceedings of the 17th International Joint Confer-

ence on Artificial Intelligence - Volume 1, pages 591–596, San Francisco, CA, USA,

2001. Morgan Kaufmann Publishers Inc.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM, 21:558–565, July 1978.

BIBLIOGRAPHY 233

[Lau78] Jean-Louis Laurière. A language and a program for stating and solving combina-

torial problems. Artificial Intelligence, 10(1):29–127, 1978.

[LCG+09] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, Joseph M.

Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion Sto-

ica. Declarative networking. Communications of the ACM, 52:87–95, November

2009.

[Lec09] Christophe Lecoutre. Constraint Networks: Techniques and Algorithms. Wiley-

IEEE Press, 2009.

[LPF+06] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Si-

mona Perri, and Francesco Scarcello. The DLV sstem for knowledge representation

and reasoning. ACM Transactions on Computational Logic, 7:499–562, July 2006.

[MBCR08] Jiefei Ma, Krysia Broda, Keith L. Clark, and Alessandra Russo. A dynamic system

for distributed reasoning. In Proceedings of the AAAI Spring Symposium, SS-08-02,

2008.

[MBD94] Lode Missiaen, Maurice Bruynooghe, and Marc Denecker. Chica, an abductive

planning system based on event calculus. Journal of Logic and Computation, 5:579–

602, 1994.

[MBG+10] Jiefei Ma, Krysia Broda, Randy Goebel, Hiroshi Hosobe, Alessandra Russo, and

Ken Satoh. Speculative abductive reasoning for hierarchical agent systems. In

Computational Logic in Multi-Agent Systems, 11th International Workshop, pages

49–64, 2010.

[MRBC08] Jiefei Ma, Alessandra Russo, Krysia Broda, and Keith Clark. Dare: A system for

distributed abductive reasoning. Autonomous Agents and Multi-Agent Systems,

16:271–297, June 2008.

[MRBL09] Jiefei Ma, Alessandra Russo, Krysia Broda, and Emil Lupu. Multi-agent plan-

ning with confidentiality. In Proceedings of The 8th International Conference on

234 BIBLIOGRAPHY

Autonomous Agents and Multiagent Systems - Volume 2, AAMAS ’09, pages 1275–

1276, Richland, SC, 2009. International Foundation for Autonomous Agents and

Multiagent Systems.

[MTS+09] Paolo Mancarella, Giacomo Terreni, Fariba Sadri, Francesca Toni, and Ulle En-

driss. The CIFF proof procedure for abductive logic programming with constraints:

Theory, implementation and experiments. Theory and Practice of Logic Program-

ming, 9(6):691–750, 2009.

[NII03] Hidetomo Nabeshima, Koji Iwanuma, and Katsumi Inoue. Solar: A consequence

finding system for advanced reasoning. In Analytic Tableaux and Related Methods,

pages 257–263, 2003.

[NK01] Bert Van Nuffelen and Antonis C. Kakas. A-system: Declarative programming with

abduction. In Logic Programming and Non-Monitonic Reasoning, pages 393–396,

2001.

[NS97] Ilkka Niemelä and Patrik Simons. Smodels - an implementation of the stable model

and well-founded semantics for normal lp. In Logic Programming and Nonmono-

tonic Reasoning, 4th International Conference, pages 421–430, 1997.

[Pea87] Judea Pearl. Embracing causality in formal reasoning. In Proceedings of the sixth

National conference on Artificial intelligence - Volume 1, AAAI’87, pages 369–373.

AAAI Press, 1987.

[Pei31] Charles S. Peirce. Collected Papers of Charles Sanders Peirce. Harvard University

Press, 1931.

[Poo88] David Poole. Representing knowledge for logic-based diagnosis. In Fifth Generation

Computer Systems, pages 1282–1290, 1988.

[RC10] Peter J. Robinson and Keith L. Clark. Pedro: a publish/subscribe server using

prolog technology. Software - Practice and Experience, 40(4):313–329, 2010.

BIBLIOGRAPHY 235

[RG95] Anand S. Rao and Michael P. Georgeff. Bdi agents: From theory to practice. In

Proceedings of the First International Conference on Multiagent Systems, pages

312–319, 1995.

[RLH06] Y. Rekhter, T. Li, and S. Hares. A border gateway protocol 4 (bgp-4). IETF RFC

4271, January 2006.

[RMNK02] Alessandra Russo, Rob Miller, Bashar Nuseibeh, and Jeff Kramer. An abductive

approach for analysing event-based requirements specifications. In Proceedings of

the 18th International Conference on Logic Programming, ICLP ’02, pages 22–37,

London, UK, 2002. Springer-Verlag.

[SCH03] Ken Satoh, Philippe Codognet, and Hiroshi Hosobe. Speculative constraint pro-

cessing in multi-agent systems. In Intelligent Agents and Multi-Agent Systems, 6th

Pacific Rim International Workshop on Multi-Agents, pages 133–144, 2003.

[SDDM09] M.P. Sindlar, M.M. Dastani, F. Dignum, and J.C. Meyer. Mental state abduction

of bdi-based agents. pages 161–178, 2009.

[Sha89] Murray Shanahan. Prediction is deduction but explanation is abduction. In Pro-

ceedings of the 11th International Joint Conference on Artificial Intelligence - Vol-

ume 2, pages 1055–1060, San Francisco, CA, USA, 1989. Morgan Kaufmann Pub-

lishers Inc.

[Sha99] Murray Shanahan. The event calculus explained. In Artificial Intelligence Today,

pages 409–430. 1999.

