
Università di Pisa

Dipartimento di Informatica
Dottorato di Ricerca in Informatica

Ph.D. Thesis

The CIFF Proof Procedure for Abductive Logic

Programming with Constraints: Definition,

Implementation and a Web Application

Giacomo Terreni

Supervisor

Paolo Mancarella

Supervisor

Francesca Toni

May 5, 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/14695528?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Abduction has found broad application as a powerful tool for hypothetical reasoning with incom-
plete knowledge, which can be handled by labeling some pieces of information as abducibles, i.e.
as possible hypotheses that can be assumed to hold, provided that they are consistent with the
given knowledge base.
Attempts to make the abductive reasoning an effective computational tool gave rise to Abductive
Logic Programming (ALP) which combines abduction with standard logic programming. A number
of so-called proof procedures for ALP have been proposed in the literature, e.g. the IFF procedure,
the Kakas and Mancarella procedure and the SLDNFA procedure, which rely upon extensions of
different semantics for logic programming. ALP has also been integrated with Constraint Logic
Programming (CLP), in order to combine abductive reasoning with an arithmetic tool for constraint
solving.
In recent years, many proof procedures for abductive logic programming with constraints have
been proposed, including ACLP and the A-System which have been applied to many fields, e.g.
multi-agent systems, scheduling, integration of information.

This dissertation describes the development of a new abductive proof procedure with constraints,
namely the CIFF proof procedure. The description is both at the theoretical level, giving a formal
definition and a soundness result with respect to the three-valued completion semantics, and at
the implementative level with the implemented CIFF System 4.0 as a Prolog meta-interpreter.
The main contributions of the CIFF proof procedure are the advances in the expressiveness of the
framework with respect to other frameworks for abductive logic programming with constraints,
and the overall computational performances of the implemented system.

The second part of the dissertation presents a novel application of the CIFF proof procedure as
the computational engine of a tool, the CIFFWEB system, for checking and (possibly) repairing
faulty web sites.
Indeed, the exponential growth of the WWW raises the question of maintaining and automatically
repairing web sites, in particular when the designers of these sites require them to exhibit certain
properties at both structural and data level. The capability of maintaining and repairing web
sites is also important to ensure the success of the Semantic Web vision. As the Semantic Web
relies upon the definition and the maintenance of consistent data schemas (XML/XMLSchema,
RDF/RDFSchema, OWL and so on), tools for reasoning over such schemas (and possibly extending
the reasoning to multiple web pages) show great promise.
The CIFFWEB system is such a tool which allows to verify and to repair XML web sites instances,
against sets of requirements which have to be fulfilled, through abductive reasoning.
We define an expressive characterization of rules for checking and repairing web sites’ errors and
we do a formal mapping of a fragment of a well-known XML query language, namely Xcerpt, to
abductive logic programs suitable to fed as input to the CIFF proof procedure.
Finally, the CIFF proof procedure detects the errors and possibly suggests modifications to the
XML instances to repair them. The soundness of this process is directly inherited from the sound-
ness of CIFF.

CONTENTS

Contents

1 Introduction 5
1.1 Abductive Logic Programming and CIFF . 6
1.2 CIFF for repairing XML Web sites instances . 9
1.3 Overview of the thesis . 11

2 Preliminaries 13
2.1 First Order Logic . 13

2.1.1 Interpretations and Models . 15
2.1.2 Substitutions and unification . 17

2.2 Definite Logic Programming . 19
2.2.1 Definite clauses, programs and goals . 19
2.2.2 Semantics of Definite Logic Programming 20
2.2.3 SLD-resolution . 24

2.3 Negation in Logic Programming . 27
2.3.1 The Negation As Failure (NAF) rule . 27
2.3.2 Completion of a logic program . 28
2.3.3 SLDNF for Definite Logic Programs . 29
2.3.4 Normal Logic Programming . 31
2.3.5 SLDNF resolution for Normal Logic Programs 34

2.4 Alternative Semantics of Normal Logic Programming 35
2.4.1 Three-valued completion semantics . 36
2.4.2 Stable models semantics . 38
2.4.3 Well-founded semantics . 39

2.5 Constraint Logic Programming (CLP) . 41
2.6 Answer Sets Programming (ASP) . 43

3 Abductive Logic Programming with Constraints (ALPC) 47
3.1 Abductive reasoning . 47
3.2 Abduction in logic . 48
3.3 Abductive Reasoning in Applications . 50
3.4 Abductive Logic Programming (ALP) . 51
3.5 Abductive proof procedures . 53

3.5.1 The Kakas and Mancarella procedure . 53
3.5.2 The SLDNFA procedure . 57
3.5.3 The IFF proof procedure . 59
3.5.4 Other computational approaches to abduction 62

3.6 ALP + CLP = ALPC . 63
3.7 Abductive proof procedures with constraints . 65

3.7.1 The ACLP proof procedure . 65
3.7.2 The A-System . 65

4 The CIFF Proof Procedure and the CIFF¬ extension 67
4.1 The CIFF proof procedure . 67

4.1.1 CIFF proof rules . 72
4.1.2 CIFF derivation and answer extraction . 78

4.2 Soundness of the CIFF Proof Procedure . 82
4.3 The CIFF¬ proof procedure . 92
4.4 Soundness of the CIFF¬ proof procedure . 98

5 The CIFF System 105
5.1 The CIFF System: an Overview . 106

5.1.1 Input Programs, Preprocessing and Abductive Answers 109
5.1.2 Variable Handling . 113
5.1.3 Constraints Handling . 114
5.1.4 Loop Checking and CIFF Proof Rules Ordering 116
5.1.5 The CIFF¬ proof procedure . 121
5.1.6 Ground Integrity Constraints . 123

5.2 Related work and comparison . 127
5.2.1 Comparison with A-System . 128
5.2.2 Comparison with Answer Sets Programming 130
5.2.3 Experimental results . 132

5.3 Conclusions . 139

6 Web Site Verification and Repair 141
6.1 A Motivating Example . 142
6.2 A Formal Language for Expressing Web Checking Rules 143
6.3 A Xcerpt-like grammar for positive web checking rules 145
6.4 The translation process for positive rules . 146

6.4.1 XML representation . 146
6.4.2 The translation function . 147

6.5 Adding negation to the translation process . 151
6.5.1 Translation function . 151

6.6 Analysis for checking . 157
6.7 Running the System . 158

6.7.1 A preliminary experimentation . 159
6.8 A Web Repairing Framework . 160

6.8.1 Abductive logic programs for repairing . 161
6.9 Running the CIFFWEB System for repairing . 165

6.9.1 Abductively Generated Errors . 166
6.10 A more complex running example . 167
6.11 Analysis for repairing . 168
6.12 Related Work, Future Work and Conclusions . 170
6.13 Full theater example . 172

6.13.1 XML data . 172
6.13.2 XML translation . 172
6.13.3 Web checking rules . 173
6.13.4 Abductive logic program for checking . 178
6.13.5 Abductive logic program for repairing . 181

7 Conclusions 185

Bibliography 187

List of Figures

5.1 The CIFF System: main computational cycle . 107
5.2 The CIFF System: modules interactions . 110

6.1 The CIFFWEB System: JAVA translator GUI . 158

2 CHAPTER 0. LIST OF FIGURES

List of Tables

4.1 CIFF proof rules . 81
4.2 CIFF¬ proof rules . 96

5.1 N-Queens results (first solution) . 134
5.2 Hamiltonian cycles results (all solutions) . 135
5.3 Graph coloring results (first solution). 136
5.4 Scalability results (Test1). 137
5.5 Scalability results (Test2). 137
5.6 Scalability results (Test3). 137
5.7 Scalability results (Test4). 138
5.8 Scalability results (Test5). 138
5.9 Scalability results (Test6). 138

6.1 CIFFWEB scalability results for checking . 160

4 CHAPTER 0. LIST OF TABLES

Chapter 1

Introduction

Nowadays, computers are massively used in almost every human activity to accomplish an infinite
variety of tasks: from intensive data processing to 3D modeling passing through a web search for
interesting movies played near home.
This has been a big revolution in modern society and it has been due both to the huge improve-
ments in computer hardware in terms of costs, dimensions and performances and the big advances
in theoretical computer science whose main applications are the “middlewares” (programming
languages, internet protocols and so on) upon which the user-end applications are built.
However, the mostly used “middlewares” (e.g. C and C++ programming languages), to date,
allow for writing user-end applications in a machine-oriented language and, on their side, user-end
applications are often written to accomplish a specific instance of a more general problem.

In the last decade, as the user-end applications have grown in number and complexity, the need
emerged of simplifying the building and the maintenance of user-end applications. This need has
been even more evidenced by the exponential growth of the World Wide Web which, on the back-
end side, needs for computational schemas able to handle huge amounts of heterogeneous data.
Thus, a new generation of “middlewares” (e.g. Java and UML) have been developed and used for
this purpose.
This generation of commonly used “middlewares”, however, even if improving the previous stage,
are still machine-oriented and tailored towards specific user-end applications.

In the meanwhile, almost since the beginning of computer science, a not very popular set of
“middlewares” has been developed and refined so far: declarative languages. The main features of
a declarative language are to be human-oriented and tailored towards general problem solving.
The main idea is that a declarative language provides a formal logic (a well-defined syntax and a
clear semantics associated with) plus a control mechanism for that logic (i.e. a “reasoner” which
evaluates formulae on that logic), while the application developer has only to model its problem
under the logic of the language. It will be the control mechanism inside the language which will
evaluate the particular instances of the problem with respect to the given logic.
The straight use of logic for defining the syntax of declarative languages, makes them very suitable
tools for knowledge representation, i.e. for representing objects and their relations of the modeled
world in an intuitive human-oriented syntax close to natural langauge. For example in Prolog,
without any doubt the most important and influential example of declarative language which gave
rise to the Logic Programming field, to express that a father of a person is a male parent of that
person, it is enough to use the following simple and human-tailored logic formula:

father(X,Y) ← parent(X,Y),male(X)

If we add to the above general statement, the particular “world” instance that John is a male and
John is a parent of Mary, represented as:

male(John)
parent(John, Mary),

6 CHAPTER 1. INTRODUCTION

the embedded Prolog reasoner is able to deduce that John is the father of Mary.
However, after an initial enthusiasm in the middle 70’s, the popularity of declarative languages
shrank dramatically due to the performance gap of declarative applications with respect to hand-
tailored applications.

However, there are a number of classic problems and applications which would benefit of a declar-
ative approach (planning, scheduling, combinatorial problems) and many other problems which
are emerging, in particular concerning the Semantic Web vision. Indeed, the Semantic Web vision
relies upon web specification and querying languages (XML/XML Schema, RDF/RDF Schema,
OWL, XQuery, XPath, Xcerpt and so on) equipped with a human-tailored logic syntax (plus
a not always well-defined semantics). Hence the use of declarative languages as their “control”
mechanism is an intuitive, even if non-straightforward choice.
On the other hand, hardware improvements together with the refinements of declarative languages,
make the use of them a concrete choice in developing a wide range of applications.

Over the years, declarative languages have been improved in many directions. Prolog itself has
been refined and extended in a number of ways. The main extensions of Prolog, enhancing its
expressiveness as a tool for knowledge representation, concern parallelism and concurrency (giving
rise to distributed logic programming, with communication protocols as typical applications), arith-
metical constraints (giving rise to constraint logic programming, with combinatorial applications
as typical applications) and abduction (giving rise to abductive logic programming, with diagnosis
and repairing applications as typical applications).

Our work is placed exactly in this setting, as the main contributions of our thesis are:

• the definition of the CIFF proof procedure, a general-purpose abductive extension of logic
programming (including arithmetical constraints) which provides interesting advances in the
expressiveness of the abductive framework together with the proof of its soundness with
respect to a semantics for logic programming, namely the three-valued completion semantics,

• the CIFF System, a robust and efficient implementation, on top of Prolog, of the CIFF proof
procedure, and

• the CIFFWEB System, an automatic tool for detecting and (possibly) repairing errors of
XML web sites with respect to web checking rules, i.e. web requirements expressed in Xcerpt,
a well-known XML query language with a very human-tailored syntax.

1.1 Abductive Logic Programming and CIFF

The notion of abduction was introduced by the philosopher Pierce in [144] where he identified three
main forms of reasoning:

Deduction an analytic process based on the application of general rules to particular cases, with
the inference of a result;

Induction synthetic reasoning which infers the rule from the case and the result;

Abduction another form of synthetic inference, inferring the case from a rule and a result.

Peirce further characterized abduction as the “probational adoption of a hypothesis” as explanation
for observed facts (results) according to known laws. “It is however a weak form of inference,
because we cannot say that we believe in the truth of the explanation, but only that it may be
true” [144].
Abduction is widely used in common-sense, daily reasoning. For instance in diagnosis, to reason
from effect to cause, as noted e.g. in [41].

1.1. ABDUCTIVE LOGIC PROGRAMMING AND CIFF 7

In logic, the abductive task can be formalized as the task of finding a set of hypothesis ∆ which,
together with a logic theory P , representing the known laws, allows to infer a set of formulae Q,
representing the observations (or the results).

The following well-known example of abductive reasoning was given by Pearl in [141]. Consider
to observe that, walking in the garden, the shoes become wet. A simple explanation for this
observation is that the grass is wet. Being a sunny day, further explanations are that either the
sprinkler was on or it rained during the night. This common-sense process is exactly an abductive
process. The explanations have been inferred abductively from the observations and the “rules”,
stating for example that “if it rained last night then the grass has to be wet”. A logical formulation
of this “world” could be obtained by a theory P consisting of:

grass is wet ← rained last night
grass is wet ← sprinkler was on
shoes are wet ← grass is wet

In this setting, the observation Q = shoes are wet can be explained by both rained last night
and sprinkler was on alternatively.
Typically, in an abductive framework, there is a further component: a set of integrity constraints
IC, i.e. a set of formulae which have to be “satisfied” by ∆ in order to declare such ∆ an acceptable
set of hypothesis for inferring Q. In the above example, an integrity constraint could be

rained last night → false

With the above integrity constraint, any abductive explanation containing rained last night is
forbidden.
Abduction is a form of nonmonotonic reasoning because explanations which are consistent with
an abductive framework, may become inconsistent adding new information to the framework.

More formally, the abductive task can be defined as the problem of finding a set of formulae ∆
(abductive explanations for Q) such that:

1. P ∪∆ |= Q,

2. P ∪∆ is consistent and

3. P ∪∆ satisfies IC

where |= stands for a particular logic semantics.
The abductive task can be easily instantiated to logic programming, giving rise to Abductive Logic
Programming (ALP). In general an abductive framework in logic programming is a tuple 〈P, A, IC〉
where P is a logic program, IC is a set of first order closed formulae and A is a set of predicates
declared as abducibles. Each atom in ∆ must have a predicate a ∈ A. In the above example the
set of abducible predicates is:

A = {rained last night, sprinkler was on}
ALP can also be integrated with Constraint Logic Programming, giving rise to Abductive Logic
Programming with Constraints (ALPC). An abductive framework with constraints is a tuple
〈P, A, IC〉< where < is a constraint structure providing relations and functions (typically arith-
metical relations and functions) on a domain D(<), evaluated under the specific semantics of <.
In this way an abductive framework with constraints combines the expressiveness of ALP and the
expressiveness of the Constraints.

A number of abductive proof procedures for ALP have been proposed in the literature, e.g. the
Kakas-Mancarella proof procedure [102, 100], the SLDNFA proof procedure [61] and the IFF proof
procedure [82]. Abductive proof procedures, in general, differ in the expressiveness of their specific
frameworks and in what rely upon various semantics for logic programming, the most common
being the (generalized) stable models semantics [102] and the (three-valued) completion semantics
[118].

8 CHAPTER 1. INTRODUCTION

In recent years, several proof procedures for ALPC have also been proposed, including ACLP [109]
and the A-System [111].

Abduction (and in particular ALP and ALPC), has been used in a wide range of applications.
Abduction can be used to generate causal explanations for fault diagnosis, as seen for example in
[147, 56]. In medical diagnosis, for example, the observations are the symptoms and the abductive
process finds the possible causes (diseases) of those symptoms [152].
Abduction has been used for improving robotic vision [57, 165] where the observations are the raw
data descriptions obtained from the robot visual sensors and the abductive process hypotheses on
which objects effectively “see” the robot.
Also scheduling [109] and planning can be easily modeled by means of abduction. A plan can be
viewed as a set of hypothetical actions (and subgoals) to be performed (and achieved) in order to
reach the final goal state. The main approach to abductive planning is based on the event calculus,
a logical framework for reasoning about actions and changes proposed by Sergot and Kowalski in
[115]. Abductive planning has been studied by several authors [74, 135, 164].
Database updates is another important application of abduction [170, 101, 19]. In this setting
the observations are the update requests and the abductive explanations are the transactions that
satisfy those requests.
Finally, in recent years, abduction has been studied has a main reasoning paradigm for modeling
intelligent and autonomous agents, a field that has captured great attention in the last decades
[148, 53, 149, 98, 105, 31]. An intelligent agent can be defined as an actor which is capable of
observing, reasoning and acting upon a (dynamical) environment.

The main contribution of this thesis is the CIFF proof procedure for ALPC. CIFF (see [71, 72,
70, 125, 73] for preliminary versions and applications) is a proof procedure based on rewriting, i.e.
its computational core is based on a set of proof rules which rewrite a formula into an equivalent
formula under the three-valued completion semantics. CIFF is an extension of the IFF proof
procedure [82], which, with respect to other abductive proof procedures, shows two main features:
(1) handling of (existentially and universally quantified) variables and (2) handling of integrity
constraints in implicative form:

L1 ∧ · · · ∧ Lm → A1 ∨ · · · ∨An.

This form of integrity constraint makes possible the use of forward reasoning in addition to the
classical Prolog-style backward reasoning, allowing for a flexible computational tool for modeling
a wider class of problems. In particular forward reasoning with integrity constraints in implicative
form can capture the condition-action rule type of behavior, which is very typical and useful in
dynamic settings [157].

The CIFF proof procedure extends IFF in three ways, namely (1) by integrating abductive rea-
soning with constraint solving, (2) by relaxing the allowedness conditions on suitable inputs given
in [82], in order to be able to handle a wider class of problems, and (3) by adding a different type
of negation treatment in integrity constraints, namely the negation as failure (NAF) [48].
The third extension was similarly proposed in [157] as an extension for the IFF proof procedure.
To briefly explain the NAF extension let us consider a very simple integrity constraint like the
following:

¬L → A.

Normally, in CIFF, the negation is treated as classical negation, and the IC is treated equivalently
to the disjunction A ∨ L. Hence, in order to satisfy the IC either A or L must hold. However,
often such an IC is required to produce condition-action or reactive behavior, where the intended
interpretation is:

if there is evidence that ¬L holds, then A must hold too,

or, more appropriately,

1.2. CIFF FOR REPAIRING XML WEB SITES INSTANCES 9

if there is no evidence that L holds, then A must hold.

This is exactly what the NAF view allows, avoiding some unintuitive abductive answers. Consider a
“world” where an agent has to clean in a dangerous environment. The idea is that if it is a cleaning
day and the alarm has not been activated, the agent must dust. This could be represented by the
integrity constraint

cleaning day ∧ ¬sound alarm → dust

A logical interpretation of negation, provided that today is a cleaning day, allows the agent to
either dust or sound the alarm (even if no dangerous situation arises) in order to satisfy its rule
of behavior! In the NAF view, the agent avoids to dust only if the alarm has been sounded for
some other reason. As we will see, this feature enhances the expressive power of the framework
especially for modeling condition-action and reactivity rules.

A main contribution of this thesis, is also the proof of soundness of CIFF with respect to the
three-valued completion semantics.

The CIFF proof procedure has been implemented in Prolog in the CIFF System, which is available
at www.di.unipi.it/∼terreni/research.php.
The system is a mature Prolog system for which much time has been spent in exploiting Prolog
algorithms and data structures for improving the overall efficiency of the system, but maintaining
a clear mapping between the specification and the implementation.
We have compared empirically CIFF and the CIFF System to other related systems, namely the
A-System [111, 139], that is the closest system from both a theoretical and an implementative
viewpoint, and two state-of-the-art answer sets solvers SMODELS [136, 166] and DLV [68, 119].
Answer sets solvers are very popular tools which implement the (answer sets) semantics [90]. Their
computational schema is very distinct from the computational schema of logic programming and
they gave rise to the branch of Answer Sets Programming (ASP). However, ASP shares with
ALPC the objective of modeling dynamic and non-monotonic settings in a declarative (and thus
human-oriented) way.
The comparison both evidences how CIFF enriches the expressiveness of the abductive framework
and both evidences the similarities and the differences between ALPC and ASP. In particular we
outline how CIFF, with its NAF extension, is a step towards a unifying framework for ALPC and
ASP.
The experimental results on the CIFF System show that (1) the CIFF System and the other
systems have comparable performances and (2) the CIFF System has some unique features, e.g.
its incorporation of NAF in integrity constraints and its handling of variables taking values on
unbound domains.

The features of earlier versions of the procedure have been exploited in various application domains.
In [105] CIFF has been used as the computational core for modeling an agent’s planning, reactivity
and temporal reasoning capabilities, based on a variant of the abductive event calculus [115, 133].
A prototype version of the CIFF system has also been studied for abductive planning [124, 71].

1.2 CIFF for repairing XML Web sites instances

We strongly believe that declarative languages such as Prolog [54], if they are well integrated with
the web, will play a crucial role as the computational paradigms in the Semantic Web vision, as
noted, e.g., in [182].
The increasing interest about the Semantic Web technologies [175, 13] seems to be the right place
for declarative approaches. In particular web specification languages from XML/XMLSchema [177]
to OWL [176] passing through RDF/RDFSchema [174] need expressive computational counterparts
allowing more and more reasoning capabilities.

10 CHAPTER 1. INTRODUCTION

Abduction too, as it is a very suitable form of reasoning for diagnosis and repairing, could play a
prominent role in that context, as noted, e.g., in [39], where some abductive tasks over ontologies
have been individuated.

In this thesis we concentrate on how abduction could be used as a computational mechanism for
maintaining and repairing XML/XHTML web sites instances.
The exponential growth of the WWW raises the question of maintaining and automatically re-
pairing web sites, in particular when the designers of these sites require them to exhibit certain
properties at both structural and data level. The capability of maintaining and repairing web
sites is also important to ensure the success of the Semantic Web [175, 13] vision. Nevertheless,
there is limited work on specifying, verifying and repairing web sites at a semantic level. Notable
exceptions, at least for specifying and checking web sites, are represented by works such as [173]
(which mainly inspired our work) [62] and [78]; the XLINKIT framework [40] and the GVERDI-R
system [10, 23].
Searching the web, it is easy to encounter web pages containing errors in their structure and/or
their data. We argue that, in most cases, considering an XML/XHTML web site instance, the
errors can be divided into two main categories: structural errors and content-related (data) errors.
Structural errors are those errors concerning the presence and/or absence of tag elements and
relations amongst tag elements in the pages. For example, if a tag tag1 is intended to be a child of
a tag tag2, the occurrence in the web site of a tag1 instance outside the scope of a tag2 instance
is a structural error. Data errors, instead, are about the in-tag data content of tag elements. For
example a tag3 could be imposed to hold a number greater than 100.
Consider the following extracts of two XML pages, representing, in a theater company web site
instance, a list of shows produced by that company and the list of directors of that company:

%%%directorindex.xml %%%showindex.xml
<directorlist> <showlist>

<director>John</director> <show>
<director>Mary</director> <showname>Epiloghi</showname>

</directorlist> <year>2001</year>
</show>

</showlist>

We could specify a number of rules which any web site instance should fulfill. For example, we
could specify that a correct structure of a show tag in the first page must contain both a showname
tag element and a dir by tag element as its child. In this case we have a structural error, due to
the lack of a dir by tag element in the show of the list. Also, we could specify that all the shows
in the list must be produced since the year 2000. In this case we have a data error if the value
inside an year tag is less than 2000.
Requirements (and thus errors) can involve more than one web page. For example, a possible
requirement for the theater company specification may be that

each director must direct at least one show

The above requirement can lead to content-related errors which involve both pages because the
content of each director tag, e.g. John has to be matched to the content of at least one dir by
tag inside a show tag.

Here, we propose the CIFFWEB (prototype) tool, which, roughly speaking, uses CIFF as the
computational core for verifying and, possibly, repairing web sites against sets of requirements
which have to be fulfilled by a web site instance. A preliminary version of the tool is shortly
described in [127].
We argue that the CIFF proof procedure has very useful features to be applied in a web reasoning
scenario: implicative integrity constraints which could act as condition-action rules, handling of
unbound variables which could directly represent missing data, and arithmetical constraint solving
capabilities.

1.3. OVERVIEW OF THE THESIS 11

In our framework, we define an expressive characterization of rules for checking web sites’ errors
by using (a fragment of) the well-known semi-structured data query language Xcerpt [37, 38].
With respect to the other semi-structured query languages (like XQuery [27], XPath [47]) which
all propose a path-oriented approach for querying semi-structured data, Xcerpt is a rule-based
language which relies upon a (partial) pattern matching mechanism allowing to easily express
complex queries in a natural and human-tailored syntax. Xcerpt shares many features of logic
programming, for example its use of variables as place-holders and unification. However, to the
best of our knowledge, it lacks (1) a clear semantics for negation constructs and (2) an implemented
tool for running Xcerpt programs and evaluating Xcerpt queries. A by-product of this Chapter is
the provision of both (1) and (2) for a fraction of Xcerpt, namely the subset of this language that
we adopt for expressing web checking rules.
Then, we map formally the chosen fragment of Xcerpt for expressing checking rules into programs
for checking, i.e. abductive logic programs with constraints that can be fed as input to the general-
purpose CIFF proof procedure. By mapping web checking rules onto abductive logic programs with
constraints and deploying CIFF for determining fulfillment (or identify violation) of the rules, we
inherit the soundness properties of CIFF thus obtaining a sound concrete tool for web checking.
At the end of the translation process the CIFF System can be successfully used to reason upon
the (translation of the) web checking rules finding those XML/XHTML instances not fulfilling the
rules, and representing errors as abducibles in abductive logic programs. The CIFFWEB tool also
integrates a JAVA translator from web checking rules to both programs for checking and program
for repairing.

However, abductive reasoning seems to be very suitable not only for identifying errors in a web
site instance but also for suggesting possible repair actions for them. In this respect, abducibles
may represent not only an error instance fired by an XML/XHTML instance violating a rule r (for
checking) but also possible modifications (repairs) to that XML/XHTML data such that both r is
fulfilled and no other rules are violated.

Following these observations, we have identified some type of errors, arising from the violation of
web checking rules, which are suitable for abductive repair, and we have done a further mapping
from web checking rules to another type of abductive logic program with constraints: programs
for repairing. Again, we use programs for repairing as input for CIFF which either determines
the fulfillment of the rules, or for suggesting appropriate repair actions. The soundness properties
of CIFF are inherited also in the repair framework, thus obtaining a sound concrete tool for web
repairing.
To our knowledge, the repairing feature is a novel feature with respect to the other existing tools
for web verification.

1.3 Overview of the thesis

The first two chapters of the thesis contain background notions. In Chapter 2 we present a brief
overview of Logic Programming, considering its extensions and its alternatives related to our work.
The abductive extension of Logic Programming, i.e. ALP, is left as the subject of Chapter 3, where
we present a brief overview of the various abductive approaches in the literature, including several
abductive proof procedures (with constraints).

Chapter 4 is arguably the main chapter of the thesis: the CIFF proof procedure, together with its
NAF extension, is formally defined and its soundness with respect to the three-valued completion
semantics is proved.
In Chapter 5, the CIFF System is described, pointing out the main algorithms and data structures
used in order to make the system efficient. This chapter ends with a comparison of CIFF, both at
theoretical and at implementative level, with other, related, existing tools.

The CIFFWEB tool for web sites verification and repair is the main subject of Chapter 6. The web
checking rules are formally defined as well as the translation function to abductive logic programs
with constraints.

12 CHAPTER 1. INTRODUCTION

Finally in Chapter 7, we conclude our work, pointing out the future work.

Chapter 2

Preliminaries

This chapter summarizes the basic background about Logic Programming (LP) which, roughly
speaking, can be described as the application of (a part of) mathematical logic in computer pro-
gramming. In this view of logic programming, which can be traced at least as far back as John
McCarthy’s advice-taker proposal [130], logic is used as a purely declarative representation lan-
guage, and a theorem-prover or model-generator is used as the problem-solver.
Fifty years of research have produced a large amount of logic-based formalisms to improve both
the computational aspect of logic programming and its expressiveness. Surely, the most influential
result, which made logic programming as it is understood nowadays, was the definition of the
Prolog language [54, 116].
Since the birth of Prolog, logic programming has been extended in so many ways that a compre-
hensive survey of the logic programming is almost an impossible task. Abductive logic programming
(ALP) which is the central field of this thesis is such an extension of logic programming and it
will be described in detail in the next chapter. In this chapter we focus on the core of logic
programming, briefly describing its foundations and the extensions which are closer to our work.
We introduce first order languages together with the notions of interpretations and models of first
order theories. In sections 2.2 and 2.3 we introduce logic programming, defining its syntax and
its classical semantics. Then we present the most influential alternative semantics for negation in
logic programming. Section 2.5 briefly introduces an important extension of logic programming,
namely Constraint Logic Programming (CLP). Finally we present a short overview of a distinct
Logic Programming framework, namely Answer Sets Programming (ASP). For a detailed overview
on these subjects, refer to [123], [118], [17], [88], [94], [87].

2.1 First Order Logic

First order logic has two basic aspects: syntax and semantics. We start defining the syntax, i.e.
defining a first order language.
A first order language is based upon a signature (or an alphabet), which is defined as follows.

Definition 2.1. A signature is composed of the following classes of symbols:

1. Variables: we denote variables by X, Y, Z...

2. Constants: we denote constants by a, b, c...

3. Function symbols: we denote function symbols by f, g, h...

4. Predicate (or relation) symbols: we denote predicate symbols by p, q, r...

5. Two special symbols: true and false

14 CHAPTER 2. PRELIMINARIES

6. Connectives: ¬ (negation), ∨ (disjunction), ∧ (conjunction), →(implication), ↔ (equiva-
lence)

7. Quantifiers: ∃ (there exists), ∀ (for all)

8. Punctuation symbols: ’(’, ’)’, ’[’, ’]’, ’,’.

2

The sets of connectives, quantifiers, punctuation symbols and the two special symbols are fixed.
We assume that the set of variables is infinite and also fixed. These classes of symbols are called
logical symbols. Constants, function symbols and predicate symbols may vary and they are called
non-logical symbols. A first-order language is determined by its non-logical symbols. In this thesis
we also assume that the set of function symbols in a first-order language is infinite unless stated
explicitly otherwise.

Each function symbol and predicate symbol has a fixed arity, that is the number of its arguments.
A function (predicate) symbol with n arguments is said to be a n-ary function (predicate) symbol.
Constants can be regarded as 0-ary function symbols.

An important class of strings of symbols over a given alphabet is the class of terms.

Definition 2.2. A term is:

1. a variable,

2. a constant, or

3. a compound term f(t1, . . . , tn) where f is a n-ary function symbol and t1, . . . , tn are terms.

2

A tuple of variables X1, X2, X3 . . . (resp. terms t1, t2, t3 . . .) is denoted as ~X (resp. ~t). For example
f(~t) is a shorthand for f(t1, . . . , tn).

Over the class of terms is built the class of formulas.

Definition 2.3. A formula is:

1. a special symbol (true or false),

2. p(t1, . . . , tn) where p is a n-ary predicate symbol and t1, . . . , tn are terms,

3. φ ∨ ψ, φ ∧ ψ, φ → ψ, φ ↔ ψ, ¬φ, where φ, ψ are formulae,

4. ∃X.φ and ∀X.φ where φ is a formula and X is a variable.

We say that a formula of the first two categories is an atomic formula or simply an atom.

A literal is either A or ¬A, A being an atom. A positive literal is an atom. A negative literal is
the negation of an atom.
Given a literal L, we denote by Pred(L) the n-ary predicate of L. 2

We are ready to give the formal definition of first order language.

Definition 2.4. A first order language L based on a given alphabet A is the set of all the formulae
that can be constructed from that alphabet. 2

A formula or a term are called ground when they contain no variables. If they contain at least a
variable they are called non-ground.
In a formula ∃X.φ (respectively ∀X.φ), the quantifier ∃ (resp. ∀) binds X in φ. The scope of ∃X
(resp. ∀X) is defined to be φ. A variable in a formula φ which is not bound by a quantifier is
called a free variable.

2.1. FIRST ORDER LOGIC 15

Definition 2.5 (Closed formula). A formula φ is closed when there is no free variable X occurring
in φ. Let X1, . . . , Xn be the free variables in a formula φ, we write ∃(φ) for ∃X1, . . . , ∃Xn(φ) (the
existential closure of φ) and we write ∀(φ) for ∀X1, . . . , ∀Xn(φ) (the universal closure of φ). A
closed formula is also called a sentence. 2

Definition 2.6 (Theory). We define a theory T of a first order language L as a set of closed
formulae of L. Each formula F ∈ T is called an axiom. 2

2.1.1 Interpretations and Models

The semantics of first orders logic relies upon the concepts of interpretations and models which
give the meaning to formulae of first order languages.

Definition 2.7 (Pre-interpretation). A pre-interpretation J of a first order language L is composed
of:

• a non-empty set of objects D called the domain of J ,

• a set JC containing, for each constant in L, an assignment of an element in D,

• a set JF containing, for each n-ary function symbol in L, a mapping from Dn to D.

When needed, we write JD to highlight the domain D of the pre-interpretation J . 2

Definition 2.8 (Interpretation). An interpretation I of a first order language L consists of a
pre-interpretation JD of L together with a set IP containing, for each n-ary predicate symbol in L,
a mapping from Dn to the set {true, false}. We also say that I is based on JD 2

Definition 2.9 (Variable assignment). Let JD be a pre-interpretation of a first order language L.
A variable assignment α with respect to J assigns an element in D to each variable in L.
Given a formula F of L, we denote by F [X 7→ d] the formula F ′ of L obtained by replacing all the
occurrences of the variable X in F by the domain element d. 2

Definition 2.10 (Semantics of terms). Let I be an interpretation (based on JD) of a first order
language L, let α be a variable assignment and let t be a term. The meaning αIof t is defined as
follows:

• if t is a constant c ∈ L then αI(t) = JC(c),

• if t is a variable X ∈ L then αI(t) = α(X),

• if t is a compound term f(t1, . . . , tn) then αI(t) = fJ(αI(t1), . . . , αI(tn)), where fJ = JF (f)

Notice that the semantics of a compound term is obtained by applying the function fJ to the
meanings of its principal subterms, which are obtained by recursive application of the above defi-
nition.

We introduce now the semantics of formulae of a first order language L which associates a formula
F to a truth value (true, false). In the following definition, the notation I |=α Q means “Q is
true with respect to the interpretation I and the variable assignment α”. In the same way I 6|=α Q
means “Q is false with respect to the interpretation I and the variable assignment α”.

Definition 2.11 (Semantics of formulae). Let I be an interpretation (based on JD) of a first order
language L and let α be a variable assignment. The meaning of a formula Q ∈ L is defined as
follows:

• for each n-ary predicate symbol p ∈ L, given pI = IP (p), we have that:

– I |=α Q = p(t1, . . . , tn) iff pI(αI(t1), . . . , αI(tn)) = true

16 CHAPTER 2. PRELIMINARIES

– I 6|=α Q = p(t1, . . . , tn) iff pI(αI(t1), . . . , αI(tn)) = false

• I |=α Q = (¬F) iff I 6|=α F

• I |=α Q = (F ∧G) iff I |=α F and I |=α G

• I |=α Q = (F ∨G) iff I |=α F or I |=α G

• I |=α Q = (F → G) iff I 6|=α F or I |=α G

• I |=α Q = (F ↔ G) iff I |=α (F → G) and I |=α (G → F)

• I |=α Q = (∀X.F) iff I |=α[X 7→d] F for each d ∈ D

• I |=α Q = (∃X.F) iff I |=α[X 7→d] F for some d ∈ D

where F, G are formulae in L and X is a variable in L.
2

It is easy to see that the semantics of a closed formula does not depend on a variable assignment
α, but it depends only on the interpretation I. Hence, we can speak unambiguously of a semantics
of a closed formula Q with respect to an interpretation I. I.e. we denote by I |= Q (resp. I 6|= Q)
the fact that a closed formula Q is true (resp. false) with respect to an interpretation I.

The introduction of the syntax and the semantics of formulae of a first order language L allows
us to have a tool for describing and characterizing “worlds”. While the language L describes the
universe of a discourse, a “world”, it is natural to ask whether a set S of closed formulae and an
interpretation I give a proper account of this “world”. This is the case if all the formulae of S are
true with respect to I.

Definition 2.12 (Model). Let S be a set of closed formulae of a first order language L. We say
that M is a model of S if M is an interpretation of L such that for each formula F ∈ S:

M |= F

We denote that M is a model for S by M |= S and that M is not a model for S by M 6|= S.
2

Obviously there are infinitely many interpretations I for language L. However it may happen that
none of them is a model of a set of closed formulae S (e.g. S = F ∧ ¬F). Conversely, it may
happen that all of them are models of S (e.g. S = F ∨ ¬F). We have the following classification
of sets of closed formulae S.

Definition 2.13. Let S be a set of closed formulae of a first order language L. We say that

• S is consistent1 if there exists an interpretation I of L such that I |= S,

• S is valid if for every interpretation I of L, I |= S,

• S is inconsistent if there is no interpretation I of L such that I |= S,

• S is nonvalid if there exists an interpretation I of L such that I 6|= S.

2

Given a set of closed formulae S, it is also interesting to characterize formulae F which can be
“derived” from S. I.e. formulae F that are true in every model of S. This is the idea behind the
concept of logical consequence.

1We use the word consistent and not satisfiable as the literature on Logic Programming generally does, because
satisfiable will be used in another context in next chapters.

2.1. FIRST ORDER LOGIC 17

Definition 2.14 (Logical Consequence). Let S be a set of closed formulae and F be a closed
formula of a first order language L. We say that F is a logical consequence of S (denoted again
as S |= F) if, for every interpretation I of L, we have that:

if (I |= S) then (I |= F)

2

Proposition 2.1. Let S be a set of closed formulae and F be a closed formula of a first order
language L. Then F is a logical consequence of S if and only if S ∪ {¬F} is inconsistent. 2

Another important concept about the semantics of formulae is the concept of logical equivalence.

Definition 2.15 (Logical Equivalence). Let F and G be two formulae. We say that F and G are
logically equivalent (denoted by F ≡ G) if and only if F and G have the same truth value for each
interpretation I and variable assignment α. 2

2.1.2 Substitutions and unification

In this section we present two fundamental concepts which are the basis of the operational mech-
anisms in Logic Programming: substitutions and unification.

Definition 2.16 (Substitution). A substitution σ is a finite set of the form {X1/t1, . . . , Xn/tn}
where each Xi is a variable (distinct from each other) and each ti is a term distinct from Xi.
Each element X1/t1 is called a binding for Xi. If all the ti are ground terms, then σ is called a
ground substitution. The substitution given by the empty set is called the empty substitution and
is denoted as ε. 2

Definition 2.17. An expression E is either a term or a formula. A simple expression is either a
term or an atom.

Definition 2.18 (Instance). Let σ = {X1/t1, . . . , Xn/tn} be a substitution and let E be an ex-
pression. The expression Eσ is called the instance of E by σ and it is obtained by simultaneously
replacing each occurrence of all the variables X1, . . . , Xn in E by the corresponding terms t1, . . . , tn.
An instance containing no variables is called a ground instance. 2

Definition 2.19 (Variant). Let E and F be expressions. We say that E and F are variants if
there exist substitutions σ and θ such that E = Fσ and F = Eθ. We also say E is a variant of F
and F is a variant of E.

2

Substitutions can be composed and they have elementary properties as follows.

Definition 2.20. Let σ = {X1/t1, . . . , Xn/tn} and θ = {Y1/v1, . . . , Ym/vm} be substitutions. The
composed substitution σθ is defined as the set:

{Xi/tiθ | i ∈ [1 . . . n] ∧ Xi 6= tiθ} ∪ {Yj/vj | j ∈ [1 . . . m] ∧ Yj 6∈ {X1, . . . , Xn}}
2

Proposition 2.2. Let σ, θ, γ be substitutions and let E be an expression. The:

• σε = εσ = σ

• (Eσ)θ = E(σθ)

• (θσ)γ = θ(σγ)

2

18 CHAPTER 2. PRELIMINARIES

Example 2.1. The followings are simple examples of substitutions:

p(f(X,Z), f(Y, a)){X/a, Y/Z, W/b} = p(f(a, Z), f(Z, a))
p(X,Y){X/f(Y), Y/b} = p(f(Y), b)

The following, instead, is a simple example of a composition of substitutions:

{X/f(Z), Y/W}{X/a,Z/a, W/Y } = {X/f(a), Z/a, W/Y }
2

Substitutions are needed for defining a central procedural mechanism of logic programming: uni-
fication.

Definition 2.21. Let S be a set of simple expressions and let be σ a substitution. σ is a unifier
of S if Sσ is a singleton. σ is the most general unifier (mgu) for S if and only if for each unifier
θ of S, there exists a substitution γ such that θ = σγ. 2

The search of a unifier (and in particular an mgu) of two expressions E and F , can be viewed as the
process of solving the equation E = F . More generally, given a set of equations {E1 = F1, . . . , En =
Fn}, θ is a unifier of this set if Eiθ = Fiθ for each i ∈ [1, n]. For example θ = {X/a, Y/a} is a
unifier of the equation f(X, g(Y)) = f(a, g(X)).
Here we present the Martelli-Montanari algorithm [129] for finding an mgu of a set of equations.
It is based on the concept of equations in solved form.

Definition 2.22. A set of equations {X1 = t1, . . . , Xn = tn} is in solved form if X1, . . . , Xn are
distinct variables none of which appear in t1, . . . , tn. 2

A set of equations in solved form has the following interesting property, whose proof can be found
in [137].

Proposition 2.3. Let {X1 = t1, . . . , Xn = tn} be a set of equations in solved form. Then
{X1/t1, . . . , Xn/tn} is an mgu of the solved form. 2

It is also important to introduce the concept of equivalence between sets of equations.

Definition 2.23. Two sets of equations are said to be equivalent if they have the same set of
unifiers. 2

The Martelli-Montanari algorithm, given a set of equations, gives out (if possible) an equivalent
set of equations in solved form. It is clear that, by definition of two equivalent sets of equations,
an mgu of the solved form is also an mgu of the non-solved form.

Definition 2.24. [Unification Algorithm]

Input: a set of equations S0.

begin
S := S0

repeat

select an arbitrary s = t in S
case s = t of

(1) f(s1, . . . , sn) = f(t1, . . . , tn): replace by s1 = t1, . . . , sn = tn

(2) f(s1, . . . , sn) = g(t1, . . . , tm): fail

(3) X = X: delete the equation

(4) t = X where t is not a variable: replace by X = t

(5) X = t where X does not occur in t and X appears elsewhere in S:
replace all the occurrences of X in S by t

2.2. DEFINITE LOGIC PROGRAMMING 19

(6) X = t where X 6= t and X occurs in t: fail.
until no action is possible in S
end

Output: S
2

The following theorem states the soundness and the completeness of the above unification algo-
rithm, see [137] for the proof.

Theorem 2.1 (Unification Theorem). Let S be a set of equations. The unification algorithm of
definition 2.24 applied on S terminates and returns an equivalent solved form of S of failure if no
such solved form exists. 2

Example 2.2. The following set {f(X, g(Y)) = f(g(Z), Z)} has a solved form, indeed:

{f(X, g(Y)) = f(g(Z), Z)} ⇒ (1)
{X = g(Z), g(Y) = Z} ⇒ (4)
{X = g(Z), Z = g(Y)} ⇒ (6)
{X = g(g(Y)), Z = g(Y)}

The following set {f(X, g(X)) = f(Z, Z)}, instead, does not have a solved form:

{f(X, g(X)) = f(Z, Z)} ⇒ (1)
{X = Z, g(X) = Z} ⇒ (4)
{X = Z, Z = g(Z)} ⇒ (5)
fail

This is because Z is a proper subterm of g(Z). 2

2.2 Definite Logic Programming

The very basic idea behind Logic Programming is to use a computer to draw conclusions from
declarative descriptions. Those descriptions, called logic programs, consist of finite sets of logic
formulae. In order to achieve logic systems which exhibit interesting theoretical properties and
which could be computationally attractive, it was clear that restrictions on the logic formulae were
needed.
In this section we introduce the language of the definite logic programs which is the core of logic
programming as it is intended today. The main limitation in a definite logic program is the lack of
negation: only positive “objects” can be described. The absence of negation, however, allows the
definition of a clear and universally accepted declarative semantics for definite logic programs: the
least Herbrand model semantics as well as its procedural counterpart: the SLD-resolution [116].

2.2.1 Definite clauses, programs and goals

A particular type of declarative sentence describing both facts and rules about a domain and which
is used to compose logic programs is the clause. In particular we restrict our attention to definite
clauses.

Definition 2.25 (Definite clause). A definite clause is a a first order formula of the form:

∀(H ∨ ¬A1 ∨ . . . ∨ ¬An)

where H and each Ai are atoms. A definite clause can be represented in implicative form (we use
the notation ← instead of → for convenience) as follows:

20 CHAPTER 2. PRELIMINARIES

H ← A1, . . . , An

.
2

H is called the head of the clause and B = L1, . . . , Ln the body of the clause. The empty head is
equivalent to false whereas the empty body is equivalent to true. In the first case we say that the
clause is a denial whereas in the latter case we say that the clause is a fact. The empty clause is
denoted as 2.

Definition 2.26 (Definite Logic Program). A definite logic program is a finite set of definite
clauses. 2

Example 2.3. Let us consider the following sentences:

1. John is a parent of Mary

2. John is a male person

3. A father of a person is a male and he is a parent of that person.

The following definite logic program can be used to express above sentences.

parent(john, mary).
male(john).
father(X, Y) ← parent(X, Y),male(X). 2

A logic program is a description of a “world” and it is used to draw conclusions about it, i.e. it
is used to determine whether a certain sentence is a logical consequence of the program or not. In
logic programming such a sentence is in the form of a goal.

Definition 2.27. [Definite Goal] A definite goal (or a definite query) G is a clause of the form:

← A1, . . . , An

where each Ai is an atom and it is called a subgoal of G. 2

In the sequel we will drop the word “definite” if it is clear from the context.

Example 2.4. Consider the example 2.3. The goal

← father(john, mary)

is a logical consequence of the program. 2

2.2.2 Semantics of Definite Logic Programming

As noted in the previous section, logic programs are used to check whether a goal is a logical
consequence of a program or not. Thus, it is natural to characterize the declarative semantics of
a logic program as the set of its logical consequences. In the case of definite logic programming,
where both logic programs and goals are definite, it is possible to characterize such a set as the
least Herbrand model. Furthermore, there is also an operational (or procedural) semantics that
has been defined for definite logic programming: it is based on the SLD-resolution [116] principle.
Both semantics are universally accepted as the “correct” semantics for definite logic programming
and an equivalence result between the two has been shown. For further details and all the proofs
of propositions and theorems in this section see, for example, [123, 137, 14].

2.2. DEFINITE LOGIC PROGRAMMING 21

The least Herbrand model semantics

The least Herbrand model semantics is based upon a special class of models of definite logic pro-
grams: the class of Herbrand models. The idea is to abstract from the actual meanings of the
functors and the constants (0-ary functors) of the language and to focus on those interpretations
(Herbrand interpretations) whose domain is the set of variable-free terms and the meaning of a
ground term is the term itself.

Definition 2.28 (Herbrand Universe). Let L be a first order language. The Herbrand Universe
UL of L is the set of all ground terms which can be constructed out from the function symbols and
the constants of L. 2

Definition 2.29 (Herbrand Base). Let L be a first order language. The Herbrand Base BL of L
is the set of all ground atoms which can be constructed from the predicate symbols and the ground
terms in UL. 2

Both Herbrand universe and Herbrand base are usually defined over a given logic program P . In
this case it is assumed that the alphabet of the language is composed exactly of those symbols
appearing in P .

Example 2.5. Let us consider the following logic program PODD:

odd(s(0)).
odd(s(s(X))) ← odd(X).

In this case the Herbrand universe UP and the Herbrand base BP look as follows:

UP = {0, s(0), s(s(0)), . . .}
BP = {odd(0), odd(s(0)), odd(s(s(0))), . . .}

2

Definition 2.30. [Herbrand Pre-interpretation and Herbrand Interpretation] A Herbrand pre-
interpretation J for a first order language L is the pre-interpretation of L defined as follows:

• the domain is the Herbrand Universe UL,

• JC is the identity function for each c ∈ L,

• JF is the mapping Un
L 7→ UL : (t1, . . . , tn) 7→ f(t1, . . . , tn), for each n-ary function symbol f

in L.

A Herbrand interpretation I for a first order language L is any interpretation based on the Herbrand
pre-interpretation J for L. 2

Thus, Herbrand interpretations for a logic program P have fixed meanings for the constants and
the functors: in order to specify a Herbrand interpretation I it suffices to list, for each n-ary
predicate symbol p in P , the n-tuples 〈t1, . . . , tn〉 of ground terms such that I |= p(t1, . . . , tn). In
practice an Herbrand interpretation is a subset of the Herbrand base BP .

Example 2.6. The followings are Herbrand interpretations for the logic program P in the example
2.5:

I1 = {®}
I2 = {odd(s(0))}
I3 = {odd(sn(0)) | n ∈ {1, 3, 5, 7, . . .}}
I4 = {BP }

2

22 CHAPTER 2. PRELIMINARIES

Definition 2.31 (Herbrand Model). A Herbrand model M for a set of closed formulae S of a
first order language L is a Herbrand interpretation I for L such that:

M |= S

2

Example 2.7. Consider again the examples 2.5 and 2.6. The Herbrand interpretation I1 is not a
Herbrand model for P since odd(s(0)) is not true in I1. Conversely I4 = BP is clearly a Herbrand
model for P . Let us consider I2. It is not a model of P because there is a ground instance of the
rule odd(s(s(X))) ← odd(X), namely odd(s(s(s(0)))) ← odd(s(0)), such that all the premises are
true. However odd(s(s(s(0)))) is not belonging to I2. Finally I3 is a Herbrand model of P . Indeed
odd(s(0)) is true in I3. Let us consider any ground instance odd(s(s(t))) ← odd(t) of the rule, with
t ∈ UP . If odd(t) 6∈ I3 the ground instance is obviously true. Otherwise we have that obviously
also odd(s(s(t))) ∈ I3 by definition. 2

In the above example I4 = BP was a Herbrand model of P . Indeed, for each logic program P , BP

is a Herbrand model because it contains all the ground instances of each predicate of P . However,
by its definition, BP is not an “interesting” model. An interesting model should not contain more
instances of those which effectively follow from a program P . This interesting model is the least
Herbrand model, which characterizes the semantics of a definite logic program.
We have the following interesting property about Herbrand models.

Proposition 2.4. Let P be a definite logic program and let M be a non-empty set of Herbrand
models for P . Then the intersection MP of all the Herbrand models in M is an Herbrand model.

2

Definition 2.32. The least Herbrand model MP of a logic program P is the intersection of all
the Herbrand models of P . 2

Example 2.8. The least Herbrand model of the program P in the example 2.5 is the Herbrand
interpretation I3 seen in the example 2.6 i.e.:

I3 = {odd(sn(0)) | n ∈ {1, 3, 5, 7, . . .}} 2

The fact that the least Herbrand model MP contains effectively all the elements of BP which follow
from P was shown by Kowalski and Van Emden in [69] which characterized MP as the set of all
the logical consequences of P .

Theorem 2.2. Let P be a definite logic program (with Herbrand base BP). Then

MP = {A ∈ BP | P |= A}
2

There is also a constructive characterization of the least Herbrand model which we present now.

Definition 2.33 (Grounded Logic Program). Let P be a logic program, we define the grounded
logic program ground(P) as the logic program obtained by replacing all the non-ground clauses of
P by all their ground instances. 2

Let us consider the set H of all the Herbrand interpretations of a logic program P . We introduce
the immediate consequence operator.

Definition 2.34 (Immediate Consequence Operator). Let P be a definite logic program and let I
be a Herbrand interpretation of P . The mapping TP : H 7→ H is defined as follows:

TP (I) = {A | A ← A1, . . . , An ∈ ground(P) and A1, . . . , An ⊆ I}

2

2.2. DEFINITE LOGIC PROGRAMMING 23

To clarify the interest of TP we need to (very briefly) recall the fixpoint theory. Further information
on this topic can be found for example in [123, 169].
A set S is partially ordered if there exists a partial order ≤ on its elements. A partially ordered set
S has a least upper bound lub(S) = > (i.e. ∀s ∈ S.s ≤ >) and a greatest lower bound glb(S) = ⊥
(i.e. ∀s ∈ S.⊥ ≤ s).
A complete lattice L is a partially ordered set such that for each subset L′ of L there exist both
glb(L′) and lub(L′). Given a mapping T : L 7→ L, an element T ∈ L is a said a fixpoint of T if and
only if T (x) = x. In a complete lattice L are ensured to exist both a least fixpoint lfp(T), i.e. a
fixpoint such that for each fixpoint x ∈ L it holds that x ≤ lfp(T), and a and a greatest fixpoint
gfp(T), i.e. a fixpoint such that for each fixpoint x ∈ L it holds that gfp(T) ≤ x.

Given a mapping T : L 7→ L with L a complete lattice, T ↑ α represents α iterative applications
of T starting from ⊥ whereas T ↓ α represents α iterative applications of T starting from >. We
define the followings (< is the standard order in the set of ordinal numbers):

• T ↑ 0 = ⊥

• T ↑ α = T (T ↑ (α− 1)), if α is a successor ordinal

• T ↑ α = lub{T ↑ β : β < α}, if α is a limit ordinal

• T ↓ 0 = >

• T ↓ α = T (T ↓ (α− 1)), if α is a successor ordinal

• T ↓ α = glb{T ↓ β : β < α}, if α is a limit ordinal

Furthermore we have that if T is continuous, lfp(T) = T ↑ ω (where ω is the smallest limit
ordinal). Conversely, gfp(T) = T ↓ ω does not hold in general.

The interest in the fixpoint theory is given by two facts: (1) the set H of the Herbrand interpre-
tations of a logic program P is a compete lattice and we define lub(H) = ® and glb(H) = BP and
(2) the immediate consequence operator TP is continuous. Thus, TP has a least fixpoint.
We have the following result which characterizes the Herbrand models of a definite logic program
P in terms of TP .

Proposition 2.5. Let P be a definite logic program and let I a Herbrand interpretation. Then

I |= P if and only if TP (I) ⊆ I.

2

Finally, we have the constructive characterization of the least Herbrand model as shown in the
following result.

Proposition 2.6. Let P be a definite logic program. Then

MP = lfp(TP) = TP ↑ ω

2

It is very interesting to note how the immediate consequence operator reflects the procedural
interpretation of a clause. Indeed, the immediate consequence operator also represents a link
between the declarative semantics of a definite logic program and the procedural semantics which
is the topic of the next section.

24 CHAPTER 2. PRELIMINARIES

2.2.3 SLD-resolution

As said in previous sections, the logic programming paradigm is based upon the concept of query
answering, i.e. answering whether a given query (goal) G can be drawn from a logic program P .
While the least Herbrand model is a declarative characterization of all the logical consequences
of a definite logic program P , the SLD-resolution, proposed by Kowalski in [116], is the inference
rule which is used to check whether a given query G is a logical consequence of P or not. SLD-
resolution is a refinement of the original procedure based on the resolution principle defined by
Robinson [154] and it is the foundation of the operational semantics of definite logic programming.
Its name stands for Linear resolution with Selection function for Definite clauses and it was given
in [18].

The first step is to define what is a correct answer to a goal (query).

Definition 2.35. Let P be a definite logic program, let G be a definite goal and let σ a substitution
for the variables occurring in G. We say that σ is a correct answer for G with respect to P if and
only if

P |= ∀(Gσ)

2

Intuitively, to prove that a definite goal G is a logical consequence of a definite logic program P
the SLD-resolution process tries to compute a contradiction from the assumption that ¬G holds.
In the following definitions we assume to have selection function S, i.e. a function which selects a
literal in a goal G.
The SLD-resolution inference rule can be stated as follows.

Definition 2.36 (SLD-Resolution). Let P be a definite logic program and let S be a selection
function. The SLD-resolution inference rule is defined as:

G =← A1, . . . , Ai−1, Ai, Ai+1, . . . , Am S(G) = Ai C = (B0 ← B1, . . . , Bn)
← (A1, . . . , Ai−1, B1, . . . , Bn, Ai+1, . . . , Am)θ

where C is a variant of a clause in P and θ is the mgu of Ai and B0. 2

Definition 2.37 (SLD-Derivation). Let P be a definite logic program, let G be a definite goal and
let S be a selection function. An SLD-derivation of P ∪{G} via S is a (finite or infinite) sequence
of definite goals:

G0 = G ;C1 G1 . . . Gn−1 ;Cn Gn . . .

such that each Gi+1 is derived directly from Gi by a single step of SLD-resolution via S and a
variant Ci of a program clause. 2

Definition 2.38 (SLD-Refutation). Let P be a definite logic program, let G be a definite goal and
let S be a selection function. An SLD-refutation of P ∪{G} via S is an SLD-derivation of P ∪{G}
via S such that the last goal in the SLD-derivation is the empty clause 2. If Gn = 2 we say that
the SLD-refutation has length n. 2

Example 2.9. Consider again the logic program P in the example 2.3 and the goal G =←
father(john,mary). We have the following SLD-refutation.

2.2. DEFINITE LOGIC PROGRAMMING 25

G0 =← father(john,mary)
C1=father(X0,Y0)←parent(X0,Y0),male(X0); θ1={X0/john,Y0/mary}

G1 =← parent(john, mary), male(john)
C2=parent(john,mary); θ2=ε

G2 =← male(john)
C3=male(john); θ3=ε

2

2

Definition 2.39 (SLD Computed Answer). Let P be a definite logic program, let G be a definite
goal and let S be a selection function. An SLD computed answer θ for P ∪ {G} via S is the
substitution obtained by restricting the composed substitution θ1θ2 . . . θn to the variables occurring
in G, where θ1, . . . , θn is the sequence of mgu’s used in an SLD-refutation of P ∪ {G} via S. 2

Example 2.10. Consider again the logic program P in the example 2.3 and the goal G =←
father(X, mary). We have the following SLD-refutation.

G0 =← father(X, mary)
C1=father(X0,Y0)←parent(X0,Y0),male(X0); θ1={X0/X,Y0/mary}

G1 =← parent(X, mary),male(X)
C2=parent(john,mary); θ2={X/john}

G2 =← male(john)
C3=male(john); θ3=ε

2

In this case the composed substitution is:

θ1θ2θ3is{X0/X, Y0/mary}{X/john}ε = {X0/john, X/john, Y0/mary}
Hence, the SLD-computed answer of this example is θ = {X/john}.

2

Definition 2.40 (Failed SLD Derivation). A failed SLD derivation of P ∪ {G} is a finite SLD
derivation whose last element is not empty and it cannot be resolved with any clause in P .

2

The SLD-resolution is sound and complete with respect to the class of definite logic programs.

Theorem 2.3 (SLD Soundness). Let P be a definite logic program, let G be a definite goal and let
S be a selection function. Then every SLD computed answer for P ∪{G} via S is a correct answer
for P ∪ {G}. 2

Theorem 2.4 (SLD Completeness). Let P be a definite logic program, let G be a definite goal and
let S be a selection function. If P |= ∀(Gσ), then there exists an SLD-refutation of P ∪ {G} via S
with a computed answer θ such that Gσ is an instance of Gθ 2

The SLD-resolution process allows to answer to queries by means of the application a single infer-
ence step. For this reason the SLD-resolution is easily adaptable for computerized automation and
it led to the development of the PROLOG system (PROgrammation en LOGic) by Colmerauer
(as described in [54]).

A very important result is the independence of an SLD-refutation with respect to the choice of a
selection function.

26 CHAPTER 2. PRELIMINARIES

Theorem 2.5. Let P be a definite logic program and let G be a definite goal. Suppose there is
an SLD-refutation of P ∪ {G} with computed answer σ. Then, for any selection function S there
exists an SLD-refutation of P ∪ {G} via S with computed answer σ′ such that Gσ′ is a variant of
Gσ.

2

The following SLD-tree is a typical representation of SLD-derivations by means of a tree structure.

Definition 2.41. Let P be a definite logic program, let G be a definite goal and let S be a selection
function. An SLD-tree for P ∪ {G} via S is a tree satisfying the following properties:

1. each node of the tree is a (possibly empty) definite goal,

2. the root node is G,

3. let A1, . . . , Am, . . . , An with n ≥ 1 be a node in the tree and suppose that Am is the selected
atom by S; then for each clause H ← B1, . . . , Bk in P such that H and Am are unifiable
with mgu θ, the node has a child

← (A1, . . . , Am−1, B1, . . . , Bk, Am+1, . . . , An)θ

4. nodes which are the empty clause have no children.

