1,156 research outputs found

    Performance and efficiency optimization of multi-layer IoT edge architecture

    Get PDF
    Abstract. Internet of Things (IoT) has become a backbone technology that connects together various devices with diverse capabilities. It is a technology, which enables ubiquitously available digital services for end-users. IoT applications for mission-critical scenarios need strict performance indicators such as of latency, scalability, security and privacy. To fulfil these requirements, IoT also requires support from relevant enabling technologies, such as cloud, edge, virtualization and fifth generation mobile communication (5G) technologies. For Latency-critical applications and services, long routes between the traditional cloud server and end-devices (sensors /actuators) is not a feasible approach for computing at these data centres, although these traditional clouds provide very high computational and storage for current IoT system. MEC model can be used to overcome this challenge, which brings the CC computational capacity within or next on the access network base stations. However, the capacity to perform the most critical processes at the local network layer is often necessary to cope with the access network issues. Therefore, this thesis compares the two existing IoT models such as traditional cloud-IoT model, a MEC-based edge-cloud-IoT model, with proposed local edge-cloud-IoT model with respect to their performance and efficiency, using iFogSim simulator. The results consolidate our research team’s previous findings that utilizing the three-tier edge-IoT architecture, capable of optimally utilizing the computational capacity of each of the three tiers, is an effective measure to reduce energy consumption, improve end-to-end latency and minimize operational costs in latency-critical It applications

    Mist Data: Leveraging Mist Computing for Secure and Scalable Architecture for Smart and Connected Health

    Get PDF
    The smart health paradigms employ Internet-connected wearables for tele-monitoring, diagnosis providing inexpensive healthcare solutions. Mist computing reduces latency and increases throughput by processing data near the edge of the network. In the present paper, we proposed a secure mist Computing architecture that is validated on recently released public geospatial health dataset. Results and discussion support the efficacy of proposed architecture for smart geospatial health applications. The present research paper proposed SoA-Mist i.e. a three-tier secure framework for efficient management of geospatial health data with the use of mist devices. It proposed the security aspects in client layer, mist layer, fog layer and cloud layer. It has defined the prototype development by using win-win spiral model with use case and sequence diagram. Overlay analysis has been performed with the developed framework on malaria vector borne disease positive maps of Maharastra state in India from 2011 to 2014 in mobile clients as test case. Finally, It concludes with the comparison analysis of cloud based framework and proposed SoA-Mist framework

    Adaptive Process Distribution at the Edge of IoT using the Integration of BPMS and Containerization

    Get PDF
    Täna levivad pilvepõhised värkvõrgu (asjade interneti) süsteemid tuginevad protsesside halduseks kaugel asuvatel andmekeskustel, mis toob endaga kaasa latentsusprobleeme. Vastusena sellele probleemile on varem välja pakutud servaarvutuse lähenemine, kus arvutused viiakse läbi asjade interneti süsteemi võrgule füüsiliselt lähemal. Mitmete servaarvutuse metoodikate seas on uduarvutus lähenemine, kus rõhk on arvutuste liigutamisel värkvõrgu seadmetele endile. Ehkki uduarvutusel põhinev arhitektuur on paljutõotav, tõstatab see küsimuse – kuidas värkvõrgu protsessihaldussüsteemid (BPMS4IoT-süsteemid) äriprotsesse heterogeensetele värkvõrgu seadmetele jaotama peaksid? Levinud on lähenemine, kus protsesside töövooülesannete käituseks tuginetakse ühisele platvormile. Näiteks, kui haldusserver defineerib teatud töövoo ülesandena Pythoni skripti ja määrab selle seadmele, siis peab seadme töövookäitusmootor toetama vastavat mehhanismi skriptide jooksutamiseks. Selline nõue ei ole paindlik, arvestades värkvõrgu seadmete heterogeensust. Käesolevas magistritöös pakub autor välja raamistiku, mis eraldab töövoo ülesannete käitusmeetodi käitusmootorist kasutades selleks konteinertehnoloogiat. Töö käigus arendati välja raamistiku prototüüp ning viidi läbi katseid mikroarvutitel põhinevail seadmetel. Lisaks võrreldi väljapakutud uduarvutuse raamistiku jõudlust pilvearvutusel põhineva süsteemiga.Emerging cloud-centric Internet of Things (IoT) system relies on distant data centers to manage the entire processes, which raises the issue of latency. To address the issue, researchers have introduced the Edge computing methodologies that carry out computation closer to the edge network of IoT system. Among the numerous Edge computing approaches, Mist computing paradigm emphasises the mechanism that moves the computation further to the front-end IoT devices. Although the architecture of Mist computing is promising, it raises a new challenge in how the Business Process Management System for IoT (BPMS4IoT) distributes the business process workflow to the heterogeneous IoT devices? In general, executing business process workflows relies on the common platform for executing customized tasks. For example, if the management server defines a Python script task in a workflow, which has been allocated to an IoT device, the workflow engine of the IoT device must have the compatible execution method. Such a requirement is less flexible when one considers the heterogeneity of the IoT devices. Therefore, in this thesis, the author proposes a framework to decouple the workflow task execution method from the workflow engines using the containerization technology. A proof-of-concept prototype has been developed and has been tested on several single-board computers-based IoT devices. Further, a case study has been performed to demonstrate the performance of the proposed framework comparing to the cloud-centric system

