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Abstract

This paper addresses the problem of controlling the hopping height and stride length of a monoped hydraulic robot. Hopping
over discontinuous, rough terrain with limited surfaces suitable for foot placement requires a controller capable of adjusting the
hop height and landing foot position of the robot on each step. This motivates the need for an agile controller that uses the short
window of time while the foot is on the ground (the stance phase) to exert the required action to reach the next landing position.

This paper contributes a simple yet effective adaptive controller capable of changing the flight time within a single hop. The
controller does not require force feedback and is capable of self-tuning its feedback gain parameters in response to changing
ground parameters using the results of previous hops. The main contribution of the paper is the development of an analytical
understanding of why the controller is capable of adjusting the height in a single step and how the errors in the achieved height can
be used to tune automatically the controller gains. This allows the controller to be successfully implemented even if the conditions
or parameters are initially unknown, automatically correcting for errors.

The controller is first derived for height control of hopping vertically, with no horizontal motion, from an analytical approx-
imation. This is tested in simulation, using a spring-damper model and a more detailed model with a foot mass and compliant
ground. The controller is then applied to a hydraulic spring-loaded hopper monoped. An extension allows the control of running
on a treadmill, with constant horizontal speed.

Keywords: Hopping controller, Legged locomotion, Running, Hydraulically actuated robot, Adaptive control

1. Introduction

Dynamically stable legged locomotion aims to build systems
and controllers that exploit the passive dynamics of the mech-
anism while ensuring they remain stable and achieve their de-
sired gait. This approach contrasts with statically stable gaits
where the centre of gravity of the robot remains within the con-
tact points, such as in many multi-legged robots [1]. The main
advantages of the dynamically stable approach are their energy
efficiency [2, 3], agility and in some cases their self-stabilisation
properties.

Legs have a significant advantage over wheels or tracks when
tackling rough terrain because a continuous support surface is
not required. This means that terrain with isolated footholds can
be traversed if foot placement can be precisely controlled. For
statically stable robots with large bases of support or multiple
legs, foot placement is purely a kinematic problem i.e. posi-
tioning legs to achieve the desired gait. If a robot is required to
cross rough terrain quickly or jump large gaps or heights then
the problem involves the dynamic control of foot placement i.e.
taking the right control action during ground contact in order to
launch into the flight phase with a ballistic trajectory that will
lead to the desired next foot placement spot.
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(Pejman Iravani), a.r.plummer@bath.ac.uk (Andrew Plummer),
m.sahinkaya@kingston.ac.uk (Necip Sahinkaya)

One of the main obstacles to the development of control
strategies for dynamic legged locomotion has been the difficulty
in solving the dynamics of the stance phase. This makes it diffi-
cult to find control strategies to select inputs which will result in
the desired next foot landing position. Section 2 discusses the
main approaches taken in related works, which broadly either
use an analytical approximation to the solution or use numerical
integration.

(a) (b)

Figure 1: (a) The hydraulic hopping monoped robot used in this research and
(b) HyQ quadruped robot from which it is derived [27]

This paper presents a novel approach for controlling the hop-
ping height of a monoped instantaneously, i.e. during the flight
phase the controller computes the required action to achieve the
demand height of the next step. The controller is experimen-
tally validated with the robot shown in Fig. 1(a). The monoped
is developed from a HyQ quadruped leg (Fig. 1(b)).
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The controller uses the height of the previous hop, together
with the height demand for the next hop, to compute the actu-
ator’s demand during stance. It does not rely on any explicit
model of the dynamics, thus the approach is able to adjust to
changing conditions; for example in this paper the compliance
of the ground is varied.

After the discussion of previous work in the area (Section 2),
a novel control strategy is derived and tested in simulation in
section 3. The experimental setup is introduced and the con-
trol strategy adapted for implementation in section 4. Results
are presented for stationary hopping on ground of varying com-
pliance and hopping at a constant speed on a treadmill in sec-
tion 5.

2. Previous work

With some exceptions discussed here, research on legged
hoppers has been mainly focused on achieving stable, steady
state running [4]. The goal has been to approach a desired hop-
ping height and running speed over a number of hops in a way
that is robust to disturbances, for instance, unforeseen changes
in the ground height. Agile hopping, meaning the ability to per-
form rapid changes in speed and direction has not been studied
in detail.

