52 research outputs found

    Characterization of Dynamic Behaviors in a Hexapod Robot

    Get PDF
    This paper investigates the relationship between energetic effi- ciency and the dynamical structure of a legged robot’s gait. We present an experimental data set collected from an untethered dynamic hexapod, EduBot [1] (a RHex-class [2] machine), operating in four distinct manually selected gaits. We study the robot’s single tripod stance dynamics of the robot which are identified by a purely jointspace-driven estimation method introduced in this paper. Our results establish a strong relationship between energetic efficiency (simultaneous reduction in power consumption and in- crease in speed) and the dynamical structure of an alternating tripod gait as measured by its fidelity to the SLIP mechanics—a dynamical pattern exhibit- ing characteristic exchanges of kinetic and spring-like potential energy [3]. We conclude that gaits that are dynamic in this manner give rise to better uti- lization of energy for the purposes of locomotion. This work is supported in part by the National Science Foundation (NSF) under a FIBR Award 0425878. Yasemin Ozkan Aydin is supported by International Research Fellowship Programme of the Scientific and Technological Research Council of Turkey (TUBITAK). For more information: Kod*La

    Dynamic Legged Mobility---an Overview

    Get PDF
    Ability to translate to a goal position under the constrains imposed by complex environmental conditions is a key capability for biological and artificial systems alike. Over billions of years evolutionary processes have developed a wide range of solutions to address mobility needs in air, in water and on land. The efficacy of such biological locomotors is beyond the capabilities of engineering solutions that has been produced to this date. Nature has been and will surely remain to be a source of inspiration for engineers in their quest to bring real mobility to their creations. In recent years a new class of dynamic legged terrestrial robotic systems \cite{Autumn-Buehler-Cutkosky.SPIE2005,Raibert.Book1986,Raibert-Blankesport-Nelson.IFAC2008,Saranli-Buehler-Koditschek.IJRR2001} have been developed inspired by, but without mimicking, the examples from the Nature. The experimental work with these platforms over the past decade has led to an improved appreciation of legged locomotion. This paper is an overview of fundamental advantages dynamic legged locomotion offers over the classical wheeled and tracked approaches

    Experimental Investigations into the Role of Passive Variable Compliant Legs for Dynamic Robot Locomotion

    Get PDF
    Biomechanical studies suggest that animals’ abilities to tune their effective leg compliance in response to changing terrain conditions plays an important role in their agile, robust locomotion. However, despite growing interest in leg compliance within the robotics literature, little experimental work has been reported on tunable passive leg compliance in running machines. In this paper we present an empirical study into the role of leg compliance using a composite tunable leg design implemented on our dynamic hexapod, EduBot, with gaits optimized for running speed using a range of leg stiffnesses, on two different surface stiffnesses, and with two different payload configurations (0 kg and 0.91 kg). We found that leg stiffness, surface compliance, and payload had a significant impact on the robot’s final optimized speed and efficiency. These results document the value and efficacy of what we believe is the first autonomous dynamic legged robot capable of runtime leg stiffness adjustment. For more information: Kod*La

    Control strategies for a multi-legged hopping robot

    Full text link

    An analytical solution to the stance dynamics of passive spring-loaded inverted pendulum with damping

    Get PDF
    The Spring-Loaded Inverted Pendulum (SLIP) model has been established both as a very accurate descriptive tool as well as a good basis for the design and control of running robots. In particular, approximate analytic solutions to the otherwise non integrable dynamics of t his model provide principled ways in which gait controllers can be built, yielding invaluable insight into their stability properties. However, most existing work on the SLIP model completely disregards the effects of damping, which often cannot be neglected for physical robot platforms. In this paper, we introduce a new approximate analytical solution to the dynamics of this system that also takes into account viscous damping in the leg. We compare both the predictive performance of our approximation as well as the tracking performance of an associated deadbeat gait controller to similar existing methods in the literature and show t hat it significantly outperforms them in the presence of damping in the leg

    Experimental Validation of a Feed-Forward Predictor for the Spring-Loaded Inverted Pendulum Template

