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Experimental Validation of a Feed-Forward Predictor for the
Spring-Loaded Inverted Pendulum Template

Ismail Uyanik, Omer Morgtil, and Uluc Saranli

Abstract—Widely accepted utility of simple spring—mass models for run-
ning behaviors as descriptive tools, as well as literal control targets, mo-
tivates accurate analytical approximations to their dynamics. Despite the
availability of a number of such analytical predictors in the literature, their
validation has mostly been done in simulation, and it is yet unclear how well
they perform when applied to physical platforms. In this paper, we extend
on one of the most recent approximations in the literature to ensure its
accuracy and applicability to a physical monopedal platform. To this end,
we present systematic experiments on a well-instrumented planar mono-
pod robot, first to perform careful identification of system parameters and
subsequently to assess predictor performance. Our results show that the ap-
proximate solutions to the spring-loaded inverted pendulum dynamics are
capable of predicting physical robot position and velocity trajectories with
average prediction errors of 2% and 7%, respectively. This predictive per-
formance together with the simple analytic nature of the approximations
shows their suitability as a basis for both state estimators and locomotion
controllers.

Index Terms—Collision losses, legged locomotion, model verification,
monopedal robots, parametric system identification, spring-loaded inverted
pendulum (SLIP).

I. INTRODUCTION

ACED with an ever-increasing need for mobile robotic

platforms that can negotiate complex outdoor surfaces, it
has become evident that traditional wheeled and tracked designs
are approaching their morphological limits, and the use of legs
in various forms has to be explored [1]. Recent research and
progress in both the theory [2] and practice [3], [4] of building
such machines provide ample evidence to support this observa-
tion. Nevertheless, numerous challenges remain before legged
platforms can reach the level of autonomous performance al-
ready commonly observed in mobile robots.

The ultimate promise of nimble locomotion on complex ter-
rain led to both the construction of many legged morphologies
as well as mathematical models to describe their underlying dy-
namics. Among the latter, the spring-loaded inverted pendulum
(SLIP) model [5], an extended version of which is illustrated
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Fig. 1. Extended SLIP model. Dashed curve illustrates a single stride from
one apex event to the next, defining the return map X,, 41 = f(X,,, u,).

in Fig. 1, has become one of the most widely accepted and uti-
lized, capable of accurately describing center-of-mass (COM)
movements of running animals of widely varying sizes and
morphologies [6], [7]. Originally motivated by biomechanical
observations [8], [9], the SLIP model was adopted and refined
by numerous robotics researchers over the past three decades
[10], being established as an effective and appropriate dynamic
abstraction for running behaviors [11].

The utility of this behavioral abstraction was also shown by
its active embedding within more complex morphologies such
as the RHex hexapod [12]. This provided further support to the
idea pioneered by Raibert’s robots [10] and other similar plat-
forms [13]-[15] that the SLIP model could also act as the basis
for hierarchical control strategies wherein the abstract running
behavior would be regulated by SLIP controllers, unaware of
the remaining redundancies in the complex morphology [16],
[17].

The availability of analytic solutions to SLIP dynamics is
crucial for formulating predictors for future steps as well as
model-based controllers. Unfortunately, the nonintegrability of
stance dynamics for the SLIP model necessitates approximate
solutions, for which a number of alternatives have been pro-
posed in the literature. In this context, Schwind and Koditschek
proposed an iterative method that converges to the true SLIP
dynamics under certain assumptions [18]. Subsequently, Geyer
et al. formulated a simpler approximation based on certain as-
sumptions on model parameters and trajectories [19]. Geyer’s
work was later extended with support for nonsymmetric steps
[20] and viscous damping in the leg [21]. Note that the extended
SLIP model that we use in this paper considers the viscous
damping in the leg as well as the effects of nonsymmetric steps.
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Experimental evidence for the relevance of the SLIP model
to both biological and robotic running behaviors has been
established in a number of studies [12], [22]. However, the ac-
curacy of approximate solutions to the dynamics of this model
have so far only been verified in simulation [19], [21], leaving
their practical applicability an open question. The validity of
analytical predictors for SLIP trajectories strongly influences
their usability in the design of model-based controllers [23].
The main goal of this paper is to establish that even approxi-
mate solutions to the SLIP model remain accurate for a physical
platform. Similar to the work presented in this paper, Long et al.
performed an experimental validation of approximate solutions
to the simplest Parkour model (SPM) on ParkourBot [24], i.e.,
a planar dynamic climbing robot with two compliant legs, ex-
hibiting SLIP-like behavior. Unlike SPM, which relies on an
instantaneous stance phase, we consider the full stance dynam-
ics as proposed in [21].