Classic work on monoped hopping from Raibert et. al. at
MIT’s leg lab [5] included several impressive dynamic robots
able to hop up and down steps and perform acrobatics. These
robots operated on a very simple strategy, where the control
problem is broken down into height, horizontal velocity and
body orientation, termed the “three part controller”. So long
as these three problems can be considered decoupled, compu-
tationally simple controllers can successfully control dynamic
gaits in real time. An extension of this concept showed that step
length could be controlled by varying any one of the forward
speed, flight duration or stance duration [6].

Recently, there have been several impressive humanoid biped
robots, such as the work at Honda (which became the famous
ASIMO robot) [7] and Boston Dynamics’ ATLAS [8]. Much
of this work has been built around maintaining the ’Centre of
Pressure’ within the base of support for most or all of the gait.

By contrast, monoped robots, by their nature, must use a
flight phase to reposition their foot in order to make progress.
Most designs also assume a point contact with the ground, and
so must rely on dynamic stability even during stance phase. The
Spring Loaded Inverted Pendulum (SLIP) [9] has become the
standard model for investigating monoped locomotion in na-
ture and robotics. It is important to note that gaits and strate-
gies for this model are equally applicable to a biped running
[10], which also alternates between single foot stance and flight
phases. Much research has been carried out investigating and
stabilising gaits for the SLIP model where each step is the same
length (e.g. [11, 12, 13, 14, 15]). These gaits have the potential
to greatly improve efficiency and speed, and allow traversal of
terrain with large discontinuities.

In recent years, there has been an increased interest in de-
veloping controllers to allow a SLIP based hopping model to

traverse more difficult terrain, such as limited, unevenly spaced
footholds, by varying the step length. The primary obstacle to
doing so has been that, despite the apparent simplicity of the
SLIP model, there is no closed form solution for the stance
phase dynamics. This makes it difficult to predict what in-
put values (usually touchdown angle and/or force input during
stance) will produce the lift-off conditions required to achieve a
desired trajectory.

Motivated by the potential for a control strategy computa-
tionally simple enough to be easily operated in real time, sev-
eral researchers have attempted to find analytical approxima-
tions for the stance phase dynamics which will provide closed
form solutions. For example, Geyer et. al. derive an approx-
imation assuming small angular sweep and small spring com-
pression [16]. Yu et. al. present a more accurate approxima-
tion which is formulated using a truncated Taylor series expan-
sion [17]. This again makes the assumption that the spring com-
pression is a relatively small fraction of the leg length (equiv-
alent to a stiff spring), but performs much better for large an-
gles and in particular asymmetric cases where the magnitude of
touchdown and lift-off angles are different. This approximation
was used to create a controller and tested in simulation, and able
to successfully vary the forward velocity of a SLIP model on
level ground. Another analytical approximation [18] has been
demonstrated for generating an apex return map which can then
be used to control a hopper with the full simulated SLIP dynam-
ics to traverse height varying terrain with gaps [19].

Degani et. al. applied a simple analytical model based on the
assumption of an instantaneous stance phase [13]. This sim-
plified model was used to find open-loop stable periodic trajec-
tories which were then applied to a physical robot in reduced
gravity. Another simple approximation, commonly used, is to
ignore gravity during the stance phase, which is the source of
the non-integrable term (e.g. [20]).

An early example of a controller able to traverse terrain with
limited footholds is presented by Zeglin and Brown [21, 22].
Here an approximated analytical model based on the assump-
tion of instantaneous impact, “with ad hoc but physically mo-
tivated corrections” [21] is used to approximate future hops.
This model is used for a graph search to find suitable trajecto-
ries, creating a feedforward controller, and is combined with a
feedback controller to keep the robot close to the computed tra-
jectory. The graph search, being computationally expensive, is
not performed on every hop, but only if the actual position be-
comes too far from the desired trajectory, in which case a new
trajectory must be computed starting at the current position.

An alternative approach is, instead of trying to find an ana-
lytical solution, to use numerical integration to solve the stance
dynamics. An example of such an approach, using Model Pre-
dictive Control (MPC), is presented by Rutschmann et. al. [23].
The critical choice of the number of future steps to simulate
becomes a compromise between accuracy of the controller and
time to execute because of the computationally intensive nu-
merical simulation. Using a desktop computer, they find the
MPC optimisation requires in the order of a few hundred mil-
liseconds (carried out during the flight phase) to achieve foot
placement within a centimetre of target.
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On-line numerical simulations are used by Piovan and
Byl [24] to choose actuator displacement during stance phase
for a simulated SLIP hopper, in order to reach a desired lift-off

state. Since the controller is to be operated in real time during
the stance phase, a low order integration method is used which
is fast to compute.