    Systematic Review on Security and Privacy Requirements in Edge Computing: State of the Art and Future Research Opportunities

    Get PDF
    Edge computing is a promising paradigm that enhances the capabilities of cloud computing. In order to continue patronizing the computing services, it is essential to conserve a good atmosphere free from all kinds of security and privacy breaches. The security and privacy issues associated with the edge computing environment have narrowed the overall acceptance of the technology as a reliable paradigm. Many researchers have reviewed security and privacy issues in edge computing, but not all have fully investigated the security and privacy requirements. Security and privacy requirements are the objectives that indicate the capabilities as well as functions a system performs in eliminating certain security and privacy vulnerabilities. The paper aims to substantially review the security and privacy requirements of the edge computing and the various technological methods employed by the techniques used in curbing the threats, with the aim of helping future researchers in identifying research opportunities. This paper investigate the current studies and highlights the following: (1) the classification of security and privacy requirements in edge computing, (2) the state of the art techniques deployed in curbing the security and privacy threats, (3) the trends of technological methods employed by the techniques, (4) the metrics used for evaluating the performance of the techniques, (5) the taxonomy of attacks affecting the edge network, and the corresponding technological trend employed in mitigating the attacks, and, (6) research opportunities for future researchers in the area of edge computing security and privacy

    Mist and Edge Computing Cyber-Physical Human-Centered Systems for Industry 5.0: A Cost-Effective IoT Thermal Imaging Safety System

    Get PDF
    While many companies worldwide are still striving to adjust to Industry 4.0 principles, the transition to Industry 5.0 is already underway. Under such a paradigm, Cyber-Physical Human-centered Systems (CPHSs) have emerged to leverage operator capabilities in order to meet the goals of complex manufacturing systems towards human-centricity, resilience and sustainability. This article first describes the essential concepts for the development of Industry 5.0 CPHSs and then analyzes the latest CPHSs, identifying their main design requirements and key implementation components. Moreover, the major challenges for the development of such CPHSs are outlined. Next, to illustrate the previously described concepts, a real-world Industry 5.0 CPHS is presented. Such a CPHS enables increased operator safety and operation tracking in manufacturing processes that rely on collaborative robots and heavy machinery. Specifically, the proposed use case consists of a workshop where a smarter use of resources is required, and human proximity detection determines when machinery should be working or not in order to avoid incidents or accidents involving such machinery. The proposed CPHS makes use of a hybrid edge computing architecture with smart mist computing nodes that processes thermal images and reacts to prevent industrial safety issues. The performed experiments show that, in the selected real-world scenario, the developed CPHS algorithms are able to detect human presence with low-power devices (with a Raspberry Pi 3B) in a fast and accurate way (in less than 10 ms with a 97.04% accuracy), thus being an effective solution that can be integrated into many Industry 5.0 applications. Finally, this article provides specific guidelines that will help future developers and managers to overcome the challenges that will arise when deploying the next generation of CPHSs for smart and sustainable manufacturing.Comment: 32 page
    corecore