74 research outputs found

    PAMPA in the wild:a real-life evaluation of a lightweight ad-hoc broadcasting family

    Get PDF
    Broadcast is one of the core building blocks of many services deployed on ad-hoc wireless networks, such as Mobile Ad-Hoc Networks (MANETs) or Wireless Sensor Networks (WSNs). Most broadcast protocols are however only ever evaluated using simulations, which have repeatedly been shown to be unreliable, and potentially misleading. In this paper, we seek to go beyond simulations, and consider the particular case of PAMPA, a promising family of wireless broadcast algorithms for ad-hoc and wireless networks. We report on our efforts to further our experimental understanding of PAMPA, and present the first ever characterisation of the PAMPA family on a real deployment. Here it has to deal with real network problems such as node, message and sending failure. Our experiments show that the standard PAMPA algorithm out-performs all other protocols in the family, with a delivery ratio consistently around 75%, and a retransmission ratio as low as 44%, for a failure-free run. We use this opportunity to reflect on our findings and lessons learnt when moving from simulations to actual experimentsab

    Compilation of thesis abstracts, September 2009

    Get PDF
    NPS Class of September 2009This quarter’s Compilation of Abstracts summarizes cutting-edge, security-related research conducted by NPS students and presented as theses, dissertations, and capstone reports. Each expands knowledge in its field.http://archive.org/details/compilationofsis109452751

    Air Force Institute of Technology Research Report 2020

    Get PDF
    This Research Report presents the FY20 research statistics and contributions of the Graduate School of Engineering and Management (EN) at AFIT. AFIT research interests and faculty expertise cover a broad spectrum of technical areas related to USAF needs, as reflected by the range of topics addressed in the faculty and student publications listed in this report. In most cases, the research work reported herein is directly sponsored by one or more USAF or DOD agencies. AFIT welcomes the opportunity to conduct research on additional topics of interest to the USAF, DOD, and other federal organizations when adequate manpower and financial resources are available and/or provided by a sponsor. In addition, AFIT provides research collaboration and technology transfer benefits to the public through Cooperative Research and Development Agreements (CRADAs). Interested individuals may discuss ideas for new research collaborations, potential CRADAs, or research proposals with individual faculty using the contact information in this document

    Summary of Research 1994

    Get PDF
    The views expressed in this report are those of the authors and do not reflect the official policy or position of the Department of Defense or the U.S. Government.This report contains 359 summaries of research projects which were carried out under funding of the Naval Postgraduate School Research Program. A list of recent publications is also included which consists of conference presentations and publications, books, contributions to books, published journal papers, and technical reports. The research was conducted in the areas of Aeronautics and Astronautics, Computer Science, Electrical and Computer Engineering, Mathematics, Mechanical Engineering, Meteorology, National Security Affairs, Oceanography, Operations Research, Physics, and Systems Management. This also includes research by the Command, Control and Communications (C3) Academic Group, Electronic Warfare Academic Group, Space Systems Academic Group, and the Undersea Warfare Academic Group

    The 1994 Silver Anniversary of APOLLO 11: From the Moon to the Stars

    Get PDF
    This report summarizes the technology transfer, advanced studies, and research and technology efforts in progress at Marshall Space Flight Center (MSFC) in 1994

    SMARTI - Sustainable Multi-functional Automated Resilient Transport Infrastructure

    Get PDF
    The world’s transport network has developed over thousands of years; emerging from the need of allowing more comfortable trips to roman soldiers to the modern smooth roads enabling modern vehicles to travel at high speed and to allow heavy airplanes to take off and land safely. However, in the last two decades the world is changing very fast in terms of population growth, mobility and business trades creating greater traffic volumes and demand for minimal disruption to users, but also challenges, such as climate change and more extreme weather events. At the same time, technology development to allow a more sustainable transport sector continue apace. It is within this environment and in close consultation with key stakeholders, that this consortium developed the vision to achieve the paradigm shift to Sustainable Multifunctional Automated and Resilient Transport Infrastructures. SMARTI ETN is a training-through-research programme that empowered Europe by forming a new generation of multi-disciplinary professionals able to conceive the future of transport infrastructures and this Special Issue is a collection of some of the scientific work carried out within this context. Enjoy the read

    Soft Computing approaches in ocean wave height prediction for marine energy applications