These previous works show a general trend towards greater
complexity and computational cost to reduce approximation er-
rors; the aim of this work is to demonstrate that a controller
with a very simple form can achieve good performance, through
tuning of the gains to match the conditions. As such, this paper
contributes, based on a simplified analytical approach, an orig-
inal controller capable of (i) performing agile hopping height
control and (ii) automatically tuning controller gains to adapt
to environmental changes. The analytical controller is demon-
strated in simulation and forms the inspiration for an experi-
mental implementation tested on a hydraulic monoped.

3. Adaptive Hopping Height controller

This section of the paper develops a method to control the
period or hopping height of the monoped robot, which are di-
rectly related for parabolic flight. Firstly, an analytical deriva-
tion of the controller gains for a mass-spring-damper hopper
with a linear actuator is presented. The proposed controller sets
the actuator velocity as a function of ground contact and take-
off velocities.

The analytic controller and its gains are then built within a
feed-forward and self-adjusting (or adaptive) control architec-
ture which ensures that perturbations, such as different ground
properties, can be seamlessly taken into account. The adapta-
tion of the controller gains is based on the error between con-
secutive hops, so it normally requires two hops to adjust to a
sudden change.

3.1. Controller and gains derivation

The hopping height controller developed here is based on the
principle of adjusting the required energy to reach the next de-
mand height. The kinetic energy at take-off is a square function
of the take-off velocity. The simplified hopper shown in Fig.
2(a) will be analysed.

In this 1-dimensional model, the free length of the spring
does not affect dynamics so can be set to zero to simplify the
equations of motion (free length, L0 = 0) giving stance and
flight dynamics of:

for h − d < 0: ḧ = −g −
(
2ζωn(ḣ − ḋ) + ω2

n(h − d)
)

otherwise: ḧ = −g
(1)

where d = d(t) is the actuator extension, ωn =
√

k/m is the
system’s natural frequency, and ζ = c/2

√
km is the damping

ratio.
Energy can be added to the system by moving the actuator

during stance; in our case by extending it at a constant veloc-
ity q. The actuator is then retracted back to its starting position

h

d

L0

m

k c

(a) (b)

Figure 2: Hopping monoped robots, (a) shows a 1D hopper with a mass-less
foot and stiff ground, (b) a hopper with a mass on the foot and elastic ground.

during the flight phase ready for the next hop. It is important to
note that there is no requirement for constant speed actuation,
only the quantification of the energy added into the system dur-
ing the stance period, this could be done in various other ways,
including the average actuation speed.

In order to make the stance phase more amenable to math-
ematical analysis, gravity will be neglected, assuming g � ḧ.
The inaccuracy introduced by this assumption will later be mit-
igated through on-line modification of controller gains. With
this assumption, Eq. 1 simplifies to:

ḧ + 2ζωn(ḣ − ḋ) + ω2
n(h − d) = 0 (2)

The actuator will be extended at a constant velocity q
throughout stance so:

• d = qt

Letting the impact with the ground occur at time t = 0 with a
speed v1 the initial conditions are:

• h(0) = 0

• ḣ(0) = −v1

The above can be solved giving the motion during stance,
0 ≤ t < tlo:

h(t) = −
(

v1 + q
ωd

)
e−ζωnt sinωdt + qt (3)

ḣ(t) = −
(

v1 + q
ωd

)
e−ζωnt (ωd cosωdt − ζωn sinωdt) + q (4)

Lift-off will occur at t = tlo. While there is no closed form
solution for tlo in the real system, neglecting gravity allows a
solution to be found as half the period of oscillation, tlo = π

ωd
.

The lift-off speed, which will be equivalent to the touch-down
speed of the next hop v2, can be found from Eq. 4:

v2 = ḣ(tlo) = ḣ
(
π

ωd

)
(5)

⇒ v2 = CR(v1 + q1) + q1 (6)
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where CR is defined as:

CR = exp


−πζ√
1 − ζ2

 (7)

and q1 is the input for this stance phase.
The simplifying assumptions (namely g � ḧ and tlo ≈ π

wd
)

will create some error in the approximation given by equation 6.
The extent of this error can be assessed by comparison to sim-
ulated results, which are not constrained by these assumptions,
as shown in Figure 3. The error is reasonably small, and sug-
gests this approximation will be useful for developing a control
strategy.
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Figure 3: Comparison between the analytical approximation in equation 6 (line)
and a numerical simulation with massless foot. This is the hop height as a
function of the previous hop height for an example inputs of q = 0, 0.1, 0.2m/s.

