164 research outputs found

    Comparative proteome analysis of psychrophilic versus mesophilic bacterial species: Insights into the molecular basis of cold adaptation of proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cold adapted or psychrophilic organisms grow at low temperatures, where most of other organisms cannot grow. This adaptation requires a vast array of sequence, structural and physiological adjustments. To understand the molecular basis of cold adaptation of proteins, we analyzed proteomes of psychrophilic and mesophilic bacterial species and compared the differences in amino acid composition and substitution patterns to investigate their likely association with growth temperatures.</p> <p>Results</p> <p>In psychrophilic bacteria, serine, aspartic acid, threonine and alanine are overrepresented in the coil regions of secondary structures, whilst glutamic acid and leucine are underrepresented in the helical regions. Compared to mesophiles, psychrophiles comprise a significantly higher proportion of amino acids that contribute to higher protein flexibility in the coil regions of proteins, such as those with tiny/small or neutral side chains. Amino acids with aliphatic, basic, aromatic and hydrophilic side chains are underrepresented in the helical regions of proteins of psychrophiles. The patterns of amino acid substitutions between the orthologous proteins of psychrophiles <it>versus </it>mesophiles are significantly different for several amino acids when compared to their substitutions in orthologous proteins of within the mesophiles or psychrophiles.</p> <p>Conclusion</p> <p>Current results provide quantitative substitution preferences (or avoidance) of amino acids that lead to the adaptation of proteins to cold temperatures. These finding would help future efforts in selecting mutations for rational design of proteins with enhanced psychrophilic properties.</p

    Predicting protein thermostability changes from sequence upon multiple mutations

    Get PDF
    Motivation: A basic question in protein science is to which extent mutations affect protein thermostability. This knowledge would be particularly relevant for engineering thermostable enzymes. In several experimental approaches, this issue has been serendipitously addressed. It would be therefore convenient providing a computational method that predicts when a given protein mutant is more thermostable than its corresponding wild-type

    Discrimination of thermophilic and mesophilic proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p> There is a considerable literature on the source of the thermostability of proteins from thermophilic organisms. Understanding the mechanisms for this thermostability would provide insights into proteins generally and permit the design of synthetic hyperstable biocatalysts.</p> <p>Results</p> <p> We have systematically tested a large number of sequence and structure derived quantities for their ability to discriminate thermostable proteins from their non-thermostable orthologs using sets of mesophile-thermophile ortholog pairs. Most of the quantities tested correspond to properties previously reported to be associated with thermostability. Many of the structure related properties were derived from the Delaunay tessellation of protein structures.</p> <p>Conclusions</p> <p> Carefully selected sequence based indices discriminate better than purely structure based indices. Combined sequence and structure based indices improve performance somewhat further. Based on our analysis, the strongest contributors to thermostability are an increase in ion pairs on the protein surface and a more strongly hydrophobic interior.</p

    Positive and Negative Design in Stability and Thermal Adaptation of Natural Proteins

    Get PDF
    The aim of this work is to elucidate how physical principles of protein design are reflected in natural sequences that evolved in response to the thermal conditions of the environment. Using an exactly solvable lattice model, we design sequences with selected thermal properties. Compositional analysis of designed model sequences and natural proteomes reveals a specific trend in amino acid compositions in response to the requirement of stability at elevated environmental temperature: the increase of fractions of hydrophobic and charged amino acid residues at the expense of polar ones. We show that this “from both ends of the hydrophobicity scale” trend is due to positive (to stabilize the native state) and negative (to destabilize misfolded states) components of protein design. Negative design strengthens specific repulsive non-native interactions that appear in misfolded structures. A pressure to preserve specific repulsive interactions in non-native conformations may result in correlated mutations between amino acids that are far apart in the native state but may be in contact in misfolded conformations. Such correlated mutations are indeed found in TIM barrel and other proteins

    Thermophilic Adaptation in Prokaryotes Is Constrained by Metabolic Costs of Proteostasis