2

Most Prolog systems uses a depth-first strategy to build an SLD-tree with respect to a program P
and a goal G always selecting the leftmost leaf of the current tree. Note that due to the theorem
2.5 we do not have to consider alternative selection functions in building an SLD-tree: this reduces
dramatically the tree size.
Each branch of an SLD-tree is a derivation of P ∪ {G}. Branches corresponding to successful
derivations are called success branches, branches corresponding to infinite derivations are called
infinite branches and branches corresponding to failed derivations are called failure branches (we
will represent failures with ¥).

Finally, we show that the declarative and the procedural characterizations of the semantics of
definite logic programs coincide.

Definition 2.42. Let P be a definite logic program. The success set SP of P is defined by the set
of atoms A ∈ BP such that there exists an SLD-refutation for P ∪ {← A} 2

Theorem 2.6. Let P be a definite logic program and let A ∈ BP . Then the following are equivalent:

• A ∈ SP ;

• A ∈ TP ↑ ω;

• every SLD-tree for P ∪ {← A} contains an SLD-refutation;

• P |= A.

2

2.3. NEGATION IN LOGIC PROGRAMMING 27

2.3 Negation in Logic Programming

Logic Programming is a declarative programming paradigm especially useful for representing
knowledge at a very high level and for reasoning about it. Definite logic programs are able to
express positive knowledge as well as the least Herbrand model semantics and the SLD-resolution
are, respectively, the declarative and the operational semantics with which positive conclusions can
be drawn from definite programs. However the lack of negative knowledge both in the goals and
in the programs is a main issue in representing knowledge.
The introduction of negative knowledge brings with it a number of complications which nowadays
have not been addressed completely yet.
In this section we show the “classical” approach of negation in logic programming. First we
introduce the Negation As Failure (NAF) rule and the completion of a logic program which allow to
infer negative conclusions from definite logic programs. Then we introduce normal logic programs
which allow for negation in the body of their clauses. Finally we briefly present the SLDNF-
resolution which extends SLD-resolution by addressing negation. Again, for further details and all
the proofs of propositions and theorems in this section see, for example, [123, 137, 14].
In the next section we will see other approaches to address the problem of negation in logic
programming.

2.3.1 The Negation As Failure (NAF) rule

Reiter in [151] was probably the first who defined an inference rule for treating negation: the
Closed World Assumption (CWA) rule. The idea is very simple: if a ground atom A is not a
logical consequence of a normal logic program P then the CWA rule simply infers ¬A.
The CWA rule was introduced in database context [151] where it is often a very natural rule to
use: if an information is not explicitly present in the database then it is taken to be false. Indeed,
databases can be seen as logic programs whose clauses are all ground facts. In this case any
information is either represented by a fact in the program or it is considered false. In general,
applying the CWA rule to a logic program P is not so simple. Indeed, due to the undecidability
of the validity problem of first order logic, there is no algorithm which takes an arbitrary A as
input and responds in a finite amount of time with the answer whether A is or is not a logical
consequence of P . If A is not a logical consequence of P , its proof can loop forever.
The above observation lead us to restrict the attention to those A whose attempted proofs fail
finitely.

Definition 2.43. Let P be a definite logic program P and let G be a definite goal. An SLD-tree
for P ∪{G} which is finite and contains no success branches is called a finitely failed SLD-tree for
P ∪ {G}. 2

The Negation As Failure (NAF) proposed by Clark [48] and implemented in most Prolog systems,
is based on the finitely failed SLD-tree.

Definition 2.44. Let P be a definite logic program P and let A be an atom. The Negation As
Failure (NAF) rule is defined as:

if P ∪ {A} has a finitely failed SLD-tree then P |= ¬A.

2

The main problem with the NAF rule is that it unsound! This is because, given a definite logic
program P we cannot infer a negative literal ¬A because the program P ∪{A} is always consistent.
Indeed, its Herbrand base BP is a Herbrand model for P .
From a procedural viewpoint, this is reflected in that SLD-resolution is no able to infer negative
literals.
However, Clark [48] proposed to solve that issue introducing the completion of a logic program P
which allows to infer negative conclusions from it. It is the subject of the next section.

28 CHAPTER 2. PRELIMINARIES

2.3.2 Completion of a logic program

The completion of a logic program is a syntactical transformation of a logic program replacing
implicative clauses (←) by if-and-only-if statements (↔). This transformation allows to draw
negative conclusions from a logic program as depicted in the following example.

Example 2.11. Consider again the logic program in the Example 2.3. Suppose to replace the
clause

father(X, Y) ← parent(X, Y),male(X). by father(X, Y) ↔ parent(X, Y),male(X).
The first form states that if X is a male parent of Y then X is father of Y . The second form
instead states that X is father of Y if and only if X is a male parent of Y . The latter implies that
if X does not satisfy the conditions, then X is not father of Y . The same cannot be drawn from
the implicative form. 2

The above idea is the basis of the completion of a logic program.

Definition 2.45 (Completed Definite Logic Program). Let P be a definite logic program and let =
be a binary predicate symbol not occurring in P and whose intended interpretation is the identity
relation. The Complete Definite Logic Program Comp(P) is obtained from P by the following
transformations.

1. For each n-ary predicate p occurring in P replace each clause C of p of the form

C = [p(t1, . . . , tn) ← A1, . . . , Am

by the formula
F = [p(X1, . . . , Xn) ← B]

where
B = ∃~Y .[(X1 = t1), . . . , (X1 = tm), A1, . . . , Am)]

where ~Yi are the variables occurring in the clauses C and X1, . . . , Xn are distinct variables
do not occurring in C.

2. Let F1, . . . , Fk be all the formulae obtained by the previous step for an n-ary predicate p.
Replace all F1, . . . , Fk by

• p(X1, . . . , Xn) ↔ B1 . . . Bk if k > 0

• p(X1, . . . , Xn) ↔ false if k = 0

3. Add the following axioms to the above obtained set of formulae:

• c 6= d for all pairs c, d of distinct constants in L

• ∀(f(X1, . . . , Xn) 6= g(Y1, . . . , Ym)) for all pairs f, g of distinct function symbols in L

• ∀(f(X1, . . . , Xn) 6= c for each function symbol f and constant c in L

• ∀(t 6= X) for each term t containing X and different from X

• ∀((X1 6= Y1) ∨ . . . ∨ (Xn 6= Yn) → f(X1, . . . , Xn) 6= f(Y1, . . . , Yn)) for each function
symbol f in L

• ∀(X = X)

• ∀(X = Y → Y = X)

• ∀(X = Y ∧ Y = Z → X = Z)

• ∀((X1 = Y1) ∧ . . . ∧ (Xn = Yn) → f(X1, . . . , Xn) = f(Y1, . . . , Yn)) for each function
symbol f in L

2.3. NEGATION IN LOGIC PROGRAMMING 29

• ∀((X1 = Y1) ∧ . . . ∧ (Xn = Yn) → p(X1, . . . , Xn) → p(Y1, . . . , Yn)) for each predicate
symbol p in L (including =).

Those axioms define the meaning of the predicate = and they are called the Clark Equality
Theory (CET)

2

Example 2.12. Let P be the logic program of Example 2.3 augmented by the fact
parent(ann,mary).

The completion Comp(P) of the logic program P is (we don’t add explicitly CET):
father(X,Y) ↔ ∃V, W.[X = V, Y = W,parent(V, W),male(V)]
parent(X,Y) ↔ [X = john, Y = mary] ∨ [X = ann, Y = mary]

male(X) ↔ [X = john]
2

The completion of a definite logic program allows for a logical justification of the NAF rule whose
soundness has been shown by Clark in [48].

Theorem 2.7. Let P be a definite logic program and let A be an atom. If P ∪ {A} has a finitely
failed SLD tree then Comp(P) |= ¬A. 2

NAF is also complete with respect to definite logic programs.

Theorem 2.8. Let P be a definite logic program and let A be an atom. If Comp(P) |= ¬A then
P ∪ {A} has a finitely failed (fair) SLD tree. 2

The concept of fairness in SLD trees is defined as follows.

Definition 2.46. An SLD-derivation is fair if it is either failed or, for every atom A in the
derivation, (some further instantiated version of) A is selected within a finite number of steps.

An SLD-tree is fair if every branch of the tree is a fair SLD-derivation.
2

2.3.3 SLDNF for Definite Logic Programs

The completion of a logic program allows to infer negative conclusions from it. Hence we could
think of combining the SLD resolution with the NAF rule in order to get a procedural mechanisms
for answering to normal goals.

Definition 2.47. [Normal Goal] A normal goal (or a normal query) G is a clause of the form:

← L1, . . . , Ln

where each Li is a literal and it is called a subgoal of G. 2

In the remainder we will drop the word “normal”, if it is clear from the context. In order to
evidence the use of the NAF rule for handling negation, we denote a literal L as an atom A or as
its negative counterpart not A where the symbol not denotes the use of NAF.
We are now ready to present the SLDNF resolution for definite programs.

Definition 2.48. [SLDNF Resolution for Definite Programs] Let P be a definite logic program,
let G be a normal goal and let S be a selection function. An SLDNF derivation of P ∪ {G} via S
is a finite or infinite sequence of normal goals:

G0 = G ;C1 G1 . . . Gn−1 ;Cn Gn . . .

such that each Gi+1 is derived directly from Gi by one of the followings:

30 CHAPTER 2. PRELIMINARIES

1. if S(Gi) is an atom, then Gi+1 is obtained from Gi by a single step of SLD-resolution with
a variant Ci of a program clause;

2. if S(Gi) = not A and the goal ← A has a finitely failed SLD tree, then Gi+1 is obtained from
Gi by removing A (and Ci is empty)

2

The basic idea in SLDNF resolution is that, when a negative literal not A is selected, a new SLD
derivation, called a consistency derivation starts from A. Each consistency derivation has to fail
finitely in order to prove not A.

Example 2.13. Consider the following logic program P , where the predicate on(X, Y) stands for
“a block X is on the top of a block Y ”:

on(c, b).
on(b, a).

An SLDNF refutation of the goal

← on(X, Y), not on(Z, X)

is the following:

← on(X,Y), not on(Z, X)
C1=on(c,b) θ1={X/c,Y/b}

← not on(Z, c)
C2=ε θ2=ε

← on(Z, c)

2 ¥

The SLDNF computed answer is θ = {X/c, Y/b}. As we can see in the picture, to prove not on(Z, c),
a new SLD derivation is fired starting from ← on(Z, c). As the latter gaol fails finitely (because
there is no fact in the program which unifies to it), then not on(Z, c) succeeds.
If at the first we have would selected on(b, a), the resulting goal ← not on(Z, b) would have failed
due to the presence of on(c, b) in P .

2

The soundness of SLDNF is shown by the following theorem.

Theorem 2.9. Let P be a definite logic program and let G a normal goal. If P ∪ {G} has an
SLDNF refutation with the computed answer θ, then

Comp(P) |= ∀(Gθ)

2

However the SLDNF is not complete. This is due to the quantification of variables in the negative
literals. Let us consider the goal G =← not on(X,Y) with the previous “blocks” example. We
expect several answers for this goal, for example {X/a, Y/b}. However the only SLDNF derivation
for P ∪ {G} fails because there is an SLD refutation for the ← on(X, Y). The problem is that
variables into negative literals are universally quantified and a consistency derivation is a “universal
test” which does not bind the variables.
To ensure (a restricted form of) completeness we have to use a safe selection function.

Definition 2.49 (Safe Selection Function). A selection function S is safe is it selects either an
atom or a ground negative literal. 2

Here, we don’t present the completeness theorem of SLDNF for definite logic programs, however
we assume in the sequel that a selection function S will be always safe.

2.3. NEGATION IN LOGIC PROGRAMMING 31

2.3.4 Normal Logic Programming

Being able to infer negative conclusions from a program, it is natural to extend the syntax of
programs allowing for negative information in the bodies of the clauses. Such programs are called
normal logic programs and their clauses are normal clauses.

Definition 2.50 (Normal Clause and Normal Logic Program). A normal clause is a clause of the
form:

H ← L1, . . . , Ln

where H is an atom and each Li is a literal.

A normal logic program is a finite set of normal clauses.
2

Example 2.14. We could extend the logic program P = {on(c, b). on(b, a).} of the Example 2.13
with the clauses:

blocked(X) ← on(Y, X).
on top(X) ← not blocked(X).

stating that (1) “if a block Y is on a block X then X is blocked” and (2) “if a block X is not blocked
then it is the top of a tower of blocks”.

2

In the literature there are a number of proposals for how normal logic programs (and more generally
negation in logic programs) can be interpreted. In this section we continue the “classical” approach,
i.e. we extend the approach of both completion and SLDNF to normal logic programs. We will
see later other approaches to negation.
The notion of completion of a logic program is still valid for normal logic programs.

Example 2.15. 2.16 The completion of the program P of the Example 2.14 is as follows:

on(X, Y) ↔ [X = c, Y = b] ∨ [X = b, Y = a]
blocked(X) ↔ ∃V, W.[X = W, on(V, W)]
on top(X) ↔ ∃V.[X = V, not blocked(V)]

However, the completion of normal logic programs is not always consistent. Consider for example
the program P :

p ← not p

The completion of P is clearly inconsistent, then no Herbrand model can be found for it. The idea
is to restrict our attention to normal logic programs whose completion is consistent.
We present here some important classes of consistent normal logic programs: call-consistent, strat-
ified and locally stratified normal logic programs. We need the notion of dependency graph of a
logic program.

Definition 2.51 (Dependency Graph). A dependency graph GP of a logic program P is defined
as follows:

• the nodes of GP are the predicate symbols occurring in P

• for each clause in P of the form p(t1, . . . , tn) ← B such that q(v1, . . . , vm) ∈ B, the graph
GP has a directed edge labeled ’+’ from the node for the n-ary predicate p to the node for the
m-ary predicate q

• for each clause in P of the form p(t1, . . . , tn) ← B such that not q(v1, . . . , vm) ∈ B, the graph
GP has a directed edge labeled ’−’ from the node for the n-ary predicate p to the node for the
m-ary predicate q

32 CHAPTER 2. PRELIMINARIES

2

The first important class of logic programs is the call-consistent class.

Definition 2.52 (Call-Consistent Logic Program). A logic program P is call-consistent if and
only if its dependency graph GP contains no cycle having an odd number of edges.

2

The next classes are all subsets of the call-consistent class and they are all based on the notion of
stratification.

Definition 2.53 (Stratification). Let P be a logic program. A partition π1, . . . , πn of the set of
all predicate symbols of P is called a stratification of P if for each clause H ← B and for any
p ∈ πk, i ∈ [1, n] then if p(~t) occurs in H we have that

• if q(~v) occurs as an atom in B then q ∈ πi, i ∈ [1, k]

• if not q(~v) occurs as a negative literal in B then q ∈ πi, i ∈ [1, k − 1]

If a predicate p does not occur in the head of any clause of P , then p ∈ π1

2

Definition 2.54 (Stratified Logic Program). A logic program P is stratified if it admits a strati-
fication π1, . . . , πn, i.e. P = π1 ∪ . . . ∪ πn.

Example 2.16. Let us consider again the program P of the Example 2.14. The following partition
π1, π2 is a stratification:

π1: on(c, b).
on(b, a)
blocked(X) ← on(Y, X).

π2 : on top(X) ← not blocked(X).
2

We can extend the notion of stratification of a logic program P considering the grounded logic
program ground(P).

Definition 2.55 (Local Stratification). Let P be a logic program with its Herbrand base BP . A
local stratification stratum is a function which maps the set BP to the set of countable ordinals
and such that for each a ∈ BP :

stratum(not a) = stratum(a) + 1

2

Definition 2.56. Let P be a logic program. A clause H ← B of P is locally stratified with respect
to a local stratification stratum if for each ground instance HG ← BG, for each literal l in BG we
have that:

stratum(HG) ≥ stratum(l)

The whole program P is locally stratified if there exists a local stratification stratum such that for
each clause C in P , C is locally stratified with respect to stratum.

Again we can easily observe that a stratified logic program is a locally stratified logic program.

A program belonging to one of the above classes is ensured to have a Herbrand model, as shown
by Sato in [159].

Theorem 2.10. If P is a call-consistent logic program, then Comp(P) has a Herbrand model.
2

2.3. NEGATION IN LOGIC PROGRAMMING 33

Having a Herbrand model we could think about a restatement of the least Herbrand model for
consistent normal logic programs. The immediate consequence operator TP is redefined as follows:

Definition 2.57 (Immediate Consequence Operator). Let P be a normal logic program and let I
be a Herbrand interpretation of P .

TP (I) = {A | A ← L1, . . . , Ln ∈ ground(P) and ∀i ∈ [1, n], I |= Li}
2

We can extend the result of Proposition 2.5 to consistent normal logic programs.

Proposition 2.7. Let P be a normal logic program and let I be a Herbrand interpretation. Then

I |= P if and only if TP (I) ⊆ I.

2

The following result (originally made for definite logic programs) by Apt and Van Emden [18]
characterizes the Herbrand models of Comp(P) in terms of the operator TP .

Theorem 2.11. For every Herbrand interpretation I, I |= Comp(P) if and only if TP (I) = I.
2

Given a definite logic program P , it is natural to choose its least Herbrand model as the standard
model of P .
Switching to normal logic programs, the situation is very different because the existence of a
least Herbrand model is not ensured. Call-consistent logic programs are ensured to have minimal
Herbrand models (with respect to sets inclusion) as shown by Dung in [65]. The problem is that
call-consistent normal logic program can have more than one minimal Herbrand model.

Example 2.17. Let us consider the following stratified logic program P :
p ← not q

There are two minimal Herbrand models of P :

M1 = {p} M1 = {q}
2

Having more than one minimal Herbrand model, we need a characterization of what an intended
model should contain. This characterization is given by the concept of supported interpretation.

Definition 2.58. Let P be a normal logic program and let I be a Herbrand interpretation. I is
said to be supported if ∀H ∈ I, I is such that:

∃L1, . . . , Ln.(H ← L1, . . . , Ln ∈ ground(P) and I |= L1, . . . , Ln)

If I is a model of P , it is called a supported model of P .
2

We have also the following result.

Proposition 2.8. Let P be a normal logic program and let I be a Herbrand interpretation. I is a
supported model of P if and only if TP (I) = I. 2

For the class of stratified logic programs, we can define a supported model as follows.

Let TP ↑ ω(I), where I is a Herbrand interpretation, denote the limit of the sequence:

TP ↑ 0(I) = I
TP ↑ (n + 1)(I) = TP (TP ↑ n(I)) ∪ TP ↑ n(I)

34 CHAPTER 2. PRELIMINARIES

Given a stratified program P = π1 ∪ . . . ∪ πn, it is possible to define a Herbrand model of P as
follows:

M1 = Tπ1 ↑ ω(®)
M2 = Tπ2 ↑ ω(M1)

...
Mn = Tπn

↑ ω(Mn−1)

The supported model MP = Mn is called the standard model of P because, as shown in [16], that
MP is a minimal Herbrand model of P and it is not depend on the stratification of P .

Example 2.18. Let us consider again the program P of the Example 2.14. The standard model
MP = M2 is obtained as follows:

M1 = {on(c, b), on(b, a), blocked(b), blocked(a)}
M2 = {on top(c)} ∪M1

However another (rather counterintuitive) minimal Herbrand model is:

M = {on(c, b), on(b, a), blocked(b), blocked(a), blocked(c)}
2

2.3.5 SLDNF resolution for Normal Logic Programs

As we have adapted the semantics of the least Herbrand model, through the minimal Herbrand
models, to (a subclass of) normal logic programs, we could extend the SLDNF resolution in order
to answering goals with respect to normal logic programs.
We do not present the details of the SLDNF resolution for normal logic programs because it is quite
long and it is not central to our dissertation. However, the procedure is very similar to SLDNF for
definite logic programs: the key difference is that when a negative literal not A is selected, then
a new (consistency) SLD derivation is fired, starting from ← A. If A has an SLD refutation with
the empty substitution as the computed answer then not A fails finitely; else if A fails finitely then
not A succeeds. During the derivation starting from ← A, another negative literal can be selected,
thus another SLD derivation is fired.

Example 2.19. Let us consider again the program P of the Example 2.14 and the goal G =←
not on top(b). The following is an SLDNF refutation for P ∪ {G}.

← not on top(b) ← on top(b) ← blocked(b)

2 ← not blocked(b) ← on(X, b)
θ={X/c}

¥ 2

Note that the SLD refutation starting from ← blocked(b) has the empty substitution as computed
answer. Then ← on top(b) fails finitely. 2

The importance of having the empty substitution as computed answer for a consistency SLD
derivation starting from ← A and fired in order to prove ← not A is crucial for the soundness of
the SLDNF resolution for normal logic programs.

Example 2.20. Let us consider again the program P of the Example 2.14 and the goal G =←
not on top(Y). Consider drop the “empty substitution” condition from SLDNF resolution. The
following would be an SLDNF refutation for P ∪ {G}.

2.4. ALTERNATIVE SEMANTICS OF NORMAL LOGIC PROGRAMMING 35

← not on top(Y) ← on top(Y) ← blocked(Y)

2 ← not blocked(Y) ← on(X, Y)
θ={X/c,Y/b}

¥ 2

In this case, having an SLD refutation for ← blocked(Y) (with computed answer {Y/b}), we draw
that for each block Y , Y is not on the top. This is obviously unsound.

2

In order to get soundness, SLDNF should be implemented with a safe selection function. However,
SLDNF implemented with a safe selection function still shows problems of completeness. A main
problem of completeness is represented by goals composed only of negative non-ground literals.
This is the problem of floundering.
There is no optimal solution to avoid floundering because in general the problem of checking
statically if, given a selection function, a program will lead to floundering is undecidable. A
solution which limits the expressiveness of the procedure is to restrict the input programs to
allowed programs, i.e. programs which have sufficient syntactical conditions ensuring the absence
of floundering. One simple (and weak) condition is to impose that variables appearing in a negative
literal in a clause, appear also in positive literal of the body of the clause.

Finally, we state the soundness theorem for the SLDNF resolution for normal logic programs.

Theorem 2.12. Let P be a normal logic program, let ← G be a normal goal and let S be a safe
selection function.

• if the SLDNF resolution with respect to P ∪ {G} has a refutation with computed answer θ
then

Comp(P) |= ∀(Gθ)

• if the SLDNF resolution with respect to P ∪ {G} fails finitely then

Comp(P) |= ∀(¬G)

2

2.4 Alternative Semantics of Normal Logic Programming

The completion semantics and the SLDNF-resolution do not resolve entirely the problem of nega-
tion which has been the subject of a number of researches during the last thirty years.
A main issue is to extend the notions seen in previous section to the whole class of normal logic
programs. One way this has been addressed is by switching to three-valued models. Intuitively, in
this setting a term can have three truth-values true, false or unknown. These semantics allows
for defining models of a certain domain with a partial knowledge about the truth values of the
elements of the domain. These models are called partial models and can be seen as a generalization
of the two valued models (total models) in which all the elements have a defined truth value.
However, the completion semantics seen in previous section is not the only way of interpreting
normal logic programs. Alternative semantics for normal logic programs which in some contexts
better capture the meaning of the negative information have been proposed. Probably, the most
relevant alternative approach is the stable models semantics approach [88] (which is based on the
concept of supported interpretations, see Definition 2.58).

In front of the huge amount of research on this topic there is no unanimity on which is the best
semantics for normal logic programs. The objective here, is not to do a comprehensive survey

36 CHAPTER 2. PRELIMINARIES

on this subject, and we present briefly the approaches that we will use in our dissertation. In
particular we will present the three-valued completion semantics (extending the notions seen in
the previous section to a three-valued logic), stable models semantics and finally the well founded
semantics which extends the stable models semantics to three-valued models. For further details
and for further semantics, see [123], [118], [17], [85], [86], [155], [25], [88]. Another approach for
defining a semantics for negation is the argumentation approach (see for example, [65] and [30])
which we do not include in this survey as it is not so relevant for our scopes.

2.4.1 Three-valued completion semantics

The three-valued completion semantics was proposed by Fitting in [79]. Important results for this
semantics was subsequently given by Kunen in [118].

In the three-valued completion semantics an element of the Herbrand base of a logic program P can
have three possible values: true, false and unknown. This approach is based on a three valued
logic due to Kleene [112] in which three values are assumed: 0 representing false, 1 representing
true and 1

2 representing unknown.
The three-valued completion semantics ensures the existence of a least (three-valued) Herbrand
model for any normal logic program P .

We introduce now a mapping | · | from BP to the set {0, 1
2 , 1} which defines the meaning of ground

formulae as follows:

| ¬F | = 1− | F |
| F ∧G | = min(| F |, | G |)
| F ← G | =

{
1 if | F | ≥ | G |
0 if | F | < | G |

Note that← receives a two-valued interpretation, i.e. a formula F ← G can be either true or false.
When a ground formula evaluates to 1 we say that it is true relative to | · |, when it evaluates to 0
we say that it is false relative to | · |. The mapping | · | can be conveniently presented in the form
of a three-valued Herbrand interpretation.

Definition 2.59. Let P be a logic program with its Herbrand base BP . A pair I = (I+, I−), with
I+, I− ⊆ BP , is called a three-valued Herbrand interpretation. I+ are atoms assumed to be true,
and I− are atoms assumed to be false. All the atoms in the set BP − (I+ ∪ I−) are assumed to
be unknown.
Moreover we say that:

• I is total if I+ ∪ I− = BP

• I is consistent if I+ ∩ I− = ®

2

Note that every standard Herbrand interpretation I, as in definition 2.30 can be identified with
the total, consistent three-valued Herbrand interpretation (I, BP − I).

Definition 2.60 (Information Ordering). Let I, J be three-valued Herbrand interpretations. The
information ordering v is the natural ordering defined as follows:

I v J if and only if I+ ⊆ J+ and I− ⊆ J−

2

We introduce now the three-valued immediate consequence operator Φ which is intuitively the
three-valued counterpart of the operator TP .

2.4. ALTERNATIVE SEMANTICS OF NORMAL LOGIC PROGRAMMING 37

Definition 2.61. Let P be a logic program and let I be a three-valued Herbrand interpretation.
We define

ΦP (I) = (T, F)

where

T = {H | ∃L1, . . . , Ln.(H ← L1, . . . , Ln ∈ ground(P) and L is true in I)}
F = {H | ∀L1, . . . , Ln.(if H ← L1, . . . , Ln ∈ ground(P) then L1, . . . , Ln is false in I)}

2

The following result summarizes the interesting properties of Φ.

Proposition 2.9. Let P be a logic program.

1. if I is a consistent three-valued Herbrand interpretation then ΦP (I) is a consistent three-
valued Herbrand interpretation;

2. Φ is monotonic;

3. Φ, in general, is not continuous.

2

The next step is to define the meaning of the completion in the three-valued logic. For this
purpose we also need to assign meaning both to the disjunction and equivalence connectives and
to quantifiers.

| F ∨G | = max(| F |, | G |)
| F ↔ G | =

{
0 if | F | = | G |
1 if | F | 6= | G |

Note that ↔ receives a two-valued interpretation as for ←. Quantifiers are interpreted in the
standard way.
The new interpretation of connectives and quantifiers allows us to determine when a first-order
formula F is true in a three-valued interpretation I, written as I |=3 F . We have the following
results.

Proposition 2.10. Let P be a logic program. For every three-valued Herbrand interpretation I
we have that

I |=3 Comp(P) if and only if ΦP (I) = I

Moreover we have that lfp(ΦP) is a consistent three-valued model of Comp(P).
2

The three-valued completion semantics is defined for each normal logic program P by ensuring the
existence of a three-valued model for its completion Comp(P).
The last result of Kunen [118] is an important result showing that the truth value of a formula
with respect to Comp(P) can be determined by iterating a finite number of times the operator
ΦP starting from the empty three-valued Herbrand interpretation (®,®).

Proposition 2.11. Let P be a logic program and let F be a formula not containing ← and ↔.
Then

Comp(P) |=3 F if and only if ΦP ((®,®)) ↑ n |=3 F for some finite n.

2

38 CHAPTER 2. PRELIMINARIES

Example 2.21. Consider the normal logic program P = p ← not p. We have that Comp(P)
is inconsistent with respect to the standard two-valued semantics. However it is consistent in the
three-valued completion semantics. We have that:

ΦP ((®,®)) = (®,®)

which indeed is a model of P .
2

The SLDNF resolution is still sound with respect to the three-valued completion semantics. More-
over, if we consider only allowed normal logic programs (i.e. programs such that variables occurring
in a negative literal of a clause C also appear in a positive literal in the body of C), the SLDNF
resolution is also complete.

Example 2.22. Let us consider the following (allowed) logic program P together with its comple-
tion:

P : p ← q. Comp(P): p ↔ [q ∨ not q]
p ← not q. q ↔ q
q ← q.

The SLDNF resolution, with respect to the goal G = p. loops infinitely. However we have that p is a
logical consequence of Comp(P) in standard completion semantics but it is not in the three-valued
completion semantics. This is because in three-valued logic q ∨ ¬q is not equivalent to true. 2

2.4.2 Stable models semantics

The stable models semantics for normal logic programs was proposed by Gelfond and Lifschitz in
[88] and it introduces a different characterization of negation in normal logic programs from that
of the completion semantics. It is based on the following definition of the reduct ΠI

P of a logic
program P with respect to an interpretation I.

Definition 2.62. Let P be a logic program and I a set of atoms. Consider the grounded logic
program ground(P). The reduct ΠI

P of P with respect to I is the logic program obtained from
ground(P) by deleting:

• all the clauses H ← B of ground(P) such that not p(~t) ∈ B and p(~t) ∈ I

• all the negative literals in the body of the remaining clauses

2

Clearly, each reduct of a logic program P is a definite logic program, hence it admits a least
Herbrand model.

Definition 2.63 (Stable Model Operator). Let P be a logic program and I a set of atoms. We
define the Stable Model operator StP with respect to P as the least Herbrand model of the reduct
ΠI

P , i.e.:

StP (I) = MΠI
P

2

Definition 2.64 (Stable Model). Let P be a logic program and I an Herbrand interpretation. We
say that I is a stable model of P if and only if

I = StP (I)

2

2.4. ALTERNATIVE SEMANTICS OF NORMAL LOGIC PROGRAMMING 39

Example 2.23. Let us consider the logic program P :

p ← not q.

q ← q.

The unique stable model of P is M1 = {p}. 2

The intuition behind the definition of a stable model is to consider the above P and I respectively
as a set of rules and a set of beliefs for a rational entity (usually called an agent in the literature).
Then any clause that has a literal not A in its body, with A ∈ I can be deleted as it is useless for
the agent. Moreover any literal not A with A 6∈ I is trivial with respect to the agent beliefs, thus
can be removed. This yields the reduct ΠI

P . Then if I happens to be precisely the set of atoms
which follow logically from this simplified set of premise, then the set I of beliefs is stable. Hence,
citing [88], “stable models are possible sets of beliefs an agent might hold”.

Note that stable models are supported models but the contrary does not hold. For example the
program P of the Example 2.23 has two supported models, namely M1 = {p} and M2 = {q}, but
only a stable model, namely M1.

In general, a normal logic program P can have one, none or many stable models.
Consider again the logic program P = p ← not p. It has no stable models because the interpre-
tations I = ® and I = {p} which are the only possible interpretations of P , do not coincide with
the least Herbrand models of the corresponding reducts of P .

On the other hand, consider the logic program P defined as:

p ← not q
q ← not p

The stable models for P are both M1 = {p} and M2 = {q}.
A class of logic programs for which the existence of a unique stable model is ensured is the class
of locally stratified logic programs for which Gelfond and Lifschitz in [88] presented the following
result.

Theorem 2.13. If a logic program P is locally stratified then it has a unique stable model. 2

The relationships between stable models and the standard model defined for stratified logic pro-
grams, is shown by the following result.

Theorem 2.14. Let P be a stratified logic program. Its standard model MP coincides with the
unique stable model of P . 2

Finally, we have the following result, shown by Dung in [65] which gives a sufficient condition for
the existence of at least a stable model of logic program P .

Theorem 2.15. If a logic program P is call-consistent then it has at least one stable model. 2

2.4.3 Well-founded semantics

The well-founded semantics was proposed by Van Gelder, Ross and Schlipf in [86]. This is a widely
accepted semantics for normal logic programs based on three-valued models.
The well-founded semantics, as we will see, has strong relationships with the stable models se-
mantics. In this brief presentation we follow the fixpoint characterization given in [85]. This
characterization is based on the stable model operator St.
Given a logic program P and a set of atoms I, the operator St2P (I) = StP (StP (I)) is defined as
the Stable Model operator applied twice. The following result, shown in [85], holds for St2.

40 CHAPTER 2. PRELIMINARIES

Proposition 2.12. Let P be a logic program. The operator St2P is monotonic. Then the least
fixpoint lfp(St2P) = IP exists as well as the greatest fixpoint gfp(St2P). Moreover we have that

gfp(St2P) = StP (IP)

The well-founded model of a logic program P is defined as follows.

Definition 2.65 (Well-founded model). Let P be a logic program with its Herbrand base BP and
let IP be the least fixpoint of St2P . We define the well-founded model WP of P as follows:

1. for each atom a ∈ BP such that a ∈ IP , a is true in WP

2. for each atom a ∈ BP such that a 6∈ StP (IP), a is false in WP

3. for each other atom a ∈ BP , a is unknown in WP

Example 2.24. Let us consider the following program P :

p ← not q

q ← not p

We have that lfp(St2P) = IP = ® and StP (IP) = {p, q}. Then both p and q are unknown in the
well founded model of P , i.e.:

WP = (®,®)

2

In [86] the following result has been shown.

Proposition 2.13. Let P be a logic program. Then WP exists and it is unique.

The last result was given by [86] and it shows the relation between stable models and well-founded
models.

Theorem 2.16. Let P be a logic program. If P has a unique stable model, then it coincides with
the well-founded model of P 2

Roughly speaking in the well founded model WP of a logic program P all the elements of BP which
are true in all the stable models of P are also true while all the elements which are false in all
the stable models of P are also false in WP . All the other elements of BP are unknown. Thus, if
a logic program has a unique stable model then it coincides with WP and this holds for the class
of the locally stratified logic programs.

The well founded semantics, with the three-valued completion semantics, is defined for any normal
logic program P but the two semantics are different. First, the well founded semantics relies upon
two valued connectives rather than three-valued ones. Furthermore, given a logic program P , it is
not ensured that the well-founded semantics and the three-valued completion coincide.
Consider the logic program P = p ← p. We have that P has a unique stable model which is
the empty set of atoms ®. It coincides with the well-founded model because lfp(St2P) = ® and
gfp(St2P) = ®. Thus p is false in WP . The three valued completion semantics instead interprets
p as unknown.

2.5. CONSTRAINT LOGIC PROGRAMMING (CLP) 41

2.5 Constraint Logic Programming (CLP)

Constraint Logic Programming (CLP) [15], [94], [95] is an extension of logic programming in which
the underlying language has a predefined part, namely the constraint domain. A constraint domain
provides a set of relations, called constraints which can be embedded into the body of the clauses
of a logic program. Those relations are then collected, during a computation, in a constraint store
and it is the domain dependent constraint solver which provides the possible solutions to the set
of constraints in the store. The solutions are then integrated with the solutions obtained by the
classical resolution-based algorithm of logic programming. The real issue is that having an a-priori
fixed domain, the constraint solver could provide an algorithm which is typically some order of
magnitude faster than resolution. Moreover, constraint solvers can handle some types of reasoning,
e.g. arithmetic reasoning, which is difficult or impossible to dealt with by resolution. Important
constraint domains are e.g. real numbers arithmetic, term equations, and finite domain variables
reasoning.
Hence, the CLP framework merges the declarative benefits of logic programming and the compu-
tational benefits of dedicated algorithms for some predefined domains. We denote as CLP(C) the
CLP language based on the constraint domain C.
Definition 2.66 (Structure). Let Σ be a signature. A Σ-structure D consists of a set D of objects
and of an assignment of functions and relations on D to the symbols of Σ respecting the arities of
those symbols. 2

Definition 2.67 (Constraint Domain and Constraint Solver). A constraint domain C is a tuple
〈Σ,D, L, T 〉 where Σ is a signature of functions and relations (each with an assigned arity), D is
a Σ-structure, i.e. an assignment of the functions and relations in Σ on a set D (respecting the
arities of the symbols), L is the (first-order) class of formulae (constraints) which can be expressed
and T is an axiomatization of (some) properties of D (constraint theory).

A constraint solver solvC is a function which maps each formula in L to {true, false, unknown}.
2

Most of the constraint domains have to satisfy some basic properties (which we assume to hold for
a constraint domain C= 〈Σ,D, L, T 〉 throughout our thesis):

• the binary predicate symbol = is contained in Σ and it is interpreted as the identity in D;

• the class of constraints L is closed under variable renaming, conjunction and existential
quantification;

• D is a model for the constraint theory T , i.e. all the formulae in T are true under D;

• a solver solvC agrees with T , i.e. for each constraint c ∈ L, if solvC(c) = true then T |= ∃c,
and if solvC(c) = false then T |= ¬∃c.

Example 2.25. A typical example of a constraint domain C is the finite domain constraint domain
FD. In this settings, the signature Σ is composed of the set of classical arithmetical functions
(+,−, ∗, . . .) and relations (<,≤, > . . .); the Σ-structure D assigns the elements of Σ to elements
of the set of integers Z interpreting the elements in Σ in the standard way; L is the language of
integer expressions where each variable takes values in a finite integer interval and finally T is the
classical set of axioms on integers.

2

Another very desirable property of a constraint domain is the satisfaction completeness of its
constraint theory.

Definition 2.68. Let C = 〈Σ,D, L, T 〉 be a constraint domain. The constraint theory T is said to
be satisfaction complete if for each constraint c ∈ L either T |= ∃c or T |= ¬∃c.

42 CHAPTER 2. PRELIMINARIES

Moreover we say that a solver solvC is complete whenever solvC(c) = true if and only if T |= ∃c
and solvC(c) = false if and only if T |= ¬∃c.

2

A CLP(C) program is a set of clauses of the form

H ← C1, . . . , Cn, L1, . . . , Lm

where the key difference with respect to a normal clause is that each Ci is a constraint of C. We
refer to the constraints in the body of a rule as constraint atoms. The predicates not related to
the constraint domain are referred to as the user-defined predicates.

Example 2.26. The following is a CLP(FD) clause.

p(X) ← Y > 2, q(X, Y)

2

The semantics of a CLP(C) program can be defined in both an operational and a declarative way
as for logic programs. Those semantics are simply extensions of the semantics of logic programs
taking into account that constraint atoms have a predefined semantics and their valuation is left
to the constraint solver.
We briefly present only the declarative semantics for definite CLP programs, i.e. CLP programs
which do not have any negative literal in the bodies of the clauses. We follow mainly [95] to which
we demand for the proofs of the theorems.

Definition 2.69. Let P be a definite CLP(C) program and let C= 〈Σ,D, L, T 〉. A C-interpretation
IC for P is an Herbrand interpretation which agrees with D on the interpretation of the symbols
in C. 2

As the meaning of the constraints is fixed by C then we may represent a C-interpretation IC simply
by the subset of the user-defined atoms.

Definition 2.70. A C-model MC for P is a C-interpretation which is a model of P .
2

As for definite logic programs, we have the following result.

Theorem 2.17. Each definite CLP(C) program P has a C-model. We denote the least C-model of
P as lm(P, C). 2

Hence, lm(P, C) is the declarative characterization of the semantics of a CLP(C) program P .
Operationally, we can obtain a similar result extending the SLD-procedure to handle constraint
atoms. If a constraint atom is selected then its valuation is delegated to the constraint solver which
also builds incrementally a constraint store for the global valuation of the selected constraints. We
do not show here the procedure as it is out of our scope. However all the theoretical results
stated for logic programs can be extended to CLP programs. In particular we have the equivalence
between the operational and declarative semantics for definite CLP programs.
Moreover, the other semantics for logic programming can also be extended to CLP logic program-
ming in a similar way. In our thesis we denote as

|=3(C)

the notion of entailment in the three-valued completion semantics for a CLP(C) program.

2.6. ANSWER SETS PROGRAMMING (ASP) 43

2.6 Answer Sets Programming (ASP)

In the last decade, another logic programming paradigm has become one of the more popular frame-
works especially for knowledge representation: the Answer Sets Programming (ASP) paradigm
[25, 128, 87, 24].

Answer sets programming is based on an extended form of logic programs, namely disjunctive logic
programs. But before of defining disjunctive logic programs, a note on negation is needed. As seen
in previous sections, a literal L in the body of a normal clause is either of the form A or not A
(where A is an atom) and the syntactical connective not is intended as Negation As Failure. Thus,
in normal logic programming we never have the evidence of negative information. I.e. we cannot
say ¬A holds because we have the evidence that A is false. Rather we say that ¬A holds because
A fails finitely.
In disjunctive logic programming it is possible to represent the two forms of negation: not , denoting
Negation As Failure, and ¬, denoting classical negation.

A disjunctive logic program P is a set of clauses of the form:

L1 ∨ . . . ∨ Lk ← Lk+1, . . . , Lm, not Lm+1, . . . , not Ln

where each Li is either an atom A or its classical negation ¬A. A disjunctive logic program P such
that k ∈ [0, 1] for each clause of P is called an extended logic program. An extended logic program
is a disjunctive logic program without disjunctions in the heads of the clauses.
With respect to normal logic programs, disjunctive logic programs introduce two important dif-
ferences. The first one is the presence of two forms of negations as depicted above. Note that in
disjunctive logic program a literal is now A or its classical negation ¬A and not A or not A. The
second difference is that the head of a clause can be a disjunction. Intuitively if the body of a
clause is satisfied then at least a disjunct of the head must be satisfied too, in order to satisfy the
whole clause.

Disjunctive logic programs are an extension of normal logic programs. A normal logic program
P is a disjunctive logic program without disjunctions (i.e. an extended logic program) and such
that each Li in each clause is an atom (i.e. there is no classical negation in P). In the sequel
we denote as a definite disjunctive logic program, a disjunctive logic program without negation as
failure (not) in each of its clauses.

Now we define what is an answer set starting from definite disjunctive logic programs. We denote
the set of ground literals which can be formed from a disjunctive logic program P as Lit(P).

Definition 2.71. Let P be a definite disjunctive logic program. An answer set of P is a smallest
(with respect to set-theoretic inclusion) set of literals S such that:

• for any clause L1 ∨ . . . ∨ Lk ← Lk+1, . . . , Lm ∈ ground(P), if {Lk+1, . . . , Lm} ⊆ S then for
some i ∈ [1, k], Li ∈ S

• if S contains a pair of literals L,¬L then S = Lit(P)

2

To extend the definition of answer set to the whole class of disjunctive logic programs we need to
adapt the notion of reduct ΠS

P with respect to a disjunctive logic program P and a set of literals
S.

Definition 2.72. Let P be a disjunctive logic program and S a set of literals. The reduct ΠS
P of

P with respect to S is the disjunctive logic program obtained from ground(P) by deleting:

• all the clauses
L1 ∨ . . . ∨ Lk ← Lk+1, . . . , Lm, not Lm+1, . . . , not Ln

such that {Lm+1, . . . , Ln} ∩ S = ® and

44 CHAPTER 2. PRELIMINARIES

• all occurrences of the set not Lm+1, . . . , not Ln from the remaining clauses

2

Obviously, each reduct Π of a disjunctive logic program P is a disjunctive logic program without
not.

Definition 2.73 (Answer Set). Let P be a disjunctive logic program. A set of literals S is an
answer set of P if S is an answer set of ΠS

P . 2

The semantics of a disjunctive logic program is characterized by its answer sets. There can be one,
zero or many answer sets for a program P . Note that an answer set is a generalization of a stable
model. If we consider a normal logic program P , the stable models of P and the answer sets of P
coincide.

Example 2.27. Let us consider the following normal logic program P1:

p ← not q
q ← not p

The sets M1 = {p} and M2 = {q} are both the stable models of P1 and the answer sets of P1.
Consider now the following program P2:

p ← ¬q
q ← ¬p

The unique answer set of P2 is M = ®, while stable models are not defined because P2 is not a
normal logic program.

2

Interestingly, disjunctive logic programs can be reduced to normal logic programs.

Definition 2.74. Let P be a disjunctive logic program. Let p be a predicate occurring in P and let
p∗ be a predicate of the same arity of p such that p∗ does not occur in P . Given a negative literal
L = ¬p(t1, . . . , tn) we say that the atom p∗(t1, . . . , tn) is the positive version of L denoted as L+.
The positive version of an atom A is A itself.

We define the positive form of P , the normal logic program P+ derived from P as follows:

• for each clause in P of the form:

L1 ∨ . . . ∨ Lk ← Lk+1, . . . , Lm, not Lm+1, . . . , not Ln

there is a clause in P+ of the form:

L+
1 ∨ . . . ∨ L+

k ← L+
k+1, . . . , L

+
m, not L+

m+1, . . . , not L+
n

• for each predicate p occurring in P there is a clause in P+ of the form:

← p(t1, . . . , tn), p∗(t1, . . . , tn)

2

Intuitively a positive version of a disjunctive logic program P is obtained by replacing negative
literals with atoms whose predicates do not occur in P . The added clauses, then, give the intended
meaning to those new predicates, i.e. two atoms p(t1, . . . , tn), p∗(t1, . . . , tn) lead to inconsistency
if they are both true.
We have the following result shown in [89] for extended logic programs which can be easily adapted
[90] for disjunctive logic programs.

2.6. ANSWER SETS PROGRAMMING (ASP) 45

Proposition 2.14. Let P be a disjunctive logic program. A set S ⊂ Lit(P) is an answer set of
P if and only if S+ is an answer set of P+,where S+ stands for the set consisting of the positive
version of each literal in S. 2

For further details, results on answer sets and further semantics of disjunctive logic programs, see
[25], [134], [87].

Here, we give some notions about the procedural counterpart of the answer sets semantics, i.e. how
answer sets can be computed. Apart from the presence of disjunctive heads and classical negation,
the classical SLDNF-resolution is inadequate even for computing stable models with respect to
normal logic programs. The problem is the presence of multiple stable models for many stratified
logic programs.
To deal with the answer sets semantics a number of answer sets solvers have been developed, e.g.
the DLV system [68], SMODELS [136], DeReS [43], Cmodels [91]. All of them use a computational
mechanism very distinct from SLD-resolution.

Answer sets solvers rely upon a grounded version of a program and then try to build answer sets
following a bottom-up approach. Typically, classical negation is implemented using the positive
form of a program. Briefly a general algorithm for generating answer sets starts from the empty
set of literals S and determines the set of literals Det(S) which can be inferred deterministically
from S. For example if a rule of the program is p ← then it belongs to each reduct of P and
so it will belong to Det(S). Then a checking procedure is fired on Det(S) to verify either if it is
inconsistent or if it is an answer set of P (in which case it is returned as an answer). Otherwise
a new literal is selected and the algorithm builds two new sets: S ∪ L and S ∪ not L on which
the main procedure is fired recursively. When the checking procedure detects an inconsistency or
an answer set the main algorithm backtracks to find other solutions. The algorithm ends when
there are no more literals to be selected. Thus all the answer sets of a program are found through
backtracking.
Clearly, there are a lot of optimization techniques for both smartly selecting literals and grounding
the program. In particular database techniques are very suitable for optimizing the grounding
process [76].
Answer sets solvers have captured a great attention in the logic programming and artificial intel-
ligence fields and they are used to model and to solve a wide range of applications and problems,
such as planning, diagnosis, semantic web reasoner and so on [24, 120, 22, 119, 161]. From a
theoretical viewpoint they have a solid background, they have a good expressiveness and the un-
derlying answer sets semantics is a very intuitive semantics for negation. From a computational
viewpoint the answer sets solvers show good performance being able to handle easily hundreds of
thousands of ground clauses and they are ensured to terminate and to compute minimal answers,
i.e. answers such that each of their subsets is no more an answer (and this is obtained directly
from the definition of answer set and stable model). The drawbacks of this approach is that until
now the programs have to be function-free (apart from some built-in functions) and the ground
domain has to be finite. Another possible drawback is that they are not goal oriented but they are
model generators, i.e. the whole model has to be built even if the query could be easily answered
using a goal oriented approach.
The best known answer sets solvers are the DLV system [68, 119] and the SMODELS [136, 166]
which offer both good performance and good expressiveness. The main differences between the two
are that DLV system handles disjunctive logic programs while SMODELS handles only extended
logic programs (even if some constructs of the system reduces the expressiveness gap, as noted
in [120]). Other differences regard the heuristics used in the systems and the grounding of the
program which in the case of the SMODELS is done in a preprocessing phase through a separate
process while in the case of DLV is done during the answer sets building phase. Furthermore, both
systems show interesting extensions as the extension for handling weak constraints (DLV system,
[119]) and the extension for handling weight and cardinality constraints (SMODELS, [166]).

46 CHAPTER 2. PRELIMINARIES

Chapter 3

Abductive Logic Programming
with Constraints (ALPC)

In this chapter we present abduction and in particular we focus on how abductive reasoning has been
formalized in computational logic through the many proof procedures which have been proposed
in the literature. Abduction has a wide range of applications and also a huge amount of literature
has been produced in the last decades. The aim of this chapter is to give an overview of abductive
reasoning in computational logic but we do not claim to cover either all the aspects of abduction
or all the approaches to abduction followed in the literature. Rather we mainly focus on the closest
approaches to the main contribution of this thesis, i.e. the CIFF abductive proof procedure.

We start from an informal introduction of abductive reasoning and then we show how it is for-
malized in logic and which are its applications. In Sections 3.4 and 3.5 we do a brief survey of
Abductive Logic Programming (ALP) together with the main abductive proof procedures. Finally,
in Sections 3.6 and 3.7 we present the ALP extension of CIFF, i.e. Abductive Logic Programming
with Constraints (ALPC), together with its proof procedures.

For further information about the general aspects of abduction, mainly focusing on computational
logic, see the two abductive surveys of Kakas, Toni and Kowalski [99, 97] and the one of Kakas
and Denecker [96] which we mainly follow in this presentation.

3.1 Abductive reasoning

The notion of abduction was introduced by the philosopher Pierce in [144] where he identified three
main forms of reasoning:

Deduction an analytic process based on the application of general rules to particular cases, with
the inference of a result;

Induction synthetic reasoning which infers the rule from the case and the result;

Abduction another form of synthetic inference, inferring the case from a rule and a result.

Peirce further characterized abduction as the “probational adoption of a hypothesis” as explanation
for observed facts (results) according to known laws. “It is however a weak form of inference,
because we cannot say that we believe in the truth of the explanation, but only that it may be
true” [144].
Abduction is widely used in common-sense, daily reasoning. For instance in diagnosis, to reason
from effect to cause, as noted e.g. in [41]. The following well-known example of abductive reasoning
was given by Pearl in [141] and it has been represented in [99, 97, 96]. Suppose we observe that,
walking in the garden, the shoes are become wet. A simple explanation to this fact is that the

48 CHAPTER 3. ABDUCTIVE LOGIC PROGRAMMING WITH CONSTRAINTS (ALPC)

grass is wet. Being a sunny day, further explanations are that either the sprinkler was on or it
rained during the night. This common-sense process can be viewed as an abductive process. The
explanations have been inferred abductively from the observations and the “rules”, stating for
example that “if it rained last night then the grass has to be wet”. This example can be easily
formalized in logic as follows.

Example 3.1. Consider the following logic theory T which models the “rules” of the domain of
our interest.

grass is wet ← rained last night
grass is wet ← sprinkler was on
shoes are wet ← grass is wet

In this setting, the observation shoes are wet can be explained by both rained last night and
sprinkler was on alternatively. Each of the two hypothesis together with T implies the given
observation. 2

Abduction consists of computing such explanations from observations. It is a form of nonmonotonic
reasoning because explanations which are consistent with one state of a knowledge base may become
inconsistent by adding new information. In the above example, if we know, later on, that it did
not rain last night, the explanation rained last night turns out to be false, while the explanation
sprinkler was on becomes the only right explanation. The existence of multiple explanations is
a general characteristic of abductive reasoning and the selection of “preferred” explanations is an
important issue.

3.2 Abduction in logic

We formalize the abductive task presented informally presented in the previous section.

Definition 3.1. [Abductive Task (1)] Let T be a first order theory and let G be a formula. We
define the abductive task as the problem of finding a set of formulae ∆ (abductive explanations
for G) such that:

1. T ∪∆ |= G and

2. T ∪∆ is consistent.

2

In general, it is often needed to put additional restrictions on ∆ in order to restrict the possible
causes to observed effects to a domain-specific predefined class of formulae called abducibles. In
particular Poole shown in [146] that hypotheses can be further restricted, without loss of generality,
to be atoms (which in a sense “name” those formulas) whose predicates are explicitly indicated as
abducibles. In our thesis we assume that the class of abducible predicates is always given.

Example 3.2. Let us consider the logic theory of the Example 3.1. Let G = {shoes are wet} be
the goal and let A = {rained last night, sprinkler was on} be the set of abducibles.
There are three sets of explanations for G, namely

∆1 = {rained last night}
∆2 = {sprinkler was on}
∆3 = {sprinkler was on, rained last night}

2

In the literature a number of additional criteria have been proposed, to restrict the number of
candidate abductive explanations, see e.g. [97, 145, 34, 41, 163]. Among these, the most used
method is the introduction of integrity constraints to the knowledge base. The basic idea is that
only certain states of the knowledge base are the desired states. Integrity constraints are formulae
which help in enforcing the adoption of abductive explanations leading to those desired states.

The definition 3.1 can be extended through the use of integrity constraints.

3.2. ABDUCTION IN LOGIC 49

Definition 3.2. [Abductive Task (2)] Let T be a first order theory, let G be a formula and let I
a set of closed formulae (integrity constraints). We define the abductive task as the problem of
finding a set of formulae ∆ (abductive explanations for G) such that:

1. T ∪∆ |= G,

2. T ∪∆ is consistent and

3. T ∪∆ satisfies I

2

There are several ways for defining what it means for a knowledge base (in our case T ∪ ∆) to
satisfy a set of integrity constraints I, e.g. see [156, 153, 102, 122]. The three most used views are
the consistency view, the theoremhood view and the metalevel view. The consistency view requires
that T ∪∆ satisfies I if and only if T ∪∆ ∪ I is consistent. I.e.:

T ∪∆ 6|= ¬I

Alternatively, the theoremhood view requires that: T ∪∆ satisfies I if and only if T ∪∆ |= I. I.e.:

∀φ ∈ I.(T ∪∆ |= φ).

In general, the theoremhood view is much stronger than the consistency view: if T ∪∆ |= I then
T ∪∆∪ I is consistent, while the contrary does not hold. Under the consistency view, it is enough
that a model M of T ∪∆ is such that M |= I in order to satisfy the integrity constraints. In the
theoremhood view each model M of T ∪∆ must be such that M |= I.
The metalevel view, instead, regards integrity constraints as metalevel or epistemic statements
about the knowledge base, i.e. they are understood at a different level from the statements in the
knowledge base. They specify what must be true about the knowledge base rather than what is true
about the world modeled by the knowledge base. In the metalevel view, the integrity constraints
are used for “selecting” from the models of T ∪∆, all such models M such that M |= I.
Thus, the metalevel view is stronger than the consistency view but weaker than the theoremhood
view.

Example 3.3. Let us consider again the theory of the Example 3.1. Suppose we add the following
integrity constraint:

rained last night → false
In this case, independently from the view in which the integrity constraint is understood, all the ab-
ductive explanations containing the abducible rained last night are forbidden because the adoption
of that abducible would lead to an inconsistent state. 2

Cox and Pietrzykowski, in [57], identify other desirable properties of abductive explanations, in
particular they should be basic and minimal.

An abductive explanation is basic if it is not explainable in terms of other explanations. Suppose
that {grass is wet} is an abducible in the example 3.1. It would be an abductive explanation
for the observation shoes are wet, but it would not be basic because it is explainable in terms of
either {rained last night} or {sprinkler was on} which instead are both basic.

An abductive explanation is minimal if it is not subsumed by another one. Consider again the
example 3.1. The basic explanation

∆3 = {rained last night, sprinkler was on}
is not minimal while ∆1 and ∆2 are.

50 CHAPTER 3. ABDUCTIVE LOGIC PROGRAMMING WITH CONSTRAINTS (ALPC)

3.3 Abductive Reasoning in Applications

Deduction has been considered for years the main reasoning paradigm for declarative problem
solving and the birth of logic programming and logic applications strengthened this conviction.
However it can be shown easily that abduction can be a more appropriate choice in many ap-
plications, in particular when there is incomplete knowledge about the modeled world and the
application task is to find configurations of the objects of the world which respect certain condi-
tions.
An intuitive example, borrowed from [96] is the task of compiling a timetable of the lectures
at a university. Typically we have some important types of well-defined objects in this domain
such as lectures, classrooms, professors, time slots, ... Moreover, it is often the case additional
requirements to be satisfied, e.g. a certain professor cannot teach on a certain day of the week;
a certain classroom is not available in a certain time slot and so on. The process of computing
the tables mapping the lectures both to the classrooms and to the time slots, which we could
represent through the objects room of lecture and time of lecture, can clearly be formulated as
an abductive task. Indeed, the instances of the root of lecture and time of lecture objects are
not given a priori, thus finding a set of such instances which satisfies the given conditions is not a
deductive process but an abductive process.

Indeed, during the last years abduction has been used in a wide range of applications.

Abduction can be used to generate causal explanations for fault diagnosis, as seen for example in
[147, 56]. In this setting the theory describes the “abnormal” behavior (i.e. the faulty cases) of
a system and the task is to find a set of hypotheses for observed abnormal behaviors. In medical
diagnosis, for example, the observations are the symptoms and the abductive process finds the
possible causes (diseases) to those symptoms [152].

Abduction has been used for improving robotic vision [57]. The observations are the raw data
descriptions obtained from the robot visual sensors and the abductive process hypotheses on which
objects effectively “see” the robot. Some very interesting work on this topic has been done by
Shanahan [165] which proposes hierarchical use of abduction from raw data to real-world objects
passing through intermediate levels of shapes growing in complexity.

Another application of abduction is natural language understanding [83, 41] where an abductive
process is used to interpret ambiguous sentences. A related abductive framework is legal reasoning
[160] where abduction is exploited through a case-based reasoning.

As seen in the sketched example at the beginning of this section, scheduling [109] and planning
can be easily modeled by means of abduction. A planning can be viewed as a set of hypothetical
actions (and subgoals) to be performed (and achieved) in order to reach the final goal state.
The main approach to abductive planning is based on the event calculus, a logical framework for
reasoning about actions and changes proposed by Sergot and Kowalski in [115] and then revised
and extended by Miller and Shanahan in [133]. Abductive planning has been studied by several
authors [74, 135, 164] and also a prototype version of the CIFF system has been studied for
abductive planning [124, 71].

Database updates is another important application of abduction [170, 101, 19]. In this setting
the observations are the update requests and the abductive explanations are the transactions
that satisfy those requests. Database updates can be seen as an instance of the more general
knowledge assimilation framework [113, 103]. In this case, we have an initial knowledge base KB
and some new information I to be integrated in it obtaining a new knowledge base KB′. If the
new information cannot be deduced from KB, then explanations ∆ to I can be found by means of
abduction, thus accommodating the new data into the new knowledge base. I.e., KB′ = KB∪I∪∆.

In recent years, abduction has been studied as a main reasoning paradigm for modeling intelligent
and autonomous agents, a field that has captured great attention in the last decades [148, 53, 149].
An intelligent agent can be defined as an actor which is capable of observing, reasoning and acting
upon a (dynamical) environment. Kowalski and Sadri proposed in [114] an agent architecture

3.4. ABDUCTIVE LOGIC PROGRAMMING (ALP) 51

based on abduction which shows a reactive behavior and such that the well-known Beliefs-Desires-
Intentions (BDI) [148] agent architecture can be seen as a special case. More recently, within
the SOCS European Project [167], further developments of a logic-based agent architecture have
been proposed in the Knowledge-Goals-Plans (KGP) model [98, 105, 31]. This agent model shows
a (formal) computational-logic agent architecture based on the event calculus which embraces
reactivity, goal decision, planning and temporal reasoning, and abduction plays an important role
in most of the agent features. The SOCS European Project, proposed also an architecture of a
social infrastructure for agents based on abduction [132, 5], thus entering the field of multi-agent
systems [58, 114]. Here, abduction is used to check the fulfillment of communication protocols
between agents through the use of social integrity constraints [5].

An important application field of abduction is the integration of information field. In this case
abduction is used to integrate information obtained from heterogenous sources in such a way that
the resulting information is as most as possible coherent to the various sources. In particular the
integration of databases, see e.g. [20] and the integration of web sources, see e.g. [63], has been
intensively studied.