The change in speed from touch-down to lift-off is ∆v1 =

v2 − v1. By substituting v2 = v1 + ∆v1 into Eq. 6, rearranging
for q1 it can be seen that:

q1 = KLv1︸︷︷︸
(i)

+ K∆∆v1︸ ︷︷ ︸
(ii)

(8)

KL =
1 −CR

1 + CR
(9)

K∆ =
1

1 + CR
(10)

A controller for the stance phase is provided by Eq. 8 re-
lating the actuator velocity during stance, q1, to impact veloc-
ity, v1, and the desired change in velocity, ∆v1. As previously
mentioned, take-off velocity and hopping height are related by
h = v2

2/2g. The control signal, q1, is the sum of: (i) a term
proportional to the impact velocity and thus accounting for lin-
ear losses and, (ii) a term proportional to the change in height
required to reach the next hopping height. The term (i) could
be seen as a steady-state height controller, whereas the second
term (ii) deals with the dynamic changes.

Generalising, the actuator extension velocity needed during
the stance phase of the nth hop is qn. The desired change in
speed between touch-down and lift-off is labelled ∆vn. This
can also be written in terms of the desired touch-down velocity
vn+1 of the next, (n + 1)th, hop:

qn = K1vn + K2(vn+1 − vn) (11)

The gains in Eq. 11 can be initially set from Eq. 9 and Eq.
10 so K1 = KL and K2 = K∆. However, the error caused by the
analytical approximation will cause KL and K∆ to differ from
the optimum values. To mitigate this problem, the gain values
will be tuned using the results of previous hops. In this way
the controller becomes more robust to errors in the modelling,
including the modelled effects of ground compliance.

Motion during the flight phase is parabolic which means
there are simple relationships between the touch-down speed
vn, flight time T f n and hopping height hn:

vn =
1
2

gT f n (12)

vn =
√

2ghn (13)

This means that the control logic of Eq. 11 can similarly be
written in terms of T f n and

√
hn:

qn = Ka

√
hn + Kb

( √
hn+1 −

√
hn

)
(14)

qn = KαT f n + Kβ(T f (n+1) − T f n) (15)

The gains Ka and Kb or Kα and Kβ take analagous roles to KL

and K∆ above.
It should be noted that qn can take a negative value. This

results in the leg retracting to remove energy from the system
to reduce lift-off speed more than would be otherwise possible
with damping alone.
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Figure 4: Height tracking performance for dynamic controller q = K1
√

h0 +

K2(
√

hd −
√

h0). Dashes show demand height and crosses actual height. Gains
are fixed at K1 = 0.70, K2 = 2.56.

Simulation results for hopping height control using Eq. 14
are plotted in Fig. 4. The gains have been set analytically such
that: Ka =

√
2gKL and Kb =

√
2gK∆.

This feedback controller offers good tracking capability and
errors can be further reduced by tuning the control gains, as
shown in the adaptive self-tuning controller, which uses touch-
down speeds and actuator actions from previous hops to im-
prove controller gains as explained in the next section.

3.2. Adaptive gain hopping height controller
Writing Eq. 11 for the previous two hops in matrix, it is

expected that:
[
vn−1 ∆vn−1
vn−2 ∆vn−2

]

︸           ︷︷           ︸
V

(
K1
K2

)

︸︷︷︸
k

=

(
qn

qn−1

)

︸︷︷︸
q

(16)
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where ∆vn = vn+1 − vn. In (16), the required inputs (q) are
found as a function of the desired liftoff/touchdown speeds (v),
assuming the correct gains. However, if the measured speeds
are instead used (denoted by V̄), it is possible to calculate the
gains which would have been required to successfully predict
these measured outcomes:

k = V̄−1q (17)

This allows a new set of gains to be found, used in (11) for the
next hop.