Our primary contribution in this paper is, hence, the
experimental validation of a feed-forward predictor for SLIP
dynamics. To this end, we also present the design of a
well-instrumented monopod robot on which our validation
experiments are performed. We also extend the solution
presented in [21] to model the effects of nonnegligible leg
mass on system energy, an inescapable aspect of every legged
platform, and viscous damping during the flight phase that
can be used to model unexpected sources of energy loss.
As a final step, we compare the prediction performance of
our predictor with Geyer’s approximation [19] as well as the
numeric integration of SLIP model with and without damping in
the leg.

II. EXTENDED SPRING-LOADED INVERTED PENDULUM MODEL

We begin our investigation by extending the ideal SLIP model
to incorporate features necessary for its applicability to a physi-
cal monopod platform. First, we consider the effects of nonneg-
ligible leg mass, which is an inevitable component of all legged
platforms effecting system dynamics both due to its moment
of inertia and collision losses. Previous studies in this context
focused on the effect of leg mass on gait stability considering
its effects both throughout the entire stride [25] as well as just
the touchdown collision [26]. Our extended model incorporates
the latter, focusing on the energetic effects of the leg mass due
to phase transitions with collision, since swing leg dynamics
were found to have only a minor effect on locomotory dynam-
ics [25]. We will also show that the omission of leg dynamics
during stance does not significantly impair the accuracy of our
approximations for monopedal systems. The inclusion of this
extension in our model substantially increases its applicability
to physical legged platforms.

The second extension we consider is the presence of viscous
damping during flight. Even though this is primarily useful to us
for modeling mechanical properties of the central boom attach-
ment for planarized robots such as our experimental platform, it
generalizes the equations of motion in a way that allows model-
ing energy loss during flight for physical systems as well. This
might be employed, for example, when leg retraction is found

209

touchdown
&P

stance ‘ ‘

descent ‘ ascent
Fig. 2. SLIP locomotion phases (shaded regions) and transition events
(boundaries).

to effect flight dynamics or when air friction is found to be
significant for fast running.

It would certainly have been desirable to integrate lateral
dynamics or a torso in our model. However, it has been shown
that the dynamics of steady-state running in three dimensions
is largely determined by motion occurring in the sagittal plane,
with negligible influence from the lateral plane [10]. Moreover,
to the best of our knowledge, there are currently no analytical
approximations to the dynamics of a 3-D SLIP with a torso and
the feasibility of obtaining such approximations is not yet clear.
Consequently, even though this is a problem that deserves and
requires further theoretical and experimental investigation, we
leave this inquiry outside the scope of this paper.

Note that the extensions we consider do not alter the analyti-
cal simplicity of the SLIP predictor and preserve the generality
of our results. Both of our extensions can be adapted to dif-
ferent monopedal robot platforms by calibrating the leg mass
and viscous damping during flight, whatever its source might
be. In addition, our model reduces to the ideal SLIP when the
leg mass and flight damping are chosen to be zero, making our
model applicable to a broad set of scenarios.

A. Model Structure and Definitions

The extended SLIP model that we consider in this paper con-
sists of a point mass attached to a compliant leg with mass m;
concentrated at the toe, stiffness &, and viscous damping d as
illustrated in Fig. 1. During locomotion, this model alternates
between stance and flight phases as shown in Fig. 2, with the
toe remaining stationary on the ground during stance. No torque
is applied to the leg during stance and the body experiences
gravitational acceleration with both vertical and horizontal vis-
cous damping during flight. Table I details the notation we use
throughout the paper.

Touchdown and liftoff events mark transitions to and from
the stance phase, respectively. Touchdown occurs when the toe
comes into contact with the ground with the leg positioned at a
fixed touchdown angle, 6,4, during flight. We assume negligible
toe dynamics during flight, with the toe mass positioned as
necessary to achieve the desired touchdown leg angle and an
uncompressed leg spring.
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TABLE I TABLE I
NOTATION USED THROUGHOUT THE PAPER NOTATION FOR NONDIMENSIONAL PARAMETERS
Parameter Description Parameter Definition Description
Y2, Y, 2 Body positions and velocities t =t/A Time (where A := \/ﬁu /9)
my,my Body and leg mass of the robot (p, 0] = [p/po, 0] Leg length and leg angle
k,d Leg spring and damping constants K = k(po/(mpg)) Leg spring stiffness
dy ., d, Horizontal and vertical viscous damping during flight c =d(po/(Amyg)) Leg viscous damping
p, 0 Leg length and angle I = pg /(L) (myp3)) Angular momentum

Note that subscripts represent the system parameters at critical times such as p; 4, pp .
and p;, represent the leg length at touchdown, bottom, and liftoff times, respectively.

As usual, our study of this legged system relies on a Poincaré
section defined at the “apex” point, defined as the highest point
on system trajectories during flight with 2 = 0.

This leads to the definition of apex states as

Xo = [Yos s 20 ]" (1
which is subsequently used to define the apex return map
Xn+1 = f(Xn7u) (2)

with control inputs u appropriately defined as in [21].

