140 research outputs found

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms

    Modified nucleic acid tools for personalised medicine

    Full text link

    STRUCTURE AND DYNAMICS OF MICROBIAL COMMUNITIES IN ANAEROBIC DIGESTION PROCESSES

    Get PDF
    Nowadays world energy needs rely mostly on fossil fuels (oil, coal and natural gas) which accounts for more than 80% of global energy production. Fossil fuels reserves are estimated to deplete in the next future. In this context, it arises the need to establish new renewable energetic sources. A well-established technology for bioenergy production in the form of biogas is anaerobic digestion (AD). This process involves a complex consortium of different functional groups of microbes which, degrading the organic matter, produce biogas composed mainly of methane and carbon dioxide. In the latest 10 years there has been renewed interest for energy production from biomass through AD because of its versatility and potentiality. So far, the control and performance of AD process has typically been performed working on operational parameters (such as T, pH, COD, loading rate, etc.). However, recent studies concerning the microbial consortia involved in this complex process have been developing with the final aim to get an exhaustive knowledge of microbiology of the process and how it correlates to the operation of the reactor in order to improve the digester performance making preventive action possible. the general aim of this PhD thesis was to investigate the microbiology of both batch and continuous, single and two-stage anaerobic systems. The goals were (i) to elucidate the structure of the microbial communities, (ii) to investigate the dynamics, interactions and responses of the key metabolic groups responsible for the degradation of substrates and (iii) to give valuable information on the correlation between structure and function inside the microbial consortiums

    The MIF homolog MIF-2/D-DT in atherosclerosis

    Get PDF

    Biochemical characterisation of unusual glycolytic enzymes from the human intestinal parasite Blastocystis hominis

    Get PDF
    Blastocystis is an important parasite that infects humans and a wide range of animals like rats, birds, reptiles, etc. infecting a sum of 60% of world population. It belongs to the Stramenopiles, a Heterologous group that includes for example the Phythophthora infestans the responsible for the Irish potato famine. Previous work had reported the presence of an unusual fusion protein that is composed of two of the main glycolytic enzymes; Triosephosphate isomerase-glyceraldehyde-3-phosphate dehydrogenase (TPI-GAPDH). Little is known about this protein. Blastocystis TPI-GAPDH and Blastocystis enolase were both characterized biochemically and biophysically in this project. The phylogenetic relationships of those two proteins among other members of either Stramenopiles, or other members of the kingdom of life were examined and found to be grouping within the chromalveolates. Our studies revealed that those two proteins, Blastocystis enolase and Blastocystis TPI-GAPDH, had a peptide signal targeting them to the mitochondria. This was an unusual finding knowing that text books always referred to the glycolytic pathway as a canonical cytoplasmic pathway. Structural studies had also been conducted to unravel the unknown structure of the fusion protein Blastocystis TPI-GAPDH. X-ray crystallography had been conducted to solve the protein structure and the protein was found to be a tetrameric protein composed of a central tetrameric GAPDH protein flanked with two dimmers of TPI protein. Solving its structure would be the starting point towards reviling the role that TPI-GAPDH might play in Blastocystis and other organisms that it was found in as well. Although a fusion protein, the individual components of the fusion were found to contain all features deemed essential for function for TPI and GAPDH and contain all expected protein motifs for these enzymes
    corecore