Solving for the gains k requires |V| , 0. This can be com-
puted:

|V̄| = v̄n−1v̄n−2

(
∆v̄n−2

v̄n−2
− ∆v̄n−1

v̄n−1

)

︸                ︷︷                ︸
ρ

(18)

In certain circumstances, the previous two hops may not con-
tain enough information to infer the values of K1 and K2, and
the solution will be ill-conditioned (|V| ≈ 0). This might occur,
for instance, if vn−3 = vn−2 = vn−1, in which case there would
be no information to find K2. In order to avoid this a threshold
condition, |ρ| > 0.01, is checked. If below the threshold then
the gains are left unchanged, with the consequence of remov-
ing the adaptive nature of the controller. In simulation it was
also found that the controller can fail if K2 ≈ 0. A simple so-
lution is not to update the value of K2 where this would be the
case.
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Figure 5: Simulated height tracking performance for adaptive dynamic con-
troller q = K1

√
h0 + K2(

√
hd −

√
h0). Dashes show demand height and crosses

actual height. Initially gain values are chosen to be K1 = 1.5, K2 = 3.0 (Note
that these are very different from those analytically determined to demonstrate
the adaptability).

The results of a simulation where the gains were self-tuned in
this way are plotted in Fig. 5. Initial values of controller gains
are selected to be poor. This results in hops 2 and 3 with large
errors. Thereafter, the controller has enough information from
previous hops to keep the gains correctly tuned. The self-tuning
results in better performance than the analytically derived gains
in Fig. 4 as it corrects for the simplifying assumptions.

3.3. Adapting to changing ground compliance
Self-tuning control gains are useful, for example, when run-

ning over ground with changing properties. This can be demon-
strated by simulations using a compliant ground model, as
shown in Fig. 2(b). This is similar to the simple model used

previously, Fig. 2(a), but includes a foot mass m f in addition
to the body mass mb and a non-rigid ground; all parameters are
defined in Table 1.

Table 1: Fig. 2(b) model simulation parameters.
Parameter Value

mb Body mass 10 kg
m f Foot mass 1 kg
k Spring stiffness 8000 N m−1

c Damping coefficient 30 N s m−1

hb(t = 0) Initial body height 0.15 m
h f (t = 0) Initial foot height 0.15 m

High stiffness model:
F0 Reference spring force 10000 N
δ0 Reference spring displacement 0.01 m
cgr Damping coefficient 10 N s m−1

Low stiffness model:
F0 Reference spring force 100 N
δ0 Reference spring displacement 0.01 m
cgr Damping coefficient 10 N s m−1

The ground is a modelled as a non-linear spring-damper, giv-
ing a ground reaction force, Fgr, of:

Fgr = F0

(−h f

δ0

) 3
2

+ cgr(−ḣ f ) (19)
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Figure 6: Results for model with compliant ground (Fig. 2(b)) with changing
ground properties. Ground is soft after hop 9 and returns to hard after hop 16.
Height demand is kept constant and adaptive controller is used.
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Figure 7: Results for model with compliant ground (Fig. 2(b)), changing to
soft ground after hop 12 and returning to hard ground after hop 23. Randomly
varying height demand with adaptive controller.

Results for two simulations are plotted in Fig. 6 and Fig. 7.
In the first simulation, the demand hopping height is kept con-
stant. The ground properties are changed after hop 9 and 16.
Within a couple of hops, the gains are tuned to the new ground.
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Figure 8: Schematic of experimental rig: emulates a two-link hydraulically ac-
tuated springy leg constrained to hop vertically. Degrees of freedom include
the beam angle, hip angle, knee angle, spring displacement and treadmill mo-
tion. The angles θ1 and θ2 are relative angles. The beam angle is absolute with
respect to the ground which can be used to get the full state for the robot.

The second simulation is similar but presents a more challeng-
ing height demand. It is randomly varied between 0.05 m and
0.15 m. With a variable demand, the controller can still adapt
to changing ground properties within a few hops illustrating the
capabilities of the adaptive controller.

4. Experimental test-bed and hopping controller

This section describes the robotic apparatus used to vali-
date the controllers proposed and illustrates how position (dur-
ing flight phase) and velocity (during stance phase) control are
achieved. A schematic drawing of the experimental hopping
leg (Fig. 1(a)) is shown in Fig. 8. This is a leg from the HyQ
robot [27] that has been constrained to hop approximately ver-
tically on a treadmill using a pivoting beam. The leg consists of
two rigid links and a compliant foot. The leg is actuated by two
hydraulic actuators as shown. Encoders are used to measure rel-
ative joint angles θ1, θ2 and a string potentiometer to measure
the beam angle with respect to ground. This information is suf-
ficient to calculate the state required for the controller, i.e. body
and leg position and velocity. Additionally an accelerometer is
positioned above the hip. Key parameters for this experimental
setup have been listed in Table 2.