In contrast, liftoff occurs when the vertical component of
the ground reaction force on the toe becomes negative. Unlike
existing ideal SLIP models, our extended model incorporates a
discrete change in the body velocity at liftoff due to the collision
between the leg structure and a mechanical hard limit on the leg
length, typically included on almost all prismatic leg designs
to prevent radial leg oscillations during flight. We model this
discontinuity with an instantaneous liftoff map. Consequently,
the apex return map can be decomposed as

Xn+1 = (fa o fc o fs o fd)(Xnau) (3)

combining the descent map f;, the stance map f;, the instanta-
neous liftoff map f.., and the ascent map £, . Subsequent sections
detail analytic derivations for each of these maps.

B. Descent and Ascent Maps

In contrast with the simple ballistic flight trajectories of [21],
flight dynamics for the extended model have viscous damping in
both horizontal and vertical directions. The associated equations
of motion take the form

y _dhy
[ “‘| - [ ¢ ‘| (4)
Z —g—dyz

where dj, and d,, correspond to horizontal and vertical viscous
damping during flight, respectively.
Analytic solutions to these equations are given by

sy = B— e 1y, ®
at) = H—e ' —dit)+ 21— 4z (6)

where (yp, zo) and (g, 20) represent initial body positions and
velocities, respectively. Velocity equations for the body can be
obtained through differentiation as

y(t) = goe ! 7

At = et — L
v

—e ). (8)

Using these solutions, time of touchdown can be found as the
solution to the equation z(¢;4) = p cos 0,4, whereas time of apex
is the solution to the equation 2(t,) = 0.

C. Approximate Analytical Solutions to Stance Trajectories

This section briefly summarizes the approximations we pro-
posed in earlier work [21]. Using a nondimensional formula-
tion, we redefine time as ¢ := t/A with A := /py /g and scale
all distances with the spring rest length p, to obtain equations
of motion for stance in polar coordinates as

p= ﬁéQ —k(p—1) — cp — cos(f) )
B i Y N
0= dt_(p 0) — psind. (10)

Note that (d/dt)" = A™(d/dt)™, where all time derivatives are
with respect to the newly defined scaled time variable. Table II
details descriptions and definitions of nondimensional parame-
ters used throughout the paper.

\/ #3035,
the damping ratio &£ :=¢/(2@), the damped frequency

— 2 : — =2
wq = woy/1 — &, and the forcing term F' := —1 + x + 4py.
Assuming the conservation of angular momentum and follow-

ing approximations introduced in [21], approximate analytical
solutions to stance trajectories can be computed as

We now define for the natural frequency w, :=

p(f) = M e % cos(wal + ¢) + F/@? (an

p(l) = =My e % cos(wat + ¢ + ¢2) (12)

0(f) = Oug+ X T+ Y (e 59 cos(wal + ¢ — ¢)
—cos(— ) 13)

3p5 — 2P F/08 — 2pg Me™“" cos(wat + o)
(14)

where M :=+A?+ B2?2, ¢:=arctan(—B/A), ¢y :=
arctan (—y/1 — €2/€), A:=pq — F/&2, and B := (p1q +
5 (IJ() A) / wq.

This approximate solution for stance trajectories allows us to
find the time of occurrence for bottom and liftoff transitions.
Bottom is reached when the leg is maximally compressed and
can be found as the solution to the equation p = 0. The liftoff
event is more challenging since the presence of damping of-
ten results in the toe lifting off the ground prior to the spring

a(f) =
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reaching its rest length. Its time is computed as the minimum of
these two conditions. Once these boundaries of the stance phase
are found, the trajectories for an entire stride from an apex to the
next can be computed. A final stage in [21] introduces a correc-
tion for the effect of gravity on the angular momentum during
stance by adding a constant offset pj(t;4) to the angular mo-
mentum at touchdown to increase the domain of validity for the
approximations, preserving the analytical structure of the solu-
tion. This correction on the angular momentum is formulated as

o = PoBa) + 22 (plFa) in ) + (i) sin (7))
5)

D. Modeling the Liftoff Collision

The liftoff event marks the end of stance. For the extended
model, this is accompanied by an inelastic collision between
the body and the leg structure, after which both masses end up
moving with the same velocity. This is captured in our model as
an instantaneous liftoff map (collision map) f., corresponding
to a discontinuity in the body velocity with

+ ._,_}T my ._}T (16)

e [y , 2
where m; and m; are the body and leg masses, while the —
and + superscripts identify precollision and postcollision states,
respectively. Even though the toe may have lifted off the ground
prior to this collision (hence resulting in nonzero toe velocity
prior to collision), its effect on the body through leg damping will
also contribute to the decrease in the body velocity. We represent
the entirety of this “liftoff phase” with the inelastic collision of
(16), which has approximately the same energetic effect on
system velocities since no external forces except gravity act on
the system after liftoff and the leg mass is assumed to be small.