    Get PDF
    Prokaryotes evolved to thrive in an extremely diverse set of habitats, and their proteomes bear signatures of environmental conditions. Although correlations between amino acid usage and environmental temperature are well-documented, understanding of the mechanisms of thermal adaptation remains incomplete. Here, we couple the energetic costs of protein folding and protein homeostasis to build a microscopic model explaining both the overall amino acid composition and its temperature trends. Low biosynthesis costs lead to low diversity of physical interactions between amino acid residues, which in turn makes proteins less stable and drives up chaperone activity to maintain appropriate levels of folded, functional proteins. Assuming that the cost of chaperone activity is proportional to the fraction of unfolded client proteins, we simulated thermal adaptation of model proteins subject to minimization of the total cost of amino acid synthesis and chaperone activity. For the first time, we predicted both the proteome-average amino acid abundances and their temperature trends simultaneously, and found strong correlations between model predictions and 402 genomes of bacteria and archaea. The energetic constraint on protein evolution is more apparent in highly expressed proteins, selected by codon adaptation index. We found that in bacteria, highly expressed proteins are similar in composition to thermophilic ones, whereas in archaea no correlation between predicted expression level and thermostability was observed. At the same time, thermal adaptations of highly expressed proteins in bacteria and archaea are nearly identical, suggesting that universal energetic constraints prevail over the phylogenetic differences between these domains of life

    Arabidopsis Heat Stress-Induced Proteins Are Enriched in Electrostatically Charged Amino Acids and Intrinsically Disordered Regions