Table 2: Experimental rig parameters
Parameter Value
Link 1 length, Hip-knee 0.35 m
Link 1 mass 1.772 kg
Link 2 length, Knee-foot 0.33 m
Link 2 mass 0.808 kg
Aluminium box beam width 38.1 mm
Aluminium box beam thickness 3.2 mm
Total mass 18 kg
Approximate foot stiffness 10000 N m−1

Hip-beam pivot distance 2 m
Hydraulic supply pressure 160 bar
Actuator stroke 80 mm
Actuator bore 16 mm
Servovalve rated flow 2.5 L/min

4.1. Hopping controller
This section presents the controller used for precise and agile

height control of the hydraulic robotic leg. The controller is
based on the analytical developments presented in Section 3
although with some implementation differences to account for
system non-linearity and to ensure the stability of the adaptive
controller gains.

The system is programmed with a two-state controller:

• During the flight phase, position control is used to return
the foot to a predefined home position.

• During the stance phase, the actuator pushes downwards
with a demand velocity calculated based on the height de-
mand for the next hop and the impact velocity.

Switching between states is triggered as follows:

• From flight to stance a threshold crossing on the ac-
celerometer.

• From stance to flight automatically when the stance phase
duration has exceeded the estimated stance period, (ap-
proximatelly 0.14 s in our system).

4.2. Flight phase controller
During the flight phase, the leg is essentially off the ground

which means that the foot moves freely in the air. The lack of
any external force, the speed of the motion and the compliance
of hydraulic systems means that during the point to point mo-
tion the leg will oscillate.

In order to remove these unwanted oscillations external
damping will be imposed using the concept of Closed Loop Sig-
nal Shaping, CLSS [29]. In short, CLSS uses a signal shaper,
such as Zero Vibration and Derivative (ZVD) [30], in the for-
ward path of conventional feedback controller. This architec-
ture is shown in Fig. 9.

For this experiments, the articulated leg was lifted off the
ground. The initial displacements of the upper actuator cylin-
ders were selected such that the foot was vertically below the
hip joint and the leg was not close to any kinematic limit, the
lower actuator was fixed at a stretched out position to maximise
the effect of the leg inertia.

D

Figure 9: The diagram illustrates the ZVD input shaper block in the forward
controller path of a position controller with proportional gain Kp. The demand
signal is yd , V stands for the control voltage and y the measured response.

Closed-loop proportional controllers and CLSS were imple-
mented on the upper hip actuator. The position response of
the actuator to step changes in demand position of 6.25% of
stroke is shown in Fig. 10, which is representative of a leg re-
positioning action.

A step position input was given to the upper actuator demand
position while keeping the demand to the lower one steady.
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(a) Actuator 1 Proportional only (b) Actuator 1 with ZVD CLSS

Figure 10: Experimental results: Response of actuators to step change in de-
mand with and without ZVD in closed loop.

This is done for three values for the proportional gain KP, re-
sulting in the 12 time series results plotted in Fig. 10. As it can
be seen in Fig. 10(b) the CLSS delivers a much improved re-
sponse eliminating the majority of the oscillations. The benefit
of this method was not observed on the lower-leg actuator due
to the smaller inertia, thus a proportional controller is sufficient
for this application.

4.3. Stance phase controller
The stance controller proposed in Section 3 computes the de-

mand actuator speed as calculated equivalently by Equations 8,
11, 14 or 15. As previously described, the controller has two
terms. The first one accounts for steady-state hopping i.e. suf-
ficient energy is added to maintain a constant hopping height.
The second term, accounts for the differential energy required
to make a sudden change in the demanded hopping height or
hop period.

The block diagram for the experimentally implemented
stance controller is shown in Fig. 11. Each of the parts for
this controller are described in the following sections.

 

�� 

�� Σ 

�� 

�

�� 

Figure 11: Block diagram of the proposed hopping height controller. Where
KP and KI are controller gains, Vc is the valve control signal, Td and T the
demand and measured hopping period respectively. The block in the top loop
represents the steady state look up function. Immediately following the KI gain
is a summation block.

4.3.1. Steady state hopping height controller
In the simulations presented in section 3, the actuator veloc-

ity was used as a control input. On the rig used here the actuator
velocity is controlled through a hydraulic servo valve which in-
troduces non-linear dynamics meaning the control input does
not directly correspond to the linear extension velocity of the
foot. Additional significant non-linear dynamics are introduced
due to different kinematics (two links), the distribution of mass,
gravity, fluid dynamics, contact dynamics, friction, etc. The as-
sumption made by term (i) in Equation 8 of a linear relationship

between the control input and the steady-state hopping lift-off

velocity or period therefore somewhat breaks down. A simple
solution is to substitute for term (i) an experimentally derived
look-up function. In the block diagram in Fig. 11 this is the
feed-forward block at the top.