Finally, abduction is being considered as an important paradigm in the World Wide Web, in partic-
ular for the Web 2.0 reasoner. As noted above, integration information is an important challenge
over the Internet due to the exponential growth of web sources. Also abductive techniques of
multi-agent systems have been used over the net, as for example in [4, 3] for verifying properties
of Web Services. Moreover, the increasing interest about the Semantic Web technologies [175, 13]
seems to be the right place for exploiting abductive reasoning. In particular web specification
languages from XML/XMLSchema [177] to OWL [176] passing through RDF/RDFSchema [174]
need expressive computational counterparts allowing more and more reasoning capabilities. Some
abductive tasks over ontologies have been individuated in [39]. An abductive application for rea-
soning about XML/XHTML web sites properties will be presented in this dissertation in Chapter
6.

This brief and non-exhaustive overview of abductive application should give the idea of the interest
in that reasoning paradigm. From the next section we restrict our view to abduction in logic
programming.

3.4 Abductive Logic Programming (ALP)

The abductive task as in definition 3.2 can be easily instantiated to logic programming.

Definition 3.3 (Abductive Framework). An abductive framework is the tuple 〈P, A, IC〉 where
P is a normal logic program (the abductive theory), A is a set of predicates defined as abducibles1

and IC is the set of integrity constraints of the form of first order closed formulae.
2

In our dissertation we assume, without loss of generality (as shown, e.g. in [97]) that given an
abductive framework 〈P, A, IC〉, there is no clause in P whose head is an abducible atom. This
ensures that abductive explanations are basic as they cannot depend on other predicates.

In the literature there are various characterizations of the set IC of integrity constraints. In general
we assume that they are in a disjunctive form:

L1 ∨ . . . ∨ Ln

or in denial form, i.e.:

L1 ∧ . . . ∧ Ln →
1In the sequel we will do an abuse of notation denoting as A both the set of abducible predicates and the set of

atoms which can be obtained from A in the current framework.

52 CHAPTER 3. ABDUCTIVE LOGIC PROGRAMMING WITH CONSTRAINTS (ALPC)

or in a more general implicative form

L1 ∧ . . . ∧ Ln → A1 ∨ . . . ∨Am.

where each Li is a literal and each Ai is an atom.2 We use the → symbol instead of ← symbol
to distinguish between program clauses (←) and integrity constraints (→). We will follow this
notation throughout the thesis.

In the literature various declarative semantics for abductive logic programs have been proposed
, all based upon the various semantics of logic programming seen in chapter 2. The idea is to
characterize the meaning of abductive logic programs through generalized models, which extend
the notion of models in logic programming taking into account the abducibles and the integrity
constraints in an abductive framework 〈P, A, IC〉. The generalized models, defined in terms of a
set ∆ ⊆ A of ground abducible atoms, will be the models which solve the abductive task in the
sense of definition 3.2.
Kakas and Mancarella first proposed in [102] the generalized stable models semantics for abductive
logic programs.

Definition 3.4 (Generalized Stable Model). Let 〈P, A, IC〉 be an abductive framework and let
∆ ⊆ A be a set of ground abducible atoms. Then we define a set of ground atoms M(∆) to be a
generalized stable model of 〈P,A, IC〉if and only if

• M(∆) is a stable model of P ∪∆ and

• M(∆) |= IC

2

Note that in the generalized stable models semantics, the satisfaction of the integrity constraints
is inside the definition of the generalized model itself and it is similar to the metalevel view in
the sense that integrity constraints are considered not at the same level of the program P . The
following examples shows that the metalevel view is stronger than the consistency view and it is
weaker than the theoremhood view.

Example 3.4. Let 〈P, A, IC〉 be an abductive framework as follows:

P : p ← a
q ← r

A : {a}
IC : p → r

Consider the set ∆ = {a}. The only stable model of P ∪∆ is M = {a, p} which is not a generalized
stable model of 〈P, A, IC〉 because it does not entail the set IC due to the absence of r. However,
the set M ′ = {a, p, q, r} is indeed a model of P ∪ ∆ which satisfies IC. So we have that P ∪ ∆
satisfies the integrity constraints under the consistency view. However M ′ is not a generalized
stable model of 〈P,A, IC〉 because it is not a stable model of P ∪∆. So we have that the metalevel
view is stronger than the consistency view. 2

Example 3.5. Let 〈P, A, IC〉 be an abductive framework as follows:

P : p ← a
q ← r, s

A : {a}
IC : q → r

2Recall that since we have introduced the Extended Logic Programming in Section 2.6, we follow the notation
which denotes NAF by not and strong negation by ¬. Hence a literal, here, is either of the form A or not A where
A is an atom.

3.5. ABDUCTIVE PROOF PROCEDURES 53

Consider the set ∆ = {a}. We have that the set M(∆) = {a, p} is a generalized stable model of
〈P, A, IC〉 because it is a stable model of P ∪∆ and it entails q → r. However, also the set {a, p, q}
is a model of P ∪∆ but it does not entails the integrity constraint due to the absence of r. Hence
the set P ∪∆ does not satisfies IC under the theoremhood view proving that it is stronger than the
metalevel view.

2

The generalization of the stable model semantics to abductive logic programs can be applied to the
other model-theoretic semantics of logic programming, by considering only those models of P ∪∆
of the appropriate kind, e.g. well-founded models and so on, in which the integrity constraints are
entailed.

Thus we can formalize the abductive task in logic programming with the definition of abductive
answer.

Definition 3.5 (Abductive answer). An abductive answer to a query Q with respect to an abductive
logic program 〈P, A, IC〉 is a pair 〈∆, σ〉, where ∆ is a finite set of ground abducible atoms and σ
is a substitution for the free variables occurring in Q, such that:

• P ∪∆ |=LP Qσ and

• P ∪∆ satisfies IC

where |=LP stands for the chosen semantics for logic programming. 2

In the literature have been proposed some extensions to the declarative semantics for extended
logic programs in order to embrace abduction. E.g. in [143] an extension of the well-founded
semantics for extended logic programs is presented, but integrity constraints have not been taken
into account.

However, a declarative semantics without an operational counterpart which allows for computing
(efficiently) abductive answers is not enough. Thus, a number of proposals have been presented
in the literature trying to fill this gap. A brief review of the most important approaches is the
subject of the next section.

3.5 Abductive proof procedures

Switching from the declarative semantics of abductive logic programming to concrete algorithms
for computing abductive answers, the first thing which arises is that the abductive task is compu-
tationally very expensive and this has been intensively studied, e.g. in [162, 66, 67]. For example it
has been proved in [67] that the abductive task is a hard task in the case of function-free programs
and that it is undecidable for programs with functions.

Nevertheless in literature there are many proposals of proof procedures for abductive logic pro-
gramming giving an effective computational counterpart to the abductive theory.
Here we present the most influential approaches sketching their operational behavior. In particular
we will see the Kakas and Mancarella proof procedure (Section 3.5.1), the SLDNFA proof procedure
(Section 3.5.3), and the IFF proof procedure (Section 3.5.2). Other interesting approaches, less
related to our work are briefly surveyed in Section 3.5.4.

3.5.1 The Kakas and Mancarella procedure

The Kakas and Mancarella abductive proof procedure [102, 100] (the KM-procedure for short) is
surely one of the first and the most influential approaches in the field. The KM-procedure is defined
under the generalized stable model semantics. It is a generalization of an earlier abductive proof
procedure proposed by Eshghi and Kowalski in [75] which in turn is an abductive extension of the
SLDNF.

54 CHAPTER 3. ABDUCTIVE LOGIC PROGRAMMING WITH CONSTRAINTS (ALPC)

The Eshghi and Kowalski proof procedure (EK-procedure for short) proposes an abductive treat-
ment for NAF in order to extend the SLDNF algorithm to calculate stable models of a wider class
of logic programs than the standard SLDNF can do.

The idea in the EK-procedure is to transform a normal logic program P into an abductive frame-
work 〈P ∗, A∗, IC∗〉 as follows.
For each predicate p occurring in P , we define a fresh predicate p∗ (i.e. such that p∗ does not occur
in P). Those fresh predicates are defined as abducible predicates and they comprise the set A∗.
The intuitive meaning of p∗ is not p (similar to the transformation seen in section 2.6 for reducing
disjunctive logic programs to normal logic programs) and the next step is to obtain the definite
logic program P ∗ from P by replacing all the occurrences of not p(~t) in P by p∗(~t) for each predicate
p.
The intuitive meaning of the predicates in A∗ is characterized by the set of integrity constraints
I∗ containing, for each predicate p∗ in A two closed formulae. The first formula states that p(~X)
and p∗(~X) cannot appear together in an interpretation for any ~X, i.e.

∀ ~X.[p(~X), p∗(~X) →].

The second formula states that for any interpretation I either p(~X) or p∗(~X) must belongs to I

for each ~X. This is to ensure a two-valued interpretation and that formula is of the form:

∀X.[p(~t) ∨ p∗(~t)]

.
The abductive framework is then 〈P ∗, A∗, IC∗〉 where the ∗ symbols indicate the particular form
of the components as described above.

The EK-procedure works in two phases like the SLDNF proof procedure and it builds incrementally
an abductive answer ∆ for a goal G, starting from an initial ∆0 usually empty. The first phase is
the abductive phase based on standard SLD resolution. In this phase, when an abducible atom p∗(~t)
not in the current set of abductive hypotheses ∆ is encountered, it is added to ∆ and a consistency
phase is fired in order to check that the integrity constraint p(~t), p∗(~t) → is not violated. To do so,
the procedure checks that p(~t) fails finitely. If during a consistency phase, another abducible atom
q∗(~s) not in the current ∆ is encountered, the procedure fires another abductive phase starting
from q(~s), in order to check the integrity constraint q(~s)∨q∗(~s). Note that the current ∆ is used in
the two phases in order to remember which abducibles have been assumed so far avoiding to start
new proofs for them. This use of the current abductive hypotheses ∆ makes the EK-procedure
able to compute stable models of normal logic programs for which the SLDNF procedure loops
forever.

Example 3.6. Let us consider the normal logic program:

P : p ← not q
q ← not p

and the goal G = {← p}. The only SLDNF derivation loops as follows:

← p ← q ← p ← q

. . .

← not q ← not p ← not q ← not p

Let us consider now the abductive framework 〈P ∗, A∗, IC∗〉 obtained from P :

P ∗ : p ← q∗ IC∗ : p, p∗ → ; p ∨ p∗ A∗ = {p∗, q∗}
q ← p∗ q, q∗ → ; q ∨ q∗

The EK-procedure, starting from G =← p and ∆0 = ® succeeds with the answer ∆ = {q∗} (we
represent abductive phases with double-lined boxes and consistency phases with single-lined boxes):

3.5. ABDUCTIVE PROOF PROCEDURES 55

2

2

← p

← q∗

← q

← p∗

← p

← q∗

∆ = {}

∆ = {q∗}

∆ = {q∗}

The above behavior is obtained through the use of ∆ during the computation: in the innermost box,
the procedure succeeds because q∗ is in the current ∆ and no further checks are needed. Thus q
fails finitely and finally p, in the outermost box, succeeds.
Note that the set {p, q∗} represents the only stable model for P containing p, i.e. the set {p, not q}.
The same behavior of the two procedures is obtained for the goal G =← q, i.e. while SLDNF loops
forever, the EK-procedure succeeds with the answer ∆ = {p∗} which represents the stable model
{q, not p} of P .

2

The EK-procedure however is quite limited. A main limitation is that the selection function cannot
select non-ground abducibles. It is the same limitation regarding negative literals in SLDNF.
Moreover the EK-procedure, in general, is not sound for the whole class of normal logic programs,
as proved in [75], but it can be proved sound, following the results of Dung in [64], with respect to
the class of the call-consistent logic programs.

The KM-procedure generalizes the abductive framework 〈P ∗, A∗, IC∗〉 of the EK-procedure al-
lowing for expressing both positive abducibles (not only the predicates introduced for NAF) and
domain-dependent integrity constraints.
The new abductive framework for the KM-procedure is:

〈P ∗, A∗ ∪A, IC∗ ∪ IC〉
where A and IC are the new components with respect to the framework for the EK-procedure.
An integrity constraint in IC must be in denial form with at least an abducible atom in its body.

The KM-procedure retains the computational structure of the EK-procedure adding some machin-
ery for handling the new components. In particular, while the presence of user-defined abducibles
does not impose modifications to the EK-procedure, the presence of domain-dependent integrity
constraints does.

56 CHAPTER 3. ABDUCTIVE LOGIC PROGRAMMING WITH CONSTRAINTS (ALPC)

The idea is that when the procedure abduces an atom a(~t) (resp. a∗(~t), it must be checked against
the whole set of integrity constraints which contain a(~t) (resp. a∗(~t)) in their body. This is the
motivation to enforce the presence of an abducible in the body of each integrity constraint.

Example 3.7. Let us consider the following abductive framework:

P ∗ : s ← a IC : a, p → IC∗ : p, p∗ →; p ∨ p∗ A = {a, b}
p ← q∗ a, q → q, q∗ →; q ∨ q∗ A∗ = {p∗, q∗, a∗, s∗, b∗}
q ← b a, a∗ →; a ∨ b∗

b, b∗ →; b ∨ b∗

s, s∗ →; s ∨ s∗

The following is the computation of the KM-procedure with respect to the goal G = {s}:

2

2

← s

← a

← a∗

← q

← b

← b∗

← p

← q∗

∆ = {}

∆ = {a}

∆ = {a, b}

As we can see, the KM-procedure, after it abduces a, checks for all the constraints containing a:
first it checks for the finite failure of a∗ (trivial) and then it continues checking for p which in turn
needs the abduction of b in its proof of finite failure.

2

The KM-procedure, like the EK-procedure, is able to compute stable models of a normal logic
program. Due to the possibility of representing user-defined abducibles and domain-dependent
integrity constraints in the abductive framework, the declarative semantics proposed for the KM-
procedure in [102] is the generalized stable models semantics. Indeed that semantics was inspired
by the proof procedure itself. However, the KM-procedure suffers from the same limitations as the
EK-procedure regarding the selection of only ground abducibles and the soundness problems for

3.5. ABDUCTIVE PROOF PROCEDURES 57

non call-consistent logic programs. To avoid the latter problem, Toni [172] proposed a three-valued
argumentation semantics.
The importance of the KM-procedure was not only at the theoretical level. Both its expressive-
ness and its computational mechanism (relatively simple to be implemented as a Prolog meta-
interpreter), made the KM-procedure a widely used proof procedure in several abductive fields
such as databases updates [101], truth maintenance [104] and knowledge assimilation [103].
More recently the KM-procedure has been extended in various ways. In [126], the KM-procedure
has been extended allowing for a limited class of integrity constraints in implicative form giving
some reactivity behavior to the procedure which can be needed for example in an agent setting.
We will return to reactivity issues in section 3.5.3.
Other important extensions to the KM-procedure are the ALIAS proof procedure [45] for multi-
agent systems and the ACLP proof procedure [109] for abductive logic programming with con-
straints. Both extensions will be briefly presented respectively in section 3.5.4 and 3.7.1.

3.5.2 The SLDNFA procedure

The SLDNFA proof procedure was proposed by Denecker and De Schreye in [60] and subsequently
refined in [61].
As its name suggests, the SLDNFA procedure is an extension of the SLDNF proof procedure to
the treatment of abduction which has two main relevant aspects: (1) it has been proved sound and
complete with respect to the three-valued completion semantics; and (2) it can produce non-ground
abductive answers to a query.

The computational schema of the SLDNFA is quite complicated because it integrates with the
SLDNF schema the rules to manage non-ground abducibles. The main difficulties arise from
the fact that abducibles can contain either existentially or universally quantified variables, thus
presenting almost the same problems of variables in negative literals as in the SLDNF.
We sketch the SLDNFA proof procedure and we give later an example of computation.
In an SLDNFA computation for a normal goal G there is an explicit distinction between positive
goals (subgoals which have to succeed to prove G) negative goals (subgoals which have to fail
finitely to prove G). Variables in positive goals are called positive variables, and they are implicitly
free/existentially quantified variables. Variables occurring only in negative goals are called negative
variables, and they are implicitly universally quantified variables.
Positive goals are computed through standard SLD-resolution in which abducible atoms cannot
be selected: they are collected incrementally and they will be part of the abductive answer. If
a negative literal not q(~t) is selected, then a new computation branch is fired, starting from the
negative goal q(~t) which has to fail finitely. Conversely, if a negative literal not p(~t) is encountered
in a negative goal, then a new computation branch is fired, starting from the positive goal p(~t)
which has to succeed.
Negative variables are those variables (implicitly universally quantified) introduced by the applica-
tion of SLD resolution on negative goals. They are ensured to occur only in negative goals because
the selection function of the SLDNFA can select only ground negative literals in negative goals,
thus preventing switching a non-ground negative goal to a positive goal.
However it may happen that abducible atoms in negative goals contain negative variables. This is
handled by resolving those abducibles against each resolvent in each positive goal thus checking it
against all the abduced atoms. For example consider a negative goal G =← a(X), p(X) where X
is a negative variable. If there are two abduced atoms, namely a(t1), a(t2), then a(X) is resolved
to both of them producing two new negative goals, namely ← p(t1) and ← p(t2), which have both
to fail finitely.

Interconnections between positive and negative variables in an SLDNFA computation represent the
main technical challenges solved by the formal definition of the procedure. The following example
shows the computational behavior of the SLDNFA procedure on the well-known lamp example.

Example 3.8. Let us consider the following abductive framework 〈P, A, IC〉.

58 CHAPTER 3. ABDUCTIVE LOGIC PROGRAMMING WITH CONSTRAINTS (ALPC)

P : faulty lamp ← power failure(X), not backup(X)
backup(X) ← battery(X, Y), not empty(Y)
lamp(l) ←
battery(c, b) ←

A : {power failure, empty}
IC : ®

The SLDNFA-refutation of G =← faulty lamp is shown below. Positive goals and positive vari-
ables are marked with +, while negative goals and negative variables are marked with −.

+ faulty lamp

+ power failure(X+), not backup(X+)hhhhhhh
(((((((

− backup(X+)

− battery(X+, Y −), not empty(Y −)

−X+ = c, not empty(b)

+ power failure(X+)

The first step is SLD-resolution on G, then the only thing to do (because power failure is abducible)
is to switch not backup(X+) to a negative goal opening a new branch starting −backup(X+) which
has to fail finitely.
The third step is again an SLD-resolution step, but this is done on a negative goal: the new
variable Y is a negative variable. The negative goal has to fail for each value of Y − which is bound
by the battery(X+, Y −) atom. In this case the only clause in the program is battery(c, b) and the
resolution step returns the node X+ = c, not empty(b). The equality X+ = c in a negative goal is
called irreducible and it acts as a constraint of the form X 6= c in the extracted abductive answer.
The procedure does not go further on a branch with an irreducible equality. The abductive answer
extracted from this SLDNFA refutation is in the following general non-ground form:

X 6= c ∧ power failure(X)

Note that the positive variable X+ has not been unified to c because unifying them we would have
lost all the abductive answers containing power failure(X+) ∧X+ 6= c.

2

In the SLDNFA abductive framework, integrity constraints have not been stated explicitly. How-
ever, as argued in [61], integrity constraints in denial form can be implicitly added to the framework.
Consider an atom ∀X.p(X) which has to be satisfied and a fresh predicate violated. By adding
both the clause violated ← not p(X) to a normal logic program and the atom not violated to a
query, the SLDNFA procedure computes the abductive solutions to the query satisfying ∀X.p(X)
under the theoremhood view.

The SLDNFA proof procedure has been extended to the SLDNFA+ in [61] addressing both the
minimality of the abductive answers and the construction of more ground abductive solutions. In
the example 3.8, the solution power failure(c), empty(b) is a correct solution not computed by
the SLDNFA procedure. The SLDNFA+ computes that solution through a different treatment of
irreducible equalities. However, it has been shown [60] that those ground answers can be derived
from SLDNFA non-ground computed answers, thus ensuring the completeness of the procedure.

The SLDNFA procedure and its extensions have been used in many abductive applications, from
temporal reasoning and planning [59] to scheduling and constraint satisfaction problems [140, 142].
In [26], the ALCN description logic [21] has been mapped to abductive logic programming and the
SLDNFA has been used experimentally as the abductive engine.

3.5. ABDUCTIVE PROOF PROCEDURES 59

An implementation of the system has been given in [138] which also integrates a finite domain
constraint solver. It is the precursor of the A-System [111] which we will present in section 3.7.2.

3.5.3 The IFF proof procedure

The IFF proof procedure was proposed by Fung and Kowalski in [82, 81] and it is the work on
which our CIFF proof procedure is based. It is an abductive proof procedure based on rewriting
rules and it takes many ideas from an earlier abductive proof procedure proposed by Console,
Dupré and Torasso in [55] which was the first procedure based on the completion semantics.
Like the SLDNFA, the IFF proof procedure has been proved sound and complete with respect to
the three-valued completion semantics [82, 81]. Indeed the two proof procedures, besides being
developed independently, show the same theoretical results. Moreover, the SLDNFA+ computes the
same abductive answers as IFF. However, the computational schema of the IFF proof procedure is
simpler than the SLDNFA schema and its formalization inspired some refinements to the SLDNFA
including the SLDNFA+ extension.

An IFF abductive framework is of the form 〈P, A, IC〉 where IC is a set of integrity constraints
in implicative form. The integrity constraints have to be satisfied under the theoremhood view.
Moreover, the IFF procedure needs a refinement of the standard completion of P , Comp(P). That
refinement is the abductive completion. The idea, borrowed from [55], is that an abductive proof
procedure based on the completion semantics, in order to operate as intended, should leave the
abducible predicates “open”, i.e. without a completed definition. Consider an abducible predicate
a: by the assumption made in Section 3.4, a should not appear in the head of any clause of P , thus
its completed definition should be a ↔ false. Obviously it is not the intended meaning of a as an
abducible predicate. Moreover we have that in the language of 〈P, A, IC〉, some non-abducible
predicates may occur only in the integrity constraints IC but not in P . Those predicates, being
non-abducibles, need a completed definition. In particular they should be equivalent to false
having no definitions in P . The formal definition of abductive completion is as follows.

Definition 3.6 (Selective Completion). Let P be a normal logic program and let A be a set of
predicates. We define the selective completion of P with respect to A, namely CompA(P) as:

CompA(P) = Comp(P)− {a(~t) ↔ B | a(~t) ↔ B ∈ Comp(P) and a ∈ A}
2

Definition 3.7 (Abductive Completion). Let 〈P, A, IC〉 be an abductive framework. We define
the abductive completion of P with respect to 〈P, A, IC〉, namely CompIC

A (P) as:

CompIC
A (P) = CompA(P) ∪ {p(~t) ↔ false | p occurs in IC but not in P ∪A}

2

In the following, given an abductive framework 〈P, A, IC〉, we will denote the abductive completion
of P by Th.

Example 3.9. Consider the following abductive framework 〈P, A, IC〉 based on the Example 3.1.

P : grass is wet ← rained last night
grass is wet ← sprinkler was on
shoes are wet ← grass is wet

A : {rained last night, sprinkler was on}
IC : rained last night → false

cloudy last night → rained last night

The abductive completion Th is as follows:

Th : grass is wet ↔ rained last night ∨ sprinkler was on
shoes are wet ↔ grass is wet

cloudy last night ↔ false

60 CHAPTER 3. ABDUCTIVE LOGIC PROGRAMMING WITH CONSTRAINTS (ALPC)

As we can see, the predicate cloudy last night is completed with false because it occurs only in
the second integrity constraint while the abducible predicates have no definition in Th.

2

An IFF computation iteratively rewrites a formula into another formula through a set of rewriting
rules which ensure the equivalence of the two formulae with respect to the three-valued completion
semantics. An IFF formula is a first order formula in disjunctive form and abductive answers can
be extracted from each consistent disjunct (or node) such that no rewrite rule can be applied to it.
A node is a conjunction of three types of elements: (1) atoms; (2) implications (derived from
either integrity constraints or negative literals which are represented in implicative form, i.e. not a
is represented as a → false); and (3) disjunctions (mainly obtained by resolution steps between
atoms and their completed definitions). A variable appearing either in an atom or in a disjunction
is implicitly free/existentially quantified with the scope being the entire disjunct, while all other
variables are implicitly universally quantified with the scope being the implication in which they
occur.
An IFF computation starts with a single node composed of a query conjoined to the integrity
constraints. The rewrite rules all replace a node in a formula with a (possibly single) disjunction
of successor nodes. The main IFF rewrite rules are: unfolding which resolves an atom with its def-
inition; propagation which resolves an atom in a node with an atom in the body of an implication;
splitting which distributes a n-ary disjunction to a set of n successor nodes. The other interest-
ing rules are all for managing the equalities in a node distinguishing between free/existentially
quantified variables and universally quantified ones. One such rule is the case analysis rule which
handles equalities with free/existential variables occurring in the body of an implication due to
a propagation step. Given an equality X = t, the case analysis rule replace the node with two
successor nodes: one in which X = t is assumed to hold and one in which it is assumed to be false.
The other equality rules are mainly based upon the Martelli-Montanari unification algorithm [129].

Example 3.10. Consider the following abductive framework 〈P, A, IC〉 together with the abductive
completion Th of P .

P : faulty lamp ← power failure(X), not backup(X)
backup(X) ← battery(X,Y), not empty(Y)
lamp(l) ←
battery(c, b) ←

A : {power failure, faulty lamp, empty}
IC : ®
Th : faulty lamp ↔ ∃X.[power failure(X), not backup(X)]

backup(X) ↔ ∃Y, Z.[X = Z, battery(Z, Y), not empty(Y)]
lamp(X) ↔ X = l
battery(X, Y) ↔ X = c, Y = b

The goal is ← faulty lamp which also represents the initial formula F0. An IFF computation is
the following rewrite sequence.

F0 : faulty lamp
F1 : power failure(X), [backup(X) → false]
F2 : power failure(X), [X = Z, battery(Z, Y), (empty(Y) → false) → false]
F3 : power failure(X), [battery(X, Y), (empty(Y) → false) → false]
F4 : power failure(X), [battery(X, Y),→ empty(Y)]
F5 : power failure(X), [X = c, Y = b,→ empty(Y)]
F6 : power failure(X), [X = c → empty(b)]
F7 : power failure(X), [X = c, [true→ empty(b)]] ∨ [X = c → false]
F8 : [power failure(X), X = c, [true→ empty(b)]] ∨ [power failure(X), [X = c → false]]
F9 : [power failure(X), X = c, empty(b)] ∨ [power failure(X), [X = c → false]]
F10 : [power failure(c), empty(b)] ∨ [power failure(X), [X = c → false]]

3.5. ABDUCTIVE PROOF PROCEDURES 61

The abductive answer power failure(X), X 6= c can be extracted from the second disjunct of the
formulae F8, F9 and F10, while the abductive answer power failure(c), empty(b) can be extracted
from the first disjunct of F10. Note that those answers correspond to the answers generated by the
SLDNFA+ on the same example,.
Note also the use of case analysis on the formula F6. In this case X is existentially quantified
and the subsequent formulae cover the two cases: in one case X is unified with c reaching the
solution power failure(c) ∧ empty(b); otherwise the implication succeeds (falsifying its body) and
the power failure(X) ∧X 6= c abductive answer is reached.

2

The IFF procedure is very powerful in handling variables. The main limitation is that, during
a computation, universally quantified variables (i.e. variables appearing only in the body of an
integrity constraint) must occur in a positive atom of that body. This condition is very similar to
the safeness condition on the selection function of the SLDNFA procedure but in the IFF procedure
is imposed through allowedness conditions on the syntax of normal logic programs. We will see
the definition of allowedness for the IFF procedure in the next chapter, when we go into the formal
details of the CIFF proof procedure.

The IFF procedure has been used in many abductive applications. For example in [173], the IFF
procedure has been used as the computational engine for managing web information. However,
the IFF procedure has been used in particular in (multi-)agent settings [114, 81] exploiting the
expressiveness of the event calculus [115].
Indeed the use of integrity constraints in implicative form make an IFF abductive framework a
good choice for modeling agents. In this respect an important extension of the IFF procedure was
proposed by Sadri and Toni in [157]. This extension allows for expressing two types of negation in
the body of integrity constraints: strong negation and Negation As Failure. In particular, the NAF
view, allows for a better modeling of reactive rules. Assume we have a rule of behavior stating
that “if today is a cleaning day and there no alarm has been sounded, then we have to dust”. This
rule can be modeled through the following integrity constraint φ:

cleaning day,¬sound alarm → dust.

Assume today is a cleaning day. If no alarm has been sounded, then φ is satisfied by proving dust.
However, using classical negation, φ can also be satisfied by sounding the alarm! This is because
φ is logically equivalent to:

cleaning day → dust ∨ sound alarm.

When integrity constraints can model rules of behavior of an agent, and in particular when the
head of integrity constraints can model the actions an agent has to perform in order to react to
some conditions of the agent’s world, situations like the one described above should be avoided.
A NAF view of negative literals in the body of integrity constraints can help in modeling reactive
rules. Using NAF, we can modify φ as follows:

cleaning day, not sound alarm → dust.

Now, the integrity constraint capture the intended meaning of the rule, i.e. whenever it is proved
that today is a cleaning day and whenever sound alarm fails, then dust. Note that this is the
unique way for satisfying φ, as φ is no longer equivalent to

cleaning day → dust ∨ sound alarm.

This extension of the IFF procedure has been proven sound with respect to the three-valued
completion semantics as the computed abductive answers are a subset of the answers computed
by the original IFF procedure. This extension has been mainly used in (multi-)agent settings and
databases updates [157, 158]. We propose a similar extension of the CIFF proof procedure in the
next chapter.

62 CHAPTER 3. ABDUCTIVE LOGIC PROGRAMMING WITH CONSTRAINTS (ALPC)

3.5.4 Other computational approaches to abduction

The abductive procedures seen in the previous section are those procedures which mainly inspired
(and relate to) our work. In this section we give a brief, non-exhaustive survey of other computa-
tional approaches to abduction.

The Lin-You procedure

The Lin-You abductive proof procedure was proposed in [121] and it is based on rewriting rules like
the IFF procedure. It has been proven sound and complete with respect to the partial stable models
semantics [155] and, like the KM-procedure, it is able to compute only ground abductive answers.
An interesting feature of the Lin-You proof procedure is the presence of rules for loop handling.
Roughly speaking, the procedure traces the literals taken into account during the computation
(generalizing, in a sense, what the KM-procedure only does for abducible atoms). When a literal
occurs twice in a trace, the procedure either fails or succeed in that trace according to the semantics.
Some experimental results of the Lin-You procedure have been shown in [121].

The ALIAS framework

The ALIAS framework [45, 46] is an interesting abductive framework used in multi-agent systems
applications. The novel idea of ALIAS is to distribute the abductive computation over the agents
involved in the system implementing a coordination protocol for that scope. The global knowledge
shared by all agents is represented by a set of abducibles posted in a global space. Each agent
is equipped with an abductive procedure mostly inspired by the KM-procedure and when local
abduction is performed, the global knowledge can be updated by the agent provided the consistency
of that update is checked. This framework has been studied mainly for problems arising in multi-
agent settings, in particular competition and cooperation [46].

The ABDUAL system

The ABDUAL system [9] is based upon the well-founded semantics for extended logic programs
and it is based on SLG-resolution [42, 168], i.e. SLDNF resolution with a tabling mechanism for
storing intermediate solutions. An ABDUAL abductive framework is a tuple 〈P, A, IC〉 where P
is an extended logic program and IC is a set of integrity constraint in denial form. The idea is to
build a dual program of P and evaluate the abductive query with respect to P augmented with its
dual. For each defined predicate p in P , the dual program contains a rule of the form not p(~t) ← B
where B encodes all the failure conditions for p(~t). For example, given a predicate p defined by
p ← not q and p ← not r, the dual program contains the rule not p ← q, r.
The ABDUAL system handles only grounded extended logic programs and it has been proven
sound with respect to the well-founded semantics for extended logic programs. ABDUAL has been
implemented under the XSB Prolog [150], which is a special Prolog integrating a tabling mechanism
for SLG-resolution. The ABDUAL system has been used in many abductive applications, e.g.
diagnosis [84] and knowledge assimilation [8].

Abduction in Answer Sets Programming

An abductive framework 〈P,A, IC〉 can be embedded in the answer set programming paradigm
seen in Section 2.6. This is done through a transformation of the framework similar to the trans-
formation performed in the KM-procedure, i.e. the introduction of predicates of the form p∗ (see
Section 3.5.1). An accurate description of that transformation is given in [28]. The resulting ab-
ductive framework can be fed as input to any answer set solver, such as SMODELS [136] and DLV
[68]. The main drawback of this approach is the restriction to ground abductive answers, even if
some work for avoiding that limitation has been done [29], at least at the theoretical level.

3.6. ALP + CLP = ALPC 63

3.6 ALP + CLP = ALPC

The integration of abductive logic programming (ALP) with constraint logic programming (CLP)
(see Section 2.5) gives rise to the Abductive Logic Programming with Constraints (ALPC) frame-
work which combines the knowledge representation capabilities of ALP with the computational
enhancements of CLP. The ALPC framework is the underlying framework of our CIFF proof
procedure.
The relationship between ALP and CLP has been recognized quite early. An overview of these
first integrations and relationships can be found in [97].
One way to integrate special predicates typical of constraint logic programming is to interpret such
predicates as abducibles and to constrain them with a set of integrity constraints which give the
intended semantics. For example the < predicate, typical in numerical constraints, can be seen as
an abducible predicate constrained by:

∀X,Y, Z.(X < Y, Y < Z → X < Z)
∀X,Y.¬(X < Y ∧ Y < X)
∀X.¬(X < X)

The problem in this approach, followed for example in [74], is that abductive logic programming
is not very suitable for embedding simplifications like the following:

∀X.((2 < X ∧ 3 < X) ≡ 3 < X)

Due to this fact, this way of integrating CLP and ALP has not been continued, with the notable
exception of PROCALOG [180, 117].

The other way to integrate ALP and CLP is to consider the two as autonomous entities cooperating
in a unique framework for solving a common goal. One of the first attempts in this direction was
done in [49] where abductive reasoning was integrated into the concurrent constraint language
ccFD. However, the most known and influential integration of ALP and CLP under this approach
is probably the ACLP procedure [106, 110, 109] proposed by Kakas and Michael.
The ACLP procedure, which will be discussed in more detail in section 3.7.1, extends the KM-
procedure with a constraint solver over finite domain regarded as an underlying “black box” entity.
The abductive answers are composed of both a set of abducibles and a set of constraints (a
constraint store) which are ensured to be satisfiable by the solver. In this setting an abducible
atom a(X) in an abductive answer represents the set of ground abductive answers given by all the
possible substitutions of X satisfying the constraint store.

Another hybrid approach of integrating ALP and CLP is by using Constraint Handling Rules
(CHR) [80], a generic and flexible platform for defining constraint solvers. The idea is to integrate
abductive logic programming with a set of constraint handling rules for defining the meaning of
special predicates (similar to the first approach) and then delegate to a CHR system the evaluation
of those rules (similar to the second approach). This has been done, e.g., in [32, 33].

In our work we will use the second approach, i.e. we will integrate an underlying black-box con-
straint solver for evaluating constraints into a top-level abductive proof procedure. This approach
is surely the one most followed because it allows for using the expressiveness of the abduction
and the power of constraint solving in a straightforward way. In the next sections we give a brief
overview of the state-of-the-art systems: the above mentioned ACLP procedure and the A-System
[111, 139].

Here we focus on the theoretical aspects of Abductive Logic Programming with Constraints, re-
stating the notion of abductive answer seen in Section 3.4 for embracing constraints.
The main idea is that abductive logic programming with constraints extends abductive logic pro-
gramming in the same way constraint logic programming extends logic programming.

We recall some notions about constraint logic programming seen in section 2.5.

64 CHAPTER 3. ABDUCTIVE LOGIC PROGRAMMING WITH CONSTRAINTS (ALPC)

The CLP framework is defined over a particular structure < consisting of a domain D(<), and a
set of constraint predicates which includes equality, together with an assignment of relations on
D(<) for each constraint predicate. The structure < is equipped with a notion of <-satisfiability.
Given a set of constraint atoms C, the fact that C is <-satisfiable will be denoted as |=< C.
Moreover we denote as σ |=< C, the fact that the grounding σ of the variables of C over D(<)
satisfies C, i.e. C is <-satisfied via σ.

An abductive framework with constraints (or an abductive logic program with constraints) is a
tuple 〈P, A, IC〉< such that all the components are defined as above but now constraint atoms
might occur in the body of clauses of P and integrity constraints of IC. Also queries for abductive
logic programs with constraints might include constraint atoms.

The semantics of CLP is obtained by combining the logic programming semantics |=LP and the
notion of <-satisfiability (see [94]). We denote this semantic notion as |=LP (<) and we use it in the
notion of abductive answer with respect to an abductive logic program with constraints.

Definition 3.8 (Abductive answer with constraints). An abductive answer with constraints to a
query Q with respect to an abductive logic program with constraints 〈P, A, IC〉< is a tuple 〈∆, σ, Γ〉,
where ∆ is a finite set of abducible atoms, σ is a ground substitution for the (existentially quantified)
variables occurring in Q and Γ is a set of constraint atoms such that

1. there exists a ground substitution σ′ for the variables occurring in Γσ such that σ′ |=< Γσ
and

2. for each ground substitution σ′ for the variables occurring in Γσ such that σ′ |=< Γσ, there
exists a ground substitution σ′′ for the variables occurring in Q∪∆∪Γ, with σσ′ ⊆ σ′′, such
that:

• P ∪∆σ′′ |=LP (<) Qσ′′ and

• P ∪∆σ′′ satisfies IC.

Example 3.11. Consider the following abductive logic program with constraints (here we assume
that < is a constraint predicate of < with the expected semantics):

P : p(X) ← q(T1, T2) ∧ T1<X ∧X<8
q(X1, X2) ← s(X1, a)

A : {r, s}
IC : r(Z) → p(Z)

An abductive answer with constraints for the query Q = r(6) is

〈{r(6), s(T1, a)}, {T1 < 6}〉

Intuitively, given the query r(6), the integrity constraint in IC would fire and force the atom p(6)
to hold, which in turn requires s(T1, a) for some T1 < 6 to be true.

Considering a non-ground version of the query, for example Q = r(Y), we would have obtained an
abductive answer with constraints:

〈{r(Y), s(T1, a)}, {T1 < Y, Y < 8}〉.

2

3.7. ABDUCTIVE PROOF PROCEDURES WITH CONSTRAINTS 65

3.7 Abductive proof procedures with constraints

Abductive Logic Programming with Constraints is a relatively new field. Thus, despite its many
attractive features (the expressiveness of abductive logic programming plus the computational
efficiency of constraint logic programming) which make it suitable for a number of applications, not
so many concrete proposal have been presented to date. Here we briefly present the two approaches
most related to our work, namely the ACLP proof procedure and the A-System. Other interesting
approaches, not covered here, are the PROCALOG [180, 117] approach and the abductive approach
based on Constraints Handling Rules which was followed in [32, 33] and more recently in the SCIFF
proof procedure [7], an abductive proof procedure based on the IFF procedure which is specifically
designed to verify properties of multi-agent behavior protocols.

3.7.1 The ACLP proof procedure

The ACLP procedure [106, 110, 109] is probably the best known attempt of integrating ALP and
CLP embedding a black-box constraint solver in a higher-level abductive proof procedure, namely
the KM-procedure.
The ACLP abductive framework with constraints is of the form 〈P ∗, A∗ ∪ A, IC∗ ∪ IC〉< where
the three components are specified as in the KM-procedure (see Section 3.5.1) while constraints
are expressed in the finite domain constraint domain D(<). Obviously, with respect to the KM-
procedure, P ∗ is now obtained from a constraint normal logic program and constraint atoms can
also occur in the body of integrity constraints.
The computational schema of ACLP follows the interleaving of abductive and consistency phases
seen in the KM-procedure but when constraint atoms are introduced by resolution steps, they are
delegated to the constraint solver which accumulates them into a constraint store Γ. The constraint
solver also cooperates withthe abductive reasoner by checking for the satisfiability of the current
Γ and eventually simplifying it or pruning those branches of the abductive search tree containing
an inconsistent Γ.

The ACLP procedure has been proven sound with respect to the generalized stable models seman-
tics (extended for abductive framework with constraints in the sense of definition 3.8). Note that
the ACLP procedure is able to compute non-ground abductive answers but only with respect to
variables involved in the constraint store: indeed the ACLP procedure retains the KM-procedure’s
limitations on the selection of non-ground literals.

An implementation of the procedure, the ACLP system [109], has been done as a Prolog meta-
interpreter on top of the CLP language of ECLiPSe [178] through the use of its constraint solver
over finite domains. However, the architecture of the system is quite general and it can be easily
adapted to other constraint solvers. The experimental results in [109] show the expressive power
and the good computational performances of the system.
The merit of the ACLP system also include the first large application of an abductive system in
an industrial context: the scheduling of the crew for the flights of Cyprus Airways [107, 108]. The
ACLP system was able to efficiently produce solutions that were of good quality according to the
company’s experts.

3.7.2 The A-System

The A-System was proposed by Kakas, Van Nuffelen and Denecker in [111, 139]. It was conceived
as a reformulation of the SLDNFA procedure (with the integration of a constraint solver à la
ACLP) as a rewriting procedure, thus showing in a concrete way the close relationships between
SLDNFA and IFF. Indeed this procedure can be thought as an hybrid of the IFF procedure, the
SLDNFA procedure, and the ACLP procedure.

The abductive framework with constraints of the A-System is of the form 〈P,A, IC〉< where P
is a constraint normal logic program, IC is a set of integrity constraints in denial form and the
constraint domain D(<) is the finite domain. The A-System retains the distinction between the

66 CHAPTER 3. ABDUCTIVE LOGIC PROGRAMMING WITH CONSTRAINTS (ALPC)

positive and negative goals done in the SLDNFA, but it represents explicitly integrity constraints
in the abductive framework and it embeds a finite domain constraint solver as in ACLP.
The A-System rules, which substantially implement the SLDNFA formalization (apart from finite
domain constraints), are formulated in an IFF fashion, even if they differ in particular for the
treatment of integrity constraints which in the IFF are in implicative form.
Compared with the IFF, no allowedness conditions are given, but the safety of a selection is
determined at run-time checking the quantification of the variables, thus avoiding the selection of
floundering patterns, i.e. patterns which would lead to floundering. In particular, in the body of
a denial, neither negative literals nor constraints atoms with universally quantified variables can
be selected. Those conditions, roughly speaking, reformulate in a dynamic way the allowedness
conditions of the IFF procedure and they are very similar to the approach used in our CIFF proof
procedure.
The A-System has been proven in [139] sound and complete with respect to the three-valued
completion semantics. However the completeness result does not take into account floundering
patterns, thus it is substantially equivalent to the IFF completeness result.

The importance of the A-System, which is the most related abductive proof procedure to our CIFF,
can be found mainly in two aspects. The first one is that it is the first approach which combines
an abductive proof procedure which is able to compute non-ground abductive answers with a
finite domain constraint solver. The second one is that it is probably the first procedure whose
implementation was made as a meta-interpreter of the SICStus Prolog [1], and which explores
a number of algorithms to improve efficiency. The A-System implementation, indeed, makes use
both of complex data structures for storing the state of an abductive computation and of heuristics
on the choice points of a computation.

This approach, as reported in [111, 139], has given very good computational results compared to
simpler abductive implementations (e.g. ACLP) which basically make use of the left-most Prolog
strategy and “standard” Prolog data structures. The main application of the A-System has been
the coherent integration of databases [20, 139].

A comparison between the A-System and our CIFF proof procedure will be done in Chapter 5.

Chapter 4

The CIFF Proof Procedure and
the CIFF¬ extension

This chapter is the main chapter of the thesis. Here we define the CIFF proof procedure and the
CIFF¬ extension and we prove the soundness of both procedures.

In Section 4.1 we describe the CIFF framework, constraining the concepts seen in the previous
chapters to the concrete choices done for CIFF. In Section 4.1, we define formally the CIFF proof
procedure: we start describing the CIFF framework, then we present in detail the CIFF proof rules
which are the computational core of CIFF and finally we present the concepts of CIFF derivation
and CIFF extracted answer. The main contribution of Section 4.2 is the proof of the soundness
of the CIFF proof procedure, i.e. we show that a CIFF extracted answer is indeed an abductive
answer with constraints with respect to a CIFF framework and a given query.
Finally, in Section 4.3, we define the CIFF¬ proof procedure, a useful extension which provides a
NAF treatment of negative literals in the CIFF integrity constraints (based on the ideas of [157]),
and we prove its soundness.
A comparison with other existing tools and proof procedures will be done in the next Chapter,
after the presentation of the CIFF (and CIFF¬) implementation.

4.1 The CIFF proof procedure

In Chapter 3, we gave a brief overview of abductive logic programming (with constraints), indi-
cating some of the syntactical and semantical variants used in the literature. In this section we
describe the concrete choices done for defining the CIFF proof procedure.

It is useful to recall some notions from the previous chapters. We start from the definition of
abductive logic program constraining it to the syntax used in CIFF.
An abductive logic program is a tuple 〈P, A, IC〉 where:

• P is a normal logic program, namely a set of clauses of the form:

p(~X) ← l1(~Y1), . . . , ln(~Yn)

where p(~X) is an atom and each li(~Yi) is a literal, i.e. an atom a(~Y) or the negation of
an atom a(~Y), represented as not a(~Y). We refer to p(~X) as the head of the clause and to
l1(~Y1)∧ . . .∧ ln(~Yn) as the body of the clause. A predicate p occurring in the head of at least
one clause in P is called a defined predicate and the set of clauses in P such that p occurs in
their heads is called the definition set of p.

Any variable in a clause is implicitly universally quantified with the scope the entire clause.

68 CHAPTER 4. THE CIFF PROOF PROCEDURE AND THE CIFF¬ EXTENSION

• A is a set of predicates, referred to as abducible predicates. Atoms whose predicate is an
abducible predicate are referred to as abducible atoms or simply abducibles. Abducible atoms
must not occur in the head of any clause of P (without loss of generality, see [97]).

• IC is a set of integrity constraints which are implications of the form:

l1(~X1) ∧ . . . ∧ ln(~Xn) → a1(~Y1) ∨ . . . ∨ am(~Ym) n,m ≥ 1

Each of the li(~Xi) is a literal (as defined above) while each of the ai(~Yi) is an atom. We refer
to l1(~X1)∧ . . .∧ ln(~Xn) as the body and to a1(~Y1)∨ . . .∨ am(~Ym) as the head of the integrity
constraint.

Any variable in an integrity constraint is implicitly universally quantified with scope the
entire implication.

As we will see, negation in the body of an integrity constraint is treated as classical negation by
the CIFF proof procedure. To evidence this behavior we use the symbol ¬ in a CIFF framework
instead of the symbol not used in an abductive logic program with constraints.

An abductive logic program can be usefully extended to handle constraint predicates in the same
way constraint logic programming (CLP) extends logic programming. The CLP framework is
defined over a particular structure < consisting of a domain D(<), and a set of constraint predicates
which includes equality (=) and inequality (6=), together with an assignment of relations on D(<)
for each constraint predicate. We will refer to the set of constraint predicates in < as the constraint
signature (of <), and to atoms of the constraint predicates as constraint atoms (for <).
The structure < is equipped with a notion of <-satisfiability. Given a set of (possibly non-ground)
constraint atoms C, the fact that C is <-satisfiable will be denoted as |=< C. Moreover we denote
as σ |=< C the fact that the grounding σ of the variables of C over D(<) satisfies C, i.e. C is
<-satisfied via σ.

An abductive logic program with constraints is a tuple 〈P, A, IC〉< with all components defined as
above but where constraint atoms for < might occur in the body of clauses of P and of integrity
constraints of IC.

The semantics of abductive logic programming with constraints is strictly related to the notion of
abductive answer with constraints for a query Q which is a conjunction of (constraint) literals. The
following definition is a modification of Definition 3.8 where the integrity constraints are satisfied
under the theoremhood view (see Section 3.2 and Section 3.4 for further details). The theoremhood
view is the notion of integrity constraint satisfaction which is used in our CIFF proof procedure.
In the following definition, |=LP (<) is the chosen semantics of logic programming (LP) combined
with the chosen constraint structure (<).

Definition 4.1 (Abductive answer with constraints). An abductive answer with constraints to a
query Q with respect to an abductive logic program with constraints 〈P, A, IC〉< is a tuple 〈∆, σ, Γ〉,
where ∆ is a finite set of abducible atoms, σ is a ground substitution for the (existentially quantified)
variables occurring in Q and Γ is a set of constraint atoms such that

1. there exists a ground substitution σ′ for the variables occurring in Γσ such that σ′ |=< Γσ
and

2. for each ground substitution σ′ for the variables occurring in Γσ such that σ′ |=< Γσ, there
exists a ground substitution σ′′ for the variables occurring in Q∪∆∪Γ, with σσ′ ⊆ σ′′, such
that:

• P ∪∆σ′′ |=LP (<) Qσ′′ and

• P ∪∆σ′′ |=LP (<) IC.

4.1. THE CIFF PROOF PROCEDURE 69

2

Example 4.1. Consider the following abductive logic program with constraints (here we assume
that < is a constraint predicate of < with the expected semantics):

P : p(X) ← q(T1, T2) ∧ T1<X ∧X<8
q(X1, X2) ← s(X1, a)

A : {r, s}
IC : r(Z) → p(Z)

An abductive answer with constraints for the query Q = r(6) is

〈{r(6), s(T1, a)}, {T1 < 6}〉
Intuitively, given the query r(6), the integrity constraint in IC would fire and force the atom p(6)
to hold, which in turn requires s(T1, a) for some T1 < 6 to be true.

Considering a non-ground version of the query, for example Q = r(Y), we would have obtained an
abductive answer with constraints:

〈{r(Y), s(T1, a)}, {T1 < Y, Y < 8}〉.
2

We are now going to formally introduce the CIFF proof procedure. The language of CIFF is the
same as that of an abductive logic program with constraints, but we assume to have the following
special symbols:

• the special atom ⊥ which represents false;

• the special atom > which represents true.

These will be used, in particular, to represent the empty body (>) and the empty head (⊥) of an
integrity constraint.
The CIFF framework relies upon the availability of a concrete CLP structure < over arithmetical
domains equipped at least with the set {<,≤, >,≥,=, 6=} of constraint predicates whose intended
semantics is the expected one. The set of constraint predicates is assumed to be closed under
complement. When needed, we will denote by Con the complement of the constraint atom Con
(e.g. X < 3 is X ≥ 3). We also assume that the constraint domain offers a set of functions like
+,−, ∗ . . . whose semantics is again the expected one.
The structure < is a black box component in the definition of the CIFF proof procedure: for han-
dling constraint atoms and evaluating constraint functions, we rely upon an underlying constraint
solver over < which is assumed to be both sound and complete with respect to |=<. In particular
we will assume that, given a constraint atom Con and its complement Con, the formulae Con∨Con
and Con → Con are tautologies with respect to the constraint solver semantics. We do not commit
to any concrete implementation of a constraint solver, hence the range of the admissible arguments
to constraint predicates (D(<)) depends on the specifics of the chosen constraint solver.

The semantics of the CIFF proof procedure is defined in terms of definition 4.1 where (1) the
constraint structure < is defined as above, and (2) the semantics of logic programming is the
three-valued completion semantics [118] (we denote as |=3(<) the notion of |=LP (<) with respect to
that semantics). We refer to an abductive answer with constraints as a CIFF abductive answer.
Recall that the three-valued completion semantics embeds the Clark Equality Theory [48], denoted
by CET, which handles equalities over Herbrand terms.

The CIFF proof procedure operates on a set of iff-definitions obtained from the completion [48] of
the defined predicates p1, . . . , pn in the language of 〈P, A, IC〉<.
The completion of a predicate p with respect to 〈P, A, IC〉< is defined as follows. Assume that
the following set of clauses is the definition set p in 〈P, A, IC〉<:

70 CHAPTER 4. THE CIFF PROOF PROCEDURE AND THE CIFF¬ EXTENSION

p(~t1) ← D1

...
p(~tk) ← Dk

where each Di is a conjunction of literals and constraint atoms. The iff-definition of p is of the
form:

p(~X) ↔ [~X = ~t1 ∧D1] ∨ · · · ∨ [~X = ~tk ∧Dk]

where ~X is a vector of fresh variables (not occurring in any Di or ti) implicitly universally quantified
with scope the entire iff-definition, and all other variables are implicitly existentially quantified with
scope the right-hand side disjunct in which it occurs.
Notice that the equality symbol = is overloaded as it denotes both equality in the constraints and
equality over Herbrand terms. When using the latter, in the remainder, we will talk about equality
atoms and equality predicate.
If p is a non-abducible, non-constraint, non-equality atom and it does not occur in the head of any
clause of P its iff-definition is of the form:

p(~X) ↔ ⊥.

Definition 4.2 (CIFF Theory and CIFF Framework). Let 〈P, A, IC〉< be an abductive logic
program with constraints. The CIFF theory Th relative to 〈P, A, IC〉< is the set of all the
iff-definitions of each non-abducible, non-constraint predicate in the language of 〈P, A, IC〉<.
Moreover we say that a CIFF framework is the tuple 〈Th, A, IC〉<.

2

Example 4.2. Let us consider the following abductive logic program with constraints 〈P, A, IC〉<:

P : p(T) ← s(T)
p(W) ← W<8

A : {s}
IC : r(T) ∧ s(T) → p(T)

The resulting CIFF theory Th is:

p(X) ↔ [X = T ∧ s(T)] ∨ [X = W ∧W<8]
r(Y) ↔ ⊥.

With explicit quantification, the theory Th would be:

∀X (p(X) ↔ [∃T (X = T ∧ s(T)] ∨ [∃W (X = W ∧W<8)])
∀Y (r(Y) ↔ ⊥).

To improve readability and unless otherwise stated, in the remainder we will write CIFF theories
with implicit variable quantification. Note that Th includes an iff-definition for r even though r
occurs only in the integrity constraints IC. Moreover, there is no iff-definition for the abducible
predicate s.

2

Definition 4.3 (CIFF query). A CIFF query Q is a conjunction of literals, possibly including
constraint literals. All the variables in a CIFF query Q are implicitly existentially quantified over
Q. 2

4.1. THE CIFF PROOF PROCEDURE 71

Allowedness. [82] require frameworks for their IFF proof procedure to meet a number of so-
called allowedness conditions to be able to guarantee the correct operation of their proof procedure.
These conditions are designed to avoid problematic patterns of quantification which can lead to
floundering [123]. Informally, the floundering problem arises when a universally quantified variable
occurring in a clause occurs nowhere in the body except possibly in a negative literal or in an
abducible atom.
The IFF proof procedure for abductive logic programming (without constraints) has the following
allowedness conditions:

• an integrity constraint A → B is allowed iff every variable in it also occurs in an atomic
conjunct within its body A;

• an iff-definition p(~X) ↔ D1 ∨ · · · ∨Dn is allowed iff every variable, other than those in ~X,
occurring in a disjunct Di, also occurs inside a non-equality atomic conjunct within the same
Di;

• a query is allowed iff every variable in it also occurs in an atomic conjunct within the query
itself.

As stated in [82], the allowedness conditions ensure that floundering is avoided.
Our CIFF frameworks 〈Th, A, IC〉< must also be allowed in order to guarantee the correct oper-
ation of CIFF. Unfortunately, it is difficult to formulate appropriate allowedness conditions that
guarantee correct execution of the proof procedure without imposing too many unnecessary re-
strictions. This is a well-known problem, which is further aggravated for languages that include
constraint predicates. Our proposal is to relax the above allowedness conditions, and instead to
check dynamically, i.e. at runtime, the risk of floundering. In particular, we relax the allowedness
conditions as follows.

Definition 4.4 (Allowed CIFF framework and Allowed CIFF query).
A CIFF framework 〈Th, A, IC〉< is allowed if the following syntactical conditions are satisfied:

• an iff-definition p(~X) ↔ D1 ∨ · · · ∨Dn is allowed iff every variable, other than those in ~X,
occurring in a disjunct Di, also occurs inside an atomic conjunct within the same Di.

Notice that in the case of CIFF, there are no restrictions concerning integrity constraints.

A CIFF query Q is allowed iff every variable in it also occurs in an atomic conjunct within the
query itself.

2

Example 4.3. The following CIFF framework and the following CIFF query are allowed (P1 is
the original normal logic program with constraints):

P1 : p(Z)
p(Y) ← not q(Y)

Th1 : p(X) ↔ [X = Z] ∨ [X = Y ∧ ¬q(Y)]
A1 : ®
IC1 : Z = W → s(Z, W)
Q1 : q(Z) ∧ Y = c

It is worth noticing that neither the above CIFF framework nor Q1 are IFF allowed, besides the
fact that there are no constraints in them. The following CIFF framework, instead, is not allowed:

Th2 : p(X) ↔ [X = Z ∧ ¬q(Z, Y)]
A2 : ®
IC2 : q(Z) → s(Z, W)

The allowedness violation is due to the variable Y in Th2 which occurs only in a negative literal.
2

72 CHAPTER 4. THE CIFF PROOF PROCEDURE AND THE CIFF¬ EXTENSION

In the remainder of this thesis, we will always assume that CIFF frameworks and CIFF queries
are allowed.

4.1.1 CIFF proof rules

The CIFF proof procedure is a rewriting procedure, consisting of a number of CIFF proof rules,
each of which replaces a CIFF formula by another one.
In the remainder, a negative literal L = ¬A, everywhere in a CIFF framework, in a CIFF query,
or in a CIFF formula, will be written in implicative form, i.e.:
¬L is written as L → ⊥
Hence, in this context a literal is either an atom A or an implication A → ⊥.
A special case of such implication is given by the next definition.

Definition 4.5 (CIFF Inequality). A CIFF inequality is an implication of the form

X = t → ⊥

where X is an existentially quantified variable and t is a term not in the form of a universally
quantified variable and such that X does not occur in t1. 2

Definition 4.6 (CIFF formula, CIFF node and CIFF conjunct). A CIFF formula F is a disjunc-
tion

N1 ∨ . . . ∨Nn n ≥ 0.

If n = 0, the disjunction is equivalent to ⊥.
Each disjunct Ni is a CIFF node which is of the form:

C1 ∧ . . . ∧ Cm m ≥ 0.

If m = 0, the conjunction is equivalent to >. Each conjunct Ci is a CIFF conjunct and it can be
of the form of:

• an atom (atomic CIFF conjunct),

• an implication (implicative CIFF conjunct, including negative literals) or

• a disjunction of conjunctions of literals (disjunctive CIFF conjunct)

where implications are of the form:

L1 ∧ . . . ∧ Lt → A1 ∨ . . . ∨As s, t ≥ 1,

where each Li is a literal (possibly ⊥ or >) and each Ai is an atom (possibly ⊥ or >).
In a CIFF node N , variables which appear either in an atomic CIFF conjunct or in a disjunctive
CIFF conjunct are implicitly existentially quantified with scope N . All the remaining variables, i.e.
variables occurring only in implicative CIFF conjuncts, are implicitly universally quantified with
the scope being the implication in which they appear.

Finally a CIFF node N can have an associated label λ. We will denote a node N labeled by λ as
λ : N . 2

We are now going to present the CIFF proof rules. In doing that, we treat a CIFF node as a
(multi)set of CIFF conjuncts and a CIFF formula as a (multi)set of CIFF nodes. I.e. we represent
a CIFF formula F = N1 ∨ . . . ∨Nn as

{N1, . . . , Nn}
1Here, the symbol = may represent either equality over Herbrand or equality over constraints.

4.1. THE CIFF PROOF PROCEDURE 73

where each Ni is a CIFF node, of the form C1 ∧ . . . ∧ Cm represented by

{C1, . . . , Cm}
where each Cj is a CIFF conjunct.

Example 4.4. Let us consider the following abductive logic program with constraints 〈P, A, IC〉<:

P : p ← a

p ← b

A : {a, b, c}
IC : a → c

The CIFF formula p ∧ (a → c) (composed of a single node) is represented by:

{{p, (a → c)}}
The CIFF formula [a ∧ (a → c)] ∨ [b ∧ (a → c)], composed of two CIFF nodes N1 = a ∧ (a → c)
and N2 = b ∧ (a → c) is represented by:

{{a, (a → c)}, {b, (a → c)}}.
2

Each CIFF proof rule2 operates over a node N within a formula F and it will result in a new
formula F ′. A rule is presented in the following form:

Rule name Input: F, N Output F ′

Given: a set of CIFF conjuncts χ in N
Conditions: a set of conditions over χ and N
Action: {replace, replace all, add, delete} Cs′; mark λ

The Given part identifies a (possibly empty) set of conjuncts χ in N within F . A rule φ can
be applied on a set χ of conjuncts of N satisfying the stated Conditions. We call such a set
χ a rule input for φ. Finally, the Action part defines both a new set of conjuncts Cs′ and an
action (replace, replace all, add, delete or mark) which states, as described below, how F ′ is
obtained from F through Cs′. In the remainder we will omit to specify the Input part and the
Output part.
Given a rule φ as above, we denote by

F
N ,χ

GGGGGGGGA

φ
F ′

the application of rule φ with Input F, N , Given χ, and Output F ′.
Abstracting from the particular action, F ′ is always derived from F replacing the node N by a set
of nodes N , i.e.:

F ′ = F − {N} ∪ N
We refer to N as the CIFF successor nodes of N and we refer to each node N ′ ∈ N as a CIFF
successor node of N . Each type of action defines N as follows:

2In the remainder, when we want to refer to a CIFF framework, a CIFF node, a CIFF formula and so on, we
drop the prefix “CIFF” if it is clear from the context.