    Full text link
    [EN] Comparison of the proteins of thermophilic, mesophilic, and psychrophilic prokaryotes has revealed several features characteristic to proteins adapted to high temperatures, which increase their thermostability. These characteristics include a profusion of disulfide bonds, salt bridges, hydrogen bonds, and hydrophobic interactions, and a depletion in intrinsically disordered regions. It is unclear, however, whether such differences can also be observed in eukaryotic proteins or when comparing proteins that are adapted to temperatures that are more subtly different. When an organism is exposed to high temperatures, a subset of its proteins is overexpressed (heat-induced proteins), whereas others are either repressed (heat-repressed proteins) or remain unaffected. Here, we determine the expression levels of all genes in the eukaryotic model system Arabidopsis thaliana at 22 and 37 degrees C, and compare both the amino acid compositions and levels of intrinsic disorder of heat-induced and heat-repressed proteins. We show that, compared to heat-repressed proteins, heat-induced proteins are enriched in electrostatically charged amino acids and depleted in polar amino acids, mirroring thermophile proteins. However, in contrast with thermophile proteins, heat-induced proteins are enriched in intrinsically disordered regions, and depleted in hydrophobic amino acids. Our results indicate that temperature adaptation at the level of amino acid composition and intrinsic disorder can be observed not only in proteins of thermophilic organisms, but also in eukaryotic heat-induced proteins; the underlying adaptation pathways, however, are similar but not the same.D.A.-P. and F.F. were supported by funds from the University of Nevada, Reno, and by pilot grants from Nevada INBRE (P20GM103440) and the Smooth Muscle Plasticity COBRE from the University of Nevada, Reno (5P30GM110767-04), both funded by the National Institute of General Medical Sciences (National Institutes of Health). M.X.R.-G. and M.A.F. were supported by grants from Science Foundation Ireland (12/IP/1637) and the Spanish Ministerio de Economia y Competitividad, Spain (MINECO-FEDER; BFU201236346 and BFU2015-66073-P) to MAF. MXRG was supported by a JAE DOC fellowship from the MINECO, Spain. F.V.-S. and M.A.P.-A. were supported by grant BIO2014-55946-P from MINECO-FEDER.Alvarez-Ponce, D.; Ruiz-González, M.; Vera Sirera, FJ.; Feyertag, F.; Perez Amador, MA.; Fares Riaño, MA. (2018). Arabidopsis Heat Stress-Induced Proteins Are Enriched in Electrostatically Charged Amino Acids and Intrinsically Disordered Regions. International Journal of Molecular Sciences. 19(8). https://doi.org/10.3390/ijms19082276S198Karshikoff, A., & Ladenstein, R. (2001). Ion pairs and the thermotolerance of proteins from hyperthermophiles: a ‘traffic rule’ for hot roads. Trends in Biochemical Sciences, 26(9), 550-557. doi:10.1016/s0968-0004(01)01918-1Strop, P., & Mayo, S. L. (2000). Contribution of Surface Salt Bridges to Protein Stability†,‡. Biochemistry, 39(6), 1251-1255. doi:10.1021/bi992257jPERUTZ, M. F., & RAIDT, H. (1975). Stereochemical basis of heat stability in bacterial ferredoxins and in haemoglobin A2. Nature, 255(5505), 256-259. doi:10.1038/255256a0Argos, P., Rossmann, M. G., Grau, U. M., Zuber, H., Frank, G., & Tratschin, J. D. (1979). Thermal stability and protein structure. Biochemistry, 18(25), 5698-5703. doi:10.1021/bi00592a028Beeby, M., O’Connor, B. D., Ryttersgaard, C., Boutz, D. R., Perry, L. J., & Yeates, T. O. (2005). The Genomics of Disulfide Bonding and Protein Stabilization in Thermophiles. PLoS Biology, 3(9), e309. doi:10.1371/journal.pbio.0030309Haney, P. J., Badger, J. H., Buldak, G. L., Reich, C. I., Woese, C. R., & Olsen, G. J. (1999). Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species. Proceedings of the National Academy of Sciences, 96(7), 3578-3583. doi:10.1073/pnas.96.7.3578Kreil, D. P. (2001). Identification of thermophilic species by the amino acid compositions deduced from their genomes. Nucleic Acids Research, 29(7), 1608-1615. doi:10.1093/nar/29.7.1608Tekaia, F., Yeramian, E., & Dujon, B. (2002). Amino acid composition of genomes, lifestyles of organisms, and evolutionary trends: a global picture with correspondence analysis. Gene, 297(1-2), 51-60. doi:10.1016/s0378-1119(02)00871-5Zeldovich, K. B., Berezovsky, I. N., & Shakhnovich, E. I. (2007). Protein and DNA Sequence Determinants of Thermophilic Adaptation. PLoS Computational Biology, 3(1), e5. doi:10.1371/journal.pcbi.0030005Chakravarty, S., & Varadarajan, R. (2000). Elucidation of determinants of protein stability through genome sequence analysis. FEBS Letters, 470(1), 65-69. doi:10.1016/s0014-5793(00)01267-9Cambillau, C., & Claverie, J.-M. (2000). Structural and Genomic Correlates of Hyperthermostability. Journal of Biological Chemistry, 275(42), 32383-32386. doi:10.1074/jbc.c000497200Burra, P. V., Kalmar, L., & Tompa, P. (2010). Reduction in Structural Disorder and Functional Complexity in the Thermal Adaptation of Prokaryotes. PLoS ONE, 5(8), e12069. doi:10.1371/journal.pone.0012069Wang, J., Yang, Y., Cao, Z., Li, Z., Zhao, H., & Zhou, Y. (2013). The Role of Semidisorder in Temperature Adaptation of Bacterial FlgM Proteins. Biophysical Journal, 105(11), 2598-2605. doi:10.1016/j.bpj.2013.10.026Vicedo, E., Schlessinger, A., & Rost, B. (2015). Environmental Pressure May Change the Composition Protein Disorder in Prokaryotes. PLOS ONE, 10(8), e0133990. doi:10.1371/journal.pone.0133990Galea, C. A., High, A. A., Obenauer, J. C., Mishra, A., Park, C.