A set of experiments were carried out to plot the relation-
ship between the control input Vc, which maps to valve control
voltages extending the foot during stance, and steady state hop
period. Results are shown in Figure 12 showing the non-linear
relationship. It can be seen that ground properties affect the
steady-state hopping period (and height).

A cubic equation was fitted to the hard ground data (crosses)
giving a look-up function giving the control action Vc as a func-
tion of a desired steady state hopping period Tss:

fss(T ) = 437.12T 3 − 517.4T 2 + 210.08T − 26.36 (20)

 

Figure 12: Relationship between control variable Vc and steady-state hopping
period time on hard (red crosses) and soft (blue circles) ground.

4.3.2. Varying hopping height controller
The controller in Eq. 8 deals with sudden changes in hop

period demand using the second term (ii). The gain for term
(ii) in Eq. 8 or Kβ in Eq. 15 is equivalent to the gain KP in
the block diagram (Fig. 11). This is a proportional gain acting
on the difference between the current hop period and the new
desired value for the next hop.

4.3.3. Adapting to varying ground properties
The look-up function used in our height controller was fitted

to experimental data for hopping on hard ground. It can be seen
in Fig. 12 that changes in ground properties affect the steady
state hopping height for a given control input. A steady state
error results when hopping on ground properties other than that
from which the look-up function is derived. We found that the
addition of a small integral gain KI could deal with this steady
state error allowing the hopping machine to adapt to different
ground properties over a number of hops.

4.3.4. Adapting controller gains
The analytical controller described in Section 3 can adapt the

values of its gain given two consecutive steps by measuring the
errors. It was found in experiment that adapting the gains over
two hops was too unstable so a more cautious approach was
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taken to adapt the controller gains. On each hop where the
demand had changed the gain KP was incrementally updated
using the error in the previous hop by applying the following
formula:

KP(n+1) = KP(n) + δ(Td(n−1) − T(n−1))sign(Td(n−1) − T(n−1)) (21)

Where the value of δ is small enough that it makes an incre-
mental correction to KP.

5. Results on hopping height control

The Section presents the experimental results achieved with
the control method described in Section IV. Initially the experi-
ments demonstrate hopping over stationary ground and then the
effect of hopping on a ground with horizontal velocity (running
treadmill).

5.1. Hopping on stationary ground

Figure 13 shows the results of the monoped robot (Fig. 1)
hopping over random step changes in height demand. The re-
sults show that the controller is capable of reaching a step-
change in height demand within a single hop. Moreover, the
different ground properties hard (concrete) and soft (padded)
grounds do not show any significant effect.
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Figure 13: Agile monoped hopping control on different grounds. Hard ground
(crosses); soft ground (circles).

A more challenging demand is shown in Fig. 14. Here ran-
dom hopping periods are demanded in the range 0.38 s to 0.57 s.
This corresponds to hopping heights from 0.077 m to 0.237 m.
It can be seen that the large shortfalls on hops 15, 18 and 31 oc-
cur because the control signal had reached saturation. This may
be avoided by limiting demanded hopping periods to within the
performance envelope of the robot. Additionally, it should be
noted that some hops require a negative value for the control
variable Vc. This means that the leg has to actively flex to ab-
sorb more energy than damping alone would accomplish.

5.2. Hopping with horizontal ground speed

To test the effects of running on hopping control while ne-
glecting considerations of balance, experiments were carried
out with the treadmill (Fig. 8) in motion.

When running, it is desirable to begin sweeping the foot
backwards before touch-down with the ground. This reduces
the severity of the impact with the ground because the foot’s
relative horizontal motion to the ground is removed. In order
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Figure 14: Results for the proposed controller with random hopping demands.
Stride times range from 0.38 s to 0.58 s which corresponds to hopping heights
of 0.08 m and 0.24 m respectively. Controller was auto tuned before beginning
random demand input (horizontal lines). The same experiment was performed
first on hard (crosses) ground then on soft ground (circles). The control variable
Vc has also been plotted for the case of hard ground.

to begin sweeping the foot before touch-down the next touch-
down time ttd(n+1) has to be anticipated. Additionally, the foot
needs to be positioned slightly ahead of the desired foot posi-
tion on touch-down so that as it sweeps backwards in the air it
reaches the desired foot position upon impact.