74 CHAPTER 4. THE CIFF PROOF PROCEDURE AND THE CIFF¬ EXTENSION

replace: N= {(N − χ) ∪ Cs′}
replace all: N= {[(N − χ) ∪ {D1}], . . . , [(N − χ) ∪ {Dk}]}

where Cs′ = {D1 ∨ . . . ∨Dk}
add: N= {N ∪ Cs′}
delete: N= {N − Cs′}
mark: N= {λ : N}

The mark action does not change the elements in N but it marks the node N with the label λ3.
All the actions, apart from the replace all action, replace N by a single successor node.
In the replace all action, Cs′ consists of a single conjunct in disjunctive form, i.e. Cs′ = {D1 ∨
. . . ∨Dk}. This action adds to F a set N of k successor nodes, each of them obtained from N by
deleting χ and by adding a single disjunct Di.

We are now ready to specify the proof rules in detail.

In the presentation we are going to write ~t = ~s as a shorthand for t1 = s1 ∧ · · · ∧ tk = sk (with
the implicit assumption that the two vectors have the same length), and [~X/~t] for the substitution
[X1/t1, . . . , Xk/tk]. Note that X and Y will always represent variables.

Furthermore, in our presentation of the proof rules, we abstract away from the order of conjuncts
in the body of an implication by writing the body of implications with the “critical” conjunct in
the first position.

Recall that, in writing the proof rules, we use implicit variable quantification described in Definition
4.6.

The first proof rule replaces an atomic conjunct in a node N by its iff-definition:

R1 - Unfolding atoms
Given: p(~t)
Conditions: [p(~X) ↔ D1 ∨ · · · ∨Dn] ∈ Th
Action: replace { (D1 ∨ · · · ∨Dn)[~X/~t] }

Note that any variable in D1∨· · ·∨Dn is implicitly existentially quantified in the resulting formula
F ′.
We assume that variable renaming may be applied so that all existential variables have distinct
names in the resulting CIFF node.

Unfolding could be applied also to atoms occurring in the body of an implication yielding one new
implication for every disjunct in the corresponding iff-definition:

R2 - Unfolding within implications
Given: (p(~t) ∧B) → H

Conditions: [p(~X) ↔ D1 ∨ · · · ∨Dn] ∈ Th
Action: replace { [(D1[~X/~t] ∧B) → H], . . . , [(Dn[~X/~t] ∧B) → H] }

Observe that, within F ′, any variable in any Di becomes universally quantified with scope the
implication in which it occurs. Also in rule R2, a renaming is assumed.

The next rule is the propagation rule, which allows us to resolve an atom in the body of an
implication in N with a matching atomic conjunct also in N .

R3 - Propagation
Given: [(p(~t) ∧B) → H], p(~s)
Conditions:
Action: add { (~t = ~s ∧B) → H }

3As we will see later, λ can only be the label undefined in this section, while it could be the labels undefined or
NAF in section 4.3. When clear from the context, we will represent a CIFF node omitting its labels.

4.1. THE CIFF PROOF PROCEDURE 75

The splitting rule is the only rule performing a replace all action. Roughly speaking it distributes
a disjunction over a conjunction.

R4 - Splitting
Given: D1 ∨ · · · ∨Dn

Conditions:
Action: replace all { D1 ∨ . . . ∨Dn }

The following factoring rule can be used to generate two cases, one in which the given abducible
atoms unify and one in which they do not:

R5 - Factoring
Given: p(~t), p(~s)
Conditions: p abducible
Action: replace { [p(~t) ∧ p(~s) ∧ (~t = ~s → ⊥)] ∨ [p(~t) ∧ ~t = ~s] }

The next set of CIFF proof rules are the constraint rules. They manage constraint atoms and they
are, in a sense, the interface to the constraint solver. They also deal with equalities and CIFF
inequalities (see Definition 4.5) which can be delegated to the constraint solver if their arguments
are in the constraint domain D(<). The formal definition of the proof rules is quite complex, hence
we first introduce some useful definitions.

Definition 4.7 (Basic c-atom). A basic c-atom is either a constraint atom whose predicate is
distinct from =, or an atom of the form A = B where A and B are not both variables. 2

As an example, X > 3 and X = Y + 2 are both basic c-atoms, whereas X = Y and X = a are not
(where a 6∈ D(<)).

Definition 4.8 (basic c-conjunct and constraint variable). A basic c-conjunct is a basic c-atom
which occurs as a CIFF conjunct in a node.
A constraint variable is a variable occurring in a basic c-conjunct. 2

Note that a constraint variable is always an existentially quantified variable with its scope the
entire CIFF node in which it occurs. This is because it must appear in a basic c-conjunct (i.e.
outside an implication).

Definition 4.9 (c-atom and c-conjunct). A c-atom is a constraint atom (including equality atoms)
such that all the variables occurring in it are constraint variables.
A c-conjunct is a c-atom which occurs as a CIFF conjunct in a node. 2

We are now ready to present the first constraint proof rule.

R6 - Case analysis for constraints
Given: (Con ∧A) → B
Conditions: Con is a c-atom
Action: replace { [Con ∧ (A → B)] ∨ Con }

Observe that as Con is a c-atom, all the variables occurring in it are constraint variables, thus
they are existentially quantified.

The next rule provides the actual constraint solving step itself. It may be applied to any set of
c-conjuncts in a node, but to guarantee soundness, eventually, it has to be applied to the set of
all c-conjuncts in a node. To simplify presentation, we assume that the constraint solver will fail
whenever it is presented with an ill-defined constraint such as, say, bob ≤ 5 (in the case of an
arithmetic solver). For inputs that are “well-typed”, however, such a situation never arises.

76 CHAPTER 4. THE CIFF PROOF PROCEDURE AND THE CIFF¬ EXTENSION

R7 - Constraint solving
Given: Con1, . . . ,Conn

Conditions: each Coni is a c-conjunct;
{Con1, . . . ,Conn} is not <-satisfiable

Action: replace { ⊥ }

The next proof rules deal with equalities (which are not constraint atoms to be handled by the
constraint solver) and they rely upon the following rewrite rules which essentially implement the
term reduction part of the unification algorithm of [129]:

(1) Replace f(t1, . . . , tk) = f(s1, . . . , sk) by t1 = s1 ∧ · · · ∧ tk = sk.

(2) Replace f(t1, . . . , tk) = g(s1, . . . , sl) by ⊥ if f and g are distinct or k 6= l.

(3) Replace t = t by >.

(4) Replace X = t by ⊥ if t contains X.

(5) Replace t = X by X = t if X is a variable and t is not.

(6) Replace Y = X by X = Y if X is a universally quantified variable and Y is not.

In the following equality rewriting rules, we denote as E(e) the result of applying the above rewrite
rules (1)-(6) to the equality e. If no rewrite rule can be applied then E(e) = e.

R8 - Equality rewriting in atoms
Given: t1 = t2
Conditions:
Action: replace { E(t1 = t2) }
R9 - Equality rewriting in implications
Given: (t1 = t2 ∧B) → H
Conditions:
Action: replace { (E(t1 = t2) ∧B) → H }

The following two substitution rules propagate equalities to the rest of the node. In the first case
we assume that N = (X = t ∧Rest).

R10 - Substitution in atoms
Given: X = t, Rest
Conditions: X 6∈ t
Action: replace { X = t, (Rest[X/t]) }
R11 - Substitution in implications
Given: (X = t ∧B) → H
Conditions: X universally quantified; X 6∈ t;
Action: replace { (B → H)[X/t] }

Note that if B is empty, then (B → H)[X/t] should be read as (> → H)[X/t].

If none of the equality rewriting or substitution rules are applicable, then an equality in the body
of an implication may give rise to a case analysis:

R12 - Case analysis for equalities
Given: (X = t ∧B) → H
Conditions: (X = t ∧B) → H is not of the form X = t → ⊥; X 6∈ t;

X is existentially quantified; X = t is not a c-atom;
t is not a universally quantified variable

Action: replace { [X = t ∧ (B → H)] ∨ [X = t → ⊥] }

4.1. THE CIFF PROOF PROCEDURE 77

Note that the variables which occur in t become existentially quantified in the first disjunct while
in the second disjunct each variable in t maintains its original quantification.
The first condition of the rule avoids applying case analysis if the implication (X = t∧B) → H is of
the form X = t → ⊥. This is because, if it were applied, the resulting first disjunct would become
[X = t ∧ (> → ⊥)] which is trivially false, while the second disjunct would become X = t → ⊥
itself. The other conditions guarantee that none of the earlier rules are applicable.

The next rule moves negative literals in the body of an implication to the head of that implication:

R13 - Negation rewriting
Given: ((A → ⊥) ∧B) → H
Conditions:
Action: replace { B → (A ∨H) }

Note that if B is empty, then B → (A ∨H) should be read as > → (A ∨H).

The following are logical simplification rules.

R14 - Logical simplification #1
Given: >
Conditions:
Action: delete { > }

R15 - Logical simplification #2
Given: (> ∧B) → H
Conditions: B is not empty
Action: replace { B → H }

R16 - Logical simplification #3
Given: ⊥ → H
Conditions:
Action: delete { ⊥ → H }

R17 - Logical simplification #4
Given: > → H
Conditions: H does not contain any universally quantified variable
Action: replace { H }

Note that the last simplification rule replaces an implication with an empty body, with its head
as a CIFF conjunct. This is done only if no universally quantified variables occur in the head,
otherwise we would have some universally quantified variables outside implications in a node. For
example, suppose we applied the rule on > → a(f(Y)) where Y is universally quantified and a is
abducible. We would obtain a(f(Y)) as a conjunct in a node, thus leading to two main problems:
(1) the variable quantification cannot be implicit and, even worse, (2) the semantics should be
extended to the case of infinitely many instantiations of abducible atoms in an abductive answer.
The case where H does have a universally quantified variable is dealt with by the Dynamic Al-
lowedness rule, which is used to identify nodes with problematic quantification patterns, which
could lead to floundering:

R18 - Dynamic allowedness (DA)
Given: B → H
Conditions: either B = > or B consists of constraint atoms alone;

no other rule applies to the implication
Action: mark undefined

Due to the definition of the other CIFF proof rules, the implication B → H to which DA is
applied, falls in one of the following cases:

78 CHAPTER 4. THE CIFF PROOF PROCEDURE AND THE CIFF¬ EXTENSION

1. B = > and there is a universally quantified variable in H;

2. there is a c-atom in B with an universally quantified variable occurring in it.

With the DA rule, we avoid to obtain infinitely many abducible atoms in an abductive answer.
For example, let us consider an implication of the form X > Y → H such that X is universally
quantified. Depending on D(<), there could be infinitely many instances of X satisfying the c-
atom and CIFF should handle all those cases. However, we believe that DA could be relaxed, in
particular for those implications falling in the case 2 above. Consider, for example, the following
implication:

X > 3 ∧X < 100 → a(X)

where X is universally quantified and a is an abducible predicate. If D(<) is the set of all integers,
there is a finite set of abducible atoms satisfying the implication, i.e. the set {a(4), a(5), . . . , a(99)}.
However, DA marks a node with this implication as undefined due to the presence of X. The
relaxation of DA is not in the scope of this thesis.

4.1.2 CIFF derivation and answer extraction

The CIFF proof rules are the building blocks of a CIFF derivation which defines the process of
computing answers with respect to a framework 〈Th, A, IC〉< and a query Q.
Prior to defining a CIFF derivation formally, we introduce some useful definitions.

Definition 4.10 (Failure and undefined CIFF nodes). A CIFF node N which contains ⊥ as an
atomic CIFF conjunct is called a failure CIFF node. A CIFF node N marked as undefined is
called an undefined CIFF node. 2

Definition 4.11 (CIFF selection function). Let F be a CIFF formula. We define a CIFF selection
function S as a function such that:

S(F) = 〈N, φ, χ〉

where N is a CIFF node in F , φ is a CIFF proof rule and χ is a set of CIFF conjuncts in N such
that χ is a rule input for φ.

2

We are now ready to define a CIFF pre-derivation and a CIFF branch.

Definition 4.12 (CIFF Pre-derivation and initial formula).
Let 〈Th, A, IC〉< be a CIFF framework, let Q be a query and let S be a CIFF selection function.
A CIFF pre-derivation for Q with respect to 〈Th, A, IC〉< and S is a (finite or infinite) sequence
of CIFF formulae F1, F2, . . . , Fi, Fi+1 . . . such that each Fi+1 is obtained from Fi through S as
follows:

• F1 = {N1} = {Q ∪ IC}, where Q and IC are treated as sets of CIFF conjuncts, (we will
refer to F1 as the initial formula of a CIFF pre-derivation)

• S(Fi) = 〈Ni, φi, χi〉 such that Ni is neither an undefined CIFF node nor a failure CIFF node
and

• Fi

Ni, χi

GGGGGGGGGGA

φi

Fi+1

2

4.1. THE CIFF PROOF PROCEDURE 79

The construction of a pre-derivation can be interpreted as the construction of an or-tree rooted at
N1 and whose nodes are CIFF nodes. Roughly speaking, the whole or-tree can be seen as a search
tree for answers to the query. Note that all the variables in the query are existentially quantified
in N1 because the allowedness conditions of Definition 4.4 impose that each variable in Q occurs
in an atomic conjunct of Q.
CIFF formulas Fi in a pre-derivation correspond to successive frontiers of the search tree. Each
derivation step is done by applying (through S) the selected proof rule on a set χ of CIFF conjuncts
within a node N in a frontier. The resulting frontier is obtained by replacing N by the set of
successor nodes N .

Definition 4.13 (Successor Nodes in a CIFF pre-derivation). Let D be a CIFF pre-derivation for
a query Q with respect to a CIFF framework 〈Th, A, IC〉< and a selection function S.
We say that N is the set of successor nodes of N in D, if

• S(Fi) = 〈N, φi, χi〉,

• Fi

N, χi

GGGGGGGGGA

φi

Fi+1, and

• for each N ′ in N , N ′ ∈ Fi+1 and N ′ 6∈ Fi.

Moreover we say that a node N ′ in N is a successor node of N in D. 2

Definition 4.14 (CIFF branch). Given a CIFF pre-derivation D = F1, F2, . . . , Fi, Fi+1 . . ., a
CIFF branch B in D is a (finite or infinite) sequence of CIFF nodes N1, N2, . . . , Ni, Ni+1 . . . such
that each Ni ∈ Fi and each Ni+1 is a CIFF successor node of Ni in D. 2

The next step, finally, is the definition of a CIFF derivation.

Definition 4.15 (CIFF derivation). Let 〈Th, A, IC〉< be a CIFF framework, let Q be a query
and let S be a CIFF selection function. A CIFF derivation D for Q with respect to 〈Th, A, IC〉<
is a CIFF pre-derivation F1, F2, . . . such that for each CIFF branch B in D if

• S(Fi) = 〈Ni, φ, χ〉,
• S(Fj) = 〈Nj , φ, χ〉,
• Ni ∈ B,

• Nj ∈ B and

• i 6= j

then φ 6∈ {Propagation, Factoring, Equality rewriting in atoms, Equality rewriting in
implications, Substitution in atoms}. 2

Informally, a derivation is a pre-derivation such that in each branch certain proof rules can be
applied only once to a given set of selected CIFF conjuncts. This is because those rules can
produce loops if they are applied repeatedly to the same set of conjuncts. The concept of successor
nodes in a pre-derivation is valid also for a derivation.

Example 4.5. Consider the following framework 〈Th,A, IC〉<:

Th : p ↔ ⊥
A : {a}
IC : p → a

The following is a pre-derivation D for the query Q = p.

80 CHAPTER 4. THE CIFF PROOF PROCEDURE AND THE CIFF¬ EXTENSION

F1 = {{p, [p → a]}} [Init]
F2 = {{p, [p → a], [> → a]}} [R3]
F3 = {{p, [p → a], [> → a], [> → a]}} [R3]

...

The Propagation rule R3 can be applied repeatedly to the integrity constraint giving rise to an
infinite pre-derivation which should be avoided in a derivation4. 2

Definition 4.16 (Successor CIFF Derivation). Let D= F1, . . . , Fi be a CIFF derivation, let S be
a CIFF selection function and let N ∈ Fi. We say that D′ = F1, . . . , Fi+1 is a successor CIFF
derivation via N of D if

• S(Fi) = 〈N, φi, χi〉,

• Fi

N,χi

GGGGGGGGGA

φi

Fi+1, and

• D′ is a CIFF derivation,

2

Definition 4.17 (Leaf and successful CIFF nodes). Let D= F1, . . . , Fi be a CIFF derivation. A
CIFF node N in Fi is a leaf CIFF node if

• it is a failure CIFF node or

• it is an undefined CIFF node or

• there exists no successor CIFF derivation via N of D.

A leaf node which is neither a failure CIFF node nor an undefined CIFF node is called a successful
CIFF node. 2

We are now ready to introduce the following classifications of CIFF branches and CIFF derivations.

Definition 4.18 (Failure, undefined and successful CIFF branches). Let D be a CIFF derivation
and let B= N1, . . . , Nk be a CIFF branch in D. We say that B is

• a successful CIFF branch if Nk is a successful CIFF node;

• a failure CIFF branch if Nk is a failure CIFF node;

• an undefined CIFF branch if Nk is an undefined CIFF node.

2

Definition 4.19 (Failure and Successful CIFF Derivations). Let D be a CIFF derivation. D is
called a successful CIFF derivation if it contains at least one successful CIFF branch. D is called
a failure CIFF derivation if all its branches are failure CIFF branches. 2

Intuitively, an abductive answer to a query Q can be extracted from a successful node of a successful
derivation. Formally:

4The example shows the need of multisets for representing correctly CIFF formulae and CIFF nodes.

4.1. THE CIFF PROOF PROCEDURE 81

Table 4.1: CIFF proof rules

R1 Unfolding atoms
R2 Unfolding in implications
R3 Propagation
R4 Splitting
R5 Factoring
R6 Case analysis for constraints
R7 Constraint solving
R8 Equality rewriting in atoms
R9 Equality rewriting in implications
R10 Substitution in atoms
R11 Substitution in implications
R12 Case analysis for equalities
R13 Negation rewriting
R14 Logical Simplification #1
R15 Logical Simplification #2
R16 Logical Simplification #3
R17 Logical Simplification #4
R18 Dynamic Allowedness

Definition 4.20 (CIFF Extracted Answer). Let 〈Th,A, IC〉< be a CIFF framework and let Q be
a CIFF query. Let D be a successful CIFF derivation for Q with respect to 〈Th, A, IC〉<. A CIFF
extracted answer from a successful node N of D is a pair

〈∆, C〉
where ∆ is the set of abducible atomic conjuncts in N , and C = 〈Γ, E,DE〉 where:

• Γ is the set of all the c-conjuncts in N ,

• E is the set of all the equality atoms in N ,

• DE is the set of all the CIFF inequalities in N .

2

The soundness of the CIFF proof procedure with respect to the notion of <-satisfiability and the
three-valued completion semantics is the subject of the next section. The idea is to show that CIFF
extracted answers correspond to abductive answers with constraints in the sense of Definition 4.1.

Example 4.6. Consider the following framework 〈Th, A, IC〉<, obtained from the abductive logic
program with constraints of Example 3.11, and the following query Q:

Th : p(T) ↔ T = X ∧ q(T1, T2) ∧ T1<X ∧X<8
q(X, Y) ↔ X = X1 ∧ Y = X2 ∧ s(X1, a)

A : {r, s}
IC : r(Z) → p(Z)
Q : r(Y)

The following is a CIFF derivation D for Q with respect to 〈Th, A, IC〉< (the CIFF proof rules
are summarized in Table 4.1):

82 CHAPTER 4. THE CIFF PROOF PROCEDURE AND THE CIFF¬ EXTENSION

F1 = {{r(Y), [r(Z) → p(Z)]}} [Init]
F2 = {{r(Y), [Z = Y → p(X)], [r(Z) → p(Z)]}} [R3]
F3 = {{r(Y), [> → p(Y)], [r(Z) → p(Z)]}} [R11]
F4 = {{r(Y), p(Y), [r(Z) → p(Z)]}} [R17]
F5 = {{r(Y), Y = X, q(T1, T2), T1<X, X <8, [r(Z) → p(Z)]}} [R1]
F6 = {{r(X), Y = X, q(T1, T2), T1<X, X <8, [r(Z) → p(Z)]}} [R10]
F7 = {{r(X), Y = X, T1 = V, T2 = W, s(T1, a), T1<X, X <8, [r(Z) → p(Z)]}} [R1]
F8 = {{r(X), Y = X, T1 = V, T2 = W, s(V, a), V <X, X <8, [r(Z) → p(Z)]}} [R10]

No more new rules can be applied to the only node in F8 and this is neither a failure node nor an
undefined node. Hence, it is a successful node from which we extract the following answer:

〈{r(X), s(V, a)}, C〉
where C = 〈Γ, E, DE〉 is:

Γ : {Y = X,T1 = V, V <X, X <8}
E : {T2 = W}
DE : ®

Indeed, the abductive answer with constraints given in Example 3.11 (modulo variable renaming
and instantiation of T due to the ground query in Example 3.11). 2

We represent the example 3.11 of abductive logic programming with constraints.

Example 4.7. Consider the following framework 〈Th, A, IC〉<, and the following query Q:

Th : p(X) ↔ X = Z ∧ a(Z) ∧ Z < 5
A : {a}
IC : a(2) → ⊥
Q : p(Y)

The following is a CIFF derivation D for Q with respect to 〈Th, A, IC〉<:

F1 = {{p(Y), [a(2) → ⊥]}} [Init]
F2 = {{Y = Z, a(Z), Z < 5, [a(2) → ⊥]}} [R1]
F3 = {{Y = Z, a(Z), Z < 5, [2 = Z → ⊥]}} [R3]
F4 = {{Y = Z, a(Z), Z < 5, [Z = 2 → ⊥]}} [R9]
F5 = {{Y = Z, a(Z), Z < 5, [Z 6= 2 ∨ [Z = 2, (> → ⊥)]]}} [R6]
F6 = {{{Y = Z, a(Z), Z < 5, Z 6= 2}, {Y = Z, a(Z), Z < 5, Z = 2, (> → ⊥)}} [R4]
F6 = {{{Y = Z, a(Z), Z < 5, Z 6= 2}, {Y = Z, a(Z), Z < 5, Z = 2,⊥}} [R17]

No more new rules can be applied to the two nodes in F6. The first node is neither a failure node
nor an undefined node. Hence, it is a successful node from which we extract the following answer:

〈{a(Z)}, 〈{Y = Z,Z < 5, Z 6= 2},®,®〉〉
2

4.2 Soundness of the CIFF Proof Procedure

As anticipated in the previous section, the CIFF proof procedure is sound with respect to the three-
valued completion semantics, i.e. each CIFF extracted answer is indeed a CIFF correct answer in
the sense of Definition 4.1. All the results stated in this section are based upon the results given
in [81] for the IFF proof procedure.
The main result of this section is the following theorem.

4.2. SOUNDNESS OF THE CIFF PROOF PROCEDURE 83

Theorem 4.1 (CIFF Soundness). Let 〈P, A, IC〉< be an abductive logic program with constraints
such that the corresponding CIFF framework is 〈Th,A, IC〉<. Let 〈∆, C〉, where C = 〈Γ, E,DE〉,
be a CIFF extracted answer from a successful CIFF node in a CIFF derivation with respect to
〈Th, A, IC〉< and a CIFF query Q.

Then there exists a ground substitution σ such that 〈∆, σ, Γ〉 is an abductive answer with constraints
to Q wrt 〈P, A, IC〉<.

2

The proof of the theorem relies upon the following propositions. The first proposition shows that
given a CIFF extracted answer 〈∆, C〉 there exists a substitution which satisfies all the constraint
atoms, equality atoms and CIFF inequalities in C.

Proposition 4.1. Let 〈∆, C〉 be a CIFF extracted answer from a successful CIFF node N , where
C = 〈Γ, E, DE〉.
Then:

1. there exists a ground substitution θ such that θ |=3(<) Γ, and

2. for each such ground substitution θ, there exists a ground substitution σ such that

θσ |=3(<) Γ ∪ E ∪DE

2

Proof of Proposition 4.1. To prove the first part of the proposition we need the semantics of the
constraint solver while to prove the second part we need the Clark Equality Theory (CET). Both
are embedded in our semantics (|=3(<)) and we will write explicitly |=< and |=CET , respectively,
instead of |=3(<) where appropriate.

1. Γ is the set of c-conjuncts in N , and this is a successful node. Then the Constraint solving
rule R7 cannot be applied to N . Thus, by the assumption of having a sound and complete
constraint solver, we have that Γ is not an unsatisfiable set of constraints, i.e. we can always
obtain a ground substitution θ such that:

|=< Γθ

and so

θ |=< Γ.

2. Let us consider F = (E ∪DE)θ. Equalities in E are of the form

Xi = ti (1 ≤ i ≤ n, n ≥ 0)

where each Xi is an existentially quantified variable and ti is a term (containing neither
universally quantified variables nor Xi itself). The scope of each variable in E is the whole
CIFF node N and each Xi does not appear elsewhere in the node due to the exhaustive
application of the Equality rewriting in atoms rule R8.

The inequalities in DE are of the form

Xj = tj → ⊥ (n < j ≤ m,m ≥ 0)

84 CHAPTER 4. THE CIFF PROOF PROCEDURE AND THE CIFF¬ EXTENSION

where each Xj is an existentially quantified variable appearing also in E (due to the Sub-
stitution in atoms rule R10) and tj is a term not in the form of a universally quantified
variable.

The ground substitution θ contains an assignment to all the constraint variables occurring in
(E ∪DE). This is because (i) all the equalities in E which are c-conjuncts are also in Γ and
(ii) there is no CIFF inequality in DE of the form Xi = ti → ⊥ where Xi = ti is a c-atom
because the Case analysis for constraints rule R6 replaced any such CIFF inequality
with a c-conjunct of the form Xi 6= ti.

Note that also CIFF inequalities of the form X = Y → ⊥ such that X is a constraint variable
and Y is not (or viceversa) are not a problem. This is because X has been substituted by a
ground term c by θ and there is no equality of the form Y = c in E: otherwise that equality
should belong to Γ and Y would be a constraint variable too.

Finally, the proposition is proven by finding a ground substitution σ such that |=CET Fσ
and this can be done following the proof in [81], as follows.

First we assign a value to each existentially quantified variable Xj in DEθ. We do this by
using a fresh function symbol gj , i.e. the function symbol gj does not appear in the CIFF
branch whose leaf is N (we assume here that we have an infinite number of distinct function
symbols in our language). Then we choose a constant c and we assign gj(c) to Xj . We define
G = FσI where σI is the ground substitution composed of the above assignments.

The second step is to assign to each variable Xi in (Eθ)σI its corresponding term si = tiσI .

Finally, for each remaining existentially quantified variable, we use another fresh function
and a constant c to make assignments as was done for CIFF inequalities.

The whole set of assignments so far obtained is the ground substitution σ which proves the
proposition. This is because, after θσ has been applied, each equality originally in E is of
the form t = t and each CIFF inequality originally in DE is of the form f(t) = g(t) → ⊥
which are obviously entailed by CET.

We have:

σ |=3(<) (E ∪DE)θ

and thus, being θ |=< Γ, we have:

θσ |=3(<) Γ ∪ E ∪DE

Example 4.8. Given Γ = {2 ≤ T, T < 4}, E = {X = f(Y), Z = g(V)} and DE = {(Y =
h(W,V)) → ⊥}, we have that both θ1 = {T/2} and θ2 = {T/3} satisfy Γ and they contain all the
possible assignments for T (given that D(<) is the set of all integers). We can obtain a ground
substitution θ1σ (with σ = σDE ∪ σE) as follows:

1. σDE = {Y/r(c)} obtaining S1 = ((E ∪DE)θ)σDE =
{X = f(r(c)), Z = g(V), (r(c) = h(W,V)) → ⊥}

2. the second step is to assign the corresponding terms to X and Z obtaining

S2 = {f(r(c)) = f(r(c)), g(V) = g(V), (r(c) = h(W,V)) → ⊥}

4.2. SOUNDNESS OF THE CIFF PROOF PROCEDURE 85

3. finally we assign new terms with fresh functions to the remaining existentially quantified
variable V , e.g. σE = {V/t(c)} obtaining

S3 = {f(r(c)) = f(r(c)), g(t(c)) = g(t(c)), (r(c) = h(W, t(c))) → ⊥}

The set S3 is clearly entailed by CET. Note that we do not care about the universally quantified
variable W in S3. This is because

(r(c) = h(W, t(c))) → ⊥
is entailed by CET for any assignment to W , due to the fact that r and h are distinct function
symbols.

Similarly, we can obtain another ground substitution using θ2. 2

The next proposition directly extends the above result to the set ∆ of a CIFF extracted answer.

Proposition 4.2. Let 〈∆, C〉 be a CIFF extracted answer from a successful CIFF node N where
C = 〈Γ, E, DE〉. For each ground substitution σ′ such that σ′ |=3(<) Γ ∪ E ∪ DE, there exists a
ground substitution σ which extends σ′ for the variables that are in ∆ but not in C such that

1. σ′ ⊆ σ

2. ∆σ |=3(<) ∆ ∪ Γ ∪ E ∪DE

2

Proof of Proposition 4.2. Let us consider the set ∆σ′. There can be existentially quantified vari-
ables in ∆ not assigned by σ′ because they do not appear in C. Then it is enough to choose
arbitrary ground terms to assign to those variables to obtain a substitution σ such that σ′ ⊆ σ,
which proves the proposition.

The third proposition shows that the CIFF proof rules are indeed equivalence preserving rules with
respect to the three-valued completion semantics. This a basic requirement to prove the soundness
of CIFF.

Proposition 4.3 (Equivalence Preservation). Given an abductive logic program with constraints
〈P, A, IC〉<, a CIFF node N and a set of CIFF successor nodes N obtained by applying a CIFF
proof rule φ to N , it holds that:

P |=3(<) N iff P |=3(<) N∨

where N∨ is the disjunction of the nodes in N . 2

Proof of Proposition 4.3. We prove the proposition considering each of the CIFF proof rules in
turn. Recall that, apart from the Splitting rule, for each proof rule the set N of successor nodes
of N is a singleton, i.e. N = {N ′}.
R1 - Unfolding atoms. This rule applies a resolution step on a defined atom p(~t) in N and its
iff-definition in Th:

p(~X) ↔ (D1 ∨ · · · ∨Dn)

Hence, the atom p(~t) is replaced in N ′ by

(D1 ∨ · · · ∨Dn)[~X/~t]

The replacement is obviously equivalence preserving with respect to P and |=3(<).

R2 - Unfolding within implication. This rule resolves a defined atom p(~t) with its iff-definition
in Th:

86 CHAPTER 4. THE CIFF PROOF PROCEDURE AND THE CIFF¬ EXTENSION

p(~X) ↔ (D1 ∨ · · · ∨Dn)

as in the previous rule. The result is a set of implications in N ′ replacing the original implication,
each one containing one of the disjuncts Diθ, with 1 ≤ i ≤ n where θ = [~X/~t]. Without loss of
generality, suppose that the original implication is of the form

(p(~t[~W, ~Y]) ∧R[~W, ~Y]) → H[~W, ~Y]

where R is a conjunction of literals and H is a disjunction of atoms. We use the notation E[~Y] to
say that ~Y may occur in E for a generic E. Suppose that all and only the variables in ~W occur
also in another non-implicative CIFF conjunct (recall that in a CIFF node variables appearing
only within an implication are implicitly universally quantified with scope the implication itself
and variables appearing outside an implication are existentially quantified with scope the whole
node). Making the quantification explicit, the implication becomes:

∃ ~W∀~Y (p(~t[~W, ~Y]) ∧R[~W, ~Y] → H[~W, ~Y])

To simplify the presentation, in the following we assume that ~W and ~Y may occur everywhere in
the implication without denoting it explicitly. Applying resolution we obtain:

∃ ~W∀~Y ((∃ ~Z1D
′
1θ ∨ · · · ∨ ∃ ~ZnD′

nθ) ∧R → H)

where each Di is of the form ∃ ~ZiD
′
i and the vectors ~Zi of existentially quantified variables arise

from the iff-definition. Thus we have:

∃ ~W∀~Y ((∃ ~Z1(D′
1θ) ∨ · · · ∨ ∃ ~Zn(D′

nθ)) ∧R → H) ≡
∃ ~W∀~Y (¬(∃ ~Z1(D′

1θ) ∨ · · · ∨ ∃ ~Zn(D′
nθ)) ∨ ¬R ∨H) ≡

∃ ~W∀~Y ((¬(∃ ~Z1(D′
1θ)) ∧ · · · ∧ ¬(∃ ~Zn(D′

nθ))) ∨ ¬R ∨H) ≡
∃ ~W∀~Y ((¬(∃ ~Z1(D′

1θ)) ∨ ¬R ∨H) ∧ · · · ∧ (¬(∃ ~Zn(D′
nθ)) ∨ ¬R ∨H)) ≡

∃ ~W (∀~Y (¬(∃ ~Z1(D′
1θ)) ∨ ¬R ∨H) ∧ · · · ∧ ∀~Y (¬(∃ ~Zn(D′

nθ)) ∨ ¬R ∨H)) ≡
∃ ~W (∀~Y , ~Z1(¬D′

1θ ∨ ¬R ∨H) ∧ · · · ∧ ∀~Y , ~Zn(¬D′
nθ ∨ ¬R ∨H)) ≡

∃ ~W (∀~Y , ~Z1(D′
1θ ∧R → H) ∧ · · · ∧ ∀~Y , ~Zn(D′

nθ ∧R → H))

Note that the variables ~Zi in the new implications are universally quantified with scope the impli-
cation in which they occur. So with our convention for implicit quantification, the last sentence
is:

(D1θ ∧R → H) ∧ · · · ∧ (Dnθ ∧R → H).

R3 - Propagation. This rule uses an atomic CIFF conjunct p(~s) and an atom p(~t) within an
implication of the form (p(~t) ∧B) → H and it adds in N ′ an implication of the form:

~t = ~s ∧B → H

It is obvious that, due to the fact that the second implication is a consequence of the CIFF conjunct
and the implication and both remain in N ′, the Propagation rule is equivalence preserving.

R4 - Splitting. This rule uses a disjunctive CIFF conjunct of the form D = D1 ∨ . . . ∨Dk and
builds a set of CIFF successor nodes N= {N1, . . . , Nk} such that in each Ni the conjunct D is
replaced by Di.
It is obvious that the Splitting rule is equivalence preserving because it is an operation of dis-
junctive distribution over a conjunction, i.e. is a case of the tautology:

A ∧ (D1 ∨ . . . ∨Dk) ≡ (A ∨D1) ∧ . . . ∧ (A ∨Dk)

4.2. SOUNDNESS OF THE CIFF PROOF PROCEDURE 87

R5 - Factoring. This rule uses two atomic CIFF conjuncts of the form p(~t) and p(~s) and it
replaces them in N ′ by a disjunction of the form:

(p(~s) ∧ p(~t) ∧ (~t = ~s → ⊥)) ∨ (p(~t) ∧ ~t = ~s)

To show that the rule is equivalence preserving, consider the tautology

(~t = ~s → ⊥) ∨ ~t = ~s

We have that

p(~t) ∧ p(~s) ≡
p(~t) ∧ p(~s) ∧ ((~t = ~s → ⊥) ∨ ~t = ~s) ≡
(p(~t) ∧ p(~s) ∧ (~t = ~s → ⊥)) ∨ (p(~t) ∧ p(~s) ∧ ~t = ~s) ≡
(p(~t) ∧ p(~s) ∧ (~t = ~s → ⊥)) ∨ (p(~t) ∧ p(~t) ∧ ~t = ~s) ≡
(p(~t) ∧ p(~s) ∧ (~t = ~s → ⊥)) ∨ (p(~t) ∧ ~t = ~s)

R6 - Case Analysis for constraints.
Recall that variables in Con are all existentially quantified and that the constraint domain is
assumed to be closed under complement, i.e. the complement Con of a constraint atom Con is a
constraint atom.

(Con ∧A) → B ≡
Con → (A → B) ≡
(Con → Con) ∧ (Con → (A → B)) ≡
Con → (Con ∧ (A → B)) ≡
¬Con ∨ (Con ∧ (A → B)) ≡
Con ∨ (Con ∧ (A → B))

Variable quantification need not be taken into account here because each variable occurring in Con
must be existentially quantified in order for the rule to be applied to it. Hence the quantification
of those variables remain unchanged in the two resulting disjuncts.

R7 - Constraint solving. This rules replaces a set {Con1, . . . , Conk} of constraint atoms, which
occur as CIFF conjuncts in N , by ⊥ in N ′, provided the constraint solver evaluates them as
unsatisfiable. By the assumption that the constraint solver is sound and complete, the rule is
obviously equivalence preserving.

R8 - Equality rewriting in atoms and R9 - Equality rewriting in implications. These
rules are directly borrowed from the Martelli-Montanari unification algorithm. The equivalence
preserving is proven by the soundness of this algorithm [129].

R10 - Substitution in atoms and R11 - Substitution in implications. These rules simply
propagate an equality either to the whole node or to the implication in which it occurs. Again
they are obviously equivalence preserving rules.

R12 - Case Analysis for equality. The equivalence preservation of this rule requires some
carefulness due to the quantification of the variables involved. First of all notice that if no variable
in the Given formula is universally quantified the proof is trivial. For simplicity we provide the
full proof for the case in which the Given formula contains only one universally quantified variable
and no other existentially quantified variables except X. The proof can be then easily adapted to
the general case. With this simplification, we need to prove that the following two formulae are
equivalent (where implicit quantifications are made explicit).

F1 ∃X ∀Y ((X = t ∧B) → H)
F2 [∃X, Y (X = t ∧ (B → H))] ∨ [∃X∀Y (X = t → ⊥)]

We do a proof by cases, using the following two (complementary) hypotheses:

88 CHAPTER 4. THE CIFF PROOF PROCEDURE AND THE CIFF¬ EXTENSION

Hyp1 ¬∃X∃Y (X = t).
Hyp2 ∃X∃Y (X = t)

The equivalence under Hyp1 is trivial.
Assume Hyp2 holds. Let s be a ground value for X such that

∃Y (s = t).

and let ϑ be the ground substitution for X and Y such that Xϑ = s and (X = t)ϑ. Notice that,
by CET, given s such a ground substitution is unique. Consider now the formulae obtained from
F1 and F2 by substituting X by s

F1(s) ∀Y ((s = t ∧B) → H)
F2(s) [∃Y (s = t ∧ (B → H))] ∨ [∀Y (s = t → ⊥)]

It is not difficult to see that F1(s) is equivalent to

(B → H)ϑ

since for any ground instantiation of Y other than Y ϑ the implication ((s = t∧B) → H) is trivially
true.

Consider now F2(s). The second disjunct is false by Hyp2 whereas the first disjunct is clearly
equivalent to (B → H)ϑ due to the uniqueness of ϑ.

R13 - Negation rewriting. This rule uses common logical equivalences:

((A → ⊥) ∧B) → H ≡
B → ¬(A → ⊥) ∨H ≡
B → ¬(¬A ∨ ⊥) ∨H ≡
B → (A ∧ >) ∨H ≡
B → A ∨H

R14, R15, R16, R17 - Logical simplification #1 - #4 rules. All the four simplification rules
are again obviously equivalence preserving rules as they use common logical equivalences.

R18 - Dynamic Allowedness. This rule does not change the elements of a node N . Hence,
given that N ′ = N , ignoring the marking, the equivalence preservation is proven.

The following corollary follows immediately from Proposition 4.3.

Corollary 4.1 (Equivalence Preservation of CIFF Formulae). Let 〈P, A, IC〉< be an abductive
logic program with constraints, F a CIFF formula and S any CIFF selection function. Let S(F) =
〈N, φ, χ〉 and F ′ the result of applying φ to N in F . Then:

P ∪ IC |=3(<) F iff P ∪ IC |=3(<) F ′, i.e.

P ∪ IC |=3(<) (F ↔ F ′)

.
2

Proof of Corollary 4.1. The proof is an immediate consequence of Proposition 4.3, because for any
CIFF formula F ′ obtained from F through the application of a CIFF proof rule φ on a node N ,
we have that

F ′ = F − {N} ∪ N
where N is the set of successor nodes of N with respect to φ.

We are now ready to prove the soundness theorem 4.1.

4.2. SOUNDNESS OF THE CIFF PROOF PROCEDURE 89

Proof of Theorem 4.1. Let us consider a CIFF successful node N . By definition of CIFF extracted
answer, the node N from which 〈∆, C〉 is extracted, is a conjunction of the form

∆ ∧ Γ ∧ E ∧DE ∧Rest

where C = 〈Γ, E, DE〉 and Rest is a conjunction of CIFF conjuncts.
Propositions 4.1 and 4.2 ensure the existence of a ground substitution σ such that:

∆σ |=3(<) ∆ ∪ Γ ∪ E ∪DE.

Let X the set of variables occurring in Q and let θ the restriction of σ over the variables in X.
Let γ be a ground substitution for all the variables occurring in Qθ. Let σ = θγ. It is straightfor-
ward that

∆θγ |=3(<) ∆ ∪ Γ ∪ E ∪DE
as the substitution γ does not involve any variable in ∆ ∪ Γ ∪ E ∪DE.

To prove that 〈∆, σ, Γ〉 is an abductive answer with constraint, we need that:

1. there exists a ground substitution σ′ for the variables occurring in Γσ such that σ′ |=< Γσ
and

2. for each ground substitution σ′ for the variables occurring in Γσ such that σ′ |=< Γσ, there
exists a ground substitution σ′′ for the variables occurring in Q∪∆∪Γ, with σσ′ ⊆ σ′′, such
that:

• P ∪∆σ′′ |=LP (<) Qσ′′ and
• P ∪∆σ′′ |=LP (<) IC.

Again, Propositions 4.1 and 4.2 ensure that

• there exists a ground substitution σ′ for the variables occurring in Γσ such that σ′ |=< Γσ
and such that, for each ground substitution σ′ and

• for each ground substitution σ′ for the variables occurring in Γσ such that σ′ |=< Γσ, there
exists a ground substitution σ′′ for the variables occurring in Q∪∆∪Γ, with σσ′ ⊆ σ′′, such
that:

∆σ′′ |=3(<) ∆ ∪ Γ ∪ E ∪DE (+)

If we prove that ∆σ′′ |=3(<) Rest, we have that

P ∪∆σ′′ |=3(<) N. (∗)
From this, by induction and by Proposition 4.3, we will obtain

• P ∪∆σ′′ |=3(<) Qσ′′, and

• P ∪∆σ′′ |=3(<) IC,

thus proving that 〈∆, C〉 is an abductive answer with constraints to Q with respect to 〈P, A, IC〉<.

We now prove (∗). It is obvious that:

P ∪∆σ′′ |=3(<) ∆ ∪ Γ ∪ E ∪DE

by (+) above. We need to show that:

P ∪∆σ′′ |=3(<) Rest.

Let us consider the structure of Rest. Due to the exhaustive application of CIFF proof rules, a
CIFF conjunct in Rest cannot be any of the following:

90 CHAPTER 4. THE CIFF PROOF PROCEDURE AND THE CIFF¬ EXTENSION

• a disjunction (due to the exhaustive application of Splitting);

• a defined atom (due to the exhaustive application of Unfolding atoms);

• either > or ⊥ (due to the exhaustive application of Logical simplification (#1 - #4) and
the fact that N is not a failure node, respectively);

• an implication whose body contains a defined atom (due to the exhaustive application of
Unfolding in implications);

• an implication with a negative literal in the body (due to the exhaustive application of
Negation rewriting);

• an implication with > or ⊥ in the body (due to the exhaustive application of Logical
simplification (#1 - #4));

• an implication with only equalities or constraint atoms in the body (due to the exhaustive ap-
plication of Case analysis for equalities, Case analysis for constraints, Substitution
in implications and Dynamic Allowedness).

Thus, each CIFF conjunct in Rest is an implication whose body contains at least an abducible
atom. We denote as Aa ⊆ ∆ the set of abducible atoms in ∆ whose predicate is a. Consider
an implication I ∈ Rest of the form a(~t) ∧ B → H where a is an abducible predicate and ~t may
contain universally quantified variables.
Either Aa = ® or not. If Aa = ® then it trivially holds that P ∪∆σ′′ |=3(<) I because the body
of I falsified.
The case Aa 6= ® is more interesting. Assume Aa = a(~s1), . . . , a(~sk). Due to the fact that a has no
definition in P , a(~s1)σ′′, . . . , a(~sk)σ′′ represent all and only the instances of a(~t) which are entailed
by P ∪∆σ′′ with respect to the three-valued completion semantics.
Hence, if ~t = ~sσ′′, where ~s is such that a(~s)σ′′ 6∈ Aa, it trivially holds that P ∪ ∆σ′′ |=3(<) I,
because the body of I falsified.
Consider now the case ~t = ~sσ′′, where ~s is such that a(~s)σ′′ ∈ Aa. Because N is a CIFF successful
node, Propagation has been exhaustively applied in the CIFF branch B whose leaf node is N .
This means that for each a(~si)σ′′ ∈ Aa, an implication I ′ of the form

~t = ~siσ
′′ ∧B → H

occurs in at least a node Ni ∈ B (otherwise Propagation is still applicable and N is not a
successful node). Then, if B of the body does not contain other abducibles, the implication I ′ is
not in Rest and has been reduced to a conjunction in N .
Otherwise, if B contains another abducible atom, the process is applied again on it. Because a
successful branch is finite, the proof is obtained by induction on the number of abducible atoms in
B.

Hence, it holds that:

P ∪∆σ′′ |=3(<) Rest

and

P ∪∆σ′′ |=3(<) N

Let us consider the CIFF branch B whose leaf node is N , i.e. the branch B = N1 = Q ∧
IC, N2, . . . , Nl = N with l ≥ 1. If we prove that for each pair of nodes Ni and Ni+1 belong-
ing to B it holds that if

P ∪∆σ′′ |=3(<) Ni+1

then

4.2. SOUNDNESS OF THE CIFF PROOF PROCEDURE 91

P ∪∆σ′′ |=3(<) Ni

we have, by induction, that

P ∪∆σ′′ |=3(<) Qσ′′ ∧ IC

Suppose P ∪ ∆σ′′ |=3(<) Ni+1, for some i. Due to the definition of CIFF branch, each node
Ni+1 ∈ B is one of the successor nodes of Ni. If Ni+1 is obtained by Ni by applying a CIFF proof
rule distinct from the Splitting rule, if follows immediately that

P ∪∆σ′′ |=3(<) Ni

given that Ni+1 is the only successor node of Ni and thus, from Proposition 4.3, we have that
Ni ≡ Ni+1. If the Splitting rule has been applied, however, then the node Ni is of the form

RestNode ∧ (D1 ∨ . . . ∨Dn)

and Ni+1 is of the form

(RestNode ∧Di) for some i ∈ [1, n].

It is obvious that the latter formula entails the former.

Summarizing, we have that

P ∪∆σ′′ |=3(<) Qσ′′ ∧ IC

which implies that
P ∪∆σ′′ |=3(<) Qσ′′, and
P ∪∆σ′′ |=3(<) IC.

The CIFF soundness in Theorem 4.1 concerns only those branches of a CIFF successful derivation
whose leaf node is a CIFF successful node. It implies that abductive answers with constraints can
be obtained also by those derivations which contain failure and undefined branches but which have
at least a successful branch. We also prove the following notion of soundness regarding failure
CIFF derivations.

Theorem 4.2 (Soundness of failure). Let 〈P, A, IC〉< be an abductive logic program with con-
straints such that the corresponding CIFF framework is 〈Th, A, IC〉<. Let D be a failure CIFF
derivation with respect to 〈Th, A, IC〉< and a query Q. Then:

P ∪ IC |=3(<) ¬Q

2

Proof of Theorem 4.2. From the definition of failure CIFF derivation, D is a derivation starting
with Q ∪ IC and such that all its leaf nodes are CIFF failure nodes which are equivalent to ⊥.
Hence, due to Corollary 4.1 and the transitivity of the equivalence, it follows immediately that:

P ∪ IC |=3(<) (Q ∧ IC) ↔ ⊥
Because IC occurs in both the left and the right hand side of the statement, we have that

P ∪ IC |=3(<) Q ↔ ⊥
and thus

P ∪ IC |=3(<) ¬Q.

92 CHAPTER 4. THE CIFF PROOF PROCEDURE AND THE CIFF¬ EXTENSION

Note that there is a class of CIFF derivations for which a soundness result cannot be stated, i.e.
all the derivations containing only undefined and failure branches. The meaning of such CIFF
derivations is that for each branch, no CIFF answer can be extracted, but there are some branches
(undefined branches) for which neither failure nor success is ensured. The presence of an undefined
branch is due to the application of the Dynamic Allowedness rule and, as we have seen at the
end of Section 4.1.1, this could lead to infinite sets of abducibles in the answers.

The IFF proof procedure was proven complete with respect to the three-valued completion seman-
tics and the class of allowed IFF frameworks [81], with the only requirement of a fair selection
function, i.e. a selection function that does not always select a node in a looping branch. For
example, suppose we have an abducible predicate a and two predicates p and q defined as

q ↔ p ∨ a
p ↔ p.

Consider the query q. After the unfolding of q, the IFF proof procedure would return the abductive
answer a if the second disjunct is eventually selected, but it loops forever in the other case. A fair
selection function ensures that the second disjunct is eventually selected during a derivation.
In the case of CIFF, tackling the allowedness problem dynamically, we could obtain undefined
derivations, even with a fair selection function. Hence a completeness theorem for CIFF allowed
frameworks cannot be formulated. But we can make some remarks regarding completeness.

• To make CIFF “more” complete, the CIFF selection function should select the Dynamic
Allowedness rule with the lowest priority: in this way we avoid labeling a node as undefined
if the node can yet become a failure node.

• For the class of IFF allowed frameworks, the results for the IFF proof procedure are directly
inherited by CIFF because there are no constraint atoms and the CIFF proof rules which do
not manage constraint atoms are the same as for IFF (obviously assuming a fair selection
function).

• We argue that the completeness theorem for the IFF procedure can be extended to CIFF
frameworks 〈Th, A, IC〉< and queries Q which are IFF allowed and such that each variable
X appearing in a constraint atom in:

– a definition in Th,

– an implication in IC, or

– in Q,

is such that X occurs in a positive non-equality atom in the same definition, in the same
implication or in the query respectively. This is because in this way, the Dynamic Al-
lowedness rule never applies as variables are always “bound” by positive non-equalities
atoms.

4.3 The CIFF¬ proof procedure

As remarked in Chapter 3, integrity constraints play an important role in the abductive process.
The CIFF proof procedure allows for combining both backward reasoning by means of iff-definition
and forward reasoning via integrity constraints in implicative form which can be used for modeling
reactive and condition-action rules in a natural way. This feature makes CIFF a powerful mecha-
nism for building computational models in a wide range of applications, e.g., agents [124, 105, 158]
and database updates [157]. However, in some cases the classical treatment of negation in integrity
constraints in CIFF can lead to non-intuitive answers being computed.

4.3. THE CIFF¬ PROOF PROCEDURE 93

Example 4.9. Consider the following CIFF framework 〈Th, A, IC〉< which could be thought of
as a (very simple) control program for a cleaning agent in a dangerous environment. The idea is
that if it is a cleaning day and the alarm has not been activated, the agent must dust. The alarm
sounds if the temperature exceeds 40 degrees and in that case the agent must evacuate the building.

Th : ®
A : {cleaning day, sound alarm, temperature, dust, evacuate}
IC : cleaning day ∧ ¬sound alarm → dust

temperature(X) ∧X > 40 → sound alarm
sound alarm → evacuate

Given the observation (query) Q = cleaning day, we have the following CIFF derivation:

F1 = {N1} = {{cleaning day,
(cleaning day ∧ (sound alarm → ⊥)) → dust,
(temperature(X) ∧X > 40) → sound alarm,
sound alarm → evacuate}} [Init]

F2 = {N2} = {{(sound alarm → ⊥) → dust} ∪N1} [R3]
F3 = {N3} = {{> → (dust ∨ sound alarm)} ∪N1} [R13]
F4 = {N4} = {{dust ∨ sound alarm} ∪N1} [R17]
F5 = {N5, N6} = {{dust} ∪N1, {sound alarm ∪N1}} [R4]
F6 = {N5, N7} = {N5, N6 ∪ {> → evacuate}} [R3]
F7 = {N5, N8} = {N5, N6 ∪ {evacuate}} [R17]

From the nodes N5 and N8 we can extract two distinct answers:

Ans1 = 〈{cleaning day, dust}, 〈®,®,®〉〉

Ans2 = 〈{cleaning day, sound alarm, evacuate}, 〈®,®,®〉〉
It is clear that Ans2 is a counter-intuitive answer. The initial cleaning day observation propagates
the first integrity constraint and then, after a Negation rewriting rule, there are two ways to
succeed: dust or sound alarm. In the second case the agent sounds the alarm to succeed even if
the temperature does not exceed 40 degrees producing the CIFF extracted answer Ans2. Note that
Ans2 is counter-intuitive, but it is correct with respect to the CIFF semantics. 2

Hence, we have investigated a different way of treating negation within (the implications derived
from) integrity constraints. Following the approach proposed in [157], we have defined a modified
CIFF proof procedure, which we call CIFF¬, which makes use of negation as failure (NAF) in
integrity constraints.
The basic idea behind the CIFF¬ proof procedure is that negative literals in the body of integrity
constraints should not be moved into the head, by Negation rewriting, but rather they should
be ”checked”, to see if they hold taking into account the current abduced atoms. The intention
is to avoid performing new abductions for proving that negative literals in the body of integrity
constraints hold.

We now describe the CIFF¬ proof procedure in detail. Almost all definitions used for the original
CIFF proof procedure still remain valid for the CIFF¬ proof procedure. In the sequel when we
refer to CIFF¬ node, CIFF¬ derivation, etc. we will assume that they have the same definitions
as the corresponding definitions for CIFF, i.e. CIFF node, CIFF derivation, etc. apart from
those definitions which are explicitly changed. Being the NAF treatment of negation in integrity
constraints, the main feature of CIFF¬, we use now the symbol not in a CIFF¬ framework instead
of ¬.

CIFF¬ frameworks, nodes, conjuncts and queries are the same as CIFF frameworks, nodes, con-
juncts and queries with the following differences:

94 CHAPTER 4. THE CIFF PROOF PROCEDURE AND THE CIFF¬ EXTENSION

• an implication in a CIFF¬ node can be either marked (by using the symbol ∗) or unmarked
(an ordinary CIFF implication),

• atoms in a CIFF¬ node can be arguments of a special (meta-)predicate prv5.

If an implication is marked, the negative literals in its body have to be treated with NAF, while if
the implication is unmarked they have to be treated as in CIFF. Every CIFF¬ proof rule can be
applied to marked implications, except for the Negation rewriting rule. In this way we prevent
the moving of negative literals into the head of marked implications.

To handle marked implications, the CIFF¬ proof procedure has the NAF rewriting rule which
rewrites negative literals in the body of a marked implication through the use of the prv special
(meta-)predicate. A prv(p(~t)) atom stands for “p(~t) is provably true” and it will be “checked” by
new CIFF¬ rules which avoid new abductions during the “checking” process. Note that a prv atom
cannot be handled by any CIFF proof rule because neither it has a definition in Th, nor it is an
abducible predicate.
The NAF rewriting rule is the following.

R19 - NAF rewriting

Given: ∗[((p1(~t1) → ⊥) ∧ . . . ∧ (pn(~tn) → ⊥)] → B)
Conditions: none

Action: replace { > → [prv(p1(~t1)) ∨ . . . ∨ prv(pn(~tn))∨
[∗(p1(~t1) → ⊥) ∧ . . . ∧ ∗(pn(~tn) → ⊥) ∧B]] }

Accordingly, we change the conditions in the Negation Rewriting rule.

R13’ - Negation rewriting
Given: ((A → ⊥) ∧B) → H
Conditions: ((A → ⊥) ∧B) → H is unmarked
Action: replace { B → (A ∨H) }

Note that all the other proof rules involving implications can be applied to marked or unmarked
implications as well.

Example 4.10. Let us consider again Example 4.9. Suppose the integrity constraint

∗(cleaning day ∧ (sound alarm → ⊥) → dust)

is marked in the initial formula F1. In this case we cannot apply the Negation rewriting rule to
the only node of N2, in order to obtain the formula F3, but we must apply the NAF rewriting
rule to N2 obtaining:

F3 = {N3} =
{{> → [prv(sound alarm) ∨ [∗(sound alarm → ⊥) ∧ dust]]} ∪N1} [R13]

Intuitively, this means that either the alarm has been sounded or the agent must dust! 2

The problem now, is how to manage the prv atoms which occur in a node N to which no other rules
can be applied. The idea is that these atoms have to be proved in a way that (1) the abduced atoms
are taken into account and eventually used in the proof, and (2) no new abductions are performed
to support the proof. In order to obtain this behavior, we introduce the following CIFF¬ proof
rules.

5The special (meta-)predicate prv cannot appear in a CIFF¬ framework. It may only appear in a CIFF¬ node
due to the application of the CIFF¬ rules shown later.

4.3. THE CIFF¬ PROOF PROCEDURE 95

R20 - NAF Switch
Given:
Conditions: N is unmarked; ∆ is the set of all abducible atoms

occurring as CIFF¬ conjuncts in N
Action: mark NAF (∆)

The NAF Switch rule simply marks a node N as a NAF node with the set of abduced atoms ∆.
This allows to record the set of abducibles which can be used to prove the prv atoms. This rule
will only be used when no other CIFF¬ proof rules can be applied to a node, as we will see later.
We will refer to ∆ such that NAF (∆) marks a node as the marking set of that node. Note that
the marking set of a node may be empty.

The next rules are all applicable only to nodes marked as NAF nodes.

R21 - Provable rewriting
Given: prv(p1(~t1)) ∧ . . . ∧ prv(pk(~tk))
Conditions: prv(p1(~t1)) ∧ . . . ∧ prv(pk(~tk)) are all the prv atoms in N ;

N is marked with NAF (∆)
Action: replace { p1(~t1) ∧ . . . ∧ pk(~tk) }

The Provable rewriting rule simply drops the special (meta-)predicates prv, in order to make
their arguments manageable by other CIFF¬ proof rules.

R22 - NAF Factoring #1
Given: p(~s)
Conditions: p abducible; N is marked with NAF (∆);

there is no atom in ∆ whose predicate is p
Action: replace { ⊥ }

R23 - NAF Factoring #2
Given: p(~s)
Conditions: p abducible; N is marked with NAF (∆); p(~s) 6∈ ∆;

p(~t1), . . . , p(~tk) are all the atoms in ∆ whose predicate is p

Action: replace all { ~s = ~t1 ∨ . . . ∨ ~s = ~tk }

The NAF Factoring rules are the rules which allow both to take into account “old” abducibles
(those in ∆) and to forbid new abductions. This is done, in NAF Factoring #1, by failing when
a new abducible atom p(~s) occurs in a NAF marked node such that there is no atom in ∆ whose
predicate is p. This is because the only way to prove p(~s) would be to perform a new abduction.
NAF Factoring #2, instead, handles an abducible atom p(~s) such that there are k atoms in ∆
whose predicate is p. The idea is to get k successor nodes each one with an equality atom of the
form ~s = ~ti, for each p(~ti) ∈ ∆, replacing the abducible atom p(~s). This ensures that all the ways
in which p(~s) can be unified with an atom in ∆ are taken into account and, moreover, no new
abductions are done. This rule should not be applied to an abducible p(~s) ∈ ∆: otherwise that
abducible would disappear from the node.

We have now presented all new CIFF¬ rules, summarized in Table 4.2.
Now we focus on the building of a CIFF¬ derivation and the answer extraction process, pointing
out the differences with the original CIFF.

The first difference concerns a CIFF¬ selection function S. What we require of S is that:

96 CHAPTER 4. THE CIFF PROOF PROCEDURE AND THE CIFF¬ EXTENSION

Table 4.2: CIFF¬ proof rules

R1 Unfolding atoms
R2 Unfolding in implications
R3 Propagation
R4 Splitting
R5 Factoring
R6 Case analysis for constraints
R7 Constraint solving
R8 Equality rewriting in atoms
R9 Equality rewriting in implications
R10 Substitution in atoms
R11 Substitution in implications
R12 Case analysis for equalities
R13 Negation rewriting
R14 Logical Simplification #1
R15 Logical Simplification #2
R16 Logical Simplification #3
R17 Logical Simplification #4
R18 Dynamic Allowedness
R19 NAF rewriting
R20 NAF switch
R21 Provable rewriting
R22 NAF factoring #1
R23 NAF factoring #2

• it must select the NAF switch rule with respect to a node N only if no other rule can be
selected with respect to N (apart from Dynamic Allowedness for improving completeness,
as remarked in section 4.2): in this way we ensure that all abductions are done prior to proving
the prv atoms; and

• it must not select Propagation rule and Factoring rule for a node N if N is marked
with NAF (∆). In this way the abducibles introduced in a marked node N will be handled
exclusively by the NAF factoring rules.