-G., Punta, M., … Kriwacki, R. W. (2009). Large-Scale Analysis of Thermostable, Mammalian Proteins Provides Insights into the Intrinsically Disordered Proteome. Journal of Proteome Research, 8(1), 211-226. doi:10.1021/pr800308vTsvetkov, P., Myers, N., Moscovitz, O., Sharon, M., Prilusky, J., & Shaul, Y. (2012). Thermo-resistant intrinsically disordered proteins are efficient 20S proteasome substrates. Mol. BioSyst., 8(1), 368-373. doi:10.1039/c1mb05283gGalea, C. A., Nourse, A., Wang, Y., Sivakolundu, S. G., Heller, W. T., & Kriwacki, R. W. (2008). Role of Intrinsic Flexibility in Signal Transduction Mediated by the Cell Cycle Regulator, p27Kip1. Journal of Molecular Biology, 376(3), 827-838. doi:10.1016/j.jmb.2007.12.016Van Noort, V., Bradatsch, B., Arumugam, M., Amlacher, S., Bange, G., Creevey, C., … Bork, P. (2013). Consistent mutational paths predict eukaryotic thermostability. BMC Evolutionary Biology, 13(1), 7. doi:10.1186/1471-2148-13-7Wang, G.-Z., & Lercher, M. J. (2010). Amino acid composition in endothermic vertebrates is biased in the same direction as in thermophilic prokaryotes. BMC Evolutionary Biology, 10(1), 263. doi:10.1186/1471-2148-10-263Windisch, H. S., Lucassen, M., & Frickenhaus, S. (2012). Evolutionary force in confamiliar marine vertebrates of different temperature realms: adaptive trends in zoarcid fish transcriptomes. BMC Genomics, 13(1), 549. doi:10.1186/1471-2164-13-549Albanèse, V., Yam, A. Y.-W., Baughman, J., Parnot, C., & Frydman, J. (2006). Systems Analyses Reveal Two Chaperone Networks with Distinct Functions in Eukaryotic Cells. Cell, 124(1), 75-88. doi:10.1016/j.cell.2005.11.039Berry, J., & Bjorkman, O. (1980). Photosynthetic Response and Adaptation to Temperature in Higher Plants. Annual Review of Plant Physiology, 31(1), 491-543. doi:10.1146/annurev.pp.31.060180.002423Sueoka, N. (1961). CORRELATION BETWEEN BASE COMPOSITION OF DEOXYRIBONUCLEIC ACID AND AMINO ACID COMPOSITION OF PROTEIN. Proceedings of the National Academy of Sciences, 47(8), 1141-1149. doi:10.1073/pnas.47.8.1141Cherry, J. L. (2009). Highly Expressed and Slowly Evolving Proteins Share Compositional Properties with Thermophilic Proteins. Molecular Biology and Evolution, 27(3), 735-741. doi:10.1093/molbev/msp270The amino acid composition is different between the cytoplasmic and extracellular sides in membrane proteins. (1992). FEBS Letters, 303(2-3), 141-146. doi:10.1016/0014-5793(92)80506-cNakashima, H., & Nishikawa, K. (1994). Discrimination of Intracellular and Extracellular Proteins Using Amino Acid Composition and Residue-pair Frequencies. Journal of Molecular Biology, 238(1), 54-61. doi:10.1006/jmbi.1994.1267Dosztanyi, Z., Csizmok, V., Tompa, P., & Simon, I. (2005). IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics, 21(16), 3433-3434. doi:10.1093/bioinformatics/bti541Peng, Z., Uversky, V. N., & Kurgan, L. (2016). Genes encoding intrinsic disorder in Eukaryota have high GC content. Intrinsically Disordered Proteins, 4(1), e1262225. doi:10.1080/21690707.2016.1262225Yruela, I., & Contreras-Moreira, B. (2013). Genetic recombination is associated with intrinsic disorder in plant proteomes. BMC Genomics, 14(1), 772. doi:10.1186/1471-2164-14-772Paliy, O., Gargac, S. M., Cheng, Y., Uversky, V. N., & Dunker, A. K. (2008). Protein Disorder Is Positively Correlated with Gene Expression inEscherichia coli. Journal of Proteome Research, 7(6), 2234-2245. doi:10.1021/pr800055rSingh, G. P., & Dash, D. (2008). How expression level influences the disorderness of proteins. Biochemical and Biophysical Research Communications, 371(3), 401-404. doi:10.1016/j.bbrc.2008.04.072Yang, J.-R., Liao, B.-Y., Zhuang, S.-M., & Zhang, J. (2012). Protein misinteraction avoidance causes highly expressed proteins to evolve slowly. Proceedings of the National Academy of Sciences, 109(14), E831-E840. doi:10.1073/pnas.1117408109Hendsch, Z. S., & Tidor, B. (1994). Do salt bridges stabilize proteins? A continuum electrostatic analysis. Protein Science, 3(2), 211-226. doi:10.1002/pro.5560030206Zhou, X.-X., Wang, Y.-B., Pan, Y.-J., & Li, W.-F. (2007). Differences in amino acids composition and coupling patterns between mesophilic and thermophilic proteins. Amino Acids, 34(1), 25-33. doi:10.1007/s00726-007-0589-xCatanzano, F., Barone, G., Graziano, G., & Capasso, S. (1997). Thermodynamic analysis of the effect of selective monodeamidation at asparagine 67 in ribonuclease A. Protein Science, 6(8), 1682-1693. doi:10.1002/pro.5560060808Charlesworth, B. (2009). Effective population size and patterns of molecular evolution and variation. Nature Reviews Genetics, 10(3), 195-205. doi:10.1038/nrg2526Bolser, D., Staines, D. M., Pritchard, E., & Kersey, P. (2016). Ensembl Plants: Integrating Tools for Visualizing, Mining, and Analyzing Plant Genomics Data. Methods in Molecular Biology, 115-140. doi:10.1007/978-1-4939-3167-5_6Kasprzyk, A. (2003). EnsMart: A Generic System for Fast and Flexible Access to Biological Data. Genome Research, 14(1), 160-169. doi:10.1101/gr.1645104Hooper, C. M., Castleden, I. R., Tanz, S. K., Aryamanesh, N., & Millar, A. H. (2016). SUBA4: the interactive data analysis centre for Arabidopsis subcellular protein locations. Nucleic Acids Research, 45(D1), D1064-D1074. doi:10.1093/nar/gkw1041R: A language and environment for statistical computing. R Foundation for Statistical Computinghttp://www.R-project.org/Kim, S. (2015). ppcor: An R Package for a Fast Calculation to Semi-partial Correlation Coefficients. Communications for Statistical Applications and Methods, 22(6), 665-674. doi:10.5351/csam.2015.22.6.66