    Get PDF
    El objetivo de esta tesis consiste en investigar el uso de técnicas de Soft Computing (SC) aplicadas a la energía producida por las olas o energía undimotriz. Ésta es, entre todas las energías marinas disponibles, la que exhibe el mayor potencial futuro porque, además de ser eficiente desde el punto de vista técnico, no causa problemas ambientales significativos. Su importancia práctica radica en dos hechos: 1) es aproximadamente 1000 veces más densa que la energía eólica, y 2) hay muchas regiones oceánicas con abundantes recursos de olas que están cerca de zonas pobladas que demandan energía eléctrica. La contrapartida negativa se encuentra en que las olas son más difíciles de caracterizar que las mareas debido a su naturaleza estocástica. Las técnicas SC exhiben resultados similares e incluso superiores a los de otros métodos estadísticos en las estimaciones a corto plazo (hasta 24 h), y tienen la ventaja adicional de requerir un esfuerzo computacional mucho menor que los métodos numérico-físicos. Esta es una de las razones por la que hemos decidido explorar el uso de técnicas de SC en la energía producida por el oleaje. La otra se encuentra en el hecho de que su intermitencia puede afectar a la forma en la que se integra la electricidad que genera con la red eléctrica. Estas dos son las razones que nos han impulsado a explorar la viabilidad de nuevos enfoques de SC en dos líneas de investigación novedosas. La primera de ellas es un nuevo enfoque que combina un algoritmo genético (GA: Genetic Algorithm) con una Extreme Learning Machine (ELM) aplicado a un problema de reconstrucción de la altura de ola significativa (en un boya donde los datos se han perdido, por ejemplo, por una tormenta) utilizando datos de otras boyas cercanas. Nuestro algoritmo GA-ELM es capaz de seleccionar un conjunto reducido de parámetros del oleaje que maximizan la reconstrucción de la altura de ola significativa en la boya cuyos datos se han perdido utilizando datos de boyas vecinas. El método y los resultados de esta investigación han sido publicados en: Alexandre, E., Cuadra, L., Nieto-Borge, J. C., Candil-García, G., Del Pino, M., & Salcedo-Sanz, S. (2015). A hybrid genetic algorithm—extreme learning machine approach for accurate significant wave height reconstruction. Ocean Modelling, 92, 115-123. La segunda contribución combina conceptos de SC, Smart Grids (SG) y redes complejas (CNs: Complex Networks). Está motivada por dos aspectos importantes, mutuamente interrelacionados: 1) la forma en la que los conversores WECs (wave energy converters) se interconectan eléctricamente para formar un parque, y 2) cómo conectar éste con la red eléctrica en la costa. Ambos están relacionados con el carácter aleatorio e intermitente de la energía eléctrica producida por las olas. Para poder integrarla mejor sin afectar a la estabilidad de la red se debería recurrir al concepto Smart Wave Farm (SWF). Al igual que una SG, una SWF utiliza sensores y algoritmos para predecir el olaje y controlar la producción y/o almacenamiento de la electricidad producida y cómo se inyecta ésta en la red. En nuestro enfoque, una SWF y su conexión con la red eléctrica se puede ver como una SG que, a su vez, se puede modelar como una red compleja. Con este planteamiento, que se puede generalizar a cualquier red formada por generadores renovables y nodos que consumen y/o almacenan energía, hemos propuesto un algoritmo evolutivo que optimiza la robustez de dicha SG modelada como una red compleja ante fallos aleatorios o condiciones anormales de funcionamiento. El modelo y los resultados han sido publicados en: Cuadra, L., Pino, M. D., Nieto-Borge, J. C., & Salcedo-Sanz, S. (2017). Optimizing the Structure of Distribution Smart Grids with Renewable Generation against Abnormal Conditions: A Complex Networks Approach with Evolutionary Algorithms. Energies, 10(8), 1097

    A Nature inspired guidance system for unmanned autonomous vehicles employed in a search role.