Definition 4.21 (CIFF¬ selection function). Let F be a CIFF¬ formula. We define a CIFF¬

selection function S as a function such that:

S(F) = 〈N, φ, χ〉

where N is a CIFF¬ node in F , φ is a CIFF¬ proof rule and χ is a set of CIFF¬ conjuncts in N
such that χ is a rule input for φ. Moreover S(F) must satisfy the following conditions:

• if S(F) = 〈N, NAF switch,®〉 then there does not exist φ such that

– φ 6= NAF switch,

– φ 6= Dynamic Allowedness, and

– there exists a rule input for φ in N

• if either S(F) = 〈N, Propagation, χ〉 or S(F) = 〈N, Factoring, χ〉 then N is unmarked.

2

4.3. THE CIFF¬ PROOF PROCEDURE 97

The next definition is the definition of a CIFF¬ pre-derivation, taking into account marked integrity
constraints.

Definition 4.22 (CIFF¬ Pre-derivation and initial formula). Let 〈Th, A, IC〉< be a CIFF¬ frame-
work, let Q be a query and let S be a CIFF¬ selection function. Let IC∗ be the set of marked
integrity constraints obtained by marking with ∗ all the integrity constraints in IC. A CIFF¬ pre-
derivation for Q with respect to 〈Th, A, IC〉< and S, is a (finite or infinite) sequence of CIFF¬

formulae F1, F2, . . . , Fi, Fi+1 . . . such that each Fi+1 is obtained from Fi through S as follows:

• F1 = {N1} = {Q ∪ IC∗}, where Q and IC∗ are treated as sets of CIFF¬ conjuncts, (we will
refer to F1 as the initial formula of a CIFF¬ pre-derivation)

• S(Fi) = 〈Ni, φi, χi〉 such that Ni is neither an undefined CIFF¬ node nor a failure CIFF¬

node and

• Fi

Ni, χi

GGGGGGGGGGA

φi

Fi+1

2

The definitions of a CIFF¬ branch and a CIFF¬ derivation are unchanged with respect to the
definition of a CIFF branch and a CIFF derivation, respectively (obviously using the definitions
of CIFF¬ selection function and CIFF¬ pre-derivation).

The notion of extracted answer remains unchanged, apart from removing the marking of all the
extracted CIFF¬ inequalities.

Example 4.11. Let us consider Example 4.9. The following is a CIFF¬ derivation to the query
Q = cleaning day.

F1 = {N1} = {{cleaning day,
(cleaning day ∧ (sound alarm → ⊥)) → dust,
(temperature(X) ∧X > 40) → sound alarm,
sound alarm → evacuate}} [Init]

F2 = {N2} = {{(sound alarm → ⊥) → dust} ∪N1} [R3]
F3 = {N3} = {{> → [prv(sound alarm)∨

[∗(sound alarm → ⊥) ∧ dust]]} ∪N1} [R19]
F4 = {N4} = {{[prv(sound alarm)∨

[∗(sound alarm → ⊥) ∧ dust]]} ∪N1} [R17]
F5 = {N6, N5} = {{N1 ∪ {prv(sound alarm)}},

{N1 ∪ {∗(sound alarm → ⊥) ∧ dust}}} [R4]
F6 = {N7, N5} = {NAF (cleaning day) : N6, N5} [R20]
F7 = {N8, N5} = {NAF (cleaning day) : (N1 ∪ {sound alarm}), N5} [R21]
F8 = {N9, N5} = {NAF (cleaning day) : (N1 ∪ {⊥}), N5} [R22]
F9 = {N10, N5} = {N9, NAF (cleaning day, dust) : N5} [R20]

From the above CIFF¬ derivation we can only extract the following answer from node N10:

Ans1 = 〈{cleaning day, dust}, 〈®,®,®〉〉
Note that the unintuitive answer Ans2 of Example 4.9 cannot be extracted from the CIFF¬ deriva-
tion because in node N8 the abducible sound alarm is not in the marking set, thus NAF factoring
#1 rule leads to a failure node. Note also that due to the definition of a CIFF¬ selection func-
tion, the abducible sound alarm in node N8 cannot be propagated to the (marked) implication
sound alarm → evacuate because node N8 is marked with NAF (cleaning day).

2

98 CHAPTER 4. THE CIFF PROOF PROCEDURE AND THE CIFF¬ EXTENSION

The following proposition shows the intuition that a successful CIFF¬ node does not contain
abducible atoms, occurring as CIFF¬ conjuncts, which do not belong to the marking set of that
node. This means that no abduction is performed for proving the prv atoms.

Proposition 4.4. Let 〈Th, A, IC〉< be a CIFF¬ framework and let D be a successful CIFF¬

derivation for a query Q. LetN be a successful CIFF¬ node in D and let 〈∆, C〉 be the CIFF¬

extracted answer from N .
Then N is marked with NAF (∆) and each abducible atom a(~t) occurring as a CIFF conjunct in
N belongs to ∆. 2

Proof of Proposition 4.4. Consider the successful branch B= N1, . . . , Ns = N in D. The fact that
N is marked with NAF (∆′) for a certain ∆′ is straightforward because N is a successful node,
hence the NAF switch rule must have been applied at a certain node Nk in B with 1 ≤ k < s.
Moreover there is no CIFF¬ rule which unmarks a node. The fact that each abducible in N belongs
to ∆′ is again straightforward because for each abducible a(~t) occurring in a node Ni with i > k in
B, there exists a node Nj with j > i in B which is obtained by applying the NAF factoring #2
rule to the node Nj−1. As that rule removes from the node the abducible a(~t), then ∆′ −∆ = ®
and the statement is proved. Note that the rule NAF factoring #1 cannot be applied in B
because N is a successful node.

4.4 Soundness of the CIFF¬ proof procedure

Intuitively, as seen in the previous examples, the CIFF¬ proof procedure is sound with respect
to the three-valued completion semantics because given a CIFF¬ framework and a query, the set
of CIFF¬ extracted answers is a subset of the set of answers found by the original CIFF proof
procedure. Hence, the soundness of CIFF ensures the soundness of CIFF¬.

However, to prove formally this soundness result is not a straightforward task because the added
rules are not equivalence preserving with respect to the three-valued completion semantics. Intu-
itively, as the new rules invalidate some sound CIFF answers, it is obvious that they cannot be
equivalence preserving.
The proof of soundness is done in two main steps:

• first, we define the CIFF∨ proof procedure by simply adding a new equivalence preserving
rule to the set of CIFF proof rules; proving the equivalence preservation of the new rule, the
CIFF∨ proof procedure directly inherits the soundness results of CIFF;

• then we prove that any CIFF¬ extracted answer can be extracted from a CIFF∨ derivation.

The CIFF∨ proof procedure

The CIFF∨ proof procedure is defined by adding the following rule to the set of CIFF proof rules
in Table 4.1.

R24 - Extending disjunction

Given: p1(~t1) ∨ · · · ∨ pn(~tn) ∨D

Conditions: each pi(~ti) is an atom, n ≥ 1

Action: replace { p1(~t1) ∨ · · · ∨ pn(~tn) ∨D∨
[(p1(~t1) → ⊥) ∧ · · · ∧ (pn(~tn) → ⊥) ∧D] }

All the CIFF definitions seen in section 4.1 remain valid for the CIFF∨ proof procedure (obviously
considering the new rule in the set of rules when needed). The following example shows the use of
the new rule.

4.4. SOUNDNESS OF THE CIFF¬ PROOF PROCEDURE 99

Example 4.12. Consider the following CIFF framework 〈Th, A, IC〉<:

Th : q(X) ↔ X = a
p(X) ↔ r(X) ∧ ¬q(X)

A : {s, r}
IC : p(X) → s

The following is a CIFF∨ derivation D for the query r(Y).

F1 = {N1} = {r(Y), [p(X) → s] [Init]
F2 = {N2} = {r(Y), [r(X) ∧ (q(X) → ⊥) → s] [R2]
F3 = {N3} = {r(Y), [r(X) → (q(X) ∨ s)] [R13]
F4 = {N4} = {N3 ∪ {X = Y → (q(X) ∨ s)} [R3]
F5 = {N5} = {N3 ∪ {> → (q(Y) ∨ s)} [R11]
F6 = {N6} = {N3 ∪ {q(Y) ∨ s} [R17]
F7 = {N7} = {N3 ∪ {q(Y) ∨ s ∨ (q(Y) → ⊥∧ s)} [R24]

...
2

The only CIFF∨ proof rule whose equivalence preservation needs to be proved is the Extending
disjunction rule, as all other CIFF∨ proof rules are also CIFF rules.

Proposition 4.5 (Equivalence preservation of the Extending disjunction rule). Given an ab-
ductive logic program with constraints 〈P, A, IC〉<, a CIFF∨ node N and a set of CIFF∨ successor
nodes N obtained by applying the Extending disjunction rule to N , it holds that:

P |=3(<) N iff P |=3(<) N∨

where N∨ is the disjunction of the nodes in N . 2

Proof of Proposition 4.5. We show generally that the equivalence

A ∨B ≡ A ∨B ∨ (¬A ∧B)

holds with respect to the three-valued completion semantics. The following truth table demon-
strates this:

A B ¬A A ∨B ¬A ∧B A ∨B ∨ (¬A ∧B)
0 0 1 0 0 0
0 1

2 1 1
2

1
2

1
2

0 1 1 1 1 1
1
2 0 1

2
1
2 0 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2 1 1

2 1 1
2 1

1 0 0 1 0 1
1 1

2 0 1 0 1
1 1 0 1 0 1

Recall that in the three-valued completion semantics, each sentence can have three truth values:
0 representing false, 1

2 representing undefined and 1 representing true. We denote by | F | the
truth value of a sentence F . In the table above, we have used the information that given two
sentences F and G, we have that:

| ¬F | = 1− | F |
| F ∧G | = min(| F |, | G |)
| F ∨G | = max(| F |, | G |)

100 CHAPTER 4. THE CIFF PROOF PROCEDURE AND THE CIFF¬ EXTENSION

2

Due to the above proposition, the soundness theorem 4.1 also applies to the CIFF∨ proof procedure.

Now we turn to the second part of the proof of soundness of the CIFF¬ proof procedure, i.e. given
a CIFF¬ extracted answer, we show how to obtain the same CIFF∨ extracted answer. The idea is
to map each rule used to build the CIFF¬ branch from which the answer has been extracted, to a
set of CIFF∨ rules in the building of a CIFF∨ derivation with respect to the same framework and
the same query. We introduce the following definitions.

Definition 4.23. Let D be a CIFF (respectively a CIFF¬ or a CIFF∨) derivation.
We say that Nk = N, . . . , Nk+m = N ′ is a CIFF (CIFF¬/CIFF∨) derivation sequence with respect
to D, and we denote it by Seq(D, N, N ′) if and only if there exists a branch B in D such that B is
of the form

. . . , Nk, . . . , Nk+m, . . .

In the sequel we will write simply Seq(N,N ′) if D is clear from the context. 2

Definition 4.24. Let I∗ be a set of marked implications. We say that I is the unmarked set of
I∗ if and only if

• I contains only unmarked implications, and

• an unmarked implication belongs to I if and only if an identical implication marked with ∗
belongs to I∗.

2

Definition 4.25. Let N be a CIFF¬ node and let I∗ be the set of all the marked implications in
N . We say that the unmarked node of N , denoted by N , is the node obtained from N by replacing
I∗ by its unmarked set I. 2

The following proposition, intuitively, shows that the CIFF¬ rules applied to nodes marked as
NAF (∆) nodes in a branch of a CIFF¬ derivation, can be mapped to standard CIFF proof rules.

Proposition 4.6. Let 〈Th,A, IC〉< be a CIFF¬ framework and let Q be a query. Let N =
Ps ∧ I∗ ∧RestNode be a CIFF¬ node within a CIFF¬ derivation D for Q such that:

• Ps = prv(p1(~t1)) ∧ . . . ∧ prv(pn(~tn)) is the conjunction of all the prv atoms in N ,

• I∗ is the conjunction of all the marked implications in N ,

• no rules apart from NAF Switch and Dynamic Allowedness can be applied to N .

Let Ns be a successful CIFF¬ node in a branch B = N1, . . . , Nk, . . . , Ns of D such that Nk = N .
Then we have the following:

• Nk+2 = p1(~t1) ∧ . . . ∧ pn(~tn) ∧ I∗ ∧RestNode, and

• there exists a CIFF derivation D′ such that

– for each CIFF¬ node Nj with j ∈ [k + 3, s − 1], there exists a finite CIFF derivation
sequence Seq(D′, Nj , Nj+1)

– for each unmarked CIFF¬ node Nj with j ∈ [k + 3, s − 1], there exists a finite CIFF
derivation sequence Seq(D′, Nj , Nj+1)

2

4.4. SOUNDNESS OF THE CIFF¬ PROOF PROCEDURE 101

Proof of Proposition 4.6. By assumption, no CIFF¬ rule can be applied to Nk apart from NAF
Switch and Dynamic Allowedness. But Dynamic Allowedness cannot be applied because,
by assumption, B is a successful branch. Hence, NAF Switch is the only rule applicable to
Nk obtaining Nk+1 which simply is Nk marked with NAF (∆N), where ∆N is the set of all the
abducible atoms occurring as CIFF¬ conjuncts in N . Now, the only rule applicable to Nk+1 is the
Provable rewriting rule. Applying it to Nk+1 we obtain, by definition:

Nk+2 = p1(~t1) ∧ . . . ∧ pn(~tn) ∧ I∗ ∧Rest

The second part of the proof is done by considering that each Nj+1 is obtained from Nj by the
application of a CIFF¬ proof rule φ. We consider exhaustively all the cases, doing a mapping to
a finite sequence of CIFF proof rules. Let Nj be a CIFF¬ node in D with j ∈ [k + 3, s− 1].

Case1 (NAF Switch) - this rule cannot be applied to Nj because it is marked with NAF (∆N).

Case2 (NAF Rewriting) - this rule cannot be applied to Nj . This is because NAF Rewrit-
ing is applied to marked implications. By assumption no rule can be applied to a marked
implication in Nk and the only rule introducing marked implications is NAF Rewriting
itself.

Case3 (Provable rewriting) - this rule cannot be applied to Nj . This is because:

1. all the prv atoms in Nk are dropped in Nk+2, and

2. the only rule introducing prv atoms in a node is the NAF Rewriting rule which cannot
be applied to any node Ni in D with i ≥ k (Case2).

Case4 (NAF Factoring #1) - this rule cannot be applied to Nj . This is because, by assump-
tion, B is a successful branch.

Case5 (NAF Factoring #2) - by definition, we have that Nj is of the form

p(~s) ∧Restj

and Nj+1 is of the form
~s = ~ti ∧Restj

where p(~s) 6∈ ∆N and p(~ti) ∈ ∆N .

By definition of ∆N , we have that p(~ti) occurs as a CIFF¬ conjunct in Rest in N . But it
also occurs in Restj because the only rule which can eliminate an abducible atom in Rest is
the Factoring rule (R5) and, by assumption, no rule can be applied to Rest. Then if we
apply first the Factoring rule using {p(~ti), p(~s)} as its rule input, and then the Splitting
rule, we obtain exactly Nj+1.

Case6 (Any other rule) - each CIFF¬ proof rule φ not considered in the previous cases, is also
a CIFF proof rule. Hence we could map φ to itself.

The third statement, i.e. that for each unmarked CIFF¬ node Nj with j ∈ [k+3, s−1], there exists
a CIFF derivation sequence Seq(D′, Nj , Nj+1), can be proved similarly to the previous one.

We are now ready to show the soundness theorem for the CIFF¬ proof procedure which is based
on the following proposition.

Proposition 4.7. Let 〈Th, A, IC〉< be a CIFF framework and let Q be a query. Let 〈∆, C〉 be a
CIFF¬ extracted answer from a CIFF¬ derivation D for Q. Then there exists a CIFF∨ derivation
D′ for Q with a CIFF∨ successful node from which 〈∆, C〉 can be extracted. 2

102 CHAPTER 4. THE CIFF PROOF PROCEDURE AND THE CIFF¬ EXTENSION

Proof of Proposition 4.7. The initial formula in D is F1 = N1 = Q ∧ IC∗ by definition. Each
successful branch B= N1, . . . , Ns of D can be divided into two main CIFF¬ derivation sequences
S1 = Seq(N1, Nk) and S2 = (Nk, Ns) where Nk is a node of the form

Ps ∧ I∗ ∧Rest

such that

• Ps = prv(p1(~t1)) ∧ . . . ∧ prv(pn(~tn)) is the conjunction of all the prv atoms in Nk;

• I∗ is the conjunction of all the marked implications in Nk and

• the NAF Switch rule is the only rule that can be applied to it.

Note that in a CIFF¬ successful branch B there is always such a node Nk because B is a successful
branch and by both the definition of a CIFF¬ selection function and the conditions of the NAF
Switch rule, that rule can be applied to an unmarked node if no other rule (apart from Dynamic
Allowedness rule) applies to it. This condition is always reached by a successful branch. Moreover,
this is the only node in the branch to which NAF Switch can be applied because the rule marks
the node as a NAF node and there is no rule which unmarks a node.
Let us consider now a CIFF∨ derivation for Q. Its initial formula is F1 = N∨

1 = Q ∧ IC. We can
build a CIFF∨ derivation sequence S∨1 = Seq(N∨

1 , N∨
k) such that N∨

k is the unmarked node of Nk,
i.e.

N∨
k = Nk = p1(~t1) ∧ . . . ∧ pn(~tn) ∧ I ∧Rest

To build S∨1 we can just apply exactly the same rules together with the same rule inputs used in
S1 (obviously each marked implication is replaced by an identical unmarked implication) with the
following exceptions:

• for each NAF Rewriting rule applied to a marked implication of the form

∗(((q1(~t1) → ⊥) ∧ . . . ∧ (qm(~tm) → ⊥)) → H)

obtaining

> → [prv(q1(~t1)) ∨ . . . ∨ prv(qm(~tm)) ∨ [∗(q1(~t1) → ⊥) ∧ . . . ∧ ∗(qm(~tm) → ⊥) ∧H]]

we apply, instead, the Logical simplification #4 rule and m times the Negation rewrit-
ing rule, obtaining

q1(~t1) ∨ . . . ∨ qm(~tm) ∨H

and then the Extending disjunction rule obtaining

q1(~t1) ∨ · · · ∨ qm(~tm) ∨H ∨ [(q1(~t1) → ⊥) ∧ · · · ∧ (qm(~tm) → ⊥) ∧H]

• for each Splitting rule applied to a disjunction of the form

prv(q1(~t1)) ∨ . . . ∨ prv(qm(~tm)) ∨ [∗(q1(~t1) → ⊥) ∧ . . . ∧ ∗(qm(~tm) → ⊥) ∧H]

we apply, instead, the Splitting rule on the disjunction

q1(~t1) ∨ · · · ∨ qm(~tm) ∨H ∨ [(q1(~t1) → ⊥) ∧ · · · ∧ (qm(~tm) → ⊥) ∧H].

4.4. SOUNDNESS OF THE CIFF¬ PROOF PROCEDURE 103

It is straightforward that, selecting the appropriate disjuncts when the Splitting rule is applied,
we obtain a CIFF∨ derivation sequence S∨1 = Seq(N∨

1 , N∨
k) such that N∨

k is of the form:

p1(~t1) ∧ . . . ∧ pn(~tn) ∧ I ∧Rest.

Now, from Proposition 4.6 we have that Nk+2 must be of the form:

p1(~t1) ∧ . . . ∧ pn(~tn) ∧ I∗ ∧Rest.

Again from Proposition 4.6, we have that there exists a CIFF derivation sequence Seq(N∨
k , N∨

s)
where N∨

s is obtained from Ns by replacing each marked implication with an unmarked one. It
is obvious that N∨

s is a CIFF∨ successful node because Ns is a CIFF¬ successful node, thus no
other rule can be applied to it and it does not contain any disjunction to which the Extending
disjunction rule could be applied. By construction, the CIFF∨ extracted answer from N∨

s is
〈∆, C〉.
Theorem 4.3 (CIFF¬ Soundness). Let 〈P, A, IC〉< be an abductive logic program with constraints
and let 〈Th, A, IC〉< be the corresponding CIFF¬ framework. Let 〈∆, C〉 be an extracted answer
from a successful node N in a CIFF¬ derivation with respect to 〈Th, A, IC〉< and a query Q. Then,
〈∆, C〉 is an abductive answer with constraints to Q with respect to 〈P, A, IC〉<.

2

Proof of Theorem 4.3. Due to Proposition 4.7, we can build a CIFF∨ derivation from which we
can extract 〈∆, C〉. Then, due to the soundness of CIFF∨, we obtain the result.

The above result shows formally the soundness of the CIFF¬ proof procedure with respect to the
three-valued completion semantics. As for CIFF, we do not show a completeness result for CIFF¬.
Moreover, in the case of CIFF¬, it is difficult to define a completeness property because the CIFF¬

proof procedure is designed to avoid returning some sound (though counter-intuitive) abductive
answers.
We will return to this topic, informally, in Section 5.2.2.

104 CHAPTER 4. THE CIFF PROOF PROCEDURE AND THE CIFF¬ EXTENSION

Chapter 5

The CIFF System

The CIFF System is the SICStus [1] Prolog implementation of the CIFF proof procedure. The
version described here is version 41.
Previous versions [72, 70] of the CIFF System (until version 3.0), also implemented in SICStus
Prolog [1], were developed under the SOCS European Project [167].

CIFF System 4.0 is not an update of version 3.0 but the system has been completely redesigned
from scratch. The CIFF System 3.0 is a well-designed and robust system. Moreover, despite the
high number of Prolog code-lines, its code is well-commented and simple to understand (and it is
absolutely a good point for redesigning a system from scratch!). So, why did we implement the
version 4.0 from scratch? Well, the main drawback of version 3.0 is one: its efficiency.

Efficiency is a very big drawback in CIFF System 3.0. Generally there are not so many expecta-
tions about efficiency of systems and applications written in Prolog but modern Prolog platforms
provide efficient underlying mechanisms which together with well-crafted top-level algorithms can
help in boosting drastically performance. Thus, the choice of Prolog can be reasonable choice also
for efficiency, if good care is given to the algorithms implementing the core routines of a system.
This was not the case with CIFF System 3.0 which was basically a very good functional prototype
of a CIFF implementation. Each application of a CIFF proof rule in CIFF System 3.0 is com-
putationally very expensive and when a CIFF node grows (in the order of tens of elements in a
node, a situation occurring almost at every CIFF run), the computation becomes unacceptable in
practice.

Apart from efficiency, the redesign in the CIFF System 4.0 includes a completely new NAF exten-
sion implementation. This is also because at the time of version 3.0, the CIFF¬ proof procedure
was not still developed at theoretical level and the implementation was based on an adaptation of
the NAF extension for the IFF proof procedure specified in the Toni-Sadri paper [157].

The work behind the new version was huge and it took almost two years. A great help in the
redesign of the system was given by version 3.0 itself because some ideas of code-design have been
reused and, more importantly, the older version has been heavily used as a sort of “oracle” to see
the correctness of basic operations implemented with new algorithms and data structures. The
CIFF System 3.0 was a big time-saving entity towards the new version.
At the very beginning, the main choice was whether to use Prolog or not. On one side, the
drawbacks of Prolog are basically (1) the efficiency of the platform (even if nowadays it can be
reasonable, as noticed above); (2) the coding style, which initially requires high flexibility of think-
ing, especially if one it is used to imperative programming and (3) the little Prolog “community”
which implies not so much standard solutions and methodologies for Prolog applications. These
points are very important if the application is composed of thousands of codelines. And the CIFF
System is one of such applications!

1The CIFF System 4.0 can be downloaded from http://www.di.unipi.it/∼terreni/research.php

106 CHAPTER 5. THE CIFF SYSTEM

On the other side, Prolog includes many interesting features for implementing CIFF. First of all,
the CIFF proof procedure is an abductive logic programming with constraints proof procedure:
it is natural to think of Prolog as the underlying platform for an implementation. Indeed Pro-
log is based on unification and resolution and also CIFF is based on such concepts at the core
level. Choosing Prolog, these are for free and moreover it is assumed that they are robust and
well-implemented. Moreover, modern Prolog platforms have a number of standard features and
data structures (e.g. attribute variables [93]) which make possible to think about fast algorithms
underlying the CIFF proof rules. The last issue regards constraints. Many Prolog platform present
extensions to Constraint Logic Programming, in particular integrating constraint solvers for finite
domain constraints. This is a key issue in choosing Prolog because interfacing the system with the
constraint solver becomes a comparatively easy task.

At the end, the choice was to continue in using Prolog, in particular in using SICStus Prolog
which is probably the best Prolog platform for robustness, efficiency and constraint solving. The
other choice which would have been very interesting (also at theoretical level), would have been
the implementation of CIFF as an abductive extension of the Warren Abstract Machine [179, 2].
But this would have been a mayor new contribution.

The rest of the chapter is organized as follows. In the next section we give an overview of the
implementation presenting the main design choices and sketching the main algorithms. In Section
5.2 we give a brief comparison with other proof procedures and other systems, in particular with
the most related system, the A-System [111, 139], and two answer set solvers, namely SMODELS
[136, 166] and DLV [68, 119]. Finally in Section 5.3 conclusions are drawn together with some
hints for future work.

5.1 The CIFF System: an Overview

The CIFF System 4.0 requires SICStus Prolog 3.11.2 (or newer versions of SICStus Prolog 3 release)
and it starts by compiling, on the Prolog top-level shell, the ciff.pl file which, in turn, compiles
all the CIFF System modules.

The CIFF System is composed of the following modules:

• the main module2: it provides the main predicate (run ciff/3) for starting a CIFF compu-
tation and it manages the main computational cycle,

• the flags module: it provides all the CIFF flags a user can set to change the CIFF behavior
(e.g. turning on/off the NAF module, the level of debugging info returned to the user and
so on); all the flags are detailed in the CIFF manual [171],

• the preprocess module: it provides the translation from the user’s abductive logic program
with constraints to its internal representation,

• the proc module: it provides the predicate sat/2 which, roughly speaking, implements the
CIFF proof rules,

• the proc-aux module: it provides auxiliary predicates to sat/2,

• the aux module: it provides general auxiliary predicates,

• the constraints module: it provides the wrapper around the SICStus CLPFD constraint
solver,

• the debug module: it provides predicates to return debugging info to the user, and

2Each “module” is implemented in a .pl file having the same name with a ciff- prefix. E.g. the ciff-main
module is implemented by the ciff-main.pl file

5.1. THE CIFF SYSTEM: AN OVERVIEW 107

• the ground-ics module: it provides an efficient algorithm for handling some classes of integrity
constraints (see Section 5.1.6).

Once compiled the system, a CIFF computation starts with the run ciff/3 call:3

| ?- run_ciff(+ALPFiles,+Query,-Answer).

where ALPFiles is a list of .alp files which together represent an abductive logic program with
constraints (ALPC) and Answer is the output variables which will be instantiated to the CIFF
extracted answers (if any) to the list of literals provided in Query. The possibility of specifying
more than one .alp file in the ALPFiles list is to facilitate the user in writing CIFF applications.
A typical example is a two elements list where one .alp file contains the clauses and the integrity
constraints which specify the problem and the other file contains the specification of the particular
problem instance. In this way the first file could be reused for other instances.

A CIFF computation is composed of a preprocessing phase which both translates ALPFiles into
its internal representation and initializes the system data structures, and an abductive processing
loop implemented as a recursive call to the sat/2 predicate. Each call to the sat/2 represents
an application of a CIFF proof rule and at the end of the loop Answer is instantiated either to a
CIFF extracted answer or to the special undefined (if the Dynamic Allowedness rule has been
applied). Further answers can be obtained through Prolog backtracking. If no answer has been
found, the system fails returning the control to the user. The main CIFF computational cycle is
described in the following picture.

Figure 5.1: The CIFF System: main computational cycle

The preprocessing phase, detailed in Section 5.1.1, stores the iff-definitions derived from the user
program in an internal representation in which the various elements are maintained in disjoint sets
depending on their type: abducibles, defined atoms, constraints, equalities and so on. The same

3In what follows, we will use several Prolog standard notations: variable names start with capital letters, ! is
the cut operator, [] is the notation for lists and \+ stands for negation. Moreover the notation pred/n stands for
“the predicate pred with arity n” and finally +,- before a predicate argument Arg represent that Arg is an “input”
argument and an “output” argument respectively.

108 CHAPTER 5. THE CIFF SYSTEM

type-based partition is performed on the first CIFF node of the computation, composed of the
conjunction of the integrity constraints in ALPFiles and the Query.
This node is passed as the first input of the sat(+State, -Answer) predicate, where State is
the state of the CIFF computation, which is composed of the representation of the current CIFF
node plus other auxiliary run-time information, in particular for NAF (see below). A CIFF node
is represented by a state atom of the form:

state(Diseqs,Constraints,Implications,DefinedAtoms,Abducibles,Disjunctions)

where the arguments represent the CIFF conjuncts of the node. They are maintained aggre-
gated, depending on their “type” (and their names are quite self-explanatory): Diseqs represents
the set of CIFF inequalities, Constraints represents the current finite domain constraint store,
Implications the set implications, DefinedAtoms the set of defined atoms, Abducibles the set
of currently abduced atoms and finally Disjunctions represents the set of disjunctive CIFF con-
juncts.

Each element in Disjunctions represents a choice point of the computation and when the Split-
ting rule is applied on it, the current CIFF node is selected in a CIFF formula following the left-
most criterion. When the computation on a certain node ends (instantiating Answer or failing),
the next node is selected via Prolog backtracking. Delegating the management of the switching
among CIFF nodes to the Prolog backtracking allows for maintaining in the current State only
the information of the selected CIFF node and, for performance, it is the only possible practical
choice.
Each sat/2 clause represents the implementation of a CIFF proof rule and it has the following
general structure:

1. a first part to search for a rule input in the node satisfying the applicability conditions of
the implemented proof rule

2. a second part for applying the rule and updating the State

3. a recursive call to sat/2 with the updated State.

The search for a rule input is done by scanning sequentially the CIFF conjuncts in the current
node. Thus, maintaining a type-based partition of the CIFF conjuncts throughout a computation
plays a very important role in terms of efficiency and clarity of the code. This is because each CIFF
proof rule operates on certain types of CIFF conjuncts (e.g. the Unfolding atoms rule operates
on defined atoms, the Factoring rule operates over abducibles and so on) and that separation
facilitates the search for a rule input among the CIFF conjuncts.
If such a rule input has been found, the concrete application of the rule is performed (relying upon
the procaux, aux and constraints modules, also depending on the given proof rule), and the State
is updated.

Implementing the proof rules as sat/2 clauses, implies that, due to the Prolog semantics, the order
of these clauses determines the priority given by the CIFF System to a certain proof rule during
the computation. Roughly speaking, the system tries to apply the proof rule implemented in the
first sat clause; if no rule input is found, then the following sat clause is tried. If no rule can be
applied to a node and no inconsistencies have been detected, an abductive Answer is extracted and
then returned to main module.
When all the choice points have been traversed, the CIFF computation ends returning the answer
no to the user indicating that no more answers can be found.

The above description outlines the implementation of the CIFF selection function. We use “the
standard” Prolog-like selection function, i.e. we always select the left-most CIFF node in a CIFF
formula. It is not a fair selection function in the sense that it does not ensure completeness (see
the end of Chapter 4 for further details), but it has been found to be the only possible practical
choice in terms of efficiency (in both time and space) taking advantage of Prolog backtracking.

5.1. THE CIFF SYSTEM: AN OVERVIEW 109

Concerning the order of selection of the proof rules in a CIFF node, this is determined by the order
of the sat clauses. If a sat clause defining a CIFF proof rule, e.g. Unfolding atoms (R1), is
placed before the sat clause defining, e.g. Propagation (R3), then the system tries to find a
rule input for R1 and if no such rule input can be found, then the system tries the same for R3
and so on. Further details on this topic are given in Section 5.1.4.

However, some CIFF proof rules, in particular those rules regarding equalities (Substitution in
atoms, Equality rewriting in atoms and so on) and the most part of the Logical simplifi-
cation rules, are not implemented each one as a sat/2 clause. Rather they are embedded in the
other main CIFF proof rules, i.e. when a proof rule R, e.g. Unfolding atoms, is applied, the
system first determines all the operations on the equalities and the logical simplifications arising
from R and then it performs them immediately. Thus the updated State is not only derived from
the application of R but also from the application of all the other embedded proof rules. This
point, as detailed in Section 5.1.2, determines a great enhancement of performance and moreover
it allows for a better readability of a CIFF computation for debugging purposes.

Until now we For now, we have not yet described the NAF module whose details will be given in
Section 5.1.5. To give a global picture of the system, the implementation of the NAF extension,
following the specifications given in Chapter 4, can be logically split in two parts: one part which
handles the marked integrity constraints and the production of the prv atoms and the second part,
i.e. from the application of the NAF Switch rule onward, checking the so-far produced prv atoms,
avoiding new abductions through the NAF factoring rules.
The preprocessing phase changes according to whether the NAF extension is activated or not,
producing marked or non-marked implications in the first node, respectively In the same way
NAF proof rules (implemented again as sat clauses) are taken into account or not by the system.
The NAF extension is activated through a CIFF flag and it requires a distinct preprocessing for
integrity constraints according to the CIFF¬ specifications.
Moreover, to embrace the NAF extension, the State argument of sat is a structure of the following
form:

state(Diseqs,Constraints,Implications,DefinedAtoms,Abducibles,Disjunctions):
naf_state(DeltaNAF,NAFSwitch)

where DeltaNAF represents the marking set of a CIFF¬ node and NAFSwitch is a 1/0 flag indicating
whether the NAF Switch rule has been applied or not.

The interactions of the modules in a CIFF computation is displayed in Figure 5.2.
In the rest of the chapter, we detail the main parts of the system together with the solution
adopted, rather than describing the CIFF System “line-by-line” from begin to end. We start from
the preprocessing phase together with a description of the user input and the returned answer.
Then we describe, in Section 5.1.2 and in Section 5.1.3, the management of both variables (in
particular their quantification) and constraints. In Section 5.1.4 we discuss the loop checking
routines in the CIFF System. In Section 5.1.5 we describe the issues in the implementation of
the NAF extension and finally in Section 5.1.6 we describe the ground-ics module containing an
efficient algorithm for evaluating some classes of integrity constraints.

5.1.1 Input Programs, Preprocessing and Abductive Answers

As said in the previous section, a CIFF run starts with a run ciff(+ALPFiles,+Query,-Answer)
call where the .alp files in the ALPFiles list represent the user-defined abductive logic program
with constraints.
Each abductive logic program with constraints (ALPC) consists of the following components, which
could be placed in any position in any .alp file:

• Declarations of abducible predicates, using the predicate abducible. For example an ab-
ducible predicate abd with arity 2, is declared via

110 CHAPTER 5. THE CIFF SYSTEM

Figure 5.2: The CIFF System: modules interactions

abducible(abd(,)).

• Clauses, represented as

A :- L1, ..., Ln.

• Integrity constraints, represented as

[L1, ..., Lm] implies [A1, ..., An].

where the left-hand side list represents a conjunction of CIFF literals while the right-hand
side list represents a disjunction of CIFF atoms.

Equality/inequality atoms are defined via =, \==. Constraint predicates are #=, #\=, #<, #>,
#=<, #>= together with the domain inclusion predicate in (e.g. X in 1..100). Finally, negative
literals are of the form not(Atom) where Atom is an ordinary atom.

Example 5.1. The following is the CIFF System representation of the Example 3.3.

% Abducibles:
abducible(sprinkler_was_on).
abducible(rain_last_night).

% Definitions:
grass_is_wet :- rained_last_night.
grass_is_wet :- sprinkler_was_on.
shoes_are_wet :- grass_is_wet.

% ICs:
[rained_last_night] implies [false].

5.1. THE CIFF SYSTEM: AN OVERVIEW 111

Let assume that the file is named grass.alp. The following is the call to run CIFF on the query
shoes are wet:

run_ciff([grass],[shoes_are_wet],Answer).

2

Example 5.2. The following is the CIFF System representation of the Example 3.8.

% Abducibles:
abducible(empty(_)).
abducible(power_failure(_)).

% Definitions:
lamp(a).
battery(b,c).
faulty_lamp :- power_failure(X), not(backup(X)).
backup(X) :- battery(X,Y), not(empty(Y)).

Let assume that the file is named lamp.alp. The following is the call to run CIFF on the query
faulty lamp:

run_ciff([lamp],[faulty_lamp],Answer).

2

The preprocess module translates both ALPFiles and Query and stores them in their internal
representation. We can logically split the user input in two main parts: a static part (iff-definitions)
and a dynamic part (query plus integrity constraints). The main objectives in preprocessing are
to separate elements of both input parts depending on their types (as discussed in the previous
section) and to store the static part in order to efficiently retrieve the information when needed at
run-time.
Each iff-definition is stored in the Prolog global State (through an assertion) in the form of

iff_def(+PredName, +Arguments, +Disjuncts)

where PredName is the name of the predicate, Arguments is a list of N distinct variables (where N
is the arity of the predicate) and Disjuncts is the list of disjuncts in the form

disj(+Constraints,+Equalities,+Diseqs,+Implications,+DefinedAtoms,+Abds)

where the list of Implications is obtained transforming the negative literals in the clauses in
implicative form whose internal representation will be discussed later.
For example the clause

p(X,Y,d) :- X #> 5, a(Y), q(Z), r(X), Y \== Z

is translated into (assuming that a/1 is abducible and the above clause is the only clause for p/3):

iff_def(p,[X,Y,W],[disj([X#>5],[W=d],[Y\==Z],[],[q(Z),r(X)],[a(Y)])]).

Suppose now that during the computation, we have to unfold p(2,b,d). To retrieve the iff-
definition of tt p/3 we simply call:

iff_def(p,[2,b,d],-Disjuncts)

where Disjuncts in this case will be:

112 CHAPTER 5. THE CIFF SYSTEM

[disj([2#>5],[d=d],[b\==Z],[],[q(Z),r(2)],[a(b)])]

In this way we have both a direct access to the iff-definitions and a clear separation of the elements
by their type in order to update efficiently the current State when needed.

Integrity constraints are not stored in the Prolog global state as they, together with the Query,
will represent the first CIFF node of the computation. However, in the internal representation,
their components are again separated depending on their type as follows:

body(BCons,BEqs,BAts,BAbds) implies head(HCons,HEqs,HDiseqs,HAts,HAbds)

Consider the integrity constraint

[not(c), q(Y), p(X), r(Z), X=Y, X\==Z] implies [false]

Its internal representation (assuming r/1 is abducible) is

body([],[X=Y],[q(Y),p(X)],[r(Z)]) implies head([],[X=Z],[],[c],[])

This is because the preprocessing phase translates the negative elements into their positive form
(including inequalities, transformed into equalities) and puts them into the head, eventually re-
moving false4.

The implicative form of negative literals in the clauses, e.g. not(p), is as follows.

body([],[],[p],[]) implies head([],[],[],[false],[])

The above representation may seem quite complex, but it allows for maintaining a type-based
separation, thus avoiding many run-time routines of type-checking. The dynamic part of the input
represents the State argument of the sat/2 predicate:

state(Diseqs,Constraints,Implications,DefinedAtoms,Abducibles,Disjunctions)

where all the components arise from the various conjuncts in the Query, apart Implications which
is composed of the conjunction of all the preprocessed integrity constraints and the implicative form
of the negative literals in the Query.

The last remarks of this section are about the form of an abductive Answer. A CIFF extracted
answer is represented by a triple, namely a list of abducible atoms, a list of CIFF inequalities DE
and finally a list of finite domain constraints Γ. The set of equalities E is not returned explicitly
to the user because the final substitution (in E) is applied directly by the system.

Abducibles:Inequalities:Constraints:Labels

The Labels component, to be discussed in Section 5.1.3, contains a consistent assignment (or a
labeling) of the constraint variables in Constraints.

Example 5.3. The only CIFF extracted answer of the Example 5.1 is:

[sprinkler_was_on]:[]:[]:[]

The two answers of the Example 5.2 are:

A1 = [power_failure(b),empty(c)]:[]:[]:[]
A2 = [power_failure(_A)]:[_A\==b]:[]:[]

2

4Note that, for now, we do not take into account the NAF extension. When we describe the NAF extension we
will slightly change this representation because negative literals in the body of a marked integrity constraint have
to stay in the body.

5.1. THE CIFF SYSTEM: AN OVERVIEW 113

5.1.2 Variable Handling

Variables play a fundamental role in both the theory and the implementation of the CIFF proof
procedure. The presence of both existentially quantified and universally quantified variables is
difficult to manage at both levels.
We recall that in a CIFF node, a universal variable U is a variable which occurs only in an
implication which also defines the scope of U , while an existential variable E is a variable occurring
in at least a CIFF conjunct which is not an implication and the scope of E is the whole CIFF
node.
In this section we focus on two issues: checking variable quantification at run-time and the imple-
mentation of the proof rules concerning equalities, i.e. Equality rewriting and Substitution
rules. To simplify the presentation, we refer to those rules as equality rules.

The main issue in variable quantification is that existentially quantified variables may occur inside
an implication due to a propagation rule application. The implementation of a CIFF proof rule
managing implications must take into account that a variable can be either existentially or uni-
versally quantified, in order to avoid unintended behaviors. Thus, the CIFF System must know at
run-time the quantification of a variable and moreover, as it is largely required throughout a CIFF
computation, there is the need of efficient access to this information.
The solution adopted is to associate to existential variables the existential/0 attribute. The
mechanism of attributed variables ([93]), i.e., roughly speaking, “appending” some information
(attributes) to a variable, allows for determining variable quantification in a fast and reliable way
through a local access to the variable itself. The idea is very simple: all the variables occurring out-
side the Implications argument of the current State have the existential attributed associated
with them; during the application of a CIFF proof rule, the existential attribute is associated
to each variable moving from an implication to the outside. In this way at the end of each CIFF
proof rule application, we have two disjoint sets of variables: the set of existentially quantified
variables (with the existential attribute) and the set of universally quantified variables (without
attributes).

As said in Section 5.1, equality rules are implemented at the end of the other main proof rules.
For example, consider unfolding a CIFF conjunct p(X,Y) in a CIFF node where the iff-definition
of p/2 is:

iff_def(p, [Arg1,Arg2], [disj([],[Arg1=a,Arg2=b],[],[],[],[])]).

Following the CIFF specifications, unfolding will result in the set of equalities

X=Arg1, Y=Arg2, Arg1=a, Arg2=b.

Successively, this set has to be simplified and propagated to the whole node by applying a number
of “variable” CIFF proof rules. In the CIFF System, instead, the latter operations are done all-in-
one, simplifying locally the set of equalities resulting from the application of a CIFF proof rule and
then propagating the resulting set of substitutions to the node (in case of existentially quantified
variables) or to the implication (in case of universally quantified variables). In doing this, the
system takes advantage of the underlying Prolog unification as much as possible.

In CIFF, equality rules rely upon a slightly modified version of the Martelli-Montanari unification
algorithm [129] and the problem in using Prolog unification is again related to variable quantifica-
tion: all the variables being existentially quantified, from a Prolog point of view, Martelli-Montanari
conditions on variable quantification cannot be checked by Prolog itself.
Due to this, the implementation of the equality rules relies on:

• Prolog unification for all the equality rules not involving implications: this is because in
that case all the variables are existentially quantified, hence the Prolog unification is able to
manage them;

114 CHAPTER 5. THE CIFF SYSTEM

• an explicit implementation of the Martelli-Montanari algorithm (in the proc-aux module)
otherwise.

Addressing equality rules at the end of the other main proof rules brings some important benefits.
The first one is efficiency. Performing all at once those operations at the end of a main proof rule
grants an immediate and local access to those variables which need to be unified/propagated and,
moreover, the absence of dedicated sat clauses for those rules avoids searching for suitable equalities
in the current CIFF node to be unified/propagated. To give an idea, in a typical abductive logic
program, each main CIFF proof rule gives out the preconditions to the application of 4-5 equality
rules: this would have required a corresponding number of CIFF iterations. Not surprisingly, this
point together with taking advantage as much as possible of Prolog unification boosts significantly
the performance of the system (execution times of CIFF System 3.0 were approximately halved).

Note also that the use of Prolog unification for existential variables makes it useless to maintain
the equalities as CIFF conjuncts in the current State. This is because at the end of a proof rule
all the possible substitutions have been exhaustively applied.

Finally, dropping equality rules from the main sat loop brings also a great enhancement in debug-
ging. This is because for a human eye, even an expert human eye, it is much easier to follow the
trace of a CIFF computation without a verbose application of equality rules. Consider again the
example above. With a verbose application of equality rules we would have:

1 - p(X,Y)
2 - X=Arg1, Y=Arg2, Arg1=a, Arg2=b
3 - X=a, Y=Arg2, Arg1=a, Arg2=b
...

Instead, applying all-at-once the equality rules we simply obtain:

1 - p(X,Y)
2 - X=a, Y=b

It is obvious that in a CIFF node with tens of CIFF conjuncts and tens of variables a verbose
application of equality rules leads to a untraceable computation.

5.1.3 Constraints Handling

The management of CLP constrains is another big implementation issue of the CIFF System. The
SICStus CLP constraint solver for Finite Domains (CLPFD solver) is a state-of-the-art constraint
solver [77] and its interface to the standard Prolog engine is quite simple and effective. However,
as happens in general with constraint solver implementations, given a certain constraint store, the
only way to know about its satisfiability is by performing an exhaustive checking (or labeling) of
the involved constraint variables.
This implies that during a CIFF computation, the constraint store is not ensured to be consistent,
unless labeling is performed.
Labeling is an expensive operation on big constraint stores, and so it should be used carefully during
a CIFF computation. Applying frequently the constraint solving rule to exhaustively check the
constraint store could not be a good practical solution because if on one side some CIFF branches
can be cut if the store is unsatisfiable, on the other side the overhead due to labeling could be very
big.
The choice taken in the implementation is to perform labeling every N CIFF proof rule applications,
where N is modifiable by the user through a CIFF flag. A further check is always performed at the
very end of a CIFF branch computation, when no other proof rules can be applied to the current
node and before an answer is returned to the user.

5.1. THE CIFF SYSTEM: AN OVERVIEW 115

Apart from efficiency issues, the main problem in using labeling during a CIFF computation is
that labeling results in a complete grounding of the constraint variables, thus, the constraint store
in the CIFF extracted answer would be totally ground.

To solve this issue, the simplest solution is to build, on-the-fly, a working copy of the constraint
store with fresh constraint variables and then to perform labeling on that working copy. If the
constraint store is unsatisfiable the current CIFF branch fails, otherwise the computation goes on
with the original copy. But this does not work in practice because copying a constraint store is a
very expensive operation in terms of both space and time and it is not reliable.

Instead, the solution adopted is able to perform labeling by maintaining a single copy of the con-
straint store by means of a backtracking algorithm which, when needed, checks the satisfiability
of the CLP store through a labeling and then restores the non-ground values via a forced back-
tracking. Surprisingly, this is the best solution, to our knowledge, for efficiency and memory usage
which allows both satisfiability checks and non-ground answers.

Now we sketch the implementation of that backtracking algorithm. We assume it is applied at the
last CIFF step in a branch, before an abductive answer is returned to the user.

The following is a piece of the sat last clause.

%%%Final clause: returns an abudctive answer if the solver succeed
S1 sat(State, Answer) :-
S2 ...
S3 !,
S4 (label_flag(0) ; label_flag(1)),
S5 run_time_label(CVars),
S6 make_label_assocs(CVars,0,Assocs),
S7 ...

The symbol ; at line S4 represents a disjunction with the standard backtracking semantics of Pro-
log: if label flag(0) succeeds, the disjunction becomes a backtracking point and label flag(1)
is evaluated in case of failure later on. The predicate label flag represents whether labeling has
been performed on this store (label flag(1) succeeds) or not yet (label flag(0) succeeds). It
is asserted, with value 0, in the Prolog global state at CIFF System initialization as follows:

assert(label_flag(0)).

The asserted value of label flag is then used in run time label(CVars) which effectively per-
forms the labeling on the constraint variables CVars. The predicate in line S6 regards the added
component in the implementation of a CIFF abductive answer: the association of a ground solution
for the constraint variables as will be discussed later on.

The run time label/1 predicate is defined as follows5

L1 run_time_label(CVars) :-
L2 labeling_mode(Mode),
L3 retract(label_flag(V)),
L4 if (V = 0) {
L5 if (labeling(Mode,CVars)) {
L6 assert_label_list(CVars,0),
L7 assert(label_flag(1)),
L8 !,
L9 fail

5In real Prolog code the if-else statement is represented by the operators -> ; whose semantics ensures that the
second branch is not a backtracking point if the first branch succeeds. For readability we use an “imperative-like”
syntax.

116 CHAPTER 5. THE CIFF SYSTEM

L10 } else {
L11 assert(label_flag(0)),
L12 !,
L13 fail
L14 }
L15 } else {
L16 assert(label_flag(0))
L17 }.

Mode in line L2 represents one of the labeling algorithms offered by the SICStus CLPFD solver [1].
It can be set through the labeling mode CIFF flag.
In line L3 the value V of label flag is checked (recall that in the sat clause both 0 and 1 are
accepted by the system) and the atom is retracted from the global Prolog state.
If V = 0 (the initial situation), the labeling (line L5) is performed. If it fails, the label flag(0)
is asserted again and run time label fails too. The last assertion ensures that sat also fails
because the disjunction in line S4 fails. If the labeling succeeds, then label flag(1) is asserted,
run time label fails again but when the control returns, via backtracking, to sat at line S4, it does
not fail due to the presence of label flag(1) in the Prolog global state. Hence run time label
is traversed again, the test at line L4 fails because now the value of V is 1, and, before succeeding,
label flag(0) is asserted again in order to restore the initial situation.

Note that whenever the run time label clause fails, the variables in the constraint store are
restored via Prolog backtracking. This happens also when the labeling succeeds.
In this way, if labeling succeeds, and then label flag(1) is asserted, we are ensured that the
current constraint store is satisfiable but constraint variables are not bound to ground values.

The assert label list/2 predicate in line L6 simply asserts in the Prolog global state the numeric
values returned by labeling. Those assertions are done maintaining the positional order of the list of
variables CVars and they are used by the make label assocs to retrieve the consistent assignment
to be displayed to the user together with the abductive answer.

The other use of the algorithm (every N CIFF steps) is very similar. The only difference is that
the assertions of the ground values are not performed and moreover, in the real code, there is a
further flag for distinguishing whether it is the last step or an Nth step.

5.1.4 Loop Checking and CIFF Proof Rules Ordering

CIFF specifications do not ensure that a CIFF computation terminates. E.g., a CIFF computation
for the query p with respect to the abductive logic program composed of the single clause p ← p,
will loop forever applying unfolding. This example (and many other examples) has a theoretical
justification: p is undefined under the three-valued completion semantics thus neither the query p
nor the query ¬ p succeeds, leading to infinite looping.

However, when switching from theory to practice, further non-terminating sources arise which
do not have a theoretical justification. In this section we address four types of non-termination
sources:

• the order of selection of CIFF nodes in a CIFF formula;

• the order of selection of the CIFF proof rules;

• the order of selection of CIFF conjuncts in a CIFF node;

• CIFF proof rules which cannot be applied twice in a CIFF branch.

Both in the specifications and in the implementation, the number of leaf CIFF nodes in a CIFF
formula can be incremented only by the application of Splitting on a disjunctive CIFF conjunct.

5.1. THE CIFF SYSTEM: AN OVERVIEW 117

While, theoretically, any leaf node can be selected at any CIFF step, in the implementation we
chose the left-most strategy. This implies that, sometimes, abductive answers can never be re-
turned to the user because the system loops forever in a non-terminating branch. This choice
follows the classical Prolog approach and it allows for the direct use of the underlying Prolog
backtracking in case of failures. The benefits are in terms of efficiency and simplicity because no
additional machinery is needed to keep trace of non-selected nodes, while the main drawback is
obviously the potential non-termination. However, we argue that managing even small-medium
size CIFF applications, this approach is the only computationally feasible approach because man-
aging branching without relying upon Prolog backtracking is computationally very expensive in
both time and space.

The second source of non-termination is the order of selection of the CIFF proof rules. Consider
the abductive logic program consisting of the clause p ← p and the integrity constraint a → false
where a is an abducible predicate. A CIFF computation with the query p, a will loop forever
if Unfolding atoms has a higher priority than Propagation. In this case the system applies
Unfolding atoms infinitely many times on p, while propagating a to a → false would lead to an
immediate failure.
This is a main issue in implementing CIFF because in general there is no evidence of which rule
should be applied at each step in order to avoid non-termination, or at least to reduce the final size
of a proof tree. In the example above, the right choice was Propagation and it seems that setting
a high priority to Propagation rule can prevent some non-terminating situations. However,
in general Propagation is a computationally expensive rule because it increments the set of
implications in a node which are a main source of inefficiency due to the presence of universally
quantified variables. Hence, in many applications it could be better to give a lower priority to
Propagation and in general to rules managing implications.
As we said in Section 5.1 each CIFF proof rule is implemented as a sat/2 clause in the proc
module. This was a central choice in the design of CIFF and that solution implies that each proof
rule has a predefined priority during a CIFF computation which corresponds to its order among
the sat clauses. I.e. the system, at each iteration, tries to apply the proof rule represented by the
first sat clause. If no rule input can be found in the node, the second sat clause is explored and
so on. The last sat clause represents the fact that no rule can be applied on the node and then
an abductive answer is returned to the user.
It is clear that in certain cases, if the order of the sat clauses is wrong, this solution does not
prevent non-termination. Nevertheless we think that this is a good practical solution because on
the one side it allows for having a modular implementation of the proof rules and on the other side
it is possible to change the order of the rules simply by moving the sat clauses up and down in
the proc module, thus allowing for a simple domain dependent tuning of the system.

The third potential non-termination source is the order of selection of CIFF conjuncts in a node.
Consider an abductive logic program composed of the clauses p ← p and q ← false. The query
p, q will not terminate Unfolding atoms p forever. However, if CIFF unfolds q, the query fails
immediately. Note that the CIFF proof rule is the same but in one case CIFF does not terminate
and in the other case it does.
To prevent such behavior, the CIFF System implements a left-most selection strategy on the lists of
typed CIFF conjuncts, but the insertion of new conjuncts is done at the end of the lists. Consider
again the above example and let us suppose that the current State has the list [p, q] of defined
atoms. First CIFF selects p as the rule input for Unfolding atoms because is the first element
in the list. The application of the rule will result in inserting p in the list again, but this is done
at the end of the list. Thus the new list of defined atoms will be [q, p]. At the next CIFF step,
q will be selected to be unfolded, thus leading to failure. We believe that this strategy represent a
good compromise between efficiency and loop prevention.

The fourth and last source of non-termination is represented by those CIFF proof rules which
require explicit loop-checking in the specification of a CIFF derivation, i.e. Factoring and Prop-

118 CHAPTER 5. THE CIFF SYSTEM

agation6.

We first consider Factoring. To implement loop-checking for Factoring we added two numbers
to each abducible CIFF conjunct in the current State: a unique identifier and a factoring counter.
I.e. each element in the Abducibles argument of state is of the form:

Abd:Id:FactCounter

where Id is a unique system-generated integer while FactCounter indicates the least abducible
Abd’ (i.e. the abducible with the least identifier) such that Abd and Abd’ have not been factorized
yet. The list of abducibles is maintained ordered with respect to the identifiers throughout the
computation and when a new abducible is inserted in the list, its FactCounter is initialized to 1.
When Factoring is selected, the system selects a pivot abducible atom Abd:Id:FactCounter
which is the abducible with the least Id such that FactCounter < Id. If no pivot is found then
all the pairs of abducibles have already been factorized. Otherwise, if Abd is found then the least
abducible Abd’:Id’:FactCounter’ such that FactCounter <= Id’ < Id is searched for. If there
is such an Abd’, then Abd and Abd’ are factorized and FactCounter is set to Id’ else FactCounter
is set to Id + 1 and the next pivot is selected for Factoring.

Example 5.4. Consider the following three abducibles in the current State and let us assume
that no Factoring rule has been applied yet in the branch (FactCounter is set to 1 for all the
abducibles):

a(X):1:1
a(Y):2:1
a(Z):3:1

When Factoring is selected for the first time, a(X) is not selected as a pivot because 1 = 1. Instead
a(Y) is selected and it is factorized to a(X). This is because 1 <= 1 < 2. Then the FactCounter
of a(Y) is set to 1 + 1 = 2. We obtain:

a(X):1:1
a(Y):2:2
a(Z):3:1

At this stage only a(Z) can be selected as a pivot and it is factorized first to a(X) and then to a(Y)
obtaining:

a(X):1:1
a(Y):2:2
a(Z):3:3

At this point no abducible can be selected as a pivot and, indeed, all the pairs of abducibles have
been factorized.

Note that, given a pivot abducible, only those elements which precede it in the list are considered
for Factoring. This is because each pair of abducibles have to be factorized only once in a CIFF
branch. If for each pivot we considered all the abducibles in the list, each pair of abducibles would
have been factorized twice.
Following the specifications, when two abducibles are factorized, e.g. a(X) and a(Y), in one
successor CIFF node the two abducibles are still in the list and the inequality X =̄ Y is added to
the current State, while in the other successor CIFF node, the pivot abducible is deleted from
the list and the substitution Y = X is applied to the whole State. If the two abducibles are both
ground, then only one successor node is computed and if they are equal, the pivot is simply deleted.

6Note that in CIFF specifications, also other rules concerning equalities need loop-checking. This is obtained
for-free in the implementation by performing them at the end of the other proof rules.

5.1. THE CIFF SYSTEM: AN OVERVIEW 119

The loop checking for propagation is a bit more complex.
In order to perform a loop checking for Propagation which follows exactly the specifications, we
need to maintain a data structure, for each implication in the current State, containing all the CIFF
conjuncts (abducibles and defined atoms) to which that implication has been propagated. This
data structure can be very big and checking whether an element occurs in it could be very expensive,
and the situation is worsened by the presence of existentially quantified variables. Suppose we have
a CIFF conjunct p(X) in the State and the clause p(X) :- p(Y) in the input program which,
when applied by Unfolding atoms, introduces a fresh existential variable in the node. I.e. the
atom p(X) is unfolded to p(X1), then to p(X2) and so on. Each implication containing p(Z) in its
body has to be propagated to each atom p(Xi) because the Xi variables are all distinct.

Obviously, maintaining for each implication in a node, that structure and checking against it each
potential CIFF conjunct to be propagated to, implies a huge overhead in terms of efficiency.

Our implemented solution avoids such overhead, paying something in terms of completeness.
The two main ideas are that (1) in most practical cases, Propagation can be applied only to
abducible CIFF conjuncts and (2) if Propagation is applied only to abducible CIFF conjuncts,
the machinery introduced for Factoring can be reused for Propagation.

Due to the presence of the Unfolding in implications rule, if we do not apply Propagation
against defined atoms, we can only loose failure branches, but not successful abductive answers.
We do not prove this but we show several examples supporting that evidence.

Example 5.5. Let 〈P,A, IC〉< be the following abductive framework with constraints:

P : p ← p

A : {a}
IC : [IC1] p → a

Let us consider the goal p. In this case, either applying or not applying Propagation to [IC1]
and p does not change the CIFF computed abductive answers. If we do not apply Propagation,
CIFF loops forever due to the clause p ← p. Propagating p to [IC1] will lead to the abduction of
a. However CIFF still loops forever, thus computing no abductive answer. 2

Example 5.6. Let 〈P,A, IC〉< be the following abductive framework with constraints:

P : p ← b

A : {a, b}
IC : [IC2] p → a

Let us consider the goal p. As in the example 5.5, either applying or not applying Propagation
to [IC1] and p does not change the CIFF computed abductive answers. The following is a CIFF
computation in the first case:

F0 : p, [p → a]
F1 : p, [p → a], [> → a]
F2 : p, [p → a], a
F3 : b, [p → a], a
F4 : b, [b → a], a
F5 : b, [b → a], a, [> → a]
F6 : b, [b → a], a, a
F7 : b, [b → a], a

The abductive answer that we can extract from F7 is 〈{a, b},®〉.
The following is a CIFF computation if we do not apply Propagation against defined atoms as
CIFF conjuncts.