With all the maps in place, we now have an analytical approx-
imation to the return map defined in (2). Subsequent sections
use this map for comparisons with experimental data collected
for a wide range of initial conditions and parameters for the
extended SLIP model.

III. EXPERIMENTAL SETUP

Our focus in this paper is the experimental evaluation of
the predictive performance of our analytical approximations to
SLIP trajectories within a single stride. To this end, we have
designed and constructed a monopedal platform based on the
SLIP morphology, instrumented to provide state measurements
while constraining robot motion to the sagittal plane. In this
section, we first describe our experimental platform and, then,
conduct systematic experiments to identify various dynamic
parameters for our setup.

A. Robot Platform

Our platform consists of the planarizer illustrated in Fig. 3
that constrains the motion of an end-plate to a cylindrical plane,
approximating unconstrained motion in the sagittal plane while
eliminating unmodeled lateral dynamics. Such designs are
commonly used to investigate locomotion systems and their
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Fig. 3.
the leg.

Hopper robot with an overall view of the planarizer and close view of

correspondence to sagittal plane models [10], [14], [27], while
allowing sustained forward locomotion.

An important feature of our design is its ability to provide
accurate and high-bandwidth positional measurements through
optical encoders mounted on the central joint assembly. The
main boom, a 5-cm-diameter 1.67-m-long carbon-fiber tube, is
connected to the central joint assembly, which has incremental
encoders with 8192 counts per revolution connected to each axis
through 1:6 timing belts. This yields a resolution of 0.21 mm in
positional measurements.

The leg structure, also illustrated in Fig. 3, is affixed to the
boom endplate, which is constrained to a fixed orientation in
the sagittal plane. The rest length of the robot leg is 22 cm,
and it is coupled to the boom plate through a DC motor, inactive
during stance but used during flight to maintain a fixed leg angle
prior to touchdown. The hip motor is a Maxon RE30-268215
60W brushed DC motor combined with a Maxon GP-32-C 1:18
planetary gear and is completely disabled during stance. A three-
channel Type L MR encoder with 512 counts per revolution is
used to measure the leg angle relative to the boom plate and,
hence, the sagittal plane horizontal.

All computation is performed at the center of the planarizer
with a Cool LiteRunner-LX800 PC104 single-board computer
used for central control and the Universal Robot Bus architecture
used for communication with peripheral units such as the motor
amplifiers and encoder interfaces [28].

B. Data Collection and Preprocessing

The planarized monopod platform we described in preceding
sections is used for all the experiments presented in this paper.
To ensure general relevance of our results, we used four different
helical springs, hard, medium, soft, and softer, manufactured to
have the same rest length but different stiffnesses. The identified
compliance and damping values for each of these springs can
be seen in Table V. Note that the stiffness range was chosen to
be consistent with biomechanics literature. In particular, experi-
ments on humans (with 80-kg mass and 1-m leg length on aver-
age) running at different speeds (in the range 2.5-6.5 m/s) reveal
leg stiffnesses in the range 12—42 kN/m [29], which corresponds
to the stiffness range 15-53 in nondimensional coordinates. On
the other hand, manual measurements of our leg springs yield a
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Fig. 4.
flight.

Simplified lateral model for the boom and the leg assembly during

stiffness range 16—43 in nondimensional units, which covers a
large portion of the human stiffness range reported in [29].

Each experiment consisted of manually throwing the robot
with different initial conditions, ensuring in each case that the
vertical velocity was upwards to guarantee the occurrence of the
first apex. Prior to this initial thrust, the leg was positioned at a
desired angle (varied across different experiments), maintained
throughout the initial flight phase using the hip motor without
affecting flight dynamics. Upon touchdown, the hip motor was
deactivated, letting natural SLIP stance dynamics govern the
motion. Immediately following liftoff, the hip motor was reac-
tivated to maintain the liftoff leg angle until the second apex
point was reached, following which it was positioned vertically
to catch the robot and stop its motion. An example for such
an experiment is illustrated in Fig. 5, with the corresponding
analytical solutions superimposed as dashed lines.

All system states were recorded during the experiment at
500 Hz using encoders mounted on the central assembly and the
hip motor. Problematic experiments with foot slippage or other
erroneous conditions were manually eliminated. Subsequently,
positional data for clean experiments were filtered with a zero-
phase fifth-order Butterworth filter with a cutoff frequency of
50 Hz to eliminate noise resulting from the oscillations and vi-
bration of the boom. These positional encoder measurements
were then numerically differentiated to obtain body velocity in-
formation. Following this filtering, key transition points along
the trajectory, touchdown, bottom, liftoff, and apex were ex-
tracted based on their corresponding transition conditions and
used for analysis and fitting.