Figure 15 shows the results of the controller when applied
to a hopping while a running speed of 0.37 m s−1. As it can be
observed the treadmill velocity influences the accuracy of the
hoping height controller. This is expected as the controller is
designed assuming decoupling between height and forward ve-
locity, which is not true when running at relatively high speeds,
mainly due to the fact the touch down and lift-off leg angles are
considerably different than when hopping on the spot.
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Figure 15: Experimental results using the FF+PI control on treadmill at speeds
0 (red crosses) and 0.37 m s−1 (blue circles).

5.3. Hopping at different ground speeds

As shown in Fig. 15 the treadmill motion results in hop peri-
ods consistently lower than desired. A possible explanation for
this is that while stationary, leg extension forces are directed
vertically whereas running requires energy to be expended in
swinging the leg, accelerating and decelerating the foot hori-
zontally on each step. To compensate for this extra energy input
required, a simple linear factor is added to the control signal.
Figure 16 illustrates the linear relation required.

Experimental results of adding this speed based compensa-
tion are plotted in Fig. 17 show a reduced error when compared
to errors assuming no running speed.
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Figure 16: Corrective offset required to Vc at different running speeds to achieve
0.472 s steady state hopping period.

Larger changes in the demand result in greater error due
to actuator saturation. Logically, saturation occurs more fre-
quently at high speeds making the errors on extreme hops
larger. It should be noted that for all of these results, the same
feed-forward function and PI gains were used.
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Figure 17: Experimental results using the extended FF+PI control at different
running speeds: red crosses, blue circles, green triangles are 0, 0.37, 0.71 ms−1

respectively.

6. Conclusion

The paper has described an effective and computationally
lightweight controller capable of adjusting the hopping height
of a hydraulic monoped robot in a single hop. The method does
not require accurate models of the robot or the environment,
but relies on energy relationships that remain constant but with
changing parameters to account for variations in the environ-
ment or the robot. The simulated and experimental results show
a good performance of the controller, the main source of error
seems to be the saturation of the actuators which is a physical
and unavoidable limitation.

The main contribution of the paper is the development of an
analytical understanding of why the controller is capable of ad-
justing the height of a hopping robot in a single step and how
the errors in the achieved height can be used to tune automati-
cally the controller gains. Due to experimental phenomena the
fast gain adaptability could not be shown to work, but instead
a slower integral loop had to be used. Further work on this im-
portant area is required.

The control laws developed here are very different to alter-
native approaches which employ actuators and sensors allow-
ing for high speed force loops for model-based controllers. The
work here provides an example of how, with limited sensing and
computation, it is still possible to achieve agile performance

over different terrains. This can be done, given favourable pas-
sive dynamics, by stacking laws to excite, maintain and perturb
those dynamics.

The overall approach to control hopping taken here has been:

1. Use a machine with a passive hopping motion. Here this
is due to a springy foot.

2. Formulate a variable to impart a vertical impulse, Vc, to be
controlled discretely once per hop. This can then be used
to form a discrete hop control loop executed once per hop.

3. Generate a look-up table/function for open loop, steady
state control of hop periods.

4. Improve steady state and dynamic performance by closing
the loop with a simple proportional and integral action.

This approach could be applied to machines with different
mechanical designs. For example:

• Pneumatic or electrical actuation might be used instead of
hydraulics.

• It is not necessary that the leg is articulated. It could
equally well be telescopic or some other design.

• Impact with the ground was detected as a spike in the force
sensor at the knee but different sensors placed elsewhere
would serve equally well.

• A passive hopping motion is required but this does not
have to be provided by a springy foot. Indeed, elasticity
might be emulated by the actuators. With real elasticity
however, energy is stored and released from one hop to
the next. This means that for steady state locomotion, ac-
tuators only need to make up energy losses between hops.
And to change hop size, actuators need to make up (or dis-
sipate) the energy difference. Actuators typically will not
store energy so emulating elasticity would be inefficient. It
would also require much more powerful actuators capable
of responding to impact forces.

Balance was not a consideration in this paper because the
machine’s body orientation was constrained but, as shown by
Raibert et al [5], height control can be considered decoupled
from body orientation and horizontal velocity. Also, state esti-
mation of a hopping robot is very challenging and not discussed
in this paper, but this is an area of critical importance for further
developing this technolgy.
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