120 CHAPTER 5. THE CIFF SYSTEM

F0 : p, [p → a]
F1 : b, [p → a]
F2 : b, [b → a]
F3 : b, [b → a], [> → a]
F4 : b, [b → a], a

The abductive answer that we can extract from F4 is again 〈{a, b},®〉. As we can see, not only
is the answer the same as in the first case, but the latter computation is less expensive than the
previous one, in terms of number of steps. 2

It is quite clear that, as exemplified above, the presence of the Unfolding in implications rule
makes Propagation against defined atoms redundant in most cases. The only cases in which this
is not true are shown by the following example.

Example 5.7. Let 〈P, A, IC〉< be the following abductive framework with constraints:

P : p ← p

A : ®
IC : [IC2] p → false

Let us consider the goal p. In this case, if we apply Propagation to [IC1] and p, CIFF fails
immediately. If we do not apply Propagation, instead, CIFF loops forever due to the clause
p ← p. 2

If we do not apply Propagation against defined atoms, we loose the above type of failures.
Nevertheless the system benefits from huge efficiency enhancements because as we will see we can
avoid the maintenance of a Propagation data structure for each implication in a node and this is
a great value for most practical cases. Moreover we argue that most of the “lost” failure answers
derive from “ill-defined” abductive logic programs (as in the case of the above example), which
should be avoided.

Propagating only abducible CIFF conjuncts, allow us to build an efficient loop checking algorithm
similar to the one for Factoring.
Each implication in the Implications list of the current State is of the form:

Implication:Id:PropCounter

where Id is a unique system-generated integer while PropCounter indicates the least item Abd in
the Abducibles list such that Abd has not been propagated to Implication yet.
The added information is used in the same way as for Factoring but some notes are needed.

Let BAbds be the list of abducible atoms in the body of an implication. Only the first element of
BAbds is considered for Propagation. This is an important computational enhancement and it is
a safe optimization in the sense that no potential abductive answers may be lost. Consider, e.g.,
an implication of the form:

a1, a2 → head

where a1 and a2 are abducibles. In order to empty the body, thus firing head as a CIFF conjunct
in the node, both abducibles have to be eliminated and this can be done only by propagating
them. It is obvious that not only is the order in which they are propagated meaningless in this
respect, but if Propagation is applied to all the abducibles, it results in more CIFF steps and
thus higher computational costs. In the above example, if we apply Propagation exhaustively we
would obtain the following set of implications:

5.1. THE CIFF SYSTEM: AN OVERVIEW 121

a1, a2 → head
a1 → head
a2 → head
> → head
> → head

thus, potentially, head is fired twice in a CIFF branch. If instead we apply Propagation only to
the first abducible we obtain:

a1, a2 → head
a2 → head
> → head

In this way, the computation is forced to produce a minimal set of implications firing head only
once.

The PropNumber element is initialized to 1 for each Implication and empty BAbds are skipped by
the loop checking algorithm, thus leaving PropNumber as 1. Each time a Propagation is performed
the newly generated implication has again PropNumber set to 1 because the first abducible is
removed by Propagation itself and the new first element of BAbds can be potentially propagated
to the whole set of abducible CIFF conjuncts. When Unfolding in implication is performed,
instead, the newly generated implications have their PropNumber’ element set to the value of
PropNumber because the new abducibles in the body (if any) are put at the tail of BAbds, thus
leaving unchanged the first abducible atom.

The last note concerns the behavior of the system against two identical abducible CIFF conjuncts
in a node. Suppose we have an implication of the form a → h and two abducible atoms a and a
in the current node. The loop checking algorithm for Propagation does not detect that the two
abducibles are identical, thus opening the door for potential loops. To avoid this, there are two
solutions. The first one is to maintain a Propagation data structure for each implication recording
the abducibles which have been propagated to that implication. But we want to avoid it. The
second one is very simple: give a higher priority to the Factoring rule than to the Propagation
rule. Due to the behavior of the Factoring, after that Factoring has been applied exhaustively
to a node, it is ensured that no abducible CIFF conjunct can occur twice. Then, simply moving
up the sat clause for Factoring all potential loops for Propagation are avoided.

5.1.5 The CIFF¬ proof procedure

Until now, we have not taken into account the NAF extension apart from a short overview in
Section 5.1. The implementation of the NAF extension, which can be activated through a CIFF
flag, has been done trying to be as modular as possible. Nevertheless, it requires additional routines
and data structures both in the preprocessing phase and in the abductive phase. We “passed over”
them in the previous sections to clarify the presentation of the system as the extra machinery does
not affect the guidelines of what was discussed before.

Implementing the CIFF¬ proof procedure requires handling the following three main issues:

• marked integrity constraints in the preprocessing phase

• new CIFF¬ proof rules

• labeling of a CIFF¬ node after the application of NAF Switch

The addition of new CIFF¬ proof rules is reflected in adding new sat clauses: we do not focus on
this point as their implementation is the same as any other CIFF proof rule.

More interesting is the preprocessing phase where some changes in the representation of integrity
constraints are needed, which in turn change the representation of the implications in the current

122 CHAPTER 5. THE CIFF SYSTEM

State. To address the CIFF¬ specifications, each integrity constraint (and thus each implication)
needs a further Mark field indicating if it is marked (Mark = 1) or it is unmarked (Mark = 0).
Moreover, Negation rewriting is never applied to a marked implication, hence negative literals
in their bodies are never moved into the head, requiring a further field Negs for their storage. The
final representation of an implication in the CIFF System is the following:

body(BCons,BEqs,BAts,BAbds,BNegs) implies
head(HCons,HEqs,HDiseqs,HAts,HAbds,Mark).

Note that if the NAF extension is not activated, the Mark field is set to 0 and BNegs is empty for
each implication throughout the computation.

Whenever no other proof rules can be applied to a node the NAF Switch rule is applied and the
node is marked with the current set of Abducibles in the state. Roughly speaking the current
Abducibles have to be “frozen” in order to be retrieved by the next CIFF¬ step, in particular in
the application of NAF factoring rules.
Rather than adding a new fixed component in the current State, the NAF Switch rule starts a
new preprocessing phase, building an iff-definition for each abducible predicate considering each
abducible CIFF conjunct as a clause for the corresponding predicate. For example, if a(1), a(2)
are all the abducible CIFF conjunct for a/1, then the iff-definition for a would be:

a(X) ↔ X = 1 ∨X = 2

.
Instead, if no atom has been abduced so far for a/1, then we would obtain:

a(X) ↔ ⊥
.
In order to distinguish between the original iff-definitions and these ones, the new iff-definitions
are asserted through the predicate naf def/3 as follows:

naf_def(+PredName, +Arguments, +Disjuncts).

Whenever the system starts the NAF Switch rule, all the previous naf def assertions (if any)
are retracted.
Asserting new iff-definitions for abducibles, however, requires a big care due to the presence of
existential variables. Consider again the abducible predicate a/1 and suppose that a(1), a(Y)
(with Y existentially quantified) have been abduced so far. The naf def atom to be asserted
would be:

naf_def(a, [X], [[1],[Y]]).

The problem is that when the naf def atom is asserted, the binding to Y is lost, but we need
exactly that variable Y because it can be shared to other components of the current CIFF node.
The solution adopted is to skolemise the existential variables occurring in the abduced atoms and
then to assert the skolemised abducibles maintaining in the current State the skolem bindings, i.e.
the bindings between existential variables and skolem constants for performing a deskolemisation
when needed. In the above example, the system generates a skolem constant sk 1 for Y and the
naf def atom becomes:

naf_def(a, [X], [[1],[sk_1]]).

As sk 1 is a ground term, nothing is lost. To restore the right existential variable when needed,
the association Y = sk 1 is maintained as an argument of the current State.

Recall that, as said in Section 5.1, the current State is of the form:

5.1. THE CIFF SYSTEM: AN OVERVIEW 123

state(Diseqs,Constraints,Implications,DefinedAtoms,Abducibles,Disjunctions):
naf_state(DeltaNAF,NAFSwitch)

and that the naf state(DeltaNAF,NAFSwitch) component is initialized (also if the NAF extension
is activated) to:

naf_state([],0).

Summarizing, the application of the NAF Switch rule changes naf state(DeltaNAF,NAFSwitch)
by populating DeltaNAF with all the skolem bindings and by setting NAFSwitch to 1.
In this way in the next CIFF¬ steps, the system is aware of the fact that NAF Switch has been
applied and all the information about the frozen abducibles can be easily retrieved.
Indeed the cost of retrieving a naf def atom (plus, eventually, deskolemising non-ground terms) is
much cheaper than maintaining a flat data-structure containing all the frozen abducibles through-
out the computation and then traversing it to check whether it contains a certain abducible atom
or not.
In particular, maintaining in the global Prolog state the set of frozen abducibles simplifies the
application of the NAF factoring rules which are implemented in a similar way to Unfolding
atoms. We explain this by a simple example. Suppose we have the set of frozen abducibles
a(1), a(Y) for the predicate a/1. In this case, the NAF Switch rule asserts the following naf def
atom:

naf_def(a, [X], [[1],[sk_1]])

and the skolem binding Y = sk 1 is maintained in the State. Suppose now that the new abducible
a(X) occurs in the current node with X existentially quantified. The NAF Factoring rules would
produce a disjunction of the form

X = 1 ∨X = Y

But the same disjunction is produced by unfolding a(X) with the new iff-definition plus a deskolemi-
sation step through the equality Y = sk 1. This is exactly what the NAF factoring rules do.

5.1.6 Ground Integrity Constraints

Much work has been done in order to reach an acceptable level of efficiency. However, the main
source of inefficiency in a CIFF computation is probably represented by the set of implications
in a CIFF node. As each implication has to be checked against each instance of each universally
quantified variable occurring in it, increasing the number of implications in a node pulls down
performance dramatically.

Example 5.8. Let us consider the following abductive framework 〈P,A, IC〉 which simply repre-
sents a graph specification:

P : vertex(v1)
vertex(v2)
vertex(v3)
edge(v1, v2)
edge(v2, v3)

A : ®
IC : edge(X, Y) → vertex(X)

edge(X, Y) → vertex(Y)

It is straightforward to see that the instances of both integrity constraints will be ground. More
precisely, through the exhaustive application of Unfolding in implication rule, we will obtain
the following set of implications:

124 CHAPTER 5. THE CIFF SYSTEM

(X = v1, Y = v2) → vertex(X)
(X = v2, Y = v3) → vertex(X)
(X = v1, Y = v2) → vertex(Y)
(X = v2, Y = v3) → vertex(Y).

Then the application of other proof rules managing equalities will eliminate variables making the
next implications totally ground:

> → vertex(v1)
> → vertex(v2)
> → vertex(v2)
> → vertex(v3).

In this case there are only four implications, but what if the graph was composed of hundreds
of edges? We would get thousands of implications in a node, heavily pulling down performance.
Even worse, the above example is really simple because the implications will be eliminated from
a CIFF node. But what if an abducible occurred in the body of the original integrity constraint?
Potentially, the derived set of instantiated implications is maintained all along a CIFF branch due
to the presence of the abducible. 2

To (partially) deal with this problem, we introduce a dedicated algorithm for managing efficiently
some classes of integrity constraints (and, in turn, the instantiated implications).
The idea is that in the above example and in many other cases the integrity constraints are such
that:

• the defined atoms in their bodies are not recursive, i.e. their iff-definitions do not generate a
loop and

• the implications (or at least the most part of them) deriving from the integrity constraints
via unfolding will be ground.

The first observation allows for thinking about a pre-compilation of the bodies of the integrity
constraints because all the possible unfolding operations are finite and they could be determined
statically. The second observation, i.e. that the implications become ground implications allows
for thinking about an algorithm which asserts and checks them in the Prolog global state instead
of maintaining them in a CIFF node. If a ground body is satisfied, the relative ground instance of
the head will be put into the CIFF node as a CIFF conjunct.

We define formally the class of predicates which can occur in the body of an integrity constraint
to be a ground one, and then we sketch the algorithm on simple examples.
We start defining the class of ground extensional predicates.

Definition 5.1. Let 〈P, A, IC〉< be an abductive logic program with constraints. We say that a
non-equality and non-constraint predicate p with a certain arity n in the language of 〈P, A, IC〉<
is a ground extensional predicate if and only if it is

• a non-abducible predicate and

• defined in P by a (possibly empty) set of ground facts.

2

The second definition concerns predicates whose definitions do not depend on other predicates.

Definition 5.2. Let 〈P, A, IC〉< be an abductive logic program with constraints. We say that a
non-equality and non-constraint predicate p with a certain arity n in the language of 〈P, A, IC〉<
is a final safe predicate if and only if

5.1. THE CIFF SYSTEM: AN OVERVIEW 125

• it is an abducible predicate or

• it is a ground extensional predicate.

2

The next class of predicates is the 1-step safe class. The main idea is that no variable could cause
floundering and that a predicate is neither a recursive predicate nor depends on another recursive
predicate.

Definition 5.3. Let 〈P,A, IC〉< be an abductive logic program with constraints and let GDP be the
dependency graph of P . We say that a non-equality and non-constraint predicate p with a certain
arity n in the language of 〈P,A, IC〉< is a 1-step safe predicate if and only if

• it is a final safe predicate or

• each clause C = p(t1, . . . , tn) ← B in P is such that

– for each defined predicate q in B, q does not belong to a loop in GDP , and

– for each variable X occurring in C,

∗ X occurs also in an equality atom X = c with c ground or
∗ X occurs also in a non-equality, non-constraint atom in B

2

We are ready to introduce the class of safe predicates.

Definition 5.4. Let 〈P,A, IC〉< be an abductive logic program with constraints. We say that a
non-equality and non-constraint predicate p with a certain arity n in the language of 〈P,A, IC〉<
is a safe predicate if and only if

• it is a 1-step safe predicate and

• each clause C = p(t1, . . . , tn) ← B in P is such that each defined predicate q in B is a 1-step
safe predicate.

We say that an atom is a safe atom if its predicate is a safe predicate. 2

Finally, we define the syntactical conditions for which an integrity constraint is a ground one.

Definition 5.5. Let 〈P, A, IC〉< be an abductive logic program with constraints. An integrity
constraint I in IC is a ground integrity constraints if and only if

• each atom occurring in its body is a safe atom and

• each variable X occurring in I occurs also in a safe atom in its body.

2

The above syntactical conditions are automatically checked by the system which decides whether
an integrity constraint is a ground one or not.

Now we briefly sketch the algorithm itself. The basic idea of the algorithm is to assert incrementally
in the Prolog global state all the partial instances of the implications derived from ground integrity
constraints.
At preprocessing-time, all the partial instances which can be built through the grounding of the
ground extensional atoms are asserted. If for some such instances the body is satisfied, the relative
head is added to the query.
In Example 5.8, the two ground integrity constraints can be instantiated at preprocessing time
through the grounding of edge(X, Y), adding to the query the set

126 CHAPTER 5. THE CIFF SYSTEM

vertex(v1), vertex(v2), vertex(v3).

However, the most interesting part of the algorithm is in the presence of an abducible atom in the
body of a ground integrity constraint. The idea is to check, after each application of a CIFF proof
rule, if a new ground abducible Abd has been added to the current CIFF node. If it is the case,
Abd is matched against all the partial instances asserted so far in the current CIFF branch, and
then all the new (partial) instances obtained through Abd are asserted.

Example 5.9. Let us consider the following ground integrity constraint:

[ext(X),abd_1(X,Y),abd_2(Y)] implies [false]

where abd 1/2, abd 2/1 are abducibles and ext/1 is defined as follows:

ext(1)
ext(2).

At preprocessing time the system asserts the following partial instances of the ground integrity
constraint:

[abd_1(1,Y),abd_2(Y)] implies [false]
[abd_1(2,Y),abd_2(Y)] implies [false]

taking into account the iff-definition of ext/1. If during the computation, abd 1(1,4) is abduced
then it is matched with all the instances obtaining the new set of instances:

[abd_1(1,Y),abd_2(Y)] implies [false]
[abd_1(2,Y),abd_2(Y)] implies [false]
[abd_2(4)] implies [false]

Now if abd 2(3) is abduced, the new set of instances becomes:

[abd_1(1,Y),abd_2(Y)] implies [false]
[abd_1(2,Y),abd_2(Y)] implies [false]
[abd_2(4)] implies [false]
[abd_1(1,3)] implies [false]
[abd_1(2,3)] implies [false]

Finally if abd 2(4) is abduced, then we obtain

[abd_1(1,Y),abd_2(Y)] implies [false]
[abd_1(2,Y),abd_2(Y)] implies [false]
[abd_2(4)] implies [false]
[abd_1(1,3)] implies [false]
[abd_1(2,3)] implies [false]
[abd_1(1,4)] implies [false]
[abd_1(2,4)] implies [false]
[] implies [false]

At this stage, false is added to the current CIFF node, thus failing this branch. 2

The only problem is that, while for the extensional ground atoms we are sure that all the instances
will be ground (due to their iff-definition), we cannot say the same for abducibles.
To address this point, the solution we adopted is the following: when no other CIFF proof rules
can be applied to the node, if there are some non-ground abducibles as CIFF conjuncts, they are
matched against all the partial instances asserted in the branch. The instances so obtained are
inserted in the CIFF node and then handled by ordinary CIFF proof rules.

5.2. RELATED WORK AND COMPARISON 127

Example 5.10. Consider again Example 5.9 and let us assume that no CIFF proof rule can be
applied to a node, an abducible abd 2(Z) (Z existentially quantified) is in the node and the partial
instances asserted are:

[abd_1(1,Y),abd_2(Y)] implies [false]
[abd_1(2,Y),abd_2(Y)] implies [false]
[abd_2(4)] implies [false]

In this case, the following implications will be inserted in the CIFF node:

[abd_1(1,Y),Z=Y] implies [false]
[abd_1(2,Y),Z=Y] implies [false]
[Z=4] implies [false]

Roughly speaking, to obtain the instances to be added to the node, we apply exhaustively a propa-
gation step. 2

In order to check efficiently at every CIFF proof rule application if an abducible has been grounded,
a further element GroundAbds is added to the state term of the current State, containing the
current set of non-ground abducibles in the node. If an abducible becomes ground it is matched
to the asserted partial instances of the ground integrity constraints and then it is removed from
GroundAbds. When no other CIFF proof rules can be applied, the elements in GroundAbds are the
remaining non-ground abducibles.

Handling the ground integrity constraints in the Prolog global state allows for a huge boost in
performance. The decision whether to use this algorithm or not is left to the user through a CIFF
flag, but however, the only case in which it should not be used is for debugging. I.e. when the user
want to keep track step by step of the CIFF proof rules over the implications.

5.2 Related work and comparison

As seen in Chapter 3, there is a huge literature about abductive logic programming (with con-
straints), see for example [99, 97, 96, 102, 100, 109, 143, 75, 60, 61, 139, 111, 82, 157, 9, 121, 46, 33],
and an exhaustive comparison of CIFF with the other procedures/systems would not be feasible.
So here we focus on the procedure/system which is the closest to CIFF: the A-System. At first
glance this choice could be seen as very restrictive, but the A-System, as remarked in [139], is a
combination of three older abductive proof procedures, namely the IFF proof procedure [82], the
ACLP proof procedure [109] and, most importantly, the SLDNFA proof procedure [61] of which
the A-System is a direct descendant. The A-System could be considered the state-of-the-art of
abductive logic programming with constraints, borrowing the most interesting features from the
above cited proof procedures. Moreover it is one of the few proof procedures which have been
effectively implemented, and, probably, it is the only one which puts efficiency as one of its main
features (the other notable exception is ACLP, but it was outperformed by the A-System). Hence,
we argue that a comparison with the A-System implicitly covers the abductive logic programming
field. This comparison is shown in Section 5.2.1.
However, the A-System (like CIFF) relies upon the three-valued completion semantics. So all
the literature referring to the generalized stable models semantics [102, 88], including for example
[100, 109, 121], also needs to be addressed. To cater for this, we chose to compare CIFF with
Answer Sets Programming (ASP) and, in particular, with the two dominant answer sets solvers:
DLV [68] and SMODELS [136]. Doing this we believe will also cover, as a side effect, the abductive
logic programming literature relying upon stable models, with which answer sets programming
shares many common points. This comparison is shown in Section 5.2.2.

In Section 5.2.3, the experimental results for some concrete examples are shown. To evidence
the fact that the CIFF System is a concrete tool for declarative problem solving, an interesting

128 CHAPTER 5. THE CIFF SYSTEM

comparison has been made in [44], where several systems are tested on various problems: overall,
the results of the CIFF System are very good computational results proving the robustness and
the versatility of the system.

5.2.1 Comparison with A-System

The A-System [111, 139] is a proof procedure for abductive logic programming with constraints,
and it is a direct descendant of the SLDNFA proof procedure [61]. The A-System integrates the
main features of other approaches: the constraint solver as in the ACLP proof procedure [109],
the elegant presentation through rewrite rules (proof rules) of the IFF proof procedure [82], and
the theoretical results of both SLDNFA and IFF proof procedures (indeed the theoretical results
of IFF and SLDNFA are substantially the same, as noted e.g. in [81]).

The A-System and CIFF share many common points. They both rely upon the three-valued
completion semantics and their computational schemas are both based on rewrite (proof) rules.
Moreover, both systems are implemented under SICStus Prolog, the syntax of the input programs is
almost the same and, overall, much effort has been done in both systems, even if using completely
different solutions, for obtaining considerable efficiency, exploiting the data structures and the
services available in a modern Prolog platform such as SICStus.
However there are also some important differences.

Expressiveness of Integrity Constraints - The A-System framework allows only integrity
constraints in denial form. Despite the fact that, using classical negation, it holds that

(B → H) ≡ ((B,¬H) → ⊥),

we argue that the CIFF (left-hand side) representation is more expressive. Assume that a1 and
a2 are two abducible predicates and consider both the CIFF implication and the corresponding
A-System denial:

a1, a2 → H

a1, a2,¬H → ⊥.

CIFF tries to prove H only when both a1 and a2 are satisfied while the A-System treats “at the
same level” the model in which H holds and thus the denial is satisfied. In practice the A-System
considers two alternatives at the same time: or an atom (a1 or a2 in the example) fails or a negative
literal (¬H in the example) fails. Thus the A-System gives no priority to one solution with respect
to another 7.

Negation in implications/denials - The presence of a negative literal (not A) in the body of an
implication is handled by CIFF through a Negation rewriting rule (we do not consider the NAF
extension here) which moves A to the head of the implication. The A-System, instead, manages
such negations with a rule similar to a Case Analysis rule. That is, it creates a disjunction with
a disjunct containing A and the other disjunct containing (not A) in conjunction with the rest of
the original implication. This is exactly what CIFF does in the Case Analysis for equalities
(R12) and Case Analysis for constraints (R6) rules. However, as noted also in [81], applying
a Case Analysis rule to a defined/abducible atom A seems not to be completely sound with
respect to three-valued completion semantics because it implies a two-valued truth assignment for
A. Note that the two Case Analysis rules for CIFF, instead, are sound because they involve
equalities and constraints whose semantics is not a three-valued semantics.
But, even if we assume that theA-System behavior is sound with respect to three-valued completion
semantics, it results in some important differences in the returned abductive answers. Let us
consider the following abductive logic program with constraints 〈P, A, IC〉<:

7This difference is accentuated even more if we take into account the NAF extension which is based on the same
philosophy.

5.2. RELATED WORK AND COMPARISON 129

P : ®
A : {a, b}
IC : a, b → ⊥

not b, a → ⊥
not a, b → ⊥

Let Q be the empty query. The A-System ends the computation returning no answers whereas the
CIFF System returns, correctly, the empty abductive answer 〈®, 〈®,®,®〉〉. If we drop the latter
integrity constraint, the A-System returns only one abductive answer, corresponding to the CIFF
answer 〈{b}, 〈®,®,®〉〉 whereas the CIFF System returns, correctly, the empty answer. Note that
in the first case we have a completeness problem for the A-System and, in the second case, there
is also a problem of minimality of the answer.

Managing Herbrand equalities/inequalities - Both CIFF and the A-System have rewrite
(proof) rules managing Herbrand equalities and inequalities. However, the A-System implements
those rules as another black-box constraint solver on that domain. The result is that, in this
respect, the A-System implementation is more modular and a bit more efficient than the CIFF
implementation. Nevertheless, it also seems that the A-System returns less interesting answers
concerning equalities and inequalities. Consider the following “lamp” example, borrowed from
[82] (a simplified version has been shown in Example 3.8). In this setting, we have to do an
“abductive diagnosis” for the observation (the query Q) that there is a faulty lamp. We recall
here its specification:

P : faulty lamp ← power failure(X), not backup(X)
faulty lamp ← lamp(X), broken(X)
backup(X) ← battery(X,Y), not empty(Y)
lamp(l)
battery(b, c)

A : {power failure, broken, empty}
IC : ®

Both systems return three abductive answers to the query Q, representing all the possible abductive
answers. In particular the two answers

Ans1 = 〈{broken(l)}, 〈®,®,®〉〉
Ans2 = 〈{power failure(b), empty(c)}, 〈®,®,®〉〉

are returned by both systems. The third answer, instead, requires some attention because while
CIFF (and the CIFF System) returns the following answer 〈∆, C〉 (with a single CIFF inequality
in C):

AnsCIFF
3 = 〈{power failure(X)}, 〈®,®, {X = b → ⊥}〉〉,

the A-System returns:

AnsA−System
3 = 〈{power failure(X)}, 〈®,®,®〉〉.

As we can see, in the A-System answer, the binding between X and b is lost. This limitation
of the A-System can be found in many examples. We do not know whether this is a problem of
the specification or of the implementation, also because we were not able to trace an A-System
computation step by step.

Finally, the above differences do not take into account the NAF extension which is totally absent
in the A-System but which grants a higher level of expressiveness for CIFF as remarked in Section
4.3. The Hamiltonian example that we will see in Section 5.2.3 is such an example of the added
expressiveness.

130 CHAPTER 5. THE CIFF SYSTEM

5.2.2 Comparison with Answer Sets Programming

Answer Sets Programming (ASP) (see, e.g. [128, 24, 25]) is a very suitable framework, like Ab-
ductive Logic Programming with Constraints (ALPC), for representing knowledge and reasoning
about it. The two frameworks are strongly interconnected. This interconnection arises at first
glance, just by noticing that ASP is based on the Answer Sets Semantics [90], an evolution of the
stable models semantics [88] (which in turn is used as the core semantics for many abductive proof
procedures, e.g. [109, 100, 121]) and that abduction can be modeled in ASP, as shown e.g. in [28].

Nevertheless, ASP and ALPC also show important differences which we briefly discuss here. Then,
we conclude this section trying to find the role of CIFF in this respect. We assume the reader has
some familiarity with ASP.

The ASP framework is based upon some concrete assumptions. In particular ASP relies upon
function-free programs and the finiteness of the grounding of a program. These assumptions have
a high impact on the computational model and, hence, on the implemented answer sets solvers.
Despite the fact that, at a theoretical level, the semantics of ASP and ALPC are close, the compu-
tational model of ASP, relying upon programs with a finite grounding, shares many common points
with typical constraint solving algorithms and it is very distinct from the classic computational
model of logic programming (mostly used in ALPC and also in CIFF). For an excellent comparison
of the two computational models, see [128].
Directly from the above observations, the implemented answer sets solvers benefit from a num-
ber of features which have made them popular tools for knowledge representation and reasoning:
completeness, termination and efficiency.
Completeness and termination follows directly from the assumption that the Herbrand universe of
a program is finite.
The idea of applying constraint solving techniques in the computational model, together with
hardware improvements, also makes it possible to have efficient answer sets solvers, and, indeed,
state-of-the-art solvers are able to handle hundreds of thousands of ground Herbrand terms in
acceptable times. This is enough for many medium to large size applications.

However, the ASP assumptions also introduce some important limitations on the expressiveness of
the framework. Even if many application domains can be modeled through ASP, there are some
applications which need the possibility of introducing non-ground terms. The web sites repairing
example described in Chapter 6 is one such application. Moreover, there are applications which
can be effectively modeled in ASP, but for which non-ground answers could be more suitable.
Consider, for example, a planning application where we search for a plan to solve a goal G by
time T = 5. Assume that a certain action A solves the goal. In a plan obtained from an answer
sets solver the action A will be bound to a ground time, for example 4 or 3. However, it might
be preferable to have a more general plan with A associated with a non-ground time TA together
with the constraint TA < 5. Obviously, this is just a hint of a planning framework which is outside
the scope of this thesis. Work focused on these topics include, for example, [124], and part of the
SOCS European Project [167].

Summarizing, we argue that there is not a sure winner between ALPC and ASP because both show
interesting (and exclusive) features and drawbacks. The ideal would be a framework combining
the strong points of both, and we argue that CIFF, and more precisely, CIFF¬, could be seen as
a step in this direction.

In [157], Sadri and Toni argued that there is a particular case in which the IFF proof procedure
together with the NAF extension accomplish the answer sets semantics. The precondition for this
is an abductive logic program 〈P, A, IC〉 such that P is empty and all the predicates occurring
in the integrity constraints IC are abducibles. We do not enter into the formal details of this
property, however we strongly believe that:

• it is easily extendible to CIFF¬, and

• its conditions on P could be relaxed allowing for a limited form of logic programs.

5.2. RELATED WORK AND COMPARISON 131

In this sense, CIFF¬ could be seen as a concrete step towards the combination of ASP and ALPC
because it can be used as a particular answer sets solver with the added benefits of non-ground
terms expressiveness and an interface to a finite-domain constraint solver. Here we show a simple
example to demonstrate this feature which is currently being investigated.

Let us consider the well-known N-queens domain, where N queens have to be placed on an N*N
board in such a way that for no pair of queens Qi and Qj , Qi and Qj are in the same row or in
the same column or in the same diagonal.
We represent the problem in CIFF as follows (N is a placeholder for a natural number).

P : exists q(R) ← q domain(R) ∧ q domain(C) ∧ q pos(R,C)
q domain(R) ← R ≥ 1 ∧R ≤ N
safe(R1, C1, R2, C2) ← C1 6= C2 ∧ (R1 + C1 6= R2 + C2)∧

(C1−R1 6= C2−R2)
A : {q pos}
IC : q pos(R1, C1) ∧ q pos(R2, C2) ∧R1 6= R2 → safe(R1, C1, R2, C2)
Q : exists q(1) ∧ . . . ∧ exists q(N)

The CIFF specification of the problem is very compact. A CIFF computation for the query Q
proceeds as follows (we abstract away from the concrete CIFF selection function). Each exists q(R)
atom in the query (where R is one of the N integer values between 1 and N) is unfolded giving rise
to three atoms: q domain(R), q domain(C) and the abducible q pos(R, C). The first two atoms
are in turn unfolded populating the CIFF node with the finite-domain constraints:

R ≥ 1, R ≤ N, C ≥ 1, C ≤ N

which will be evaluated by the constraint solver. Note that the constraints concerning R are
obviously ground, while the constraints concerning C are not ground due to the presence of C.
The third atom q pos(R, C) is instead an abducible non-ground atom (due to the presence of the
constraint variable C).
Assuming that all the unfolding, the equality rewriting and the substitutions have been done, we
will obtain a node with the following abducible atoms:

q pos(1, C1), . . . , q pos(N, CN)

Each pair of these has to be propagated to the integrity constraint firing N2 non-ground instances
of the safe atom. The condition R1 6= R2 in the body of the integrity constraint in IC avoids
propagating twice the same abducible, i.e. it avoids having an instance like safe(R1, C1, R1, C1).
At this point the safe atoms are unfolded, resulting in the whole set of non-ground finite-domain
constraints needed to ensure correct positioning of the queens. Finally, this set, once the solver
checks its satisfiability, is returned as part of the extracted answer. The extracted answer contains
all the possible solutions: the corresponding ground answers identifying the concrete positions of
the queens can be obtained performing a labeling on the constraint variables (the CIFF System
automatically performs the final labeling if the user wishes it).

Consider now the following ASP representation8:

8We choose the DLV representation, borrowed from
http://www.dbai.tuwien.ac.at/proj/dlv/tutorial/,

because it is the closest representation to our representation and we can easily highlight the differences. For
the same reason we present the DLV specification as a set of ALPC integrity constraints: DLV syntax is a little
different. However other representations including negative literals, and thus requiring the CIFF¬ proof procedure
to operate correctly, could be used safely as well. We return to this example in Section 5.2.3 and we also show a
CIFF¬ specification.

132 CHAPTER 5. THE CIFF SYSTEM

row(1)
. . .
row(N)
row(R) → q pos(R, 1) ∨ . . . ∨ q pos(R, N)
q pos(R1, C) ∧ q pos(R2, C) ∧R1 6= R2 → ⊥
q pos(R1, C1) ∧ q pos(R2, C2) ∧ row(R) ∧R2 = R1 + R ∧ C1 = C2 + R → ⊥
q pos(R1, C1) ∧ q pos(R2, C2) ∧ row(R) ∧R2 = R1 + R ∧ C2 = C1 + R → ⊥

In this case all the possible solutions are also returned by the answer sets solvers, even if enumer-
ating them in a ground form.
In this example, it is obvious that CIFF accomplishes the answer sets semantics because the set
of returned solutions is the same. Nevertheless, abstracting from syntactical differences there is
an important difference between the two specifications. The CIFF specification takes advantage
of the constraint solver because it delegates the constraints on the variables inside the clause
concerning the safe predicate as informally described above. Conversely, in an ASP computation,
the conditions on the queen positions are checked locally, resulting in a huge set of ground integrity
constraints, each one containing a ground pair of queen positions.
As expected (and as shown in Section 5.2.3 below), delegating the checks to a finite-domain con-
straint solver results in performance an order of magnitude faster than any answer sets solver.
Much theoretical work is to be done yet, but, if the CIFF¬ proof procedure could be used as an
answer sets solver (for abductive frameworks of appropriate form, corresponding to ASP programs)
then we argue that many answer sets applications could be reformulated to exploit the finite-domain
constraint solving interface and also extended in order to accommodate non-ground terms.

5.2.3 Experimental results

In this section, we show some experimental results obtained running three of the most typical
benchmark examples, namely the N-Queens problem, the Hamiltonian cycles problem and the
graph coloring problem. We also present a simple instance of a web sites repairing framework
which could be used with CIFF.
In this performance comparison we restricted our attention to three systems: the A-System [139]
and two state-of-the-art answer set solvers, namely the DLV system [68] and SMODELS [136].
All the tests have been run on a Fedora Core 5 Linux machine equipped with a 2.4 Ghz PENTIUM
4 - 1Gb DDR Ram. The SICStus Prolog version used throughout the tests is the 3.12.2 version.
All execution times are expressed in seconds of CPU time (“—” means that the system was still
running after 10 minutes). In all examples, unless otherwise specified, the CIFF System query is
the empty list [] representing true and the algorithm ground integrity constraint is activated.

The N-Queens problem

We recall the N-Queens, already seen in Section 5.2.2: N queens have to be placed on an N*N
board in such a way that for no pair of queens Qi and Qj , Qi and Qj are in the same row or in
the same column or in the same diagonal.

The CIFF System formalization (CIFF (1)) of this problem is very simple (the query is a con-
junction of N exists q(R) where each R is a natural number, distinct from each other, in [1, N]):

%%% CIFF (1)
%%% ABDUCIBLES
abducible(q_pos(_,_)).

%%% CLAUSES
q_domain(R) :- R #>= 1, R #=< N.

5.2. RELATED WORK AND COMPARISON 133

%%% N must be an integer in real code!

exists_q(R) :- q_domain(R),q_pos(R,C),q_domain(C).

safe(R1,C1,R2,C2) :- C1#\=C2, R1+C1#\=R2+C2, C1-R1#\=C2-R2.

%%% INTEGRITY CONSTRAINTS
[q_pos(R1,C1),q_pos(R2,C2),R1#\=R2] implies [safe(R1,C1,R2,C2)].

We also show two other CIFF formalizations which are direct translations of the DLV and SMOD-
ELS formalizations, respectively. In these formalizations, the checks on the queen position condi-
tions, are made locally in each ground integrity constraint instance and they are not delegated to
the constraint solver. In these programs, abs is the absolute value function.

The DLV translation (CIFF (2)) is very similar to the (CIFF (1)) formalization and the query
is the same. But in this case the conditions on the queen positions is done locally in the body of
the integrity constraints9.

%%% CIFF (2)
%%% DLV translation
%%% ABDUCIBLES
abducible(q_pos(_,_)).

%%% CLAUSES
row(1).
...
row(N).

%%% INTEGRITY CONSTRAINTS
[row(R)] implies [q_pos(R,1), ..., q_pos(R,N)].

%%% N must be an integer in real code!

[q_pos(R1,C),q_pos(R2,C),R1\==R2] implies [false].

[q_pos(R1,C1),q_pos(R2,C2),R1\==R2,(abs(R1-R2)#=abs(C1-C2))]
implies [false].

The SMODELS translation 10 (CIFF (3)) needs the CIFF¬ proof procedure in order to operate
correctly. This example illustrates how the CIFF¬ proof procedure could be used as an answer
sets solver.

%%% CIFF (3)
%%% Smodels translation
%%% ABDUCIBLES
abducible(q_pos(_,_)).
abducible(neg_q_pos(_,_)).
abducible(has_q(_)).

%%% CLAUSES
row(1).

9The concrete CIFF syntax differs a bit from that of the program shown in Section 5.2.2. The conditions which
avoid placing two queens in the same diagonal are integrated in a single integrity constraint, taking advantage of
the - and abs functions of the constraint solver: the DLV system does not allow for such functions to be expressed.
The straight DLV translation with two integrity constraints runs a bit slower in CIFF, as expected.

10The SMODELS formalization is borrowed from
http://www.public.asu.edu/ cbaral/bahi/code.html.

134 CHAPTER 5. THE CIFF SYSTEM

... %%% N facts
row(N). %%% N must be an integer in real code!

col(1).
... %%% N facts
col(N). %%% N must be an integer in real code!

%%% INTEGRITY CONSTRAINTS
[C\==C2,q_pos(R,C),q_pos(R,C2)] implies [false].
[R\==R2,q_pos(R,C),q_pos(R2,C)] implies [false].

[row(R),col(C),not(neg_q_pos(R,C))] implies [q_pos(R,C)].
[row(R),col(C),not(q_pos(R,C))] implies [neg_q_pos(R,C)].

[q_pos(R,C)] implies [has_q(R)].
[row(R),not(has_q(R))] implies [false].

[q_pos(R,C),q_pos(R2,C2),R\==R2,C\==C2,(abs(R-R2)#=abs(C-C2))]
implies [false].

[q_pos(R,C),neg_q_pos(R,C)] implies [false].

Arguably, this formalization is the least intuitive. It is based on the fact that each row of the
board must have a queen placed on it (represented by the abducible has q) and on the fact that
each position (R, C) on the board either has a queen placed on it or it does not (represented by
the two abducible predicates q pos and neg q pos). In this case the query is the empty query and
the computation starts unfolding the bodies of the integrity constraints.

Finally, we show the results for the first solution found. In the tables, we denote the A-System as
ASYS and the SMODELS as SM.

Table 5.1: N-Queens results (first solution)

Queens CIFF 3.0 (1) CIFF (1) CIFF (2) CIFF (3) ASYS SM DLV
n = 4 0.11 0.01 0.02 0.79 0.01 0.01 0.01
n = 6 1.53 0.01 0.21 43.40 0.01 0.01 0.01
n = 8 14.75 0.03 1.29 527.44 0.03 0.01 0.01
n = 12 75.37 0.05 5.98 — 0.05 0.01 0.01
n = 16 — 0.09 410.33 — 0.07 0.36 0.61
n = 24 — 0.20 — — 0.17 4.88 5.44
n = 28 — 0.29 — — 0.27 55.32 35.17
n = 32 — 0.37 — — 0.32 — —
n = 64 — 1.62 — — 1.52 — —
n = 100 — 4.55 — — 4.24 — —

All systems return all the correct solutions, but we do not show the times for all solutions because
the number of possible solutions is huge when N grows. In the above table, we also include CIFF
System 3.0 to underline the performance improvements of CIFF System 4.0.

Only the CIFF System and the A-System, through the use of the finite domain constraint solver,
can solve the problem, in a reasonable time, for a high number of queens. Note also that the CIFF
System performance in the other two “answer sets” variants of the specification, i.e. CIFF (2) and
CIFF (3), are, as expected, worse in comparison with the first one, i.e. CIFF (1). In particular
the CIFF (3) (corresponding to the SMODELS representation) shows very poor performance:

5.2. RELATED WORK AND COMPARISON 135

this is due to the high number of integrity constraints and their negative conditions. However, we
argue that, on the whole, the results show that the system is able to handle a reasonable number
of ground instances.

The Hamiltonian cycles problem

A Hamiltonian cycle in a graph can be defined as follows: given a graph specification and a starting
node, a hamiltonian cycle is a cycle that includes each node of the graph only once.

The CIFF System encoding makes use of the CIFF¬ proof procedure in order to avoid loops and to
collect all possible answers. The abductive answers are in terms of the ham final cycle predicate
whose argument is a list containing the Hamiltonian cycle. In this formalization we also illustrate
the use of a function, in this case for building the lists. The checked abducible is used to avoid
looping.

%%%ABDUCIBLES
abducible(ham_final_cycle(_)).
abducible(checked(_,_)).

%%%CLAUSES
ham_cycle(X) :- ham_cycle(X,X,[X,[]],0).

ham_cycle(X,Y,L,N) :- edge(X,Y),checked(X,N),
ham_final_cycle([Y,L]).

ham_cycle(X,Y,L,N) :- edge(X,Z),ham_cycle(Z,Y,[Z,L],M),
M#=N+1,Z\==Y,checked(X,N).

is_checked(V2) :- checked(V2,M).

%%%INTEGRITY CONSTRAINTS
[checked(X,N),checked(X,M),M#\=N] implies [false].
[vertex(V2),not(is_checked(V2))] implies [false].

The predicates edge and vertex represent any given graph and they are given as (domain-
dependent) additional clauses. The query is [ham cycle(V)] where V is any vertex of the graph.
Note that, in the second integrity constraint, if we had used checked(V2,N) directly instead of
is checked(V2), the CIFF System would have returned an undefined answer, because of N ap-
pearing only in a negative literal (thus violating an allowedness condition).

Table 5.2: Hamiltonian cycles results (all solutions)

Nodes CIFF CIFF (G) SM DLV
4 0.04 0.03 0.03 0.02
20 0.45 0.15 0.16 0.02
40 1.93 0.41 1.53 0.03
80 10.95 1.20 11.41 0.04
120 27.62 2.39 43.43 0.07

In the first column we consider CIFF¬ without the algorithm for ground integrity constraints,
while in the second column we use CIFF¬ with that algorithm. We omitted here a comparison
with the A-system as we have been unable to specify the problem in such a way that all answers
are returned without looping. The same problem arises with CIFF without the NAF extension.
As we can see from the results, CIFF performance are comparable with answer sets solver perfor-
mance.

136 CHAPTER 5. THE CIFF SYSTEM

The Graph Coloring problem

The graph coloring problem can be defined as follows: given a connected graph we want to color
its nodes in a way that each node does not have the color of any of its neighbors.
The CIFF System formalization is as follows (again, we omit the domain-dependent definitions of
any specific graph):

%%% ABDUCIBLES
abducible(abd_color(_,_)).

%%% CLAUSES
coloring(X) :- color(C),abd_color(X,C).

%%% INTEGRITY CONSTRAINTS
[vertex(X)] implies [coloring(X)].
[edge(X,Y),abd_color(X,C),abd_color(Y,C)] implies [false].

The results are the following, where Jean and Games are two graph instances (up to a 120-nodes
graph)11:

Table 5.3: Graph coloring results (first solution).

Nodes CIFF CIFF (G) ASYS SM DLV
4 0.09 0.01 0.01 0.01 0.01
Jean — 0.68 0.60 0.19 0.48
Games — 2.39 3.61 0.28 1.14

As for the N-Queens problem all the systems return all the solutions. Here answer sets solvers have
the best performance as the constraint solver is not involved in the computation. However, it is
worth noticing that performance of both the A-System and the CIFF System, when the algorithm
for ground integrity constraints is activated (second column), are encouraging, even if the domain
is a typical ASP application.

CIFF Scalability

We present a last set of experiments for testing the robustness and the scalability of the CIFF
System. For this kind of experiments we do not take into account other related systems. The
idea recurring in these experiments is to use a very simple abductive logic program, in particular
the grass example seen in Example 3.1, and to augment it with a certain quantity of “noise”, i.e.
clauses, abducibles and integrity constraints which are not related to the problem. In each test we
do, each integrity constraint is a ground integrity constraints, thus we show the results obtained
by switching either on or off the ground integrity constraints algorithm for all the tests in the bag.

Note that in our experiments on real benchmark problems in previous sections, we test the scala-
bility of CIFF because there are problem instances of medium/big sizes. However all the abductive
logic programs with constraints seen until now, have in common a compact representation of the
problem with a very limited number of distinct predicates, clauses and integrity constraints and
they “grow” at run-time through the abductive reasoning. In this section we build the abductive
logic programs using the opposite philosophy: big programs and low reasoning. It is very un-
likely to encounter abductive logic programs of that type in practice, but doing so we stress the
CIFF System from another point of view. In all the results tables the number between parenthesis
indicates the quantity of the “noise” elements in the program.

11They are borrowed from http://mat.gsia.cmu.edu/COLOR/instances.html.

5.2. RELATED WORK AND COMPARISON 137

The programs in the first two tests Test1 and Test2, whose results are in tables 5.4 and 5.5,
contain a number of distinct abducibles in the query and distinct facts in the program respectively.

Table 5.4: Scalability results (Test1).

Nodes CIFF CIFF (G)
Test1(100) 0.01 0.01
Test1(500) 0.04 0.04
Test1(1000) 0.10 0.12
Test1(2000) 0.38 0.40
Test1(5000) 2.09 2.21

Table 5.5: Scalability results (Test2).

Nodes CIFF CIFF (G)
Test2(100) 0.01 0.03
Test2(500) 0.08 0.12
Test2(1000) 0.28 0.48
Test2(2000) 1.04 1.83
Test2(5000) 6.47 12.07

We obtain the best results by switching off the algorithm of ground integrity constraints because
both tests are not focused on integrity constraints, and by switching on the ground integrity con-
straint algorithm we suffer of an initial overhead for calculating the dependency graph of the
program. This overhead is bigger in Test2 due to the presence of many distinct defined predi-
cates: the algorithm for building the dependency graph takes advantage of the information about
abducible predicates in order to avoid many dependency checks.

Test3 (table 5.5) adds to the grass example a number of distinct clauses of the form pi ← qi.

Table 5.6: Scalability results (Test3).

Nodes CIFF CIFF (G)
Test3(100) 0.01 0.06
Test3(500) 0.12 1.40
Test3(1000) 0.43 5.25
Test3(2000) 1.68 21.370
Test3(5000) 10.03 169.65

Results of Test3 show dramatically the overhead introduced for building the dependency graph:
in the last benchmark, about 10000 distinct predicates must be checked in order to build the
dependency graph. As for previous tests, all the computational time, basically, is spent in the
preprocessing phase. With respect to Test1 and Test2, the preprocessing phase is heavier in
Test3 due to the presence of clauses rather than facts, also if the algorithm for ground integrity
constraints is switched off.

Test4 and Test5 (tables 5.7 and 5.8) add to the grass example a number of distinct integrity
constraints in denial form. The body of each integrity constraint is composed of a single abducible
atom (Test4) or a single defined atom pi with no clause in the program (Test5).

138 CHAPTER 5. THE CIFF SYSTEM

Table 5.7: Scalability results (Test4).

Nodes CIFF CIFF (G)
Test4(100) 0.01 0.01
Test4(500) 0.15 0.06
Test4(1000) 0.50 0.17
Test4(2000) 1.74 0.48
Test4(5000) 10.63 2.32

Table 5.8: Scalability results (Test5).

Nodes CIFF CIFF (G)
Test5(100) 0.02 0.06
Test5(500) 0.17 0.21
Test5(1000) 0.64 0.78
Test5(2000) 2.21 2.98
Test5(5000) 13.64 15.86

In the case of Test4 we a have a number of integrity constraints to which no CIFF proof rule can
be applied because their body is composed of a single abducible and there are no abduced atoms
in the program. Switching off the ground integrity constraints algorithm, the integrity constraints
remain in the node extending the computational times. This overhead is again balanced in Test5
by the construction of the dependency graph because each defined atom pi has an implicit clause
pi ← false.

The last test is Test6 (table 5.9) which adds again to the grass example a number of distinct
integrity constraints in denial form, but now each body is composed of two distinct abducibles.
One abducible of each body is also in the program as an initial observation, thus a Propagation
proof rule can be applied to each integrity constraint.

Table 5.9: Scalability results (Test6).

Nodes CIFF CIFF (G)
Test6(100) 0.04 0.06
Test6(500) 0.71 0.29
Test6(1000) 2.65 0.92
Test6(2000) 10.69 3.20
Test6(5000) 70.73 22.22

The application of a Propagation rule to each integrity constraints shows the power of the ground
integrity constraints algorithm: the initial overhead due to the construction of the dependency
graph is largely compensated if the number of integrity constraints grows.

All the scalability tests conducted in this section show that:

• CIFF scales up quite well also with big abductive logic programs with constraints even if the
preprocessing phase becomes an important computational bottleneck;

• the ground integrity constraint algorithm has an important overhead for the construction of
the dependency graph, but if the integrity constraints are quite involved in the abductive
process, that overhead is largely rewarded.

5.3. CONCLUSIONS 139

5.3 Conclusions

The CIFF and the CIFF¬ proof procedures represent, to our knowledge, a step forward at both
theoretical and implementative levels in the field of abductive logic programming (with constraints).
We have proved that CIFF is sound with respect to the three-valued completion semantics. CIFF is
also able to handle variables in a non-straightforward way, and it is equipped with a useful interface
to a constraint solver. In addition, its implementation, namely the CIFF System, reaches good
levels of efficiency, flexibility and scalability, and is directly comparable to other state-of-the-art
tools for knowledge representation and reasoning.
The CIFF¬ proof procedure, which has been integrated in the CIFF System, takes advantage of
its NAF treatment of negation in integrity constraints to further extend the expressiveness of the
framework. In this way we can naturally represent application domains which are outside the
capabilities of other existing tools. In particular, it seems that, putting some limitations on the
input programs, the CIFF¬ proof procedure is able to compute the answer sets semantics without
renouncing either the constraint solver interface or the handling of non-ground terms. As pointed
out in Section 5.2.2, much work needs to be done in this respect but this is outside the scope of
this thesis. However, the result in [157] for the IFF proof procedure and the running of concrete
examples with the CIFF System give evidence for this intuition.

Finally, we briefly discuss ongoing and future work on CIFF.
The interconnection between ASP and ALPC are, obviously, a very interesting line of ongoing and
future work as discussed in Section 5.2.2.
At a theoretical level there are many interesting lines of work. A main issue is to show formally
a completeness result for the CIFF proof procedure (and, possibly, the CIFF¬ proof procedure).
In principle, it should be possible to extend the results in [81] given for the IFF proof procedure.
However, for CIFF there is the added difficulty represented by the Dynamic Allowedness rule as
discussed in Section 4.2. Concerning the CIFF¬ proof procedure, it seems more difficult to obtain
a completeness result due to the nature of the procedure itself which is aimed to discard sound
(though counter-intuitive) abductive answers.
Another interesting line of work at the theoretical level is to further extend the expressiveness of
the CIFF proof procedure. A concrete idea is aggregative integrity constraints. It seems possible,
even if we are at a very early stage in this concern, to allow for integrity constraints containing
aggregative functions in their body. Just to show the idea consider an integrity constraint of the
form:

abd(X), sum(X, Y), Y > 10 → H

where, intuitively, Y is represents the sum of the X values in all the propagated abducibles abd,
and head is fired if Y > 10. We think that this would be a very interesting feature because many
application domains require aggregates to be easily modeled.

At the implementation level, a big deficiency in CIFF is the lack of a Graphical User Interface
(GUI) which would hugely improve its usability: we hope to add it in the CIFF System 5 release.

Other interesting features which are planned to be added to the CIFF System 5 release, are the
following.

• Full compatibility to the SICStus Prolog 4 release (which is claimed to be much faster: a
porting of the system will benefit at once of this boost in performance) and to SWI-Prolog
[181], an interesting open-source Prolog platform.

• The possibility of invoking Prolog built-in functions and predicates directly. E.g. the use of
the Prolog append predicate for lists directly in CIFF programs. We think that this would
enhance performance and ease-of-programming in CIFF. However, some work has to be done
in order to understand how to integrate them safely.

140 CHAPTER 5. THE CIFF SYSTEM

• Further improvements in the management of ground integrity constraints both in the pre-
processing phase and in the processing phase.

• Adding the possibility to save a preprocessed abductive logic program in order to avoid
further preprocessing phases on the same problem.

• Aggregative integrity constraint (if the theory will be ready).

Chapter 6

Web Site Verification and Repair

The exponential growth of the WWW raises the question of maintaining and repairing automat-
ically web sites, in particular when the designers of these sites require them to exhibit certain
properties at both structural and data level. The capability of maintaining and repairing web
sites is also important to ensure the success of the Semantic Web [175, 13] vision. As the Semantic
Web relies upon the definition and the maintenance of consistent data schemas (XML/XMLSchema
[177], RDF/RDFSchema [174, 92, 35], OWL [176, 131] and many other formal languages [13]), tools
for reasoning over such schemas (and possibly extending the reasoning to multiple web pages) show
great promise.

We strongly believe that declarative languages such as Prolog [54], if they are well integrated with
the web, will play a crucial role as the computational paradigms in the Semantic Web vision, as
noted, e.g., in [182]. Also abduction, as it is a very suitable form of reasoning for diagnosis and
repairing, could play a prominent role in that context, as noted, e.g., in [39].

We argue that the CIFF (and CIFF¬) proof procedure has very useful features for applications in a
web reasoning scenario, namely implicative integrity constraints which could act as condition-action
rules, handling of unbound variables which could directly represent missing data, and arithmetical
constraint solving capabilities.

In this Chapter, we describe the CIFFWEB (prototype) tool, which, roughly speaking, uses CIFF
(and CIFF¬) as the computational core for verifying and, possibly, repairing web sites against sets
of requirements which have to be fulfilled by a web site instance.

We define an expressive characterization of rules for checking web sites’ errors by using (a fragment
of) the well-known semi-structured data query language Xcerpt [37, 38]. In contrast to the other
semi-structured query languages (like XQuery [27], XPath [47]) which all propose a path-oriented
approach for querying semi-structured data, Xcerpt is a rule-based language which relies upon a
(partial) pattern matching mechanisms allowing complex queries to be easily expressed in a natural
and human-tailored syntax. Xcerpt shares many features of logic programming, for example its
use of variables as place-holders and unification. However, to the best of our knowledge, it lacks
(1) a clear semantics for negation constructs and (2) an implemented tool for running Xcerpt
programs/evaluating Xcerpt queries. A by-product of this Chapter is the provision of both (1) and
(2) for a fraction of Xcerpt, namely the subset of this language that we adopt for expressing web
checking rules.
We map formally the chosen fragment of Xcerpt for expressing checking rules into programs for
checking, i.e. abductive logic programs with constraints that can be fed as input to the general-
purpose CIFF proof procedure. By mapping web checking rules onto abductive logic programs
with constraints and deploying CIFF for determining fulfillment (or identify violation) of the rules,
we inherit the soundness properties of CIFF thus obtaining a sound concrete tool for web checking.
CIFF is a general-purpose logic programming procedure and it is not able to handle directly semi-
structured data of the kind Xcerpt does. Thus, we also define, as part of the CIFFWEB tool, a

142 CHAPTER 6. WEB SITE VERIFICATION AND REPAIR

simple XML/XHTML translation into a representation of the web pages suitable for CIFF, and
we rely upon that representation in defining the translation function for the web checking rules.
At the end of the translation process the CIFF System can be successfully used to reason upon
the (translation of the) web checking rules finding those XML/XHTML instances not fulfilling the
rules, and representing errors as abducibles in abductive logic programs.

However, abductive reasoning seems to be very suitable not only for identifying errors in a web
site instance but also for suggesting possible repairing actions for them. In this respect, abducibles
may represent not only an error instance fired by an XML/XHTML instance violating a rule r (for
checking) but also possible modifications (repairs) to that XML/XHTML data such that both r is
fulfilled and no other rules are violated.

Following these observations, we have identified some types of errors, arising from the violation
of web checking rules, which are suitable to be abductively repaired, and we have done a further
mapping from web checking rules to another type of abductive logic programs with constraints:
programs for repairing. Again, through the use of programs for repairing with CIFF, for determin-
ing fulfillment of the rules, or suggesting appropriate repairing actions, we inherit the soundness
properties of CIFF thus obtaining a sound concrete tool for web repairing.

The Chapter is organized as follows. In the next section, we introduce a motivating example for our
CIFFWEB tool which will be a piece of the main example used throughout the chapter. In Sections
6.2 and 6.3 we introduce the Xcerpt fragment used for defining our web checking rules together
with examples of rules and a formal grammar. In Sections 6.4 and 6.5 we define the translation
process from web checking rules to programs for checking and in Sections 6.6 and 6.7 we outline a
brief analysis of the checking framework and we describe a CIFFWEB run for checking. Similarly
to what is done for checking, in Section 6.8 we describe the repairing framework together with
the methodology for building programs for repairing. In Sections 6.9, 6.9.1 and 6.10 we show two
CIFFWEB runs for repairing and we discuss the issue of possible errors introduced by repairing
actions and we propose a solution. In Section 6.11 we outline a brief analysis of the repairing
framework. Finally in Section 6.12 we conclude the chapter placing our work in the context of the
existing literature and outlining the ongoing and the future work.
The full example used throughout the chapter, concerning a possible (and simple) web site instance
of a theater company, is described in Section 6.13.

6.1 A Motivating Example

Searching through the web, it is easy to encounter web pages containing errors in their structure
and/or their data. The main goal of this section is to categorize some typical errors and define a
rule pattern for checking these errors.
We argue that, in most cases, considering an XML/XHTML web site instance, the errors can be
divided into two main categories: structural errors and content-related (data) errors. Structural er-
rors are those errors concerning the presence and/or absence of tag elements and relations amongst
tag elements in the pages. For example, if a tag tag1 is intended to be a child of a tag tag2, the
occurrence in the web site of a tag1 instance outside the scope of a tag2 instance is a structural
error. Data errors, instead, are about the in-tag data contents of tag elements. For example a tag3
could be imposed to hold a number greater than 100.
To better exemplify the types of error we consider, we present here a very simple XML web site
instance of a theater company. The site is composed of two pages representing a list of shows
produced by the company and the list of directors of the company, given below1

%%%directorindex.xml %%%showindex.xml

<directorlist> <showlist>

1Throughout the chapter, we use the convention that each code-line starting with % is a line of comment.

6.2. A FORMAL LANGUAGE FOR EXPRESSING WEB CHECKING RULES 143

<director>John</director> <show>
<director>Mary</director> <showname>Mela</showname>
<director>Paul</director> <dir_by>John</dir_by>
<director>Mary</director> <year>2000</year>

</directorlist> </show>
<show>

<showname>Epiloghi</showname>
<year>2001</year>

</show>
<show>

<showname>Toccata e fuga</showname>
<dir_by>Paul</dir_by>
<year>2002</year>

</show>
</showlist>

We could specify a number of rules which any web site instance should fulfill. For example, we could
specify that the right structure of a show tag in the second page must contain both a showname tag
element and a dir by tag element as its child. In the example, we would have a structural error,
due to the lack of a dir by tag element in the second show of the list. Moreover we could specify
that two director tags in the first page must not contain the same data. In this case we have a
data error due to the double occurrence of the Mary data.
Requirements (and thus errors) can involve more than one web page. For example, a possible
requirement for the theater company specification may be that

each director must direct at least one show.
The above requirement can lead to content-related errors which involve both pages. There is a
simple way to check this requirement: for each director tag data in the directorindex page, if
there does not exist a matching data of a dir by tag in the showindex page then a data-content
error is detected. This is the case for Mary in the example.
In all examples in this section, we have assumed that an error instance is fired by a piece of
XML/XHTML data which does not fulfill a certain requirement (or specification). We will first
formalize any such requirement as a web checking rule. Each such rule is composed of a condition
part and an error part. For each instance of the considered data such that the condition part is
matched, an error is detected.