    Get PDF
    Since the very earliest days of the human race, people have been studying animal behaviours. In those early times, being able to predict animal behaviour gave hunters the advantages required for success. Then, as societies began to develop this gave way, to an extent, to agriculture and early studies, much of it trial and error, enabled farmers to successfully breed and raise livestock to feed an ever growing population. Following the advent of scientific endeavour, more rigorous academic research has taken human understanding of the natural world to much greater depth. In recent years, some of this understanding has been applied to the field of computing, creating the more specialised field of natural computing. In this arena, a considerable amount of research has been undertaken to exploit the analogy between, say, searching a given problem space for an optimal solution and the natural process of foraging for food. Such analogies have led to useful solutions in areas such as numerical optimisation and communication network management, prominent examples being ant colony systems and particle swarm optimisation; however, these solutions often rely on well-defined fitness landscapes that may not always be available. One practical application of natural computing may be to create behaviours for the control of autonomous vehicles that would utilise the findings of ethological research, identifying the natural world behaviours that have evolved over millennia to surmount many of the problems that autonomous vehicles find difficult; for example, long range underwater navigation or obstacle avoidance in fast moving environments. This thesis provides an exploratory investigation into the use of natural search strategies for improving the performance of autonomous vehicles operating in a search role. It begins with a survey of related work, including recent developments in autonomous vehicles and a ground breaking study of behaviours observed within the natural world that highlights general cooperative group behaviours, search strategies and communication methods that might be useful within a wider computing context beyond optimisation, where the information may be sparse but new paradigms could be developed that capitalise on research into biological systems that have developed over millennia within the natural world. Following this, using a 2-dimensional model, novel research is reported that explores whether autonomous vehicle search can be enhanced by applying natural search behaviours for a variety of search targets. Having identified useful search behaviours for detecting targets, it then considers scenarios where detection is lost and whether natural strategies for re-detection can improve overall systemic performance in search applications. Analysis of empirical results indicate that search strategies exploiting behaviours found in nature can improve performance over random search and commonly applied systematic searches, such as grids and spirals, across a variety of relative target speeds, from static targets to twice the speed of the searching vehicles, and against various target movement types such as deterministic movement, random walks and other nature inspired movement. It was found that strategies were most successful under similar target-vehicle relationships as were identified in nature. Experiments with target occlusion also reveal that natural reacquisition strategies could improve the probability oftarget redetection

    Modelling blue-light ambulance mobility in the London metropolitan area

    Get PDF
    Actions taken immediately following a life-threatening incident are critical for the survival of the patient. In particular, the timely arrival of ambulance crew often makes the difference between life and death. As a consequence, ambulance services are under persistent pressure to achieve rapid emergency response. Meeting stringent performance requirements poses special challenges in metropolitan areas where the higher population density results in high rates of life-threatening incident occurrence, compounded by lower response speeds due to traffic congestion. A key ingredient of data-driven approaches to address these challenges is the effective modelling of ambulance movement thus enabling the accurate prediction of the expected arrival time of a crew at the site of an incident. Ambulance mobility patterns however are distinct and in particular differ from civilian traffic: crews travelling with ashing blue lights and sirens are by law exempt from certain traffic regulations; and moreover, ambulance journeys are triggered by emergency incidents that are generated following distinct spatial and temporal patterns. We use a large historical dataset of incidents and ambulance location traces to model route selection and arrival times. Working on a road routing network modified to reflect the differences between emergency and regular vehicle traffic, we develop a methodology for matching ambulances Global Positioning System (GPS) coordinates to road segments, allowing the reconstruction of ambulance routes with precise speed data. We demonstrate how a road speed model that exploits this information achieves best predictive performance by implicitly capturing route-specific patterns in changing traffic conditions. We then present a hybrid model that achieves a high route similarity score while minimising journey duration error. This hybrid model outperforms alternative mobility models. To the best of our knowledge, this study represents the first attempt to apply data-driven methodologies to route selection and estimation of arrival times of ambulances travelling with blue lights and sirens

    Cyber-Human Systems, Space Technologies, and Threats

    Get PDF
    CYBER-HUMAN SYSTEMS, SPACE TECHNOLOGIES, AND THREATS is our eighth textbook in a series covering the world of UASs / CUAS/ UUVs / SPACE. Other textbooks in our series are Space Systems Emerging Technologies and Operations; Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD); Disruptive Technologies with applications in Airline, Marine, Defense Industries; Unmanned Vehicle Systems & Operations On Air, Sea, Land; Counter Unmanned Aircraft Systems Technologies and Operations; Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets, 2nd edition; and Unmanned Aircraft Systems (UAS) in the Cyber Domain Protecting USA’s Advanced Air Assets, 1st edition. Our previous seven titles have received considerable global recognition in the field. (Nichols & Carter, 2022) (Nichols, et al., 2021) (Nichols R. K., et al., 2020) (Nichols R. , et al., 2020) (Nichols R. , et al., 2019) (Nichols R. K., 2018) (Nichols R. K., et al., 2022)https://newprairiepress.org/ebooks/1052/thumbnail.jp
    • …
    corecore