C. Modeling of the Boom Dynamics

The COM of the boom-leg assembly is situated outside the
sagittal plane of locomotion. However, since the SLIP model is
formulated in this sagittal plane, we capture the inertial effect
of the boom as an increased gravitational acceleration on the
robot body. A simplified lateral model of the boom assembly is
shown in Fig. 4, with the equations of motion taking the form

(I + MI?) ¢ = —Mlgy cos ¢ — 0.5mlgy cos ¢ a7

where m and I are the mass and moment of inertia for the boom,
respectively, and M is the mass of the leg assembly. Assuming
that ¢ stays small with cos ¢ ~ 1 and sin ¢ ~ ¢, we have

(I + M%) ¢ ~ —Mlgy — 0.5mlg . (18)

Vertical robot position depends on the boom angle through
z = lsin ¢. For this relation, our small angle approximation
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Fig. 5. Example stride for the hard spring with experimental data (solid blue)

and analytic predictions of AAS (dashed red) and Geyer’s method (dashed
black) for position and velocity trajectories are shown together.

yields z ~ [¢, whose second derivative Z ~ 1 can be combined
with (18) to yield

. M+m/2

~ e 1
: M—|—m/3gU (19)

where we used I = ml? /3 considering that the boom is a cylin-
der rotating around its tip. For our platform, we have M = 3.4kg
and m = 0.39 kg, which yields the gravitational acceleration
perceived in the body frame as g = 9.99 m/s?.

IV. IDENTIFICATION OF THE EXPERIMENTAL PLATFORM

The two primary sources of inaccuracies in the predictive per-
formance of our extended model are incorrect choices of model
parameters and inherent deficiencies in the model or associated
approximations. In this paper, we seek to isolate the latter to
provide a fair assessment of our model and analytic approxima-
tions (AAS). Consequently, we use system identification meth-
ods to estimate dynamic model parameters, which are difficult
to measure. Similar parameter identification methods have been
used in the literature to determine accurate models for complex
legged platforms [30], but our focus is on the validation of our
approximations.

A. Identification of Body and Leg Masses

We first focus our system identification efforts on the body
and leg mass parameters, m; and m; respectively, for the ex-
tended SLIP model since their influence on system dynamics,
particularly energy losses due to the liftoff collision are substan-
tial. To this end, we first use vertical hopping experiments with
the leg kept vertical by the hip motor. For the flight phase, (6)
and (8) remain valid and yield the vertical position and velocity.
In contrast, stance trajectories (11)—(14) take a much simpler
form when we constrain the motion to vertical dimension.

Using the data collection and filtering procedure described
in Section III-B, we ran 50 vertical experiments for each one
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TABLE III
ESTIMATES OF MASS AND VERTICAL DAMPING PARAMETERS
BASED ON VERTICAL EXPERIMENTS

my (kg) m (kg) d, (N-s/m)

3.21 0.19

of all four springs for a total of 200 experiments with 6,4 = 0
and 7y = 0. Analytic solutions for these vertical trajectories
have three common parameters: the body mass my, the leg
mass my, and the vertical flight damping d,, in addition to the
spring specific compliance k£ and damping d parameters. In
order to find these parameters, we construct a nonlinear least-
squares problem with the cost function defined as the percentage
difference between measured and predicted apex and bottom
positions, taking the form

|| {20, 2] — [Za, 2] |2
| [zas 2] II2
We use MATLAB’s 1sgnonlin function to find solutions
for my, my, and d,, common to all 200 experiments. Our results
are shown in Table III, while stiffness and damping parameters
for all four springs are detailed in Table V.

C, = (20)

B. Identification of Horizontal Flight Damping

Vertically constrained experiments do not exercise horizontal
degrees of freedom in our boom assembly. Consequently, we
use our entire set of single-stride experiments to identify the
horizontal damping coefficient during flight.

We begin by introducing a first-order approximation to hori-
zontal flight dynamics, which normally have exponential decay
terms in their solution, making linear fitting methods inappli-
cable. In particular, we will assume that the horizontal velocity
during the descent phase can be approximated as

y(t) = go — dnt 21

while relaxing the initial condition g, to possibly be different
than the measured initial condition ¢(0) to increase the accuracy
of the approximation. Recall that the parameter of interest in this
fitting procedure is the damping coefficient dj,, which justifies
this relaxation in the fitting.

Having identified touchdown states through the preprocessing
steps described in Section III-B, we can now formulate a linear
set of equations Az = b, by equating multiple predicted and
measured state points along each trajectory as

10 - 0t [ () ]
_yé -
1 0 0 tvln y% yl(t}u)
— : (22)
O 0 o 1 tin y(’/)n ym (trln)
L —d, |
0 0 o 1 ] L™ (&0, )
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where tz is the 7th data point for the jth experiment, with the
corresponding horizontal velocity ¢/ (¢/ ). The best fit to this set
of data points is given by the regressor

x= (AT A)"LATh. (23)

Using this procedure, our experiments result in the horizontal
flight damping coefficient common to all experiments identified
as dj, = 0.3 N-s/m.