6.2 A Formal Language for Expressing Web Checking Rules

In order to formalize and characterize web site requirements as web checking rules, such as the
requirements expressed in natural language in the earlier section, we first need a formal language.
Our choice is to use the Xcerpt [37] language: a deductive, rule-based query language for semi-
structured data which allows for direct access to XML data in a very natural way.
Our characterization of web checking rules can be accommodated straightforwardly in the Xcerpt
language. It is worth noticing that the Xcerpt language is much more expressive than the fragment
we adopt here for expressing web checking rules. Here, we give some background notions about
the Xcerpt fragment we use (for further information about Xcerpt see [38, 37]).
An Xcerpt program is composed of a GOAL part and a FROM part. The FROM part provides access
to the sources (XML files or other sources) via (partial) pattern matching among terms, while the
GOAL part reassembles the results of the query into new terms. Variables can be used within either
parts and act as placeholders (as in logic programming).
As an example, the requirement, in the context of our earlier example pages, that each director
must appear at most once in the director list [Rule1] can be expressed in Xcerpt as follows:

%%%%%%%Rule 1 - Double occurrence of a director in the director list
%%%%%%%rule_director_twice_inlist.xce

144 CHAPTER 6. WEB SITE VERIFICATION AND REPAIR

GOAL
all err [var Dir1,

"director twice in the director list"]
FROM

in {
resource {"file:directorindex.xml"},
directorlist {{

director {{ var Dir1 }},
director {{ var Dir1 }}

}}
}

END

The main Xcerpt statement we use in the GOAL part is the all t statement (where t is a term),
indicating that each possible instance of t satisfying the FROM part gives rise to a new instance of t
returned by the GOAL part. In our methodology for writing web checking rules, all t will always
be all err, where err stands for “error”.
In the FROM part, an access to a resource is wrapped within a in statement. Multiple accesses
must be connected by and indicating that all subqueries have to succeed in order to make the whole
query succeed. The main Xcerpt query terms t which we use in our work are: (1) double curly
brackets, i.e. t{{ }}, denoting partial term specification; the order of the subterms of t within
the curly brackets is irrelevant; (2) variables, expressed by var followed by an identifier (variable
name); variable values can be bound to strings and numbers; (3) where statements for expressing
constraints through standard operators like =, \=, <, >, <=; (4) subterms of the form without
t denoting subterm negation.
The following rule [Rule2] expressing the requirement the showlist must contain shows produced
since year 2000 illustrates the use of constraints in the where statement.

%%%%%%%Rule 2 - Show produced before year 2000
%%%%%%%rule_year_before_2000.xce
GOAL

all err [var Year, "show produced before 2000"]
FROM

in {
resource {"file:showindex.xml"},

year {{
var Year

}}
}
where (var Year < 2000)

END

The following rule [Rule3] expressing the requirement each director directs at least one show illus-
trates the use of subterm negation:

%%%%%%%Rule 3 - Director in the director list without a show associated with
%%%%%%%rule_director_without_show.xce
GOAL

all err [var DirName,
"director without a show"]

FROM
and (

in {
resource {"file:directorindex.xml"},

director {{ var DirName }}

6.3. A XCERPT-LIKE GRAMMAR FOR POSITIVE WEB CHECKING RULES 145

},
in {
resource {"file:showindex.xml"},
showlist {{

without show {{
dir_by {{ var DirName }}

}}
}}

}
)

END

The without statement is only applicable to subterms t that do not occur at root level in the
underlying web pages (in our example, showlist and directorlist occur at root level); without
subterms cannot occur nested and finally all variables that occur within a without have to appear
elsewhere outside a without in the FROM part of the rule. We will refer to this condition over
variables as to the web checking rules allowedness.

6.3 A Xcerpt-like grammar for positive web checking rules

To simplify the presentation, we first focus our attention on positive web checking rules, i.e. rules
in which negation (the without statement in Xcerpt syntax) does not occur.
In defining the syntax, we distinguish between basic syntactic categories and structural syntactic
categories. The basic categories are used to define the basic components of the rules, namely
variables, constants (strings and numbers), XML tags and constraints (e.g. X > Y). The structural
categories, instead, are the main parts of the Xcerpt rules, as we have seen in the previous examples:
the query part, the error part, the in construct and so on.
For each syntactic category, we avoid stating explicitly the syntactic rules for sequences of elements
derived from it. We use instead the following notational convention. Given a syntactic category
C, C ? denotes the syntactic category for sequences of elements derived from C. The metarule for
C ? is the following:

C ? ::= C, C ? | ε (ε denotes the empty string)
The grammar for the basic categories is the following:

Const ::= String | Number VarOrConst ::= Var | Const
Tag ::= String Rel ::= < | > | ≤ | ≥ | = | \=
VarName ::= String Constraint ::= Var Rel VarOrConst
Var ::= var VarName

Notice that the Tag and the VarName categories generate simply strings. However we keep them
distinct in order to improve readability of the syntactic rules for the structural categories.
In the second part of the grammar we define effectively the interesting constructs of the web
checking rules. Recall that a web checking rule is composed of two main parts: a query part and
an error part. The error part gives the error specification, while the query part is a conjunction
of queries represented by a and wrapping a list of in constructs. Each in construct expresses a
query involving a specific resource. At the end of the whole conjunction a set of constraints can
be expressed by the where construct.

CheckRule ::= GOAL Error FROM Query END
Error ::= all err [VarOrConst? , String]
Query ::= InPart Where
InPart ::= In | and In?

In ::= in { { Resource } Term }
Resource ::= resource { file: String }
Term ::= Tag {{ VarOrConst? Term? }}
Where ::= where { Constraint? } | ε

146 CHAPTER 6. WEB SITE VERIFICATION AND REPAIR

We denote by α ∈ C that α is a string derived from the syntactic category C.

6.4 The translation process for positive rules

In this section we show formally how to translate the positive web checking rules into abductive
logic programs suitable for the CIFF proof procedure. This section is organized as follows: first
we show how we represent the XML/XHTML pages in a useful way for CIFF and then we show
the formal translation function for the rules. Finally we give some examples of translations.

6.4.1 XML representation

To pave the way to writing, in a format suitable for the CIFF system, specification rules for
properties of web sites, we first provide a suitable representation of web site data. Obviously CIFF
is not able to handle XML data and XML structures directly, hence a translation into an abductive
logic program suitable for CIFF is needed. We propose a translation which maps each XML page
into a set of (ground) facts, each one uniquely identified by a numeric ID in its arguments. In
doing that we make the following assumptions:

• each XML page has no XML attributes, and

• each XML tag name occurs in at most one XML page.

The above assumptions simplify the framework, but the methodology described below could be
easily extended in order to remove those restrictions. Moreover, our methodology can also be
applied to web pages dynamically generated from a server-side script like PHP pages, ASP pages
and so on. Indeed, is very easy to find web sites created through a combination of a server-side
script and a database, but in general the client-side output of those web pages is a XML/XHTML
file like the ones used here. Thus our methodology, in principle, is fully valid.

For each XML page, we store a fact of the form

xml_page(FileName,ID)

where the arguments are the name of the file and the unique identifier of the page.
For each tag element of the original XML file, an atom pg el is generated having the following
form:

pg_el(ID,TagName,IDFather)

where TagName is the name of the tag element, and ID and IDFather represent the unique identifiers
for the tag element and its father. In particular, we define the father of root level elements of the
XML pages as the XML page itself, represented by the xml page atom above. The father of non-
root level elements of the XML pages are the tag elements containing them. The identifiers of the
father elements are needed for keeping information about the structure of the XML page.
Furthermore a data item inside a tag element is represented by an atom of the form:

data_el(ID,Data,IDFatherTag)

where Data is the raw data, and ID and IDFatherTag represent the unique identifiers for the tag
element and its father (evidencing that the father of a data element can only be a tag element in
the corresponding XML page).
The following is the translation of the XML pages seen in section 6.1

6.4. THE TRANSLATION PROCESS FOR POSITIVE RULES 147

xml_page(’directorindex.xml’,1). xml_page(’showindex.xml’,11).

pg_el(2,directorlist,1). pg_el(12,showlist,11).
pg_el(3,director,2). pg_el(13,show,12).

data_el(4,’John’,3). pg_el(14,showname,13).
pg_el(5,director,2). data_el(15,’Mela’,14).

data_el(6,’Mary’,5). pg_el(16,dir_by,13).
pg_el(7,director,2). data_el(17,’John’,16).

data_el(8,’Paul’,7). pg_el(18,year,13).
pg_el(9,director,2). data_el(19,2000,18).

data_el(10,’Mary’,9).
pg_el(20,show,12).

pg_el(21,showname,20).
data_el(22,’Epiloghi’,21).
pg_el(23,year,20).
data_el(24,2001,23).

pg_el(25,show,12).
pg_el(26,showname,25).
data_el(27,’Toccata e fuga’,26).
pg_el(28,dir_by,25).
data_el(29,’Paul’,28).
pg_el(30,year,25).
data_el(31,2002,30).

For each page, we store also a fact of the form xml page(FileName,ID), holding the name of the
file and the unique identifier of the page

6.4.2 The translation function

We are now ready to show the formal translation function for positive web checking rules mapping
them from Xcerpt-like syntax to abductive logic programs. We define inductively two functions,
namely T JαK and T ′JαK(id) which, given a string α derivable from one of the syntactic categories
defined in the previous section, both return a string, representing a part of an abductive logic
program2. The abductive logic program corresponding to a whole web checking rule is obtained by
applying the function T JRK to a rule R ∈ CheckRule. This abductive logic program with constraints
is then suitable as input for CIFF. In particular the translation of a CheckRule gives rise to a single
CIFF integrity constraint.
The two translation functions differ in that the T ′JαK(id) has an extra argument, id, representing
a number. Intuitively, a call of the form T ′JαK(id) amounts to translating the element α which
is a component of another element, uniquely identified by id. This identifier id is needed in the
translation of α to keep the correspondence between α and the element it is part of. In what
follows we assume that the auxiliary function

newID()
generates a fresh variable whenever called. This function will be used when a new identifier id is
needed to uniquely identify the element being translated.
For brevity we omit the specification of the translation of the basic syntactic elements, since they
basically remain unchanged (e.g. the translation of a string α representing a variable name is α
itself).
In Xcerpt, variables are used as in logic programming, that is they can be shared between dis-
tinct parts of a rule by using the same name. In the translation, variable names are simply left
unchanged, so that sharing is maintained.

2As usual, we use J·K to highlight the syntactic arguments of the translation functions

148 CHAPTER 6. WEB SITE VERIFICATION AND REPAIR

We use a top-down approach in defining the translation functions. Hence, the first rule is for the
CheckRule category.

CheckRule
T JGOAL Err FROM Query ENDK =

let Head = T JErrK
and Body = T JQueryK

in
Body implies Head.

As we can see the result is a string representing a CIFF integrity constraint: the body is the
translation of the query part and the head is the translation of the error part. Intuitively, each
instance of the XML data matching the body will fire an instance of the head representing the
corresponding error. The predicate used in Head of such constraint is abducible, hence firing the
constraint will amount to abducing its head, constructed as follows:

Error
T Jall err[Vars, Msg]K = [abd err([Vars],Msg)]

The predicate abd err/2 is defined as abducible. The two arguments are (1) the variable list
occurring in the error part of the rule and (2) the error message.
For the query component, the translation produces the conjunction of the translations of the InPart
component and of the Where component of the query.

Query
T JInPart WhereK =

let Conjunction = T JInPartK
and Constraints = T JWhereK

in
[Conjunction, Constraints]

The constraints in the Where part of a query are simply translated into the same conjunction of
CIFF constraints as follows.

Where
T Jwhere ConstrK = Constr

The translation of the InPart of a query results in the conjunction of the translations of the single
components.

In-1
T Jin{{resource{file : Res} Term}}K = T JTermK
In-2
T JIn, InRestK =

let Conjunct = T JInK
and OtherConjuncts = T JInRestK

in
Conjunct, OtherConjuncts

The following rules translate terms in Term, and produce the single conjuncts in the conjunction
constituting the body of the integrity constraint corresponding to a checking rule. Each term
specifies a tag and hence the translation amounts to producing an instance of the pg el predicate,
possibly in conjunction with other conjuncts corresponding to the translation of the subtags. A
fresh variable is generated through the newID() function, to uniquely represent the tag being
translated. Note the usage of the function T ′J·K(·) for the translation of the data elements (variables
and constants) and of the subtags of the tag being translated.

6.4. THE TRANSLATION PROCESS FOR POSITIVE RULES 149

Term-1
T JtagName {{VarConstSeq, TermSeq}}K =

let Id = newID()
and DataElements = T ′JVarConstSeqK(Id)
and SubTerms = T ′JTermSeqK(Id)
and Ids = IdV ars(DataElements) ∪ IdV ars(SubTerms)
and Constraints = all distinct(Ids)

in
pg el(Id, tagName,), DataElements, SubTerms, Constraints

In the above rule, we have introduced two new auxiliary functions:

- IdV ars(X) which is assumed to return the set of all Id’s generated by the newID() function
occurring in its argument X;

- all distinct(V ars) which is assumed to generate the constraint∧
x,y∈Vars

x 6=y

x 6= y

Term-2.1
T ′Jvar VarNameK(Id) =

let Id′ = newID()
in

data el(Id′, VarName, Id)

Term-2.2
T ′JConstK(Id) =

let Id′ = newID()
in

data el(Id′, Const, Id)

Term-3
T ′JsubTagName {{VarConstSeq, TermSeq}}K(Id) =

let Id′ = newID()
and DataElements = T ′JVarConstSeqK(Id′)
and SubTerms = T ′JTermSeqK(Id′)

in
pg el(Id′, subTagName, Id), DataElements, SubTerms

Term-4
T ′JX, XsK(Id) =

let Conjunct = T ′JXK(Id)
and OtherConjuncts = T ′JXsK(Id)

in
Conjunct, OtherConjuncts

Cases Term-2.1 and Term-2.2 produce instances of the data el/3 predicate. Notice that the
translation amounts at producing an instance data el(Id′, El, Id), where El is the actual data
element, Id′ is the unique identifier assigned to it and Id is the unique identifier of the term the
data element is part of. In the case Term-3 we have a translation similar to case Term-1, the
only difference being that, in the case Term-1 the third argument of pg el/3 is the anonymous
variable, whereas in case Term-3 is the unique identifier of the term containing the subterm
being translated. Finally, the case Term-4 corresponds to the translation of a sequence X, Xs in
VarOrConst? or in Term?.

Example 6.1. Let us consider the web checking rule [Rule1] for the theater company web site,
seen in section 6.2:

150 CHAPTER 6. WEB SITE VERIFICATION AND REPAIR

%%%%%%%Rule 1 - Double occurrence of a director in the director list
%%%%%%%rule_director_twice_inlist.xce
GOAL

all err [var Dir1,
"director twice in the director list"]

FROM
in {
resource {"file:directorindex.xml"},
directorlist {{

director {{ var Dir1 }},
director {{ var Dir1 }}

}}
}

END

To simplify the presentation of the translation results, let us identify the main syntactic components
of the rule:

err1 = all error [var Dir1, "director twice in the director list"]
query1 = in1

in1 = in {resource {"file:directorindex.xml"} root1 }
root1 = directorlist {{

director {{var Dir1}}, director {{var Dir1}} }}
Let us apply the translation function T to rule 1.

T JRule1K = T Jquery1K implies T Jerr1K.
T Jerr1K = abd err([Dir1],"director twice in the director list")
T Jquery1K = [T Jin1K]
T Jin1K = T Jroot1K
T Jroot1K = pg el(ID1,directorlist,), ID2 #\= ID4,

pg el(ID2,director,ID1), data el(ID3,Dir1,ID2),
pg el(ID4,director,ID1), data el(ID5,Dir1,ID4),

Summarizing we have the following translation:
[pg el(ID1,directorlist,), ID2 #\= ID4
pg el(ID2,director,ID1), data el(ID3,Dir1,ID2)
pg el(ID4,director,ID1), data el(ID5,Dir1,ID4)]

implies
[abd err([Dir1], "director twice in the director list")].

2

Example 6.2. Let us consider the web checking rule [Rule1] for the theater company web site,
seen in section 6.2:

%%%%%%%Rule 2 - Show produced before year 2000
%%%%%%%rule_year_before_2000.xce
GOAL

all err [var Year, "show produced before 2000"]
FROM

in {
resource {"file:showindex.xml"},

year {{
var Year

}}
}
where (var Year < 2000)

END

6.5. ADDING NEGATION TO THE TRANSLATION PROCESS 151

To simplify the presentation of the translation results, let us identify the main syntactic components
of the rule:

err2 = all err [var Year, "show produced before 2000"]
query2 = in2 , where2

in2 = in {resource {"file:showindex.xml"} root2 }
root2 = year {{var Year}}
where2 = where { Year < 2000}

Let us apply the translation function T to rule 1.
T JRule2K = T Jquery2K implies T Jerr2K.
T Jerr2K = abd err([Year], "show produced before 2000")
T Jquery2K = [T Jin2K T Jwhere2K]
T Jin2K = T Jroot2K
T Jwhere2K = Year #< 2000
T Jroot2K = pg el(ID1,year,), data el(ID2,Year,ID1),

Summarizing we have the following translation:
[pg el(ID1,year,), data el(ID2,Year,ID1), Year #< 2000]

implies
[abd err([Year], "show produced before 2000").

2

6.5 Adding negation to the translation process

The mapping of web checking rules considering also negative parts, i.e. including without state-
ments, is slightly more complicated. The resulting abductive logic program is no longer a single
integrity constraint but includes also a set of clauses which define new (fresh) predicates needed
for handling negation correctly. Also the grammar must be extended for covering the without
construct on which we impose the following restrictions: (1) a without can not appear at the top
level of a in statement, (2) without statements can not be nested, and (3) variables appearing in
the scope of a without appear elsewhere outside a without in the FROM part of the rule.
As a whole, the structure of a rule is essentially the same as before. All the grammar rules
regarding basic constructs remain unchanged as do all other grammar rules which do not regard
negation directly. In the following we show only the grammar rules regarding the newly introduced
syntactical categories and the grammar rules regarding the Term syntactical category which need
to be changed.

Term ::= Tag {{ VarOrConst? Term? Without? }}
Without ::= without PosTerm | without VarOrConst | WithoutData
PosTerm ::= Tag {{ VarOrConst? PosTerm? }}
WithoutData ::= without data

In the above grammar rules, there is also the WithoutData syntactical category which, as suggested
by its name, indicates the absence of raw data inside the father tag. This is the only modification
we did to the Xcerpt syntax, but this statement is very useful because one of the most common
errors in a web site instance is the absence of data inside a tag.
Removing the WithoutData category, the without statement is only able to express the absence
of a particular raw data, i.e. either a constant or a variable which has to be bound to a particular
instance elsewhere outside the without due to the web checking rules allowedness conditions. The
WithoutData category, instead, as we will see in the next section, is able to express the absence of
any data, not violating the web checking rules allowedness conditions.

6.5.1 Translation function

As anticipated, the abductive logic program with constraint obtained by translating a rule con-
taining a without statement, is composed by an integrity constraint (as for positive rules) and a

152 CHAPTER 6. WEB SITE VERIFICATION AND REPAIR

set of clauses.
Hence, the translation function T must be updated accordingly, returning a pair 〈 IC ; Clauses 〉
where IC is a string, representing an integrity constraint exactly as for positive rules, and Clauses
is a set of definitions for fresh predicates introduced to address negation. Intuitively only those
parts of a rule within the scope of a without statement augment the Clauses component while
the other rules leave it unchanged. Hence, apart from having a different codomain, the translation
function T operates as the old one over most syntactical categories.
As before, we need a further translation function T ′ which gets as input a further numeric argument
for handling the identifiers of the XML elements. To simplify the presentation we abuse notation in
the sequel denoting again as c the translation of a basic construct c ∈ C. I.e., we avoid representing
formally the translation of basic constructs which would be 〈 c ; ® 〉, and we treat them as if they
were strings as in positive rules.

We follow again a top-down approach in presenting the function, hence the first rule is for the
Checkrule syntactic category.

CheckRule
T JGOAL Err FROM Query ENDK =

let 〈 Head ; ® 〉 = T JErrK
and 〈 Body ; Clauses 〉 = T JQueryK

in
〈 Body implies Head. ; Clauses 〉

As we can see, the output of this rule represents a whole abductive logic program with constraints
consisting of an integrity constraint and a set of clauses. The latter is only populated by the
translation of the without statements.

In the following list of rules, the main difference between a rule and the corresponding rule of the
positive translation function is only represented by its codomain. We insert further comments only
if there are other differences.

Error
T Jall err[Vars, Msg]K = 〈 [abd err([Vars],Msg)] ; ® 〉

Query
T JInPart WhereK =

let 〈 Conjunction ; Clauses 〉 = T JInPartK
and 〈 Constraints ; ® 〉 = T JWhereK

in
〈 [Conjunction, Constraints] ; Clauses 〉

Where
T Jwhere ConstrK = 〈 Constr ; ® 〉

In-1
T Jin{{resource{file : Res} Term}}K = T JTermK
In-2
T JIn, InRestK =

let 〈 Conjunct ; Clauses 〉 = T JInK
and 〈 OtherConjuncts ; OtherClauses 〉 = T JInRestK

in
〈 Conjunct, OtherConjuncts ; Clauses ∪ OtherClauses 〉

6.5. ADDING NEGATION TO THE TRANSLATION PROCESS 153

Term-1
T JtagName {{VarConstSeq, TermSeq, WithoutSeq}}K =

let Id = newID()
and 〈 DataElements ; ® 〉 = T ′JVarConstSeqK(Id)
and 〈 SubTerms Conjs ; SubTerms Clauses 〉 = T ′JTermSeqK(Id)
and Ids = IdV ars(DataElements) ∪ IdV ars(SubTerms Conjs)
and Constraints = all distinct(Ids)
and 〈 Without Conjs ; Without Clauses 〉 = T ′JWithoutSeqK(Id)

in
〈 pg el(Id, tagName,), DataElements, SubTerms, Constraints ;

Without Clauses ∪ SubTerms Clauses 〉

Term-2.1
T ′Jvar VarNameK(Id) =

let Id′ = newID()
in
〈 data el(Id′, VarName, Id) ; ® 〉

Term-2.2
T ′JConstK(Id) =

let Id′ = newID()
in
〈 data el(Id′, Const, Id) ; ® 〉

Term-3
T ′JtagName {{VarConstSeq, TermSeq, WithoutSeq}}K(Id) =

let Id′ = newID()
and 〈 DataElements ; ® 〉 = T ′JVarConstSeqK(Id′)
and 〈 SubTerms Conjs ; SubTerms Clauses 〉 = T ′JTermSeqK(Id′)
and Ids = IdV ars(DataElements) ∪ IdV ars(SubTerms Conjs)
and Constraints = all distinct(Ids)
and 〈 Without Conjs ; Without Clauses 〉 = T ′JWithoutSeqK(Id′)

in
〈 pg el(Id′, tagName,Id), DataElements, SubTerms, Constraints ;

Without Clauses ∪ SubTerms Clauses 〉
Term-4
T ′JX, XsK(Id) =

let 〈 Conjunct ; Clause 〉 = T ′JXK(Id)
and 〈 OtherConjuncts ; OtherClauses 〉 = T ′JXsK(Id)

in
〈 Conjunct, OtherConjuncts ; Clauses ∪ OtherClauses 〉

Case Term-1 takes into account the new syntax of the modified Term syntactic category, in
particular the Without statements which could be added at the end of the subterm specification.
Those statements are the statements which will augment the Clauses part of the output. The
other cases for the Term category must take into account Without statements similarly.

The next translation rules are for the new syntactic categories, namely the Without and PosTerm
categories.

Without-1
T ′Jwithout PosTermK(Id) =

let Pred = newPred()
and V s = vars(PosTerm)
and 〈 PosTerm Conjs ; ® 〉 = T ′JPosTermK(Id)

154 CHAPTER 6. WEB SITE VERIFICATION AND REPAIR

in
〈 not(Pred(V s,Id)) ; {Pred(V s,Id) :- PosTerm Conjs.} 〉

Without-2
T ′Jwithout VarConstK(Id) =

let Pred = newPred()
and V = vars(VarConst)
and 〈 DataElement ; ® 〉 = T ′JVarConstK(Id)

in
〈 not(Pred(V ,Id)) ; {Pred(V ,Id) :- DataElement.} 〉

In the above rules, we have introduced two new auxiliary functions:

- newPred() which returns a fresh predicate name of unspecified arity;

- vars(t) which returns the sequence of all the distinct variables appearing in t.

Cases Without-1 and Without-2 both create a new (fresh) predicate Pred for handling negation.
The definition of Pred is represented by PosTerm Conjs which is, roughly speaking, the evaluation
of the PosTerm inside the without. Note that the PosTerm category will not augment the Clauses
part of the output because without statements can not be nested. A singleton containing the
definition of Pred obtained in this way, augments the Clauses part of the output.
The Conjs part, instead, is augmented by a single conjunct of the following form:

not(Pred(Args))
where the set of arguments Args, is represented by the ID of the father of the without statement
and all the variables which appear inside it. In this way, we keep the variable sharing outside
the integrity constraint. I.e. when the clause defining Pred are evaluated, the arguments of Pred
ensure that the variable references into the integrity constraint are kept.

The next case WithoutData, handles the without data statement. It is worth noticing that
there is a fundamental difference between the Without-2 case and the WithoutData case. At
first glance, the Without-2 case seems to be suitable for representing the absence of data inside a
tag. But due to the web checking rules allowedness restrictions, the Without-2 case is only able
to express the absence of particular data, i.e. some data (variables or constants) which appear also
in the positive part of the web checking rule. The WithoutData case, instead, is able to express
the absence of any data. As we will see, this particular case is handled straightforwardly by the
CIFF proof procedure.

WithoutData
T ′Jwithout dataK(Id) =

〈 not(some data(Id)) ; {some data(Id) :- data el(, ,Id).} 〉

The case Without-3 which follows is a standard rule for handling sequences.

Without-3
T ′JW, WsK(Id) =

let 〈 Conjunct ; Clause 〉 = T ′JWK(Id)
and 〈 OtherConjuncts ; OtherClauses 〉 = T ′JWsK(Id)

in
〈 Conjunct, OtherConjuncts ; Clauses ∪ OtherClauses 〉

Finally, we have the rules for handling the PosTerm category.

6.5. ADDING NEGATION TO THE TRANSLATION PROCESS 155

PosTerm-1
T ′JtagName {{VarConstSeq, PosTermSeq}}K(Id) =

let Id′ = newID()
and 〈 DataElements ; ® 〉 = T ′JVarConstSeqK(Id′)
and 〈 SubPosTerms Conjs ; ® 〉 = T ′JPosTermSeqK(Id′)
and Ids = IdV ars(DataElements) ∪ IdV ars(SubPosTerms Conjs)
and Constraints = all distinct(Ids)

in
〈 pg el(Id′, tagName,Id), DataElements, SubPosTerms,

Constraints, Without Conjs ; ® 〉
PosTerm-2
T ′JX, XsK(Id) =

let 〈 Conjunct ; ® 〉 = T ′JXK(Id)
and 〈 OtherConjuncts ; ® 〉 = T ′JXsK(Id)

in
〈 Conjunct, OtherConjuncts ; ® 〉

Case PosTerm-1 is very similar to Term-1. The only difference is that no without statements
can appear in the subterm specification and thus the Clauses part of the output is not affected
by this syntactic category. Case PosTerm-2 is again a standard translation rule for handling
sequences.

Example 6.3. Let us consider again the theater company web site. We want to express that each
show has at least a director (dir by) tag [Rule4]. The Xcerpt representation is as follows:

%%%%%%%Rule 4 - No dir_by tag inside a show tag
%%%%%%%rule_no_dir_by.xce
GOAL

all err ["show without a dir_by tag"]
FROM

in {
resource {"file:showindex.xml"},
show {{

without dir_by {{ }}
}}

}
END

Let us identify the main syntactic components of the rule:
err4 = all err ["show without a dir by tag"]
query4 = in {resource {"file:showindex.xml"} root4 }
root4 = show {{ wout4 }}
wout4 = without dir by {{ }}

The root4 element is translated as follows (note that now the output is composed of two parts: the
conjuncts part and the clauses part resulting from wout4).

T JRule4K =
let 〈 query conjs ; query clauses 〉 = T Jquery4K

and 〈 err conjs ; ® 〉 = T Jerr4K
in 〈 [query conjs implies err conjs]. ; query clauses 〉

T Jerr4K = 〈 [abd err([],"show without a dir by")] ; ® 〉
T Jquery4K = T Jroot4K

156 CHAPTER 6. WEB SITE VERIFICATION AND REPAIR

T Jroot4K =
let 〈 wout conjs ; wout clauses 〉 = T ′Jwout4K(ID1)
in 〈 pg el(ID1,show,),wout conjs ; wout clauses 〉

Finally, we translate the wout4 part adding a negated atom (of a fresh predicate pred 1) into the
body of the integrity constraint, and we define pred 1 with the conjuncts derived from the term
specification inside the without statement. The variables used as arguments for pred 1 are for
keeping the right bindings outside the integrity constraint.

T ′Jwout4K(ID1) = 〈 not(pred 1(ID1)) ; pred 1(ID1) :- pg el(ID2,dir by,ID1) 〉

Summarizing we have that the output is the following ALPC:

[pg_el(ID1,show,_),
not(pred_1(ID1))]
implies

[abd_err([],"show without a dir_by tag")].

pred_1(ID1) :- pg_el(ID2,dir_by,ID1).

2

Example 6.4. We continue the Example 6.4, with the requirement that each dir by tag in the
showlist must contain some data [Rule5]. The Xcerpt representation is as follows:

%%%%%%%Rule 5 - No data inside a dir_by tag
%%%%%%%rule_no_dir_by_data.xce
GOAL

all err ["dir_by tag without data"]
FROM

in {
resource {"file:showindex.xml"},

dir_by {{
without_data

}}
}

END

Let us identify the main syntactic components of the rule:
err5 = all err ["dir by tag without data"]
query5 = in {resource {"file:showindex.xml"} root5 }
root5 = dir by {{ wout5 }}
wout5 = without data

The root5 element is translated as follows (note that now the output is composed of two parts: the
conjuncts part and the clauses part resulting from wout5).

T JRule5K =
let 〈 query conjs ; query clauses 〉 = T Jquery5K

and 〈 err conjs ; ® 〉 = T Jerr5K
in 〈 [query conjs implies err conjs]. ; query clauses 〉

T Jerr5K = 〈 [abd err([],"dir by tag without data")] ; ® 〉
T Jquery5K = T Jroot5K

6.6. ANALYSIS FOR CHECKING 157

T Jroot5K =
let 〈 wout conjs ; wout clauses 〉 = T ′Jwout5K(ID1)
in 〈 pg el(ID1,dir by,),wout conjs ; wout clauses 〉

Finally, we translate the wout5 part adding the negative not(some data(ID1)) literal into the body
of the integrity constraint. some data is defined as described in the translation function.

T ′Jwout5K(ID1) = 〈 not(some data(ID1)) ; some data(ID1) :- data el(, ,ID1) 〉

Summarizing we have that the output is the following ALPC:

[pg_el(ID1,dir_by,_),
not(some_data(ID1))]
implies
[abd_err([],’dir_by tag without data’)].

some_data(ID1) :- data_el(_,_,ID1).

2

Abstracting away from the specific name of the identifier as its argument, the some data pred-
icate has a fixed definition. Thus, if there is more than one web checking rule containing the
without data statement, in the final abductive logic program with constraints there is only one
clause defining the some data predicate, i.e.:

some_data(ID) :- data_el(_,_,ID).

Section 6.13, describes the full theater example we use throughout the chapter. It is composed of
seventeen web checking rules which are quite self-explanatory. In Section 6.13.4 there is the whole
abductive logic program with constraints containing the translation of all rules. It also includes
the translation of [Rule3], seen in Section 6.2.
In the remainder of this chapter, we will refer to that theater example, unless otherwise indicated.

6.6 Analysis for checking

In this section we outline how our translation provides a semantics for the fragment of Xcerpt we
have adopted for defining web checking rules, and how CIFFWEB provides a sound mechanism for
performing the checking, by virtue of the soundness of CIFF¬ for abductive logic programming.
Given a web site W , let X (W) be the result of applying the translation given in section 6.4.1 to W .
X (W) is a set of ground unit clauses. Given a set of web checking rules R, let T JRK= {T JrK|r ∈ R}.
T JRK is an abductive logic program with constraints 〈P, A, IC〉< such that A consists of all atoms
in the predicate abd err and P and IC are given as in section 6.5. 3 Trivially, 〈P ∪ X (W), A, I〉<
is an ALPC. Note that the abducible predicate abd err only occurs in the conclusions of integrity
constraints in I.
We say that the rules in R are fulfilled in W if and only if P ∪ X (W) |=3(<) IC. Namely, there
exists no i ∈ IC such that P ∪ X (W) |=3(<) b, where b is the conjunction of premises of a ground
instance of i. We also say that the rules in R are violated in W if and only if P ∪X (W) 6|=3(<) IC
and there exists ∆ ⊆ A such that P ∪ X (W) ∪∆ |= IC.
Intuitively, due to the fact that the abducible atoms can appear only in the head of a rule, the
need of abducible atoms (i.e. a non-empty ∆) for satisfying the integrity constraints means that
some web checking rule has been violated. Furthermore the abducible atoms in ∆ represent

3T actually returns the representation of the ALPC in the format required by CIFF System. We assume here the
logical - rather than system - version of this ALPC.

158 CHAPTER 6. WEB SITE VERIFICATION AND REPAIR

those violations. By soundness of CIFF¬ (see Chapter 4) we obtain that, with an empty query, if
CIFFWEB succeeds returning an empty answer then all rules in R are satisfied in W ; if CIFFWEB
succeeds returning a non-empty answer then some rule in R is violated.
It is worth noticing that the checking process can also be seen as a deductive task. We can obtain a
deductive account of the checking process by viewing integrity constraints as deductive clauses and
then querying a deductive reasoner for returning all the instances of all the web site errors. This
would require to query explicitly such clauses, which is not needed in our approach since integrity
constraints are implicitly taken into account. More importantly, we obtain a coherent framework
for repairing web sites, as we will see in the next sections: abductive logic programs for repairing
are built upon programs for checking and the repairing process is a genuine abductive task which
is difficult to be accounted in a deductive way.

6.7 Running the System

The CIFFWEB system is a prototype system which includes:

• a Java translator from web checking rules to abductive logic programs with constraints,

• and the CIFF System.

Each web checking rule has to be written in a .xce file and all such files have to be placed in the
same directory together with the XML source files. The Java translator will translate the selected
rules together with the related XML sources, creating an .alp file representing the abductive
logic program with constraints obtained by the application of the translation function seen in the
previous sections. Figure 6.1 is a screenshot of the very simple graphical user interface of the Java
translator.

Figure 6.1: The CIFFWEB System: JAVA translator GUI

To date, there is no automatic link between the Java translator and the CIFF System, hence the
abductive logic program has to be manually used as input for CIFF together with the empty query.

6.7. RUNNING THE SYSTEM 159

Furthermore, even if the program could be used directly as input for the CIFF System, we included
in the CIFFWEB system a slightly optimized version of the CIFF System. The modifications are
just a modified presentation of the abductive answers (below there is one such example) and some
machinery useful to boost performance in the process of repairing web sites: they will be described
in the next sections. In order to run the CIFFWEB system the command to launch is:

ciffweb([File],check).

where File.alp is the name of the file containing the program and check is a flag which specifies
to the system that only the check of the web site has to be performed. As we will see in the next
sections, the repair option could be used as well.

Example 6.5. Running the CIFFWEB system with the full theater example in Section 6.13, the
following abductive answer is produced:

*************** Web site errors ***************
abd_err([’Mary’],"director twice in the director list")
abd_err([],"show without a dir_by tag")
abd_err([’Mary’],"director without a show").

representing correctly (1) the fact that ’Mary’ appears twice in the director list, (2) that ’Mary’
does not direct any show and finally (3) that there is a show tag without a dir by tag (in particular
the show identified by 20 in the translated data). As we can see, the abducibles in the answer
correspond to all the error instances of all the web checking rules. 2

6.7.1 A preliminary experimentation

In [23], there is an interesting experimentation about the scalability of the GVERDI-R system
for verifying web sites. The GVERDI-R system is a closely related system, further discussed in
Section 6.12, and a state-of-the-art system for its efficiency of verification of web sites.
In those tests a set of XML pages (created by using using the XMLGen tool 4, a tool for creating
well-formed, valid, meaningful and very large XML pages with a randomly generated content
regarding an auction website) have been verified against three sets of web specification rules. The
tests are just quantitative tests of the verification process against very large XML data, from a
minimum size of about 1Mb and 30.000 XML tags to a maximum of about 10Mb and 300.000
XML tags. The three web specification are not given by the authors as they are quite meaningless
in this setting, even if they are said to be in ascending order of complexity with completeness rules
occurring only in the third specification. In the GVERDI-R framework, completeness rules are
similar to our negative web checking rules which are computationally harder than positive ones.
Being the specifications not directly comparable with our specifications we do not report their
computational times, but we only notice that

• the GVERDI-R system is very efficient in the first two tests and it scales up to 10Mb in
linear time;

• completeness rules pull down performance dramatically.

Analogously, we built four web specifications in ascending order of complexity: the first two spec-
ifications consist of only positive web checking rules and the last two specifications include also
negative web checking rules. Each web specification is a superset of the previous one. CIFFWEB
tests are limited to a maximum size of about 3Mb and 90.000 XML tags. This is a SICStus
Prolog 3 limitation because the number of atoms required to manage larger XML data exceeds
the admissible number of run-time atoms of the Prolog platform. SICStus Prolog 4 should also
not suffer from this memory limitation. Results reported in Table 6.1 are expressed in seconds of

160 CHAPTER 6. WEB SITE VERIFICATION AND REPAIR

Table 6.1: CIFFWEB scalability results for checking

1Mb (30,000 XML Tags) 3Mb (90,000 XML Tags)
WebSpec1 2.92 (0.41 + 2.31 + 0.20) 10.19 (1.18 + 7.23 + 1.78)
WebSpec2 5.92 (0.41 + 2.32 + 3.19) 39.57 (1.18 + 7.28 + 31.10)
WebSpec3 18.24 (0.41 + 2.37 + 15.46) 167.35 (1.18 + 7.36 + 158.81)
WebSpec4 251.58 (0.41 + 2.41 + 248.76) 2359.78 (1.18 + 7.48 + 2351.12)

CPU time and each result is the sum of (1) the time spent by the JAVA translator, (2) the CIFF
preprocessing time, and (3) CIFF processing time.
As seen in Section 5.2.3, CIFF preprocessing time can be a heavy component of the total compu-
tational time. For obtaining the above results, we have taken advantage of the a-priori structure
of the abductive logic programs and here we used a slightly modified version of CIFFWEB in
which the JAVA module translates directly the abductive logic programs into iff-definitions. I.e.
we perform a large part of preprocessing phase directly in the JAVA module.

WebSpec1 consists of positive web checking rules which give rise to few errors, while the rules in
WebSpec2 give rise to thousands of errors. The same happens for WebSpec3 and WebSpec4
respectively. It is worth noticing that the computational time strictly depends on the number of
errors and even more on the presence of negative web checking rules, similarly to the GVERDI-R
for completeness rules. Overall, we claim that the system shows acceptable computational times
on huge XML pages. In particular we stress that the CIFFWEB system is a prototype system
which can be largely optimized. Just to say an example, an interface from JAVA to Prolog would
allow to pass abductive logic programs directly to CIFF without passing through .alp files. This
is a clear point of ongoing and future work.

6.8 A Web Repairing Framework

Abductive reasoning can be exploited not only for detecting errors of a web site, but also for
repairing such errors, translating web checking rules into more complex abductive logic programs.
These abductive logic programs can be used with CIFF in order to suggest, through abductive
answers, how to repair the errors.

There can be several error types in a web site instance which could be repaired in more than one
way as also noted in [11]. For example there can be duplicated data and so a repairing action can
be identified as a deletion action. Another error can be a wrong tag name or a wrong data item,
e.g. a wrong result of a sum. In that case a good action may be to change the tag name or the
data item which fired the error. A third error type is a missing data item: in that case an inserting
action is arguably the best repairing action. All of these error types bring a number of issues to
be taken into account when a repairing action is performed. A simple example is the wrong sum
result. Suppose we have two data tags A1 = 500 and A2 = 400 together with the third tag A3
which is supposed to contain the sum of the values A1 and A2. Suppose that the value of A3 is
1000. It is clear that a changing action should be performed, but on which data? The sum or
one of the addends? It is clear that it will be very difficult for an automatic tool to decide which
data has to be changed. However, an automatic tool could perform a reasoning process to suggest
to human experts some repairing actions. In our proposal, we take into account the errors which
could be repaired by inserting actions, i.e. those errors which arise, arguably, from some missing
XML data. This is because abductive reasoning, which, roughly speaking, adds elements to a given
“world” in order to satisfy a certain “observation”, is particularly suitable for proposing inserting
actions fixing the missing data in a web site instance rather than to change or delete some piece
of information.

4The XMLGen tool is available at http://www.xml-benchmark.org/

6.8. A WEB REPAIRING FRAMEWORK 161

In our framework for web checking, there is a straightforward relation between web checking rules
and errors arising from missing data: each web checking rule containing a without statement
produces errors of that type. This is very intuitive because the without statement expresses the
absence of information. Consider, for example, the web site requirement that each show has a
dir by tag [Rule4], whose Xcerpt counterpart is:

%%%%%%%Rule 4 - No dir_by tag inside a show tag
%%%%%%%rule_no_dir_by.xce
GOAL

all err ["show without a dir_by tag"]
FROM

in {
resource {"file:showindex.xml"},
show {{

without dir_by {{ }}
}}

}
END

Each error arising from this web checking rule represents the absence of a dir by tag as a child
of a show. The idea is that an abductive answer could suggest to insert such a dir by tag in the
XML data.

In the next sections we describe how our framework can be used for repairing missing data errors,
proposing a tool which tries to repair such errors. As we will see, the syntax of web checking rules
remains unchanged: what changes is how the rules are translated into abductive logic programs
with constraints and how the CIFFWEB system uses the new programs.

6.8.1 Abductive logic programs for repairing

In our approach for repairing framework, we use a framework which is adapted from the framework
for checking seen in the previous sections. The difference lies in the way web checking rules are
translated into abductive logic programs with constraints.

As said before, the web checking rules we consider for repairing are those rules containing a without
statement. For simplicity, we call these rules negative rules and we call an error arising from one
such rule a negative error. Conversely, we call all the others web checking rules positive rules and
we call an error arising from one such rule a positive error.
The main idea in building a program for repairing is that the negative parts of the negative web
checking rules (i.e. the conjunction of the without statements) indicate the missing information.
Thus, the abductive reasoner should be able to abduce such a missing information for repairing
the lack of data. In particular, in a program for repairing we need:

1. a way to express new (XML) elements to be added, i.e expressing these elements as abducibles,

2. a way to make the program aware of abduced (XML) elements, and

3. a way to abduce the appropriate (XML) elements to fix the missing data errors.

Recall what we have seen for the checking framework. A negative rule is mapped into a program
for checking of the form:

el1, . . . , elm, not pred1, . . . , not predn → err

pred1 ← el11 ∧ . . . ∧ elt11
. . .
predn ← el1n ∧ . . . ∧ eltnn

where:

162 CHAPTER 6. WEB SITE VERIFICATION AND REPAIR

• each pred is an atom of the form pred i(Args) for handling the without statements;

• each el is either a pg el(ID,X,ID F) atom or a data el(ID,X,ID F); and

• err is the abd err abducible representing the error.

Given an instance of an integrity constraint of the above form such that the XML specification sat-
isfies el1, . . . , elm, an error is detected if the XML specification satisfies none of the correspondent
pred1, . . . , predn instances.
In the case of repair, the idea is that these errors could be repaired by abducing the XML elements
which satisfy at least one of the corresponding pred instances in the body of the integrity con-
straint itself. Intuitively, from the above piece of program for checking, our goal is to generate a
corresponding piece of program for repairing where (1) the integrity constraint is of the form

el1, . . . , elm → pred1 ∨ . . . ∨ predn

and (2) the definition of each predi is such that XML elements could also be abduced and not only
matched against the given XML data. In this way, once the body of an instance of an integrity
constraint is satisfied, appropriate XML elements could be abduced in order to satisfy at least a
predi instance.

Hence, the first thing a program for repairing needs is a way to abduce XML elements. Thus,
we declare two new abducible predicates: i.e. the abd pg el and the abd data el predicates
representing the “abducible versions” of pg el and data el respectively. These relationships are
represented by the following set of clauses RepairA added to a program for repairing:

all_pg_el(ID,TagName,IDFather) :- pg_el(ID,TagName,IDFather)
all_pg_el(ID,TagName,IDFather) :- abd_pg_el(ID,TagName,IDFather)

all_data_el(ID,TagName,IDFatherTag) :- data_el(ID,Data,IDFatherTag)
all_data_el(ID,TagName,IDFatherTag) :- abd_data_el(ID,Data,IDFatherTag)

An all pg el(X,Y,Z) atom (resp. an all data el(X,Y,Z) atom) is satisfied either by an XML
element represented by pg el(X,Y,Z) (resp. data el(X,Y,Z)) or by an abduced XML element
represented by abd pg el(X,Y,Z) (resp. abd data el(X,Y,Z)).

The new all pg el and all data el predicates (represented by alli in the remainder) could be
used in the predi definitions, replacing the eli predicates:

predi ← all1i ∧ . . . ∧ allt1i

In this way a predi instance is satisfied either abductively or not.

However, a program for repairing should not abduce indiscriminately XML elements, but only
those elements for fixing a “real” lack of data. Considering again the theater example, no dir by
tag should be abduced within the first and the third show tags because they already are associated
with a director in the original XML data. The above clauses do not prevent this behavior. Thus
we introduce new rep predi predicates defined as follows:

rep predi ← predi

rep predi ← not predi ∧ all1i ∧ . . . ∧ alltii ∧

predi ← el1i ∧ . . . ∧ eltii

Intuitively a rep predi predicate is satisfied if either the correspondent predi is satisfied as well
(i.e. without abductions) or at least a XML element is abduced (but only if predi is not satisfied).
Note that the presence of not in the second clause makes the two clauses mutually exclusive. As
one can expect those rep predi are put in the head of an integrity constraint in a program for
repairing :

6.8. A WEB REPAIRING FRAMEWORK 163

el1, . . . , elm → rep pred1 ∨ . . . ∨ rep predn

The abduction of new XML elements leads to another issue to be taken into account: new ab-
ducibles introduced to repair an error could violate another web checking rule. A program for
repairing must be aware and should be able to repair or, at least, detect these new errors. In order
to make a program for repairing aware of the new abducibles, we simply replace the eli elements
by their alli counterparts in the body of the integrity constraints, thus obtaining:

all1, . . . , allm → rep pred1 ∨ . . . ∨ rep predn

In this way each abduced XML element can satisfy the body of an integrity constraint leading
to new abductions for repairing a chain of errors. This modification must be applied also to the
bodies of the integrity constraints drawn from positive rules: in that case positive errors due to
abduced XML elements are detected in the same way positive errors are detected in the original
XML data.

Summarizing, we denote as T R a function which, given a program for checking C:

1. replaces each piece of C of the form

el1, . . . , elm, not pred1, . . . , not predn → err

pred1 ← el11 ∧ . . . ∧ elt11
. . .
predn ← el1n ∧ . . . ∧ eltnn

and obtained from the translation of a negative rule, by

all1, . . . , allm → rep pred1 ∨ . . . ∨ rep predn

rep pred1 ← pred1

rep pred1 ← not pred1 ∧ all11 ∧ . . . ∧ allt11

pred1 ← el11 ∧ . . . ∧ elt11

. . .

rep predn ← pred1

rep predn ← not predn ∧ all1n ∧ . . . ∧ alltnn

predn ← el1n ∧ . . . ∧ eltnn

2. replaces each piece of C of the form

el1, . . . , elm → err

and obtained from the translation of a positive rule, by

all1, . . . , allm → err.

In the sequel, given a program for checking C, we will refer to RepairC as the results of T R(C).
Example 6.6. Let us consider the program for checking C obtained from the translation of Rule1
and Rule4 seen in previous sections, i.e.:

164 CHAPTER 6. WEB SITE VERIFICATION AND REPAIR

%%% Rule 1
[pg_el(ID1,year,_), data_el(ID2,Year,ID1),
Year #< 2000]
implies

[abd_err([Year], "show produced before 2000")].

%%% Rule 4
[pg_el(ID1,show,_), not(pred_1(ID1))]
implies

[abd_err([],’show without a dir_by tag’)].

pred_1(ID1) :- pg_el(ID2,dir_by,ID1).

Applying the function T R to C we obtain the following program for repairing RepairC:

%%% Rule 1
[all_pg_el(ID1,year,_), all_data_el(ID2,Year,ID1),
Year #< 2000]
implies

[abd_err([Year], "show produced before 2000")].

%%% Rule 4
[all_pg_el(ID1,show,_)]
implies

[rep_pred_1(ID1)].

rep_pred_1(ID1) :- pred_1(ID1).

rep_pred_1(ID1) :- not(pred_1(ID1)),all_pg_el(ID2,dir_by,ID1).

pred_1(ID1) :- pg_el(ID2,dir_by,ID1).

2

We need to take into account also the without data statement. In a program for checking a
without data statement was mapped to a fixed clause of the form:

some_data(ID) :- data_el(_,_,ID)

In a program for repairing, the some data predicate is treated similarly to the others predi predi-
cates. Thus, the some data predicate is replaced by the rep some data defined as:

rep_some_data(ID) :- data_el(_,_,ID)

rep_some_data(ID) :- not(data_el(_,_,ID)), abd_data_el(_,_,ID)

In the following, given a program for checking C, we assume that RepairC = T R(C) contains the
above clauses and that each not(some data(Args)) in the body of each integrity constraint in C
is replaced by a corresponding rep some data(Args) in the head of the corresponding integrity
constraint in RepairC .

Example 6.7. Let us consider the program for checking C obtained from the translation of Rule3,
i.e.:

%%%Rule 5
[pg_el(ID1,dir_by,_),

6.9. RUNNING THE CIFFWEB SYSTEM FOR REPAIRING 165

not(some_data(ID1))]
implies

[abd_err([],’dir_by tag without data’)].

some_data(ID1) :- data_el(_,_,ID1).

Applying the function T R to C, we obtain the following piece of program for repairing RepairC:

%%% Rule 5
[all_pg_el(ID1,dir_by,_)]
implies

[rep_some_data(ID1)].

rep_some_data(ID) :- data_el(_,_,ID)

rep_some_data(ID) :- abd_data_el(_,_,ID), not(data_el(_,_,ID))

2

In a program for repairing there is a last issue to cope with: the identifiers of the abduced XML
elements. As seen in Section 6.4.1, each element in the original XML data is associated to a unique
numerical identifier and these identifiers maintain the original XML tree structure. When a XML
element is abduced a unique identifier should be assigned to it in a similar way. Obviously, for
each pair of abduced XML elements, their identifiers should be distinct and each newly generated
identifier should be distinct from each identifier of the original XML elements. This can be done
by adding, in a program for repairing, a set of integrity constraints RepairID of the form:

[pg_el(X,Y1,Z1),abd_pg_el(X,Y2,Z2)] implies [false]
[data_el(X,Y1,Z1),abd_pg_el(X,Y2,Z2)] implies [false]
[pg_el(X,Y1,Z1),abd_data_el(X,Y2,Z2)] implies [false]
[data_el(X,Y1,Z1),abd_data_el(X,Y2,Z2)] implies [false]

[abd_pg_el(X1,Y1,Z1),abd_pg_el(X2,Y2,Z2),Y1 #\= Y2] implies [X1 #\= X2]
[abd_pg_el(X1,Y1,Z1),abd_pg_el(X2,Y2,Z2),Z1 #\= Z2] implies [X1 #\= X2]
[abd_data_el(X1,Y1,Z1),abd_pg_el(X2,Y2,Z2),Y1 #\= Y2] implies [X1 #\= X2]
[abd_data_el(X1,Y1,Z1),abd_pg_el(X2,Y2,Z2),Z1 #\= Z2] implies [X1 #\= X2]
[abd_data_el(X1,Y1,Z1),abd_data_el(X2,Y2,Z2),Y1 #\= Y2] implies [X1 #\= X2]
[abd_data_el(X1,Y1,Z1),abd_data_el(X2,Y2,Z2),Z1 #\= Z2] implies [X1 #\= X2]

The newly generated identifiers can be either skolemized or instantiated to appropriate numerical
values by a constraint solver.

The CIFFWEB system relies upon the integrated constraint solver to address this issue. However
the above machinery would lead to a huge computational overhead due to the presence of unbound
variables in the body of a lot of implications during the abductive process. Thus we slightly
modified the CIFF¬ engine in that when either a new abd pg el atom or a new abd data el atom
is abduced and factorized (i.e. when we are sure that it is distinct from each other abduced atom),
its identifier is automatically bound to the least natural number not yet used for identifying an
(abduced or not) XML element.

6.9 Running the CIFFWEB System for repairing

The Java translator of web checking rules seen in Section 6.7 creates, automatically, both the
program for checking and the program for repairing placing them in two distinct .alp files. Let
Repair.alp be the file containing the program for repairing: in order to run the CIFFWEB system,
it is enough to launch

166 CHAPTER 6. WEB SITE VERIFICATION AND REPAIR

ciffweb([’Repair’],repair).

If we run the example in Section 6.13, we obtain the abductive answer seen in the previous examples,
i.e.:

********** Repairing abducibles: *******************************
abd_err([’Mary’],’director twice in the director list’)
abd_pg_el(32,dir_by,20)
abd_data_el(33,Mary,32).

which correctly associates the second show with Mary for repairing all the errors in the XML pages.
Note that the fact that Mary appears twice in the list of directors is not repaired by the system
but it is simply detected like in a program for checking. This is because this error arises from a
positive rule.

6.9.1 Abductively Generated Errors

The presence of all pg el atoms and all data el atoms in the body of the integrity constraints
in the abductive logic programs for repairing, make the integrity constraints aware about new
abduced elements, i.e. their bodies can also be satisfied from abduced elements and not only from
the original XML data. This process could lead to further errors.

The abductive answer seen in the previous section is not the unique abductive answer returned by
the CIFFWEB system for the example in Section 6.13. A further abductive answer is the following:

*************** Repairing abducibles: ***************
abd_err([Mary],director twice in the director list)
abd_err([Mary,John],double data in dir_by tag)
abd_pg_el(32,dir_by,20)
abd_data_el(33,X1,32)
abd_data_el(34,Mary,16)

In this case the data item inside the abduced dir by tag is bound to an unspecified data X1, while
Mary has been associated with the first show tag. As the first show tag was already associated with
another director, namely John, a further abducible error has been detected because there are two
data items inside the dir by tag of the first show.
Note that this solution, even if less intuitive than the previous solution, is a sound abductive
solution with respect to our repairing framework.
This is a general issue and we argue, that, usually, it might be preferable to avoid that abduced
XML elements introduce new errors satisfying the conditions of instances of positive rules. A way
to avoid this is by imposing that an instance of an integrity constraint obtained from a positive
rule leads to a failure in the abductive process if its body is satisfied through (at least) an abduced
atom. I.e. we could replace the abductive errors in the head of the integrity constraint by false.
In this way, if an abduced atom leads to a new error, then the abductive process fails in searching
for an alternative abductive answer.

Consider an integrity constraint I, in a program for repairing, which represents a positive web
checking rule, i.e.:

[I] all1 ∧ . . . ∧ allm → err

Suppose now we “unfold” all the alli atoms. What we obtain is a set of 2m integrity constraints
of the form:

[I1] noabd1 ∧ noabd2 ∧ . . . ∧ noabdm → err

[I2] abd1 ∧ noabd2 ∧ . . . ∧ noabdm → err

. . .

[I2m

] abd1 ∧ abd2 ∧ . . . ∧ abdm → err

6.10. A MORE COMPLEX RUNNING EXAMPLE 167

where each noabdi represents either the pg el or the data el atom and each abdi represents either
the abd pg el or the abd data el atom, respectively, obtained by unfolding the corresponding
alli atom. It is worth noticing that there is only one integrity constraint among the 2m integrity
constraints which does not contain abducibles in its body. For simplicity, we say that this integrity
constraint is I1. If we want to avoid that the abduced atoms could not generate new errors, we
simply need to replace err by ⊥ in each integrity constraint other than I1. We denote as T R⊥
the translation function which behaves like the translation function T R plus the addition of the
above rewriting step.
Adopting this solution, the latter abductive answer would not be returned by the system, because
associating Mary with a show which is already associated with a director would lead to a failure in
the abductive process.

These two levels of error generation are both available in the CIFFWEB system by setting the
error level flag to negative (if no positive errors can be generated through abduced XML
elements, the default value) or any otherwise. If needed, the system automatically preprocesses
the integrity constraints as described above. The default value is negative and this is assumed in
the next section.

6.10 A more complex running example

Two important features of the CIFF proof procedure are the handling of existentially and univer-
sally quantified variables and the possibility of returning non-ground answers. Taking advantage of
these features, the CIFFWEB system is able to perform a non-straightforward abductive reasoning
for repairing web sites which makes it a unique tool in that field. In particular CIFFWEB is able
to build chains of repairing actions bringing with itself non-ground elements during the abductive
process and constraining them appropriately.

We exemplify this important feature through a slightly modified version of the theater example in
Section 6.13. In particular we modify the original XML data by removing the ’Mary’ data item
inside the last director tag in the directorindex.xml page. Accordingly, we delete the atom
data el(10,’Mary’,9) from the output of the XML translation. Running the CIFFWEB system
we obtain the following abductive answer for repairing the web site:

********** Repairing abducibles: *******************************
abd_data_el(32,X2,9)
abd_pg_el(33,dir_by,20)
abd_data_el(34,Mary,33)
abd_pg_el(37,show,12)
abd_pg_el(38,dir_by,37)
abd_data_el(39,X2,38)
abd_pg_el(40,showname,37)
abd_data_el(41,X1,40)
abd_pg_el(42,year,37)
abd_data_el(43,X3,42)

********** Disequalities on repairing variables: ****************
X2\==Paul
X2\==Mary
X2\==John

********** Finite domain constraints on repairing variables: ****
X3#>=2000

Indeed, removing ’Mary’ from the original XML files, the error

168 CHAPTER 6. WEB SITE VERIFICATION AND REPAIR

abd_err([’Mary’],’director twice in the director list’)

is correctly no longer detected by the system. However, the absence of a data item inside the last
director tag requires the addition of such a data item, represented, in the answer, by the atom:

abd_data_el(32,X2,9).

This non-ground data X2 represents the name of the last director in the list, and it should
be distinct from the other names in that list. This is represented, in the answer, by the set of
disequalities on X2 listed above.
The presence of X2, in turn ,requires a show associated with it. Thus, the system has to repair two
errors: the absence of show associated with both X2 and ’Mary’ (recall that the first instance of
’Mary’ is in the XML data and there is no show associated with it). The abducibles

abd_pg_el(33,dir_by,20)
abd_data_el(34,Mary,33)

repairs the absence of a show for ’Mary’. But now, to associate a show with X2, a completely new
show has to be abduced, which in turn fires a set of new abductions in order to get the right XML
structure inside it. The abducibles

abd_pg_el(37,show,12)
abd_pg_el(38,dir_by,37)
abd_data_el(39,X2,38)
abd_pg_el(40,showname,37)
abd_data_el(41,X1,40)
abd_pg_el(42,year,37)
abd_data_el(43,X3,42)

represent the XML data to be added in order to have a further show in the list. Note that inside
the dir by tag identified with 38 there is exactly the X2 data, identified with 39. Note also that
the variable X3, representing the raw data inside the year tag, is associated, correctly, with the
finite domain constraint

X3#>=2000.

in order to avoid further errors.

6.11 Analysis for repairing

An analysis similar to the analysis done for the checking framework (see Section 6.6) could also be
outlined for the repairing framework.
Given a web site W , let X (W) be the result of applying the translation given in section 6.4.1 to
W . X (W) is a set of ground atoms. Given a set of web checking rules R, let CheckR =T JRK=
{T JrK|r ∈ R} be the abductive logic program with constraint for checking obtained from the rules
R.
Let Repair be the program for repairing such that

Repair = RepairA ∪RepairID ∪ T R(CheckR)

and let Repair⊥ be the program for repairing such that

Repair⊥ = RepairA ∪RepairID ∪ T R⊥(CheckR).

The choice of either T R or T R⊥ depends on the chosen error level, as described in Section 6.9.1.

6.11. ANALYSIS FOR REPAIRING 169

Both R and R⊥ are abductive logic programs with constraints of the form 〈P, A, IC〉< and
〈P, A, IC⊥〉< where

A = {abd err, abd pg el, abd data el}
Trivially, also 〈P ∪ X (W), A, IC〉< and 〈P ∪ X (W), A, IC⊥〉< are abductive logic programs with
constraints.
By construction IC = IC−∪IC+ where IC− is the set of integrity constraints drawn from negative
rules and IC+ is the set of integrity constraints drawn from positive rules. Each I− ∈ IC− is of
the form:

all1, . . . , allm → rep pred1 ∨ . . . ∨ rep predn

while each integrity constraint in IC+ is an integrity constraint I+ of the form:

atom1, . . . , atomm → err

Similarly, IC⊥ = IC− ∪ IC+
⊥ such that each integrity constraint I+

⊥ ∈ IC+
⊥ is of the form:

atom1, . . . , atomm → ⊥
where at least an atomi is abducible.

Consider an answer 〈∆, σ,Γ〉 for the empty query Q with respect to 〈P ∪ X (W), A, IC〉<. By
definition, we have that there exists a ground σ′′ = σσ′ such that P ∪∆σ′′ |=3(<) Qσ′′ ∧ IC.
Being Q empty, we only need to consider P ∪∆σ′′ |=3(<) IC.
By construction, we have that

∆ = ∆err ∪∆el

where ∆err contains all the abduced abd err atoms and ∆el contains all the abduced abd pg el
and abd data el atoms.