    Get PDF
    Cataloged from PDF version of article.Widely accepted utility of simple spring-mass models for running behaviors as descriptive tools, as well as literal control targets, motivates accurate analytical approximations to their dynamics. Despite the availability of a number of such analytical predictors in the literature, their validation has mostly been done in simulation, and it is yet unclear how well they perform when applied to physical platforms. In this paper, we extend on one of the most recent approximations in the literature to ensure its accuracy and applicability to a physical monopedal platform. To this end, we present systematic experiments on a well-instrumented planar monopod robot, first to perform careful identification of system parameters and subsequently to assess predictor performance. Our results show that the approximate solutions to the spring-loaded inverted pendulum dynamics are capable of predicting physical robot position and velocity trajectories with average prediction errors of 2% and 7%, respectively. This predictive performance together with the simple analytic nature of the approximations shows their suitability as a basis for both state estimators and locomotion controllers. © 2004-2012 IEEE

    A Tendon-Driven Origami Hopper Triggered by Proprioceptive Contact Detection

    Get PDF
    We report on experiments with a laptop-sized (0.23m, 2.53kg), paper origami robot that exhibits highly dynamic and stable two degree-of-freedom (circular boom) hopping at speeds in excess of 1.5 bl/s (body-lengths per second) at a specific resistance O(1) while achieving aerial phase apex states 25% above the stance height over thousands of cycles. Three conventional brushless DC motors load energy into the folded paper springs through pulley-borne cables whose sudden loss of tension upon touchdown triggers the release of spring potential that accelerates the body back through liftoff to flight with a 20W powerstroke, whereupon the toe angle is adjusted to regulate fore-aft speed. We also demonstrate in the vertical hopping mode the transparency of this actuation scheme by using proprioceptive contact detection with only motor encoder sensing. The combination of actuation and sensing shows potential to lower system complexity for tendon-driven robots. For more information: Kod*lab (link to kodlab.seas.upenn.edu

    Progettazione di un'attrezzatura robotica per la valutazione sperimentale dei disturbi di forza ammissibili nel cammino.

    Get PDF
    L’argomento della tesi è da inquadrare in uno studio più ampio mirante alla progettazione e realizzazione del Sistema robotico Body Extender. Nell’interazione tra operatore e Body Extender si sviluppano delle forze non quantificabili che possono causare, durante la locomozione, il ribaltamento del sistema. Tutto ciò premesso, è dunque necessaria un’opportuna attività sperimentale per dare una stima cautelativa delle massime forze d’interazione tra Body Extender ed operatore. Scopo del progetto è quello di studiare gli effetti che hanno le forze di disturbo applicate alle caviglie di un uomo mentre cammina; queste forze dovranno essere regolabili a piacere e di direzione opportuna. Per lo studio, la persona dovrà camminare su di un tappeto scorrevole in maniera che il work-space risulti limitato alla zona del tappeto. In relazione a ciò la seguente tesi si divide in due fasi, una progettuale ed una sperimentale: 1. Progettazione e realizzazione di un dispositivo per la generazione di forze. 2. Definizione dei valori massimi ammissibili di forza che il soggetto, durante il cammino, può sopportare senza modificare in maniera sensibile le abitudini motorie, tramite prove sperimentali in cui il soggetto è sottoposto a forze di disturbo variabili

    Energy-Efficient Monopod Running with a Large Payload Based on Open-Loop Parallel Elastic Actuation

    Get PDF
    Despite the intensive investigations in the past, energetic efficiency is still one of the most important unsolved challenges in legged robot locomotion. This paper presents an unconventional approach to the problem of energetically efficient legged locomotion by applying actuation for spring mass running. This approach makes use of mechanical springs incorporated in parallel with relatively low-torque actuation, which is capable of both accommodating large payload and locomotion with low power input by exploiting self-excited vibration. For a systematic analysis, this paper employs both simulation models and physical platforms. The experiments show that the proposed approach is scalable across different payload between 0 and 150kg, and able to achieve a total cost of transport (TCOT) of 0.10, which is significantly lower than the previous locomotion robots and most of the biological systems in the similar scale, when actuated with the near-to natural frequency with the maximum payload.This study was supported by the Swiss National Science Foundation Grant No. PP00P2123387/1 and the Swiss National Science Foundation through the National Centre of Competence in Research Robotics
    • …
    corecore