4,846 research outputs found

    Cooperation and Underlay Mode Selection in Cognitive Radio Network

    Full text link
    In this research, we proposes a new method for cooperation and underlay mode selection in cognitive radio networks. We characterize the maximum achievable throughput of our proposed method of hybrid spectrum sharing. Hybrid spectrum sharing is assumed where the Secondary User (SU) can access the Primary User (PU) channel in two modes, underlay mode or cooperative mode with admission control. In addition to access the channel in the overlay mode, secondary user is allowed to occupy the channel currently occupied by the primary user but with small transmission power. Adding the underlay access modes attains more opportunities to the secondary user to transmit data. It is proposed that the secondary user can only exploits the underlay access when the channel of the primary user direct link is good or predicted to be in non-outage state. Therefore, the secondary user could switch between underlay spectrum sharing and cooperation with the primary user. Hybrid access is regulated through monitoring the state of the primary link. By observing the simulation results, the proposed model attains noticeable improvement in the system performance in terms of maximum secondary user throughput than the conventional cooperation and non-cooperation schemes

    Analysis of Multiserver Retrial Queueing System: A Martingale Approach and an Algorithm of Solution

    Full text link
    The paper studies a multiserver retrial queueing system with mm servers. Arrival process is a point process with strictly stationary and ergodic increments. A customer arriving to the system occupies one of the free servers. If upon arrival all servers are busy, then the customer goes to the secondary queue, orbit, and after some random time retries more and more to occupy a server. A service time of each customer is exponentially distributed random variable with parameter ÎŒ1\mu_1. A time between retrials is exponentially distributed with parameter ÎŒ2\mu_2 for each customer. Using a martingale approach the paper provides an analysis of this system. The paper establishes the stability condition and studies a behavior of the limiting queue-length distributions as ÎŒ2\mu_2 increases to infinity. As ÎŒ2→∞\mu_2\to\infty, the paper also proves the convergence of appropriate queue-length distributions to those of the associated `usual' multiserver queueing system without retrials. An algorithm for numerical solution of the equations, associated with the limiting queue-length distribution of retrial systems, is provided.Comment: To appear in "Annals of Operations Research" 141 (2006) 19-52. Replacement corrects a small number of misprint

    A time dependent performance model for multihop wireless networks with CBR traffic

    Get PDF
    In this paper, we develop a performance modeling technique for analyzing the time varying network layer queueing behavior of multihop wireless networks with constant bit rate traffic. Our approach is a hybrid of fluid flow queueing modeling and a time varying connectivity matrix. Network queues are modeled using fluid-flow based differential equation models which are solved using numerical methods, while node mobility is modeled using deterministic or stochastic modeling of adjacency matrix elements. Numerical and simulation experiments show that the new approach can provide reasonably accurate results with significant improvements in the computation time compared to standard simulation tools. © 2010 IEEE

    Critically loaded multi-server queues with abandonments, retrials, and time-varying parameters

    Full text link
    In this paper, we consider modeling time-dependent multi-server queues that include abandonments and retrials. For the performance analysis of those, fluid and diffusion models called "strong approximations" have been widely used in the literature. Although they are proven to be asymptotically exact, their effectiveness as approximations in critically loaded regimes needs to be investigated. To that end, we find that existing fluid and diffusion approximations might be either inaccurate under simplifying assumptions or computationally intractable. To address that concern, this paper focuses on developing a methodology by adjusting the fluid and diffusion models so that they significantly improve the estimation accuracy. We illustrate the accuracy of our adjusted models by performing a number of numerical experiments
    • 

    corecore