[Sha00] Murray Shanahan. An abductive event calculus planner. Journal of Logic Pro-

gramming, 44(1-3):207–240, 2000.

[Sha05] Murray Shanahan. Perception as abduction: Turning sensor data into meaningful

representation. Cognitive Science, 29(1):103–134, 2005.

236 BIBLIOGRAPHY

[SIIS00] Ken Satoh, Katsumi Inoue, Koji Iwanuma, and Chiaki Sakama. Speculative com-

putation by abduction under incomplete communication environments. In 4th

International Conference on Multi-Agent Systems, pages 263–270, 2000.

[SL02] Morris Sloman and Emil Lupu. Security and management policy specification.

IEEE Network, 16(2):10–19, March 2002.

[SN01] Tommi Syrjänen and Ilkka Niemelä. The smodels system. In Logic Programming

and Nonmonotonic Reasoning, 6th International Conference, pages 434–438, 2001.

[Str03] John Strassner. Policy-Based Network Management: Solutions for the Next Gen-

eration (The Morgan Kaufmann Series in Networking). Morgan Kaufmann Pub-

lishers Inc., San Francisco, CA, USA, 2003.

[SW10] Terrance Swift and David Scott Warren. XSB: Extending prolog with tabled logic

programming. The Computing Research Repository, abs/1012.5123, 2010.

[SY02] Ken Satoh and Keiji Yamamoto. Speculative computation with multi-agent belief

revision. In The First International Joint Conference on Autonomous Agents and

Multiagent Systems, pages 897–904, 2002.

[Teu96] Frank Teusink. Three-valued completion for abductive logic programs. Theoretical

Computer Science, 165:171–200, September 1996.

[Ton95] Francesca Toni. A semantics for the kakas-mancarella procedure for abductive

logic programming. In Proceedings of the Logic Programming Workshop GULP’95,

pages 231–244, 1995.

[Top87] Rodney W. Topor. Domain-independent formulas and databases. Theoretical Com-

puter Science, 52:281–306, June 1987.

[vEK76] Maarten H. van Emden and Robert A. Kowalski. The semantics of predicate logic

as a programming language. Journal of the ACM, 23:733–742, October 1976.

BIBLIOGRAPHY 237

[Ver99] Sofie Verbaeten. Termination analysis for abductive general logic programs. In

Proceedings of the 1999 International Conference on Logic Programming, pages

365–379, Cambridge, MA, USA, 1999. Massachusetts Institute of Technology.

[vN04] Bert van Nuffelen. Abductive Constraint Logic Programming: Implementation and

Applications. PhD, Department of Computer Science, K.U.Leuven, Leuven, Bel-

gium, June 2004.

[YPG00] R. Yavatkar, D. Pendarakis, and R. Guerin. A framework for policy-based admis-

sion control. IETF RFC 2753, 2000.

	Acknowledgements
	Introduction
	Motivations
	Summary of Contributions
	Thesis Overview
	Background
	First-Order Logic Language and Semantics
	Herbrand Models

	Logic Programming
	Syntax
	Semantics
	Operational Semantics of Logic Programs
	Constraint Logic Programming

	Abductive Logic Programming
	Abductive Reasoning
	Abductive Logic Programs
	Semantics for Abduction
	Abductive Proof Procedures

	Early Work – Distributed Abductive REasoning (DARE)
	Introduction
	The Centralised Meeting Scheduling Example
	DARE Framework and Algorithm
	Overview
	Distributed Algorithm
	Distributed Meeting Scheduling Example

	DARE Implementation
	Impact of Openness
	Termination

	Limitations of DARE
	Conclusion

	Distributed Abductive REasoning with Constraints (DAREC)
	Introduction
	Distributed Framework for Fixed Agent Systems
	Distributed Algorithm
	Overview
	Notations of State + Local Abductive Derivation
	Local Abductive Inference Rules
	Coordination
	Example Trace

	Soundness and Completeness
	Soundness
	Completeness

	Discussions
	Usage of Agent Advertisements
	Extension for Open Agent Systems

	Conclusion

	Multi-agent Hypothetical Reasoning with Confidentiality (DAREC2)
	Introduction
	Distributed Framework with Confidentiality
	Distributed Abduction with Confidentiality
	Customisation of the Local Inference Rules
	Customisation of the Coordination
	Sample Execution Trace of DAREC2

	Discussions
	Confidential Reasoning by DAREC2
	Impact of the Usage of Agent Advertisements on Confidential Reasoning
	Soundness and Completeness of DAREC2

	Implementation of DAREC2
	Agent Knowledge Specifications
	Overview of the Agent Architecture
	Agent Communications
	Protocols for Agent Joining, Leaving and Knowledge Update
	Executions of the Server Thread and the Worker Threads

	Related Work
	Centralised Abductive Systems
	Distributed Abductive Systems
	Speculative Multi-agent Reasoning Systems

	Conclusion

	Experiments and Benchmarking
	A Random Generator for Distributed Abductive Constraint Logic Programs (GenDACLP)
	The Input and Output of the GenDACLP
	Implementation of GenDACLP

	Experiments and Discussions
	Environmental Setup
	Experiments
	Other Experiments:

	Conclusion

	Distributed Policy Analysis
	Introduction
	A Formal Framework for Centralised Policy Analysis
	Operational Model
	System Specification
	Example Policy Analysis Tasks

	Extended Framework for Distributed Policy Analysis
	Extending the Operational Model and the Language
	Distributed Policy Analysis

	Discussions
	Conclusion

	Conclusion and Future Work
	Example Source Code
	The Inequality Solver
	Bibliography