V. EXPERIMENTAL VALIDATION OF ANALYTIC SOLUTIONS

Having identified fixed mass and flight damping parameters
for the leg assembly and the planarizing boom, we now continue
with the evaluation of the predictive performance of our AAS
to the extended SLIP model together with the identification of
spring compliance and damping coefficients for four different
springs. In order to ensure the validity of our evaluation, we
ran experiments with a wide range of initial conditions and
touchdown leg angles as described in Section I1I-B. In particular,
181, 208, 267, and 174 valid experiments were completed for
the softer, soft, medium, and hard springs, respectively, for a
total of 830 experiments. The initial conditions for single stride
experiments were chosen in the ranges y € [0.3,2.5](m/s) and
z € [0.24,0.48](m).

A. Performance Criteria

As a common basis for our cost function for system identi-
fication as well as the evaluation of the predictive performance
for our approximations, we first define apex position, velocity,
and time error measures for each stride as

|| [yuyza] - [Qaaéa] ||2

E,, = 100 (24)
! I [Yas 2a] |2
B, = 100 e = a2 (25)
Il Ya |]2
T—
B, = 100 e —tall2 (26)
I ta [l2

where variables with hats denote our predictions. These defini-
tions mirror similar measures defined in [21]. In order to im-
prove convergence for the system identification, we also define
a position error for the bottom transition as

|| [ys, 26] — G0, 2] |2
I [ye, 2] Il2
The cost function that we define for system identification

is composed of four components corresponding to the error
measures defined above, taking the form

Ey, := 100 (27)

Ci= \JC2,+C2 +Co+C, (28)

where individual cost functions C,;,, Cyy, Cy¢, and Cy,, corre-
spond to arithmetic mean of corresponding errors.

B. Predictive Performance With Cross Validation

In this section, we present a comprehensive evaluation of
the predictive performance of our AAS to the extended SLIP
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TABLE IV
PERCENTAGE PREDICTION ERRORS AND PARAMETER ESTIMATES RESULTING FROM 30-FOLD CROSS-VALIDATION EXPERIMENTS
Test Runs Training Runs Leg Parameters
Method Eqp Eqv Eq Eqp Eqv Eqy k (N/m) d (N-s/m)
Hard SLIPD 1.41 £0.51 3.98 + 1.04 1.69 +0.62 1.36 £0.01 3.75+0.04 1.54 £0.02 6560 £+ 3.09 12.3 +£0.07
AAS 1.53 + 0.40 4.23 + 1.12 1.74 £ 0.54 1.52 +0.02 4.21 +£0.04 1.744+0.02 6605 +6.14 12.1 +£0.06
SLIP 813+ 0.63 4.32+1.22 3.17 £ 0.67 7.9+0.01 4.18 £0.04 3.06 £0.03 8136 +£9.06 -
Geyer 10.46 + 0.43 8.82 +228 2.74 +0.99 10.45 £0.03 8.68 £0.07 2.75+£0.04 11569 +£93.97 -
Medium SLIPD 1.69 £+ 0.46 541+ 1.34 1.24 +0.42 1.54 £0.02 5.26 +0.06 1.19 +£0.02 4931 +£7.00 11.34+0.05
AAS 1.89 + 0.40 6.31 + 1.20 1.27 £ 0.35 1.88 +£0.02 6.29 +£0.04 1.26 £0.01 4828 +6.83 11.9 +£0.05
SLIP 7.43 +0.56 6.24 £ 1.35 3.44 +0.32 6.92 £0.01 5.34 +£0.06 3.47 £0.04 5921 £9.47 -
Geyer 9.49 +0.35 9.11 + 2.54 2.09 + 043 9.49 £0.01 9.05 £0.09 2.10 £0.02 8308 +30.50 -
Soft SLIPD 1.88+0.72 5.56 +2.34 1.98 + 0.64 1.83 +£0.02 5.34 £0.06 1.72+£0.02 3570 £ 3.88 9.94 £0.05
AAS 2.07 + 0.66 7.54 + 245 2.68 + 0.72 2.06 £0.02 7.54 £0.08 2.68 £0.03 3529 £+ 3.05 9.84 +£0.04
SLIP 837 +£0.92 812 +£2.55 248+ 041 7.93 £0.02 7.73+£0.06 2.13+£0.02 4645 +£2.34 -
Geyer 12.29 4+ 0.68 15.25+4.12 3.47 £ 091 12.28 £0.03 15.23 £0.13 3.48 £0.04 7602 £ 25.65 -
Softer SLIPD 2.03 +0.40 823+ 1.74 1.67 + 0.62 2.02+£0.02 8.22 £0.09 1.65 +0.02 2598 £5.79 5.33£0.05
AAS 2.21 + 047 7.80 + 1.84 1.68 + 0.49 2.19+0.03 7.74 £0.06 1.67 +£0.02 2572 +£4.18 6.49 +£0.03
SLIP 7.14 + 0.86 11.57 £ 2.36 3.06 +0.61 5.95+0.01 9.19+0.11 2.79+£0.03 3128 £8.67 -
Geyer 949+ 1.15 19.97 £ 5.85 1.37 + 0.40 9.47 £0.06 19.78 £0.19 1.38 £0.02 4117 +£29.88 -
TABLE V