    Reduction in Structural Disorder and Functional Complexity in the Thermal Adaptation of Prokaryotes

    Get PDF
    Genomic correlates of evolutionary adaptation to very low or very high optimal growth temperature (OGT) values have been the subject of many studies. Whereas these provided a protein-structural rationale of the activity and stability of globular proteins/enzymes, the point has been neglected that adaptation to extreme temperatures could also have resulted from an increased use of intrinsically disordered proteins (IDPs), which are resistant to these conditions in vitro. Contrary to these expectations, we found a conspicuously low level of structural disorder in bacteria of very high (and very low) OGT values. This paucity of disorder does not reflect phylogenetic relatedness, i.e. it is a result of genuine adaptation to extreme conditions. Because intrinsic disorder correlates with important regulatory functions, we asked how these bacteria could exist without IDPs by studying transcription factors, known to harbor a lot of function-related intrinsic disorder. Hyperthermophiles have much less transcription factors, which have reduced disorder compared to their mesophilic counterparts. On the other hand, we found by systematic categorization of proteins with long disordered regions that there are certain functions, such as translation and ribosome biogenesis that depend on structural disorder even in hyperthermophiles. In all, our observations suggest that adaptation to extreme conditions is achieved by a significant functional simplification, apparent at both the level of the genome and individual genes/proteins

    Protein stability in a proteomic perspective

    Get PDF
    Dissertation presented to obtain the Ph.D degree in BiochemistryThis work involved the identification and analysis of the properties of the most stable proteins present within proteomes, aiming at obtaining a general perspective of the factors that determine protein stability. As models we have focused on ensembles of proteins with high intrinsic stability, and for this purpose we have studied proteomes from the hyperthermophilic archaeon Sulfolobus solfataricus and Sulfurisphaera sp., whose properties were compared to those of the mesophilic bacterium Escherichia coli.(...

    Temperature Adaptation at Homologous Sites in Proteins from Nine Thermophile–Mesophile Species Pairs

    Get PDF
    Whether particular amino acids are favored by selection at high temperatures over others has long been an open question in protein evolution. One way to approach this question is to compare homologous sites in proteins from one thermophile and a closely related mesophile; asymmetrical substitution patterns have been taken as evidence for selection favoring certain amino acids over others. However, most pairs of prokaryotic species that differ in optimum temperature also differ in genome-wide GC content, and amino acid content is known to be associated with GC content. Here, I compare homologous sites in nine thermophilic prokaryotes and their mesophilic relatives, all with complete published genome sequences. After adjusting for the effects of differing GC content with logistic regression, 139 of the 190 pairs of amino acids show significant substitutional asymmetry, evidence of widespread adaptive amino acid substitution. The patterns are fairly consistent across the nine pairs of species (after taking the effects of differing GC content into account), suggesting that much of the asymmetry results from adaptation to temperature. Some amino acids in some species pairs deviate from the overall pattern in ways indicating that adaptation to other environmental or physiological differences between the species may also play a role. The property that is best correlated with the patterns of substitutional asymmetry is transfer free energy, a measure of hydrophobicity, with more hydrophobic amino acids favored at higher temperatures. The correlation of asymmetry and hydrophobicity is fairly weak, suggesting that other properties may also be important
    corecore