Let r− be a negative rule and let I− be the corresponding integrity constraint in IC−. We say
that r− is fulfilled if for each ground instance b− of the body of I− such that

P ∪ X (W) ∪∆elσ′′ |=3(<) b− then P ∪ X (W) ∪∆elσ′′ |=3(<) h−

where h− is the corresponding instance of the head of I−.

Let r+ be a positive rule and let I+ the corresponding integrity constraint in IC+. We say that
r+ is fulfilled either if for each ground instance b+ of the body of I+ such that

P ∪ X (W) ∪∆elσ′′ |=3(<) b+ then P ∪ X (W) ∪∆errσ′′ |=3(<) h+

where h+ is the corresponding instance of the head of I+.

The same reasoning can be done for the program 〈P ∪ X (W), A, IC⊥〉<, but let I+
⊥ be one of the

corresponding integrity constraints in IC+
⊥ of a positive rule r+. We say that r+ is fulfilled if there

is no ground instance of the body b+
⊥ of I+

⊥ such that

P ∪ X (W) ∪∆elσ′′ |=3(<) b+
⊥.

Summarizing, by soundness of CIFF we obtain that, if CIFF for the empty query

• succeeds returning an empty answer, then all rules in R are satisfied in W ;

• succeeds returning an answer with a non-empty ∆, then:

– if ∆err is non-empty then some positive rule in R is violated and
– if ∆el is non-empty then some error due to negative rules in R is repaired;

• returns no answer, then some integrity constraints of the form I⊥+ are violated.

170 CHAPTER 6. WEB SITE VERIFICATION AND REPAIR

6.12 Related Work, Future Work and Conclusions

In this Chapter, we have presented the CIFFWEB system for verifying and repairing XML/XHTML
web sites by using abductive logic programming and in particular the CIFF proof procedure as
computational counterpart. Despite the exponential WWW growth and the success of the Seman-
tic Web, there is limited work on specifying, verifying and repairing web sites at a semantic level.
Notable exceptions for verifying web sites, are represented by works such as [173] (which mainly
inspired our work) [62] and [78]; the XLINKIT framework [40]; the Veriflog tool [51, 50] and the
GVERDI-R system [10, 23, 12]. The GVERDI-R system and the Veriflog tool also address (in a
preliminary stage) the repairing problem.
The Veriflog is an application of the Xcentric language [52], a XML processing language built on
top of Prolog which uses unification for matching and transforming XML data against Xcentric
statements. The Veriflog tool uses the Xcentric language as the computational core for verifying and
repairing web site instances against web requirements. The repairing problem is addressed through
two types of repair actions: the delete action and the replace action. Despite the capabilities of
Veriflog are similar to those of our approach, the syntax for expressing web requirements seems
more verbose than our, the implemented tool is at a very early stage and, to our knowledge, the
Veriflog tool does not have a formal semantics. Furthermore the repairing process can produce
modifications to the XML data which can violate other web requirements: in the Veriflog tool these
violations, automatically addressed in our framework for the abduction of missing data through
the CIFF abductive reasoning, can only be checked at a later stage.

The work most closely related to ours is the GVERDI-R system which verifies web sites against rules
written in an ad-hoc language which allows the specification of both correctness and completeness
rules to be fulfilled. The GVERDI-R web rule language is an ad-hoc language which relies upon
a (partial) pattern-matching mechanism very similar to the Xcerpt one and its expressiveness is
comparable to our Xcerpt fragment. However we argue that our use of negation constructs in the
query part of the rules allows for a bit more expressiveness. Furthermore, it seems that queries
like the [Rule1] seen in section 6.2 are difficult to express in the GVERDI-R language due to the
ordering imposed by its language specification in a subterm specification of a query.
Another key difference is that the GVERDI-R system relies upon an ad-hoc computational coun-
terpart for its framework, while our system relies upon the general purpose CIFF abductive proof
procedure. This is an important issue because while the GVERDI-R system had to define both the
language and its formal properties, the CIFFWEB systems inherits all from the CIFF proof proce-
dure which has a well-defined syntax and has been proved sound with respect to the three-valued
completion semantics.
Conversely, the GVERDI-R system allows for the use of functions for managing strings and data
in a non-straightforward way, e.g. by matching strings to regular expressions or using arithmetic
functions on numbers. While the CIFFWEB system deals with arithmetic functions thanks to the
underlying integrated constraint solver, it lacks the use of other types of functions. As pointed out
in [10], this is an important feature for a web verification tool. However, a more sophisticated use
of functions as in [10, 23] is work in progress, as pointed out in Chapter 5.
Another clear drawback of our system is the absence of a GUI, apart from the simple GUI for the
Java translator, which allows for a better usability as for systems like GVERDI-R and XLINKIT.

In section 6.8 we have shown a methodology for switching from programs for checking to programs
for repairing. Then we have illustrated, by means of some examples, how the CIFFWEB system is
able, through the abductive computational core, to suggest non-trivial and non-ground repairing
actions in terms of abduced XML elements which, added to the original data, could repair cer-
tain types of errors, in particular those errors concerning missing pieces of information. To our
knowledge, this is a novel feature which is absent in the other existing tools for web verification.
We argue that the capability of repairing XML data, both at structural and data level is a very
interesting feature for web tools under the Semantic Web [13] vision and that abductive reasoning
plus the unique features of CIFF (and CIFF¬) are very suitable for exploring this field.

6.12. RELATED WORK, FUTURE WORK AND CONCLUSIONS 171

The GVERDI-R system also seems to take some steps in that direction as pointed out in [23],
but a repairing specification and a concrete tool are still work in progress. In turn, the XLINKIT
system seems to be capable of some form of repairing actions but they are limited to broken links
in web sites.

Another interesting approach to modifying web data instances is represented by the XChange
framework [36] which is proposed by the same Xcerpt authors and from which it derives. It
proposes a framework to make the web data aware of events which should lead to changes in the
web data. We are currently studying possible interrelations with our repair approach even though
the XChange framework is not focused on verification and repair of web site instances but rather
seems to propose new data paradigms which can accommodate event-driven changes.

A last mention is deserved to the AlLoWS framework [6] where abductive logic programming is used
for web verification similarly to our work. But there the attention is focused on the verification of
web services and in particular on the verification of interaction protocols among the agents involved
in the web services.

The choice of Xcerpt [37] as our specification XML query language is due to both its similarities
to logic programming and its features. As in LP, Xcerpt variables acts as placeholders and the
language has a declarative and operational semantics based on the concept of unification. With
respect to other well-known query languages such as XPath [47] and XQuery [27], Xcerpt allows
complex queries to be expressed in a simpler way and it allows for negation through the without
construct. Finally, we remark that there are a number of interesting features of Xcerpt which
could be integrated in our framework. One of them is the possibility of expressing aggregates as
aggregated data which is a very typical content of a web page. This last feature is planned to be
integrated in CIFF, as pointed out in Chapter 5.

172 CHAPTER 6. WEB SITE VERIFICATION AND REPAIR

6.13 Full theater example

6.13.1 XML data

%%%directorindex.xml %%%showindex.xml

<directorlist> <showlist>
<director>John</director> <show>
<director>Mary</director> <showname>Mela</showname>
<director>Paul</director> <dir_by>John</dir_by>
<director>Mary</director> <year>2000</year>

</directorlist> </show>
<show>

<showname>Epiloghi</showname>
<year>2001</year>

</show>
<show>

<showname>Toccata e fuga</showname>
<dir_by>Paul</dir_by>
<year>2002</year>

</show>
</showlist>

6.13.2 XML translation

xml_page(’directorindex.xml’,1). xml_page(’showindex.xml’,11).

pg_el(2,directorlist,1). pg_el(12,showlist,11).
pg_el(3,director,2). pg_el(13,show,12).

data_el(4,’John’,3). pg_el(14,showname,13).
pg_el(5,director,2). data_el(15,’Mela’,14).

data_el(6,’Mary’,5). pg_el(16,dir_by,13).
pg_el(7,director,2). data_el(17,’John’,16).

data_el(8,’Paul’,7). pg_el(18,year,13).
pg_el(9,director,2). data_el(19,2000,18).

data_el(10,’Mary’,9).
pg_el(20,show,12).

pg_el(21,showname,20).
data_el(22,’Epiloghi’,21).
pg_el(23,year,20).
data_el(24,2001,23).

pg_el(25,show,12).
pg_el(26,showname,25).
data_el(27,’Toccata e fuga’,26).
pg_el(28,dir_by,25).
data_el(29,’Paul’,28).
pg_el(30,year,25).
data_el(31,2002,30).

6.13. FULL THEATER EXAMPLE 173

6.13.3 Web checking rules

%%%%%%%Rule 1 - Double occurrence of a director in the director list
%%%%%%%rule_director_twice_inlist.xce
GOAL

all err [var Dir1,
"director twice in the director list"]

FROM
in {
resource {"file:directorindex.xml"},
directorlist {{

director {{ var Dir1 }},
director {{ var Dir1 }}

}}
}

END

%%%%%%%Rule 2 - Show produced before year 2000
%%%%%%%rule_year_before_2000.xce
GOAL

all err [var Year, "show produced before 2000"]
FROM

in {
resource {"file:showindex.xml"},
year {{

var Year
}}

}
where (var Year < 2000)

END

%%%%%%%Rule 3 - Director in the director list without a show associated with
%%%%%%%rule_director_without_show.xce
GOAL

all err [var DirName,
"director without a show"]

FROM
and (

in {
resource {"file:directorindex.xml"},
director {{ var DirName }}

},
in {
resource {"file:showindex.xml"},
showlist {{

without show {{
dir_by {{ var DirName }}

}}
}}

}
)

END

174 CHAPTER 6. WEB SITE VERIFICATION AND REPAIR

%%%%%%%Rule 4 - No dir_by tag inside a show tag
%%%%%%%rule_no_dir_by.xce
GOAL

all err ["show without a dir_by tag"]
FROM

in {
resource {"file:showindex.xml"},

show {{
without dir_by {{ }}

}}
}

END

%%%%%%%Rule 5 - No data inside a dir_by tag
%%%%%%%rule_no_dir_by_data.xce
GOAL

all err ["dir_by tag without data"]
FROM

in {
resource {"file:showindex.xml"},

dir_by {{
without_data

}}
}

END

%%%%%%%Rule 6 - Double data inside a director tag %%%%%%%
%%%%%%%rule_double_director_data.xce
GOAL

all err [var Dir1, var Dir2,
"double data in director tag"]

FROM
in {
resource {"file:directorindex.xml"},

director {{
var Dir1,
var Dir2 }}

}
END

%%%%%%%Rule 7 - No data inside a director tag
%%%%%%%rule_no_director_data.xce
GOAL

all err ["director tag without data"]
FROM

in {
resource {"file:directorindex.xml"},

director {{
without_data

}}
}

END

6.13. FULL THEATER EXAMPLE 175

%%%%%%%Rule 8 - Double showname tag inside a show tag
%%%%%%%rule_double_showname.xce
GOAL

all err ["double showname"]
FROM

in {
resource {"file:showindex.xml"},

show {{
showname {{ }},
showname {{ }}

}}
}

END

%%%%%%%Rule 9 - No showname tag inside a show tag
%%%%%%%rule_no_showname.xce
GOAL

all err ["show without a showname tag"]
FROM

in {
resource {"file:showindex.xml"},
show {{

without showname {{ }}
}}

}
END

%%%%%%%Rule 10 - Double dir_by tag inside a show tag
%%%%%%%rule_double_dir_by.xce
GOAL

all err ["double dir_by"]
FROM

in {
resource {"file:showindex.xml"},

show {{
dir_by {{ }},
dir_by {{ }}

}}
}

END

176 CHAPTER 6. WEB SITE VERIFICATION AND REPAIR

%%%%%%%Rule 11 - Double year tag inside a show tag
%%%%%%%rule_double_year.xce
GOAL

all err ["show with double year"]
FROM

in {
resource {"file:showindex.xml"},

show {{
year {{ }},
year {{ }}

}}
}

END

%%%%%%%Rule 12 - No year tag inside a show tag
%%%%%%%rule_no_year.xce
GOAL

all err ["show without a year tag"]
FROM

in {
resource {"file:showindex.xml"},

show {{
without year {{ }}

}}
}

END

%%%%%%%Rule 13 - Double data inside a showname tag
%%%%%%%rule_double_showname_data.xce
GOAL

all err [var Showname1, var Showname2,
"double data in showname tag"]

FROM
in {
resource {"file:showindex.xml"},

showname {{
var Showname1,
var Showname2

}}
}

END

6.13. FULL THEATER EXAMPLE 177

%%%%%%%Rule 14 - No data inside a showname tag
%%%%%%%rule_no_showname_data.xce
GOAL

all err ["showname tag without data"]
FROM

in {
resource {"file:showindex.xml"},
showname {{

without_data
}}

}
END

%%%%%%%Rule 15 - Double data inside a dir_by tag
%%%%%%%rule_double_dir_by_data.xce
GOAL

all err [var Dir1, var Dir2, "double data in dir_by tag"]
FROM

in {
resource {"file:showindex.xml"},

dir_by {{
var Dir1,
var Dir2

}}
}

END

%%%%%%%Rule 16 - No data inside a year tag
%%%%%%%rule_no_year_data.xce
GOAL

all err ["year tag without data"]
FROM

in {
resource {"file:showindex.xml"},
year {{

without_data
}}

}
END

%%%%%%%Rule 17 - Double data inside a year tag
%%%%%%%rule_double_year_data.xce
GOAL

all err [var Year1, var Year2,
"double data in year tag"]

FROM
in {

resource {"file:showindex.xml"},
year {{

var Year1, var Year2
}}

}
END

178 CHAPTER 6. WEB SITE VERIFICATION AND REPAIR

6.13.4 Abductive logic program for checking

abducible(abd_err(_,_)).

some_data(ID) :- data_el(_,_,ID).

%%%% rule_director_twice_inlist.xce %%%
[pg_el(ID1,directorlist,_),
pg_el(ID2,director,ID1),
data_el(ID3,Dir1,ID2),
pg_el(ID4,director,ID1),
data_el(ID5,Dir1,ID4),ID2#\=ID4]
implies

[abd_err([Dir1],’director twice in the director list’)].

%%%% rule_year_before_2000.xce %%%
[pg_el(ID1,year,_),
data_el(ID2,Year,ID1),
Year#<2000]
implies

[abd_err([Year],’show produced before 2000’)].

%%%% rule_director_without_show.xce %%%
pred_0(ID3,DirName) :-

pg_el(ID4,show,ID3),
pg_el(ID5,dir_by,ID4),
data_el(ID6,DirName,ID5).

[pg_el(ID1,director,_),
data_el(ID2,DirName,ID1),
pg_el(ID3,showlist,_),
not(pred_0(ID3,DirName))]
implies

[abd_err([DirName],’director without a show’)].

%%%% rule_no_dir_by.xce %%%
pred_1(ID1) :-

pg_el(ID2,dir_by,ID1).

[pg_el(ID1,show,_),
not(pred_1(ID1))]
implies

[abd_err([],’show without a dir_by tag’)].

%%%% rule_no_dir_by_data.xce %%%
[pg_el(ID1,dir_by,_),
not(some_data(ID1))]
implies

[abd_err([],’dir_by tag without data’)].

%%%% rule_double_dir_by.xce %%%
[pg_el(ID1,show,_),
pg_el(ID2,dir_by,ID1),
pg_el(ID3,dir_by,ID1),ID2#\=ID3]

6.13. FULL THEATER EXAMPLE 179

implies
[abd_err([],’double dir_by’)].

%%%% rule_double_dir_by_data.xce %%%
[pg_el(ID1,dir_by,_),
data_el(ID2,Dir1,ID1),
data_el(ID3,Dir2,ID1),ID2#\=ID3]
implies

[abd_err([Dir1,Dir2],’double data in dir_by tag’)].

%%%% rule_double_director_data.xce %%%
[pg_el(ID1,director,_),
data_el(ID2,Dir1,ID1),
data_el(ID3,Dir2,ID1),ID2#\=ID3]
implies

[abd_err([Dir1,Dir2],’double data in director tag’)].

%%%% rule_double_showname.xce %%%
[pg_el(ID1,show,_),
pg_el(ID2,showname,ID1),
pg_el(ID3,showname,ID1),ID2#\=ID3]
implies

[abd_err([],’double showname’)].

%%%% rule_double_showname_data.xce %%%
[pg_el(ID1,showname,_),
data_el(ID2,Showname1,ID1),
data_el(ID3,Showname2,ID1),ID2#\=ID3]
implies

[abd_err([Showname1,Showname2],’double data in showname tag’)].

%%%% rule_double_year.xce %%%
[pg_el(ID1,show,_),
pg_el(ID2,year,ID1),
pg_el(ID3,year,ID1),ID2#\=ID3]
implies

[abd_err([],’show with double year’)].

%%%% rule_double_year_data.xce %%%
[pg_el(ID1,year,_),
data_el(ID2,Year1,ID1),
data_el(ID3,Year2,ID1),ID2#\=ID3]
implies

[abd_err([Year1,Year2],’double data in year tag’)].

%%%% rule_no_director_data.xce %%%
[pg_el(ID1,director,_),
not(some_data(ID1))]
implies

[abd_err([],’director tag without data’)].

%%%% rule_no_showname.xce %%%
pred_2(ID1) :-

pg_el(ID2,showname,ID1).

180 CHAPTER 6. WEB SITE VERIFICATION AND REPAIR

[pg_el(ID1,show,_),
not(pred_2(ID1))]
implies

[abd_err([],’show without a showname tag’)].

%%%% rule_no_showname_data.xce %%%
[pg_el(ID1,showname,_),
not(some_data(ID1))]
implies

[abd_err([],’showname tag without data’)].

%%%% rule_no_year.xce %%%
pred_3(ID1) :-

pg_el(ID2,year,ID1).

[pg_el(ID1,show,_),
not(pred_3(ID1))]
implies

[abd_err([],’show without a year tag’)].

%%%% rule_no_year_data.xce %%%
[pg_el(ID1,year,_),
not(some_data(ID1))]
implies

[abd_err([],’year tag without data’)].

6.13. FULL THEATER EXAMPLE 181

6.13.5 Abductive logic program for repairing

abducible(abd_err(_,_)).
abducible(abd_pg_el(_,_,_)).
abducible(abd_data_el(_,_,_)).

all_pg_el(X,Y,Z) :- pg_el(X,Y,Z).
all_pg_el(X,Y,Z) :- abd_pg_el(X,Y,Z).

all_data_el(X,Y,Z) :- data_el(X,Y,Z).
all_data_el(X,Y,Z) :- abd_data_el(X,Y,Z).

rep_some_data(F) :- data_el(_,_,F).
rep_some_data(F) :- abd_data_el(_,_,F), not(data_el(_,_,F)).

%%%% rule_director_twice_inlist.xce %%%
[all_pg_el(ID1,directorlist,_),
all_pg_el(ID2,director,ID1),
all_data_el(ID3,Dir1,ID2),
all_pg_el(ID4,director,ID1),
all_data_el(ID5,Dir1,ID4),ID2#\=ID4]
implies

[abd_err([Dir1],’director twice in the director list’)].

%%%% rule_year_before_2000.xce %%%
[all_pg_el(ID1,year,_),
all_data_el(ID2,Year,ID1),
Year#<2000]
implies

[abd_err([Year],’show produced before 2000’)].

%%%% rule_director_without_show.xce %%%
pred_0(ID3,DirName) :-

pg_el(ID4,show,ID3),
pg_el(ID5,dir_by,ID4),
data_el(ID6,DirName,ID5).

rep_pred_0(ID3,DirName) :-
pred_0(ID3,DirName).

rep_pred_0(ID3,DirName) :-
all_pg_el(ID4,show,ID3),
all_pg_el(ID5,dir_by,ID4),
all_data_el(ID6,DirName,ID5),
not(pred_0(ID3,DirName)).

head_pred_1(ID3,DirName) :-
rep_pred_0(ID3,DirName).

[all_pg_el(ID1,director,_),
all_data_el(ID2,DirName,ID1),
all_pg_el(ID3,showlist,_)]
implies

[head_pred_1(ID3,DirName)].

%%%% rule_no_dir_by.xce %%%
pred_1(ID1) :-

182 CHAPTER 6. WEB SITE VERIFICATION AND REPAIR

pg_el(ID2,dir_by,ID1).
rep_pred_1(ID1) :-

pred_1(ID1).
rep_pred_1(ID1) :-

all_pg_el(ID2,dir_by,ID1),
not(pred_1(ID1)).

head_pred_9(ID1) :-
rep_pred_1(ID1).

[all_pg_el(ID1,show,_)]
implies

[head_pred_9(ID1)].

%%%% rule_no_dir_by_data.xce %%%
[all_pg_el(ID1,dir_by,_)]
implies

[rep_some_data(ID1)].

%%%% rule_double_dir_by.xce %%%
[all_pg_el(ID1,show,_),
all_pg_el(ID2,dir_by,ID1),
all_pg_el(ID3,dir_by,ID1),ID2#\=ID3]
implies

[abd_err([],’double dir_by’)].

%%%% rule_double_dir_by_data.xce %%%
[all_pg_el(ID1,dir_by,_),
all_data_el(ID2,Dir1,ID1),
all_data_el(ID3,Dir2,ID1),ID2#\=ID3]
implies

[abd_err([Dir1,Dir2],’double data in dir_by tag’)].

%%%% rule_double_director_data.xce %%%
[all_pg_el(ID1,director,_),
all_data_el(ID2,Dir1,ID1),
all_data_el(ID3,Dir2,ID1),ID2#\=ID3]
implies

[abd_err([Dir1,Dir2],’double data in director tag’)].

%%%% rule_double_showname.xce %%%
[all_pg_el(ID1,show,_),
all_pg_el(ID2,showname,ID1),
all_pg_el(ID3,showname,ID1),ID2#\=ID3]
implies

[abd_err([],’double showname’)].

%%%% rule_double_showname_data.xce %%%
[all_pg_el(ID1,showname,_),
all_data_el(ID2,Showname1,ID1),
all_data_el(ID3,Showname2,ID1),ID2#\=ID3]
implies

[abd_err([Showname1,Showname2],’double data in showname tag’)].

%%%% rule_double_year.xce %%%

6.13. FULL THEATER EXAMPLE 183

[all_pg_el(ID1,show,_),
all_pg_el(ID2,year,ID1),
all_pg_el(ID3,year,ID1),ID2#\=ID3]
implies

[abd_err([],’show with double year’)].

%%%% rule_double_year_data.xce %%%
[all_pg_el(ID1,year,_),
all_data_el(ID2,Year1,ID1),
all_data_el(ID3,Year2,ID1),ID2#\=ID3]
implies

[abd_err([Year1,Year2],’double data in year tag’)].

%%%% rule_no_director_data.xce %%%
[all_pg_el(ID1,director,_)]
implies

[rep_some_data(ID1)].

%%%% rule_no_showname.xce %%%
pred_2(ID1) :-

pg_el(ID2,showname,ID1).
rep_pred_2(ID1) :-

pred_2(ID1).
rep_pred_2(ID1) :-

all_pg_el(ID2,showname,ID1),
not(pred_2(ID1)).

head_pred_12(ID1) :-
rep_pred_2(ID1).

[all_pg_el(ID1,show,_)]
implies

[head_pred_12(ID1)].

%%%% rule_no_showname_data.xce %%%
[all_pg_el(ID1,showname,_)]
implies

[rep_some_data(ID1)].

%%%% rule_no_year.xce %%%
pred_3(ID1) :-

pg_el(ID2,year,ID1).
rep_pred_3(ID1) :-

pred_3(ID1).
rep_pred_3(ID1) :-

all_pg_el(ID2,year,ID1),
not(pred_3(ID1)).

head_pred_14(ID1) :-
rep_pred_3(ID1).

[all_pg_el(ID1,show,_)]
implies

[head_pred_14(ID1)].

%%%% rule_no_year_data.xce %%%

184 CHAPTER 6. WEB SITE VERIFICATION AND REPAIR

[all_pg_el(ID1,year,_)]
implies

[rep_some_data(ID1)].

Chapter 7

Conclusions

In this thesis we have presented the CIFF (and CIFF¬) proof procedure for abductive logic pro-
gramming with constraints together with its Prolog implementation, the CIFF System. We have
also presented a CIFF application for checking and (possibly) repairing XML web sites instances
against sets of domain-dependent high level requirements, thus evidencing even more how declar-
ative approaches and abduction could be very useful tools supporting the (Semantic) Web vision.

The CIFF proof procedure, based on the IFF proof procedure [82], represents an advance in the
expressiveness of the abductive framework including a number of interesting features:

• the non-straightforward handling of existentially quantified and universally quantified vari-
ables (managing at run-time the presence of “dangerous” quantification patterns, i.e. quan-
tification patterns leading to floundering),

• the integration with a finite domain constraint solver,

• the use of implicative integrity constraints which are very expressive form of integrity cos-
ntraints and

• a Negation As Failure (NAF) treatment for negation in the body of integrity constraints (in
the CIFF¬ proof procedure).

The above set of features raises the bar of the expressiveness of the abductive framework seen
in state-of-the-art abductive proof procedures (with constraints), e.g. the IFF proof procedure
[82, 157, 81], the SLDNFA proof procedure [60, 61], the ACLP proof procedure [109, 108] and the
A-System [111, 139].
Another main contribution of this thesis is the proof of soundness of both CIFF and CIFF¬ proof
procedures with respect to the three-valued completion semantics.

CIFF and CIFF¬ are both implemented in the CIFF System, in Prolog. The CIFF System required
about two years of work to be fully developed, and most of the time has been spent in order to
make the system both efficient and reflecting as much as possible the computational schema of
the specification. A run of the CIFF System can be traced by the user following the application
of CIFF proof rules as in the specification. Experimental results, over a number of benchmarks
and applications, show that the CIFF System is comparable in performance to the other existing
state-of-the-art abductive systems (the A-System) and other related tools, namely the answer sets
solvers for Answer Sets Programming (in particular the DLV [68, 119] solver and the SMODELS
[136, 166] solver).
Comparing CIFF with the Answer Sets Programming paradigm, which is nowadays a very popular
paradigm in the nonmonotonic knowledge representation field, we also outline how the CIFF¬

proof procedure can behave as an answer sets solver, thus representing a step towards an unifying
framework including all the benefits of Abductive Logic Programming with Constraints (constraint

186 CHAPTER 7. CONCLUSIONS

solving, goal-orientedness, handling of non-ground terms and so on), with the benefits of Answer
Sets Programming (termination, completeness with respect to the answers sets semantics and good
computational results).
The CIFF proof procedure, however, leaves open many possibilities of future work. At a theoretical
level, apart from the formal work about the relation of CIFF with the ASP paradigm, it would
be interesting to prove some completeness results with respect to the three-valued completion
semantics, at least characterizing a certain class of abductive logic programming with constraints
as the IFF procedure does, ensuring its completeness with respect to the class of IFF allowed
frameworks [81]. Concerning the CIFF System, some lines of future work could be:

• the development of a friendly GUI,

• the possibility of invoking Prolog built-in predicates and functions directly, and

• further improvements in the management of integrity constraints.

The last contribution of this thesis is the development of the CIFFWEB System for checking
and (possibly) repairing XML web sites instances against sets of domain-dependent high level
requirements.
The CIFFWEB system is a tool which integrates:

• the CIFF System, and

• a JAVA translator from web checking rules to both abductive logic programs with constraints
for checking the web sites instances and abductive logic programs with constraints for re-
pairing the web sites instances.

Web checking rules are human-tailored rules for expressing the web site requirements which the
XML web site instances have to fulfill. We have defined a formal syntax for web checking rules by
using a fragment of the well-known XML query language Xcerpt [37]. This choice is due to both its
similarities to logic programming, its expressiveness and its very intuitive syntax. Then we have
defined a formal translation function from web checking rules to both abductive logic programs with
constraints for checking and abductive logic programs with constraints for repairing the web sites
instances. Those programs are then used as input for CIFF which either determines the fulfillment
of the web checking rules or detects (and possibly suggests appropriate repairing actions for) the
errors in the XML instances. The errors captured by this methodology are both structural errors
(i.e. errors concerning the compliance of the XML tag structure with respect to the web checking
rules) and data errors (i.e. errors concerning the raw values inside the XML tags).
We have outlined, by means of examples, how the CIFFWEB tool is able to suggest non-trivial and
non-ground repairing actions in terms of abduced XML elements taking advantage of the unique
features of CIFF as a tool for knowledge representation. These abduced XML elements, added
to the original data, could repair certain types of errors, in particular those errors concerning the
lack of some piece of information. To our knowledge, this is a novel feature which is absent in the
other existing tools for web verification.
We argue that the capability of repairing XML data, both at structural and data level, is a very
interesting feature for web tools under the Semantic Web [13] vision and the abductive reasoning
plus the unique features of CIFF (and CIFF¬) are very suitable for exploring this field.

Bibliography

[1] SICStus Prolog. http://www.sics.se/isl/sicstuswww/site/index.html.

[2] H. Aı̈t-Kaci. Warren’s Abstract Machine: A Tutorial Reconstruction. MIT Press, 1991.

[3] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, M. Montali, and P. Torroni. A
rule-based approach for reasoning about collaboration between smart web services. In Web
Reasoning and Rule Systems, pages 279–288, 2007.

[4] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, M. Montali, and P. Torroni. Web
service contracting: Specification and reasoning with SCIFF. In 4th European Semantic Web
Conference, pages 68–83, 2007.

[5] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Verifiable agent
interaction in abductive logic programming: the SCIFF framework. ACM Transactions on
Computational Logic (ToCL), 2007.

[6] M. Alberti, M. Gavanelli, E. Lamma, F. Chesani, P. Mello, and M. Montali. An abductive
framework for a-priori verification of web services. In Proceedings of the 8th International
ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, pages
39–50, Venice, Italy, 2006.

[7] M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. The SCIFF abductive proof-
procedure. In Congress of the Italian Association for Artificial Intelligence (AI*IA), pages
135–147, 2005.

[8] J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, and T. C. Przymusinski. Dynamic
updates of non-monotonic knowledge bases. J. Log. Program., 45(1-3):43–70, 2000.

[9] J. J. Alferes, L. M. Pereira, and T. Swift. Abduction in well-founded semantics and gener-
alized stable models via tabled dual programs. Theory and Practice of Logic Programming,
4(4):383–428, 2004.

[10] M. Alpuente, D. Ballis, and M. Falaschi. A rewriting-based framework for web sites verifi-
cation. Electronic Notes in Theoretical Computer Science, 124:41–61, 2005.

[11] M. Alpuente, D. Ballis, M. Falaschi, and D. Romero. A semi-automatic methodology for
repairing faulty web sites. 4th IEEE International Conference on Software Engineering and
Formal Methods (SEFM), 0:31–40, 2006.

[12] M. Alpuente, D. Ballis, M. Falaschi, and D. Romero. A semi-automatic methodology for
repairing faultyweb sites. In Fourth IEEE International Conference on Software Engineering
and Formal Methods (SEFM), pages 31–40, Pune, India, 2006.

[13] G. Antoniou and F. van Harmelen. A Semantic Web Primer (Cooperative Information
Systems). The MIT Press, April 2004.

[14] K. R. Apt. Introduction to logic programming. In Handbook of Theoretical Computer Science,
Volume B: Formal Models and Sematics (B), pages 493–574. Elsevier and MIT Press, 1990.

188 CHAPTER 7. BIBLIOGRAPHY

[15] K. R. Apt. Principles of Constraint Programming. Cambridge University Press, 2003.

[16] K. R. Apt, H. A. Blair, and A. Walker. Towards a theory of declarative knowledge. In
Foundations of deductive databases and logic programming, pages 89–148. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1988.

[17] K. R. Apt and R. N. Bol. Logic programming and negation: A survey. Journal of Logic
Programming, 19/20:9–71, 1994.

[18] K. R. Apt and M. H. van Emden. Contributions to the theory of logic programming. J.
ACM, 29(3):841–862, 1982.

[19] C. Aravindan and P. M. Dung. Knowledge base dynamics, abduction, and database updates.
Journal of Applied Non-Classical Logics, 5(1):51–76, 1995.

[20] O. Arieli, M. Denecker, B. V. Nuffelen, and M. Bruynooghe. Coherent integration of
databases by abductive logic programming. Journal of Artificial Intelligence Research,
21:245–286, 2004.

[21] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors.
The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge
University Press, 2003.

[22] M. Balduccini, M. Gelfond, and M. Nogueira. Answer set based design of knowledge systems.
Annals of Mathematics and Artificial Intelligence, 47(1-2):183–219, 2006.

[23] D. Ballis and D. Romero. Fixing web sites using correction stategies. In Proc. of the 2nd Inter-
national Workshop on Automated Specification and Verification of Web Systems (WWV’06),
2006.

[24] C. Baral. Knowledge Representation, Reasoning, and Declarative Problem Solving. Cam-
bridge University Press, New York, NY, USA, 2003.

[25] C. Baral and M. Gelfond. Logic programming and knowledge representation. J. Log. Pro-
gram., 19/20:73–148, 1994.

[26] K. V. Belleghem, M. Denecker, and D. D. Schreye. A strong correspondence between de-
scription logics and open logic programming. In Proc. of the 14th International Conference
on Logic Programming, pages 346–360, 1997.

[27] S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu, J. Robie, and J. Simon. XQuery 1.0:
An XML query language, 2007. http://www.w3.org/TR/xquery/ seen on April 30th, 2008.

[28] P. A. Bonatti. Abduction, ASP and open logic programs. The Computing Research Repository
(CoRR), cs.AI/0207021, 2002.

[29] P. A. Bonatti. Abduction over unbounded domains via ASP. In Proc. of the 16th European
Conference on Artificial Intelligence, pages 288–292, 2004.

[30] A. Bondarenko, P. M. Dung, R. A. Kowalski, and F. Toni. An abstract, argumentation-
theoretic approach to default reasoning. Artificial Intellegence, 93(1-2):63–101, 1997.

[31] A. Bracciali, N. Demetriou, U. Endriss, A. C. Kakas, W. Lu, P. Mancarella, F. Sadri,
K. Stathis, G. Terreni, and F. Toni. The KGP model of agency for global computing:
Computational model and prototype implementation. In Global Computing, pages 340–367,
2004.

[32] S. Bressan, C. H. Goh, K. Fynn, M. J. Jakobisiak, K. Hussein, H. B. Kon, T. Lee, S. E.
Madnick, T. Pena, J. Qu, A. W. Shum, and M. Siegel. The context interchange mediator
prototype. In Proceedings of the ACM SIGMOD International Conference on Management
of Data, pages 525–527, 1997.

7.0. BIBLIOGRAPHY 189

[33] S. Bressan, C. H. Goh, T. Lee, S. E. Madnick, and M. Siegel. A procedure for mediation
of queries to sources in disparate contexts. In Proc. of the International Logic Programming
Symposium, pages 213–227, 1997.

[34] G. Brewka. Preferred subtheories: An extended logical framework for default reasoning. In
Proc. of the 11st International Joint Conference on Artificial Intelligence, pages 1043–1048,
1989.

[35] D. Brickley and R. V. Guha. RDF vocabulary description langauge 1.0: RDF Schema, 2003.
http://www.w3.org/TR/rdf-schema/ seen on April 30th, 2008.

[36] F. Bry and M. Eckert. A high-level query language for events. In Proc. of the Electrical
Design of Advanced Packaging and Systems 2006, pages 31–38, 2006.

[37] F. Bry, T. Furche, and B. Linse. Data model and query constructs for versatile web query
languages: State-of-the-art and challenges for Xcerpt. In Proc. of the 4th Workshop on
Principles and Practice of Semantic Web Reasoning, pages 90–104, 2006.

[38] F. Bry and S. Schaffert. The XML query language Xcerpt: Design principles, examples, and
semantics, 2002.

[39] O. K. C. Elsenbroich and U. Sattler. A case for abductive reasoning over ontologies. In Proc.
of OWL: Experiences and Directions, 2006.

[40] L. Capra, W. Emmerich, A. Finkelstein, and C. Nentwich. XLINKIT: a consistency checking
and smart link generation service. ACM Transac. on IT, 2:151–185, 2002.

[41] E. Charniak and D. McDermott. Introduction to Artificial Intelligence. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1985.

[42] W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic programs. J.
ACM, 43(1):20–74, 1996.

[43] P. Cholewinski, V. W. Marek, and M. Truszczynski. Default reasoning system DeReS. In
Proc. of the 5th Principles of Knowledge Representation and Reasoning Conference, pages
518–528, Cambridge, MA, USA, 1996.

[44] H. Christiansen. Executable specifications for hypotheses-based reasoning with prolog and
constraint handling rules. Journal of Applied Logic, 2008. Accepted for publication.

[45] A. Ciampolini, E. Lamma, P. Mello, and C. Stefanelli. Abductive coordination for logic
agents. In Proc.of the 14th ACM Symposium on Applied Computing, pages 134–140, 1999.

[46] A. Ciampolini, E. Lamma, P. Mello, F. Toni, and P. Torroni. Cooperation and competition
in alias: A logic framework for agents that negotiate. Annals of Mathematics and Artificial
Intelligence, 37(1-2):65–91, 2003.

[47] J. Clark and S. DeRose. XML Path language (XPath) version 1.0, 1999.

[48] K. L. Clark. Negation as failure. In Logic and Data Bases. Plenum Press, 1978.

[49] C. Codognet and P. Codognet. Abduction and concurrent logic languages. In Proc. of the
11th European Conference on Artificial Intelligence, pages 75–79, 1994.

[50] J. Coelho and M. Florido. Veriflog: A constraint logic programming approach to verification
of website content. In Advanced Web and Network Technologies, and Applications, APWeb
2006 International Workshops: XRA, IWSN, MEGA, and ICSE, pages 148–156, Harbin,
China, 2006.

190 CHAPTER 7. BIBLIOGRAPHY

[51] J. Coelho and M. Florido. Type-based static and dynamic website verification. In Inter-
national Conference on Internet and Web Applications and Services (ICIW), page 32, Le
Morne, Mauritius, 2007.

[52] J. Coelho and M. Florido. Xcentric: logic programming for xml processing. In 9th ACM
International Workshop on Web Information and Data Management (WIDM), pages 1–8,
Lisbon, Portugal, 2007.

[53] P. R. Cohen and H. J. Levesque. Intention is choice with commitment. Artificial Intelligence,
42(2-3):213–261, 1990.

[54] A. Colmerauer and P. Roussel. The birth of Prolog. In History of Programming Languages
Preprints, pages 37–52, 1993.

[55] L. Console, D. T. Dupre, and P. Torasso. On the relationship between abduction and deduc-
tion. Journal of Logic and Computation, 1(5):661–690, 1991.

[56] L. Console, L. Portinale, and D. T. Dupré;. Using compiled knowledge to guide and focus
abductive diagnosis. IEEE Transactions on Knowledge and Data Engineering, 8(5):690–706,
1996.

[57] P. T. Cox and T. Pietrzykowski. Causes for events: their computation and applications.
In Proc. of the 8th International Conference on Automated Deduction, pages 608–621, New
York, NY, USA, 1986. Springer-Verlag New York, Inc.

[58] R. Davis and R. G. Smith. Negotiation as a metaphor for distributed problem solving. In
Distributed Artificial Intelligence, pages 333–356. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1988.

[59] M. Denecker, L. Missiaen, and M. Bruynooghe. Temporal reasoning with abductive event
calculus. In Proc. of the 10th European Conference on Artificial Intelligence, pages 384–388,
1992.

[60] M. Denecker and D. D. Schreye. SLDNFA: An abductive procedure for normal abductive
programs. In Joint International Conference and Symposium on Logic Programming, pages
686–700, 1992.

[61] M. Denecker and D. D. Schreye. SLDNFA: An abductive procedure for abductive logic
programs. J. Log. Program., 34(2):111–167, 1998.

[62] T. Despeyroux and B. Trousse. Semantic verification of web sites using natural semantics. In
Proc. of the 6th Conference on Content-Based Multimedia Information Access, Paris, France,
2000.

[63] Y. Dimopoulos and A. C. Kakas. Information integration and computational logic. The
Computing Research Repository (CoRR), cs.AI/0106025, 2001.

[64] P. M. Dung. Negations as hypotheses: An abductive foundation for logic programming. In
Proc. of the 8th International Conference on Logic Programming, pages 3–17, 1991.

[65] P. M. Dung. On the relations between stable and well-founded semantics of logic programs.
Theor. Comput. Sci., 105(1):7–25, 1992.

[66] T. Eiter and G. Gottlob. The complexity of logic-based abduction. In Proc. of the 10th
Symposium on Theoretical Aspects of Computer Science, pages 70–79, 1993.

[67] T. Eiter, G. Gottlob, and N. Leone. Abduction from logic programs: Semantics and com-
plexity. Theor. Comput. Sci., 189(1-2):129–177, 1997.

7.0. BIBLIOGRAPHY 191

[68] T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. A deductive system for non-
monotonic reasoning. In Proc. of the 4th International Conference on Logic Programming
and Nonmonotonic Reasoning, pages 364–375, London, UK, 1997. Springer-Verlag.

[69] M. H. V. Emden and R. A. Kowalski. The semantics of predicate logic as a programming
language. J. ACM, 23(4):733–742, 1976.

[70] U. Endriss, M. Hatzitaskos, P. Mancarella, F. Sadri, G. Terreni, and F. Toni. Refinements
of the CIFF procedure. In Proc. of the 12th Workshop on Automated Reasoning, Edinburgh,
UK, 2005.

[71] U. Endriss, P. Mancarella, F. Sadri, G. Terreni, and F. Toni. Abductive logic program-
ming with CIFF: implementation and applications, 2004. Convegno Italiano di Logica Com-
putazionale (CILC).

[72] U. Endriss, P. Mancarella, F. Sadri, G. Terreni, and F. Toni. Abductive logic programming
with CIFF: system description. In Proc. of the 9th European Conference on Logics in Artificial
Intelligence (JELIA), Lisbon, Portugal, 2004.

[73] U. Endriss, P. Mancarella, F. Sadri, G. Terreni, and F. Toni. The CIFF proof procedure for
abductive logic programming with constraints. In Proc. of the 9th European Conference on
Logics in Artificial Intelligence (JELIA), Lisbon, Portugal, 2004.

[74] K. Eshghi. Abductive planning with event calculus. In Proc. of the 5th International Con-
ference on Logic Programming/Symposium on Logic Programming, pages 562–579, 1988.

[75] K. Eshghi and R. A. Kowalski. Abduction compared with negation by failure. In Proc. of
the 6th International Conference on Logic Programming, pages 234–254, 1989.

[76] W. Faber, N. Leone, C. Mateis, and G. Pfeifer. Using database optimization techniques for
nonmonotonic reasoning. In Proc. of the 7th International Workshop on Deductive Databases
and Logic Programming, pages 135–139, 1999.

[77] A. J. Fernández and P. M. Hill. A comparative study of eight constraint programming
languages over the boolean and finite domains. Constraints, 5(3):275–301, 2000.

[78] M. Fernandez, D. Florescu, A. Levy, and D. Suciu. Verifying integrity constraints on web
site. In Proc. of the 16th International Joint Conference on Artificial Intelligence, 1999.

[79] M. Fitting. A deterministic Prolog fixpoint semantics. J. Log. Program., 2(2):111–118, 1985.

[80] T. W. Frühwirth. Theory and practice of constraint handling rules. J. Log. Program., 37(1-
3):95–138, 1998.

[81] T. H. Fung. Abduction by deduction. PhD thesis, Imperial College, University of London,
1996.

[82] T. H. Fung and R. A. Kowalski. The IFF proof procedure for abductive logic programming.
J. Log. Program., 33(2):151–165, 1997.

[83] D. Gabbay, R. Kempson, and J. Pitt. Labelled abduction and relevance reasoning. In
Nonstandard queries and nonstandard answers: studies in logic and computation, pages 155–
185. Oxford University Press, Oxford, UK, 1994.

[84] J. Gartner, T. Swift, A. Tien, C. V. Damásio, and L. M. Pereira. Psychiatric diagnosis from
the viewpoint of computational logic. In Proc. of Computational Logic, First International
Conference, pages 1362–1376, London, UK, 2000.

192 CHAPTER 7. BIBLIOGRAPHY

[85] A. V. Gelder. The alternating fixpoint of logic programs with negation. In PODS ’89:
Proceedings of the eighth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, pages 1–10, New York, NY, USA, 1989. ACM Press.

[86] A. V. Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general logic
programs. J. ACM, 38(3):619–649, 1991.

[87] M. Gelfond and N. Leone. Logic programming and knowledge representation — the A-Prolog
perspective. Artificial Intelligence, 138(1–2):3–38, 2002.

[88] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Proc. of
the 5th International Conference on Logic Programming/Symposium on Logic Programming,
pages 1070–1080, 1988.

[89] M. Gelfond and V. Lifschitz. Logic programs with classical negation. Proc. of the 7th
International Conference on Logic Programming, pages 579–597, 1990.

[90] M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases.
New Generation Computing, 9(3/4):365–386, 1991.

[91] E. Giunchiglia, Y. Lierler, and M. Maratea. Answer set programming based on propositional
satisfiability. J. Autom. Reason., 36(4):345–377, 2006.

[92] P. Hayes. RDF semantics, 2003. http://www.w3.org/TR/rdf-mt/ seen on April 30th, 2008.

[93] C. Holzbaur. Metastructures versus attributed variables in the context of extensible unifica-
tion. In Proc. of the 4th Symposium on Programming Language Implementation and Logic
Programming, pages 260–268, Leuven, Belgium, 1992.

[94] J. Jaffar and M. Maher. Constraint logic programming: A survey. Journal of Logic Pro-
gramming, 19/20:503–581, 1994.

[95] J. Jaffar, M. J. Maher, K. Marriott, and P. J. Stuckey. The semantics of constraint logic
programs. Journal of Logic Programming, 37(1-3):1–46, 1998.

[96] A. Kakas and M. Denecker. Abduction in logic programming. In Computational Logic: Logic
Programming and Beyond. Part I, pages 402–436. Springer Verlag, 2002.

[97] A. Kakas, R. Kowalski, and F. Toni. The role of abduction in logic programming. In Handbook
of logic in Artificial Intelligence and Logic Programming, volume 5, pages 235–324. Oxford
University Press, 1998.

[98] A. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni. A logic-based approach to model
computees., 2003. Deliverable D4. SOCS Consortium.

[99] A. C. Kakas, R. A. Kowalski, and F. Toni. Abductive logic programming. Journal of Logic
and Computation, 2(6):719–770, 1992.

[100] A. C. Kakas and P. Mancarella. Abductive logic programming. In Proc. of the 1st Logic
Programming and Non-Monotonic Reasoning (LPNMR), pages 49–61, 1990.

[101] A. C. Kakas and P. Mancarella. Database updates through abduction. In Proc. of the
16th Very Large Data Bases (VLDB) Conference, pages 650–661, Brisbane, Queensland,
Australia, 1990. Morgan Kaufmann.

[102] A. C. Kakas and P. Mancarella. Generalized stable models: A semantics for abduction. In
Proc. of the 9th European Conference on Artificial Intelligence, pages 385–391, 1990.

[103] A. C. Kakas and P. Mancarella. Knowledge assimilation and abduction. In Proc. of the Truth
Maintenance Systems (European Conference on Artificial Intelligence Workshop), pages 54–
70, Stockholm, Sweden, 1990.

7.0. BIBLIOGRAPHY 193

[104] A. C. Kakas and P. Mancarella. On the relation of truth maintenance and abduction. In
Proc. 1st Pacific Rim International Conference on Artificial Intelligence, PRICAI90, Nagoya,
Japan, 1990.

[105] A. C. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni. The KGP model of agency.
In Proc. of the 16th European Conference on Artificial Intelligence, pages 33–37, 2004.

[106] A. C. Kakas and A. Michael. Integrating abductive and constraint logic programming. In
Proc. of the 12th International Conference on Logic Programming, pages 399–413, 1995.

[107] A. C. Kakas and A. Michael. Air-crew scheduling through abduction. In Proc.of the
12th Industrial and Engineering Applications of Artificial Intelligence and Expert Systems
(IEA/AIE), pages 600–611, Cairo, Egypt, 1999.

[108] A. C. Kakas and A. Michael. An abductive-based scheduler for air-crew assignment. Applied
Artificial Intelligence, 15(3):333–360, 2001.

[109] A. C. Kakas, A. Michael, and C. Mourlas. ACLP: Abductive constraint logic programming.
Journal of Logic Programming, 44:129–177, 2000.

[110] A. C. Kakas and C. Mourlas. ACLP: Flexible solutions to complex problems. In Proc. of the
4th Logic Programming and Non-Monotonic Reasoning (LPNMR), pages 388–399, 1997.

[111] A. C. Kakas, B. V. Nuffelen, and M. Denecker. A-System: Problem solving through abduc-
tion. In Proc. of the 17th International Joint Conference on Artificial Intelligence, pages
591–596, 2001.

[112] S. C. Kleene. Introduction to Metamathematics. Bibl. Matematica. North-Holland, Amster-
dam, 1952.

[113] R. Kowalski. Logic for Problem Solving. North-Holland Publishing Co., Amsterdam, The
Netherlands, The Netherlands, 1986.

[114] R. Kowalski and F. Sadri. From logic programming towards multi-agent systems. Annals of
Mathematics and Artificial Intelligence, 25(3-4):391–419, 1999.

[115] R. Kowalski and M. Sergot. A logic-based calculus of events. New Gen. Comput., 4(1):67–95,
1986.

[116] R. A. Kowalski. Predicate logic as programming language. In Proc. of the 6th International
Federation for Information Processing (IFIP)) World Computer Congress, pages 569–574,
Stockholm, Sweden, 1974.

[117] R. A. Kowalski, F. Toni, and G. Wetzel. Executing suspended logic programs. Fundam.
Inform., 34(3):203–224, 1998.

[118] K. Kunen. Negation in logic programming. J. Log. Program., 4(4):289–308, 1987.

[119] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The DLV
system for knowledge representation and reasoning. ACM Trans. Comput. Logic, 7(3):499–
562, 2006.

[120] V. Lifschitz. Answer set planning. In International Conference on Logic Programming, pages
23–37, 1999.

[121] F. Lin and J.-H. You. Abduction in logic programming: A new definition and an abductive
procedure based on rewriting. Artificial Intelligence, 140(1/2):175–205, 2002.

[122] I. W. Lloyd and R. W. Topor. A basis for deductive database systems - II. J. Log. Program.,
30(1):55–67, 1986.

194 CHAPTER 7. BIBLIOGRAPHY

[123] J. W. Lloyd. Foundations of Logic Programming; (2nd extended ed.). Springer-Verlag New
York, Inc., New York, NY, USA, 1987.

[124] P. Mancarella, F. Sadri, G. Terreni, and F. Toni. Planning partially for situated agents.
In Proc. of the 5th Computational Logic in Multi-Agent Systems, pages 230–248, Lisbon,
Portugal, 2004.

[125] P. Mancarella, F. Sadri, G. Terreni, and F. Toni. Programming application in CIFF. In
Proc. of the 9th Logic Programming and Non-Monotonic Reasoning (LPNMR), Tempe, AZ,
USA, 2007.

[126] P. Mancarella and G. Terreni. An abductive proof procedure handling active rules. In
Congress of the Italian Association for Artificial Intelligence (AI*IA), pages 105–117, 2003.

[127] P. Mancarella, G. Terreni, and F. Toni. Web sites verification: An abductive logic pro-
gramming tool. In Proc. of the 23rd International Conference on Logic Programming, pages
434–435, 2007.

[128] W. Marek and M. Truszczynski. Stable models and an alternative logic programming
paradigm. In The Logic Programming Paradigm: a 25-Year Perspective, pages 375–398.
Springer-Verlag, 1999.

[129] A. Martelli and U. Montanari. An efficient unification algorithm. ACM Transactions on
Programming Languages and Systems, 4(2):258–282, 1982.

[130] J. McCarthy. Programs with common sense. In Proceedings of the Teddington Conference
on the Mechanization of Thought Processes, pages 75–91, London, 1959. Her Majesty’s Sta-
tionary Office.

[131] D. McGuinness and F. V. Harmelen. OWL web ontology language, 2003 .
http://www.w3.org/TR/owl-features/ seen on April 30th, 2008.

[132] P. Mello, E. Lamma, P. Torroni, M. Gavanelli, M. Alberti, M. Milano, and F. Chesani. A
logic-based approach to model interaction amongst computees., 2003. Deliverable D5. SOCS
Consortium.

[133] R. Miller and M. Shanahan. Some alternative formulations of the event calculus. In Com-
putational Logic: Logic Programming and Beyond, Essays in Honour of Robert A. Kowalski,
Part II, pages 452–490, London, UK, 2002. Springer-Verlag.

[134] J. Minker and C. Ruiz. On extended disjunctive logic programs. In International Syposium
on Methodologies for Intelligent Systems, pages 1–18, 1993.

[135] L. Missiaen, M. Bruynooghe, and M. Denecker. CHICA, an abductive planning system based
on event calculus. J. Log. Comput., 5(5):579–602, 1995.

[136] I. Niemela and P. Simons. Smodels - an implementation of the stable model and well-founded
semantics for normal lp. In Proc. of the 4th International Conference on Logic Programming
and Nonmonotonic Reasoning, pages 421–430, London, UK, 1997. Springer-Verlag.

[137] U. Nilsson and J. Maluszynski. Logic, Programming, and Prolog. John Wiley & Sons, Inc.,
New York, NY, USA, 1995.

[138] B. V. Nuffelen. SLDNFA-system. The Computing Research Repository (CoRR),
cs.AI/0003027, 2000.

[139] B. V. Nuffelen. Abductive Constraint Logic Programming: Implementation and Applications.
PhD thesis, K. U. Leuven, 2004.

7.0. BIBLIOGRAPHY 195

[140] B. V. Nuffelen and M. Denecker. Problem solving in ID-logic with aggregates: some experi-
ments. The Computing Research Repository (CoRR), cs.AI/0003030, 2000.

[141] J. Pearl. Embracing causality in formal reasoning. In Proc. of the 6th National Conference
on Artificial Intelligence (AAAI), pages 369–373, Seattle, WA, 1987.

[142] N. Pelov, E. D. Mot, and M. Denecker. Logic programming approaches for representing and
solving constraint satisfaction problems: A comparison. In Proc. of the 7th Logic Program-
ming and Automated Reasoning, pages 225–239, Reunion Island, France, 2000.

[143] L. M. Pereira, J. N. Apaŕıcio, and J. J. Alferes. Nonmonotonic reasoning with well founded
semantics. In Proc. of the 8th International Conference on Logic Programming, pages 475–
489, 1991.

[144] C. S. Pierce. The Collected Papers of Charles Sanders Peirce. Harvard University Press,
1935.

[145] D. Poole. On the comparison of theories: Preferring the most specific explanation. In Proc.
of the 9th International Joint Conference on Artificial Intelligence, pages 144–147, 1985.

[146] D. Poole. A logical framework for default reasoning. Artificial Intelligence, 36(1):27–47,
1988.

[147] C. Preist and K. Eshghi. Consistency-based and abductive diagnoses as generalised stable
models. In Proc. of the 3rd Fifth Generation Computer Systems, pages 514–521, Tokyo,
Japan, 1992.

[148] A. S. Rao and M. P. Georgeff. An abstract architecture for rational agents. In Proc. of the
3rd Principles of Knowledge Representation and Reasoning (KR) International Conference,
pages 439–449, Cambridge, Massachusetts, USA, 1992.

[149] A. S. Rao and M. P. Georgeff. BDI agents: From theory to practice. In Proc. of the 1st
International Conference on Multiagent Systems (ICMAS), pages 312–319, San Francisco,
CA, USA, 1995.

[150] P. Rao, K. F. Sagonas, T. Swift, D. S. Warren, and J. Freire. XSB: A system for efficiently
computing WFS. In Proc. of the 4th Logic Programming and Non-Monotonic Reasoning
(LPNMR), pages 431–441, 1997.

[151] R. Reiter. On closed world data bases. In Logic and Data Bases, pages 55–76. Plenum Press,
1977.

[152] R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32(1):57–95,
1987.

[153] R. Reiter. On asking what a database knows. In J. W. Lloyd, editor, Proceedings of the
Symposium on Computational Logic, pages 96–113. Springer-Verlag, Berlin, Heidelberg, 1990.

[154] J. A. Robinson. A machine-oriented logic based on the resolution principle. J. ACM, 12(1):23–
41, 1965.

[155] D. Saccà and C. Zaniolo. Deterministic and non-deterministic stable models. J. Log. Comput.,
7(5):555–579, 1997.

[156] F. Sadri and R. A. Kowalski. A theorem-proving approach to database integrity. In Founda-
tions of Deductive Databases and Logic Programming., pages 313–362. Morgan Kaufmann,
1988.

[157] F. Sadri and F. Toni. Abduction with negation as failure for active and reactive rules. In
Congress of the Italian Association for Artificial Intelligence (AI*IA), pages 49–60, 1999.

196 CHAPTER 7. BIBLIOGRAPHY

[158] F. Sadri, F. Toni, and P. Torroni. An abductive logic programming architecture for nego-
tiating agents. In Proc. of the 8th European Conference on Logics in Artificial Intelligence
(JELIA), pages 419–431, Cosenza, Italy, 2002.

[159] T. Sato. Completed logic programs and their consistency. J. Log. Program., 9(1):33–44, 1990.

[160] K. Satoh. Using two level abduction to decide similarity of cases. In Proc. of the 13th
European Conference on Artificial Intelligence, pages 398–402, 1998.

[161] R. Schindlauer. Nonmonotonic logic programs for the Semantic Web. In Proc. of the 21st
International Conference on Logic Programming, pages 446–447, 2005.

[162] B. Selman and H. J. Levesque. Abductive and default reasoning: A computational core.
In Proc. of the 8th National Conference on Artificial Intelligence (AAAI), pages 343–348,
Boston, Massachusetts, 1990.

[163] M. Sergot. A query-the-user facility for logic programming. In New horizons in educational
computing, pages 145–163. Halsted Press, New York, NY, USA, 1984.

[164] M. Shanahan. An abductive event calculus planner. J. Log. Program., 44(1-3):207–240, 2000.

[165] M. Shanahan. Perception as abduction: Turning sensor data into meaningful representation.
Cognitive Science, 29(1):103–134, 2005.

[166] P. Simons. Extending and implementing the stable model semantics. Research Report 58,
Helsinki University of Technology, Helsinki, Finland, 2000.

[167] SOCS-consortium. Societies of computees (SOCS): a computational logic model for the
description, analysis and verification of global and open societies of heterogeneous computees.
IST200132530. http://lia.deis.unibo.it/Research/SOCS/.

[168] T. Swift. A new formulation of tabled resolution with delay. In Proc. of the 9th Portuguese
Conference on Artificial Intelligence (EPIA), pages 163–177, Évora, Portugal, 1999.

[169] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of
Mathematics, 5(2):285–309, 1955.

[170] E. Teniente and T. Urp. On the abductive or deductive nature of database schema validation
and update processing problems. Theory Pract. Log. Program., 3(3):287–327, 2003.

[171] G. Terreni. The CIFF System 4.0: User manual. .
http://www.di.unipi.it/\simterreni/research.php.

[172] F. Toni. A semantics for the Kakas-Mancarella procedure for abductive logic programming.
In Joint Conference on Declarative Programming (GULP-PRODE), pages 231–244, Marina
di Vietri, Italy, 1995.

[173] F. Toni. Automated information management via abductive logic agents. Telematics and
Informatics, 18(1):89–104, 2001.

[174] W3C CConsortium. The RDF official web site. http://www.w3.org/RDF/ seen on April
30th, 2008.

[175] W3C CConsortium. The Semantic Web official web site. http://www.w3.org/2001/sw/
seen on April 30th, 2008.

[176] W3C Consortium. The OWL official web site. http://www.w3.org/2004/OWL/ seen on April
30th, 2008.

[177] W3C Consortium. The XML Schema official web site. http://www.w3.org/XML/Schema
seen on April 30th, 2008.

7.0. BIBLIOGRAPHY 197

[178] M. Wallace, S. Novello, and J. Schimpf. Eclipse: A platform for constraint logic programming.
Technical report, Imperial College, London, UK, 1997.

[179] D. H. D. Warren. An abstract Prolog instruction set., 1983. Technical Note 309. SRI
International, Menlo Park, CA.

[180] G. Wetzel, R. A. Kowalski, and F. Toni. PROCALOG - programming with constraints and
abducibles in logic (poster abstract). In Joint International Conference and Symposium on
Logic Programming, page 535, Bonn, Germany, 1996.

[181] J. Wielemaker. An overview of the SWI-Prolog programming environment. In Proc. of the
13th International Workshop on Logic Programming Environments, pages 1–16, Mumbai,
India, 2003.

[182] J. Wielemaker, Z. Huang, and L. van der Meij. Swi-prolog and the web. Theory and Practice
of Logic Programming, 2008. Accepted for publication.