ESTIMATED LEG COMPLIANCE AND DAMPING PARAMETERS

Spring: Softer Soft Medium Hard

k d k d k d k d
SLIPD 2598 53 3570 9.9 4931 113 6560 123
AAS 2572 65 3529 98 4828 119 6605 12.1
SLIP 3128 - 4645 - 5921 - 8136 -
Geyer 4117 - 7602 - 8308 - 11569 -
Vertical 2600 6.7 3536 9.9 4972 124 6630 12.7
Manual 2322 - 2915 - 4298 - 6282 -

model, first identifying the stiffness and damping coefficients
for the compliant leg, then using the error measures defined in
Section V-A to quantify the accuracy of the approximations. In
addition to AAS, we also evaluate the prediction performance of
Geyer’s approximation [19] as well as the numeric integration of
the original stance dynamics in (9) and (10) both with (SLIPD)
and without (SLIP) viscous damping in the leg.

For statistical validity, we used a cross-validation approach
by dividing experiments into disjoint subsets for training (es-
timating leg compliance and damping) and testing (evaluating
predictive performance). In this context, we considered 5-fold,
10-fold, 30-fold and leave-one-out options and observed their re-
sults separately. Consistent with observations described in [31],
we confirmed that using higher number of folds yields low de-
viations in training results but high deviations in test results.
Consequently, we use 30-fold cross validation for this study,
ensuring that test results represent the worst-case performance
figures for our approximations.

For the estimation of leg compliance and damping from train-
ing data, we use the 1sgnonlin method of MATLAB, which
uses the trust-region-reflective optimization algorithm [32]. We
use the compliance and damping parameters in Table V ob-
tained from vertical experiments to initialize the optimization,
further refining resulting parameters through repeated runs of
the optimization.

Fig. 5 illustrates the results of our system identification for
one of the experiments, showing filtered system states superim-
posed with the predictions of our AAS and Geyer’s predictor.
Initial conditions for the analytic solutions were chosen to be
the same as the experiment, except the initial horizontal velocity
which uses the estimate obtained from (23). Velocity oscillations
in the experimental data right after ¢ = 0.235 s are due to vibra-
tions of the boom assembly following the liftoff collision (also
visible as a discontinuity in horizontal and vertical velocities at
around ¢ = 0.235 s), but dissipate long before the end of the
stride and, hence, do not affect the predictive performance of
the return map. Apart from this unmodeled effect, the extended
SLIP model and our approximations show an accurate perfor-
mance in capturing the behavior of the experimental platform
as compared with Geyer’s predictor.

Table IV details average percentage prediction errors for apex
position, velocity, and time as well as parameter estimations and
their standard deviations across all experiments including train-
ing as well as test sets. Overall, our results show that prediction
errors in positional, velocity, and time variables are 2%, 7%, and
1.85% on average, respectively. The standard deviations are also
well below 0.1% and 2.5% for training and test data, respec-
tively, as a result of 30-fold cross validation. Nevertheless, these
experimentally validated single-stride prediction errors are suf-
ficiently low to be compensated by using adaptive controllers
such as in [23] when additional feedback can be introduced.
Similarly, reactive control algorithms, which are robust against
model and measurement uncertainty, can be used to compensate
for such errors [33].

In contrast, numeric integration of the SLIP model and
Geyer’s prediction show prediction errors around 10% on aver-
age for positional variables. The main reason for this significant
error is the unmodeled but inescapable damping loss in exper-
imental robot platforms. Note that AAS and Geyer’s predictor
are approximations to SLIPD and SLIP dynamics, respectively.
This is why numeric integrations perform better than their cor-
responding analytic predictors. Consequently, since the numeric
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SLIP predictor represents an upper bound for the accuracy of
all methods that approximate the trajectories of lossless SLIP
models and still performs worse than our method, we have not
included results from any other approximations in our compar-
ative study.

We can also observe that prediction errors of AAS decrease
with increasing spring stiffness, which is expected since stiffer
springs compress less, with trajectories coming closer to satisfy-
ing the assumptions underlying our approximations [21]. In the
case of hard spring, the average percentage position prediction
error is 1.53%, which corresponds to approximately 0.75 cm for
our robot running at a maximum height of 50 cm.

It is interesting to note that average prediction errors for AAS
with respect to SLIPD were 0.75% and 1.40% for position
and velocity coordinates, respectively [21]. However, the rela-
tive prediction performance of AAS with respect to SLIPD has
drastically decreased to 0.1% on average in our experimental
study. This is due to our fitting procedure, which allows AAS
and SLIPD to choose different leg compliance and damping
parameters in order to minimize their prediction errors.

Our system identification process also reveals leg compliance
and damping parameters for all four springs. Due to our adoption
of the 30-fold cross-validation approach, we obtain 30 different
values for these parameters, whose mean and standard deviation
figures are summarized in Table IV. Note that the estimated leg
compliance and damping parameters through AAS and SLIPD
are very close to those revealed by vertical experiments. On the
contrary, estimation through Geyer’s predictor and SLIP results
in unrealistic leg compliance values, since they assume zero
damping in the leg.

Finally, we have also investigated the dependence of predic-
tion performance on the asymmetry of the stride trajectory with
respect to the gravitational vector. The concept of a neutral
touchdown angle plays an important role in the characterization
of equilibrium gaits for the ideal SLIP model [5]. Moreover,
AAS to SLIP trajectories preceding our contributions relied on
the assumption of symmetric gaits, decreasing their efficacy for
transient asymmetric steps. Consequently, an evaluation of how
prediction performance degrades as the touchdown leg angle de-
viates from its neutral choice was investigated in [21], revealing
that the gravity correction featured in approximations substan-
tially improves prediction performance. We present a similar
evaluation on our experimental platform in the remainder of
this section.

We begin by defining the relative angle ;4 ,.; as

Ota.rer = 0ra — Oran (29)
to represent the deviation from the neutral angle ;4 ,,. An im-
portant difference from the corresponding definition in [21] is
the fact that stance trajectories are never symmetric for our
lossy SLIP model or the experimental platform. Consequently,

our definition of a neutral angle focuses on forward velocity as
the solution to the equation

Ora.n = argmin((gn — Un+1(0))?) (30)

of
g
oL
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Fig. 6. Dependence of mean prediction errors in apex position to the deviation

from the neutral touchdown angle (relative angle) for all leg springs.

which we use to compute the relative angle value corresponding
to the initial condition associated with each experiment.

Fig. 6 shows our results for each of the four different spring
stiffnesses, where marked data points represent different bins for
the relative angle, and the vertical axes represent mean and stan-
dard deviation values for the average positional prediction errors
all experiments grouped in each bin. Continuous graphs show
quadratic fits to the mean errors in each bin to reveal the depen-
dence of the errors on the relative angle and coincide very well
with mean data. Our results are consistent with those obtained
from pure simulation studies, confirming that the gravity correc-
tion introduced by our approximations substantially improves
the degradation in prediction performance away from symmet-
ric gaits with positional errors remaining below 5% even when
considerable asymmetry is present in the stride.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented the experimental valida-
tion of an approximate but accurate feed-forward predictor we
recently introduced for the well-known SLIP template. Our ver-
ification method first identifies unknown system parameters for
our SLIP-based experimental platform and, then, evaluates pre-
diction performance of the proposed predictor on the experi-
mental data. We also compare the prediction performance of
our predictor with Geyer’s approximation as well as the nu-
meric integration of SLIP dynamics with and without damping
in the leg. Key extensions to the basic SLIP model, including
viscous damping during flight and leg collision at liftoff, were
also introduced to improve model performance in comparison
with the experimental platform.

Our validation experiments include systematic tests by using
four different leg springs, covering a large range of initial con-
ditions and control inputs to show that the proposed map can
provide accurate estimates for all trajectories of the experimental
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platform. Our method not only provides an experimental valida-
tion strategy for the SLIP predictors but reveals insight into the
effects of mechanical parameters of the physical robot platform
as well. In particular, we observed that harder springs yield bet-
ter prediction performance, confirming theoretical observations
based on the nature of our approximations. Overall, our approx-
imations can predict positional and velocity trajectories with
mean 2% and 7%, respectively, well within the range of errors
that can be tolerated by adaptive [23] or reactive [33] control
strategies.

In addition to this performance characterization, we have also
validated that the gravity correction incorporated by our approx-
imations performs as predicted by investigating performance
with respect to the relative touchdown angle, defined as the de-
viation from the touchdown angle that would yield symmetric
locomotion. Our approximations preserve their accuracy even
for nonsymmetric trajectories where the angular momentum
around the toe is no longer conserved.

Our longer term goal is to design accurate model-based con-
trol algorithms and state estimation techniques for legged robot
platforms. The applicability of such control algorithms would
be substantially improved with more accurate predictions of as-
sociated single-stride trajectories. In the near future, we will
implement and validate deadbeat control strategies based on
our predictor, supported by adaptive algorithms based on the
same predictor for online estimation of dynamic parameters. In
the long term, we believe that accurate and efficient models of
legged platforms will be instrumental in both understanding un-
derlying principles of legged locomotion, as well as providing
the necessary tools for high-performance controllers, estimators,
and motion planners.
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