75,786 research outputs found

    Sistem Tempahan Makmal Komputer : Pendekatan Secara Workflow

    Get PDF
    Workflow is concerned with the automation of a business process, in whole or part, during which documents, information or tasks are passed from one participant to another for action, according to set of procedural rules. Based on the literature review, workflow technology has given a lot of benefits to the organizations that implement it. Reservation of computer laboratory is a recurring process and it has a set of predefined procedural rules. Considering the successful implementation of workflow technology in many organizations, the process of reservation of computer laboratory can also be automated by using the technology of workflow. This report will explain in detail about approach that is taken. Chapter 1 states the problem, the objectives, the scope and the project significance. Chapter 2 details the literature review on workflow including introduction to workflow, its benefits, fundamental concepts, product architectures and workflow management system. Then the literature review on successful implementation of workflow in certain organizations is discussed in Chapter 3. Chapter 4 details the methodology as well as the hardware and software used in the system development. Chapter 5 discusses the current system being implemented to manage the reservation of computer laboratory. The explanations include the issues and challenges faced by the computer laboratory administrators. Chapter 6 details the development of the computerized computer laboratory booking system. Lastly, the project advantages, disadvantages, limitations and proposal to upgrade the system performance are discussed towards the end of this report

    Event-Oriented Dynamic Adaptation of Workflows: Model, Architecture and Implementation

    Get PDF
    Workflow management is widely accepted as a core technology to support long-term business processes in heterogeneous and distributed environments. However, conventional workflow management systems do not provide sufficient flexibility support to cope with the broad range of failure situations that may occur during workflow execution. In particular, most systems do not allow to dynamically adapt a workflow due to a failure situation, e.g., to dynamically drop or insert execution steps. As a contribution to overcome these limitations, this dissertation introduces the agent-based workflow management system AgentWork. AgentWork supports the definition, the execution and, as its main contribution, the event-oriented and semi-automated dynamic adaptation of workflows. Two strategies for automatic workflow adaptation are provided. Predictive adaptation adapts workflow parts affected by a failure in advance (predictively), typically as soon as the failure is detected. This is advantageous in many situations and gives enough time to meet organizational constraints for adapted workflow parts. Reactive adaptation is typically performed when predictive adaptation is not possible. In this case, adaptation is performed when the affected workflow part is to be executed, e.g., before an activity is executed it is checked whether it is subject to a workflow adaptation such as dropping, postponement or replacement. In particular, the following contributions are provided by AgentWork: A Formal Model for Workflow Definition, Execution, and Estimation: In this context, AgentWork first provides an object-oriented workflow definition language. This language allows for the definition of a workflow\u92s control and data flow. Furthermore, a workflow\u92s cooperation with other workflows or workflow systems can be specified. Second, AgentWork provides a precise workflow execution model. This is necessary, as a running workflow usually is a complex collection of concurrent activities and data flow processes, and as failure situations and dynamic adaptations affect running workflows. Furthermore, mechanisms for the estimation of a workflow\u92s future execution behavior are provided. These mechanisms are of particular importance for predictive adaptation. Mechanisms for Determining and Processing Failure Events and Failure Actions: AgentWork provides mechanisms to decide whether an event constitutes a failure situation and what has to be done to cope with this failure. This is formally achieved by evaluating event-condition-action rules where the event-condition part describes under which condition an event has to be viewed as a failure event. The action part represents the necessary actions needed to cope with the failure. To support the temporal dimension of events and actions, this dissertation provides a novel event-condition-action model based on a temporal object-oriented logic. Mechanisms for the Adaptation of Affected Workflows: In case of failure situations it has to be decided how an affected workflow has to be dynamically adapted on the node and edge level. AgentWork provides a novel approach that combines the two principal strategies reactive adaptation and predictive adaptation. Depending on the context of the failure, the appropriate strategy is selected. Furthermore, control flow adaptation operators are provided which translate failure actions into structural control flow adaptations. Data flow operators adapt the data flow after a control flow adaptation, if necessary. Mechanisms for the Handling of Inter-Workflow Implications of Failure Situations: AgentWork provides novel mechanisms to decide whether a failure situation occurring to a workflow affects other workflows that communicate and cooperate with this workflow. In particular, AgentWork derives the temporal implications of a dynamic adaptation by estimating the duration that will be needed to process the changed workflow definition (in comparison with the original definition). Furthermore, qualitative implications of the dynamic change are determined. For this purpose, so-called quality measuring objects are introduced. All mechanisms provided by AgentWork include that users may interact during the failure handling process. In particular, the user has the possibility to reject or modify suggested workflow adaptations. A Prototypical Implementation: Finally, a prototypical Corba-based implementation of AgentWork is described. This implementation supports the integration of AgentWork into the distributed and heterogeneous environments of real-world organizations such as hospitals or insurance business enterprises

    Integration of BPM systems

    Get PDF
    New technologies have emerged to support the global economy where for instance suppliers, manufactures and retailers are working together in order to minimise the cost and maximise efficiency. One of the technologies that has become a buzz word for many businesses is business process management or BPM. A business process comprises activities and tasks, the resources required to perform each task, and the business rules linking these activities and tasks. The tasks may be performed by human and/or machine actors. Workflow provides a way of describing the order of execution and the dependent relationships between the constituting activities of short or long running processes. Workflow allows businesses to capture not only the information but also the processes that transform the information - the process asset (Koulopoulos, T. M., 1995). Applications which involve automated, human-centric and collaborative processes across organisations are inherently different from one organisation to another. Even within the same organisation but over time, applications are adapted as ongoing change to the business processes is seen as the norm in today’s dynamic business environment. The major difference lies in the specifics of business processes which are changing rapidly in order to match the way in which businesses operate. In this chapter we introduce and discuss Business Process Management (BPM) with a focus on the integration of heterogeneous BPM systems across multiple organisations. We identify the problems and the main challenges not only with regards to technologies but also in the social and cultural context. We also discuss the issues that have arisen in our bid to find the solutions

    Supporting the Everyday Work of Scientists: Automating Scientific Workflows

    Get PDF
    This paper describes an action research project that we undertook with National Research Council Canada (NRC) scientists. Based on discussions about their \ud difficulties in using software to collect data and manage processes, we identified three requirements for increasing research productivity: ease of use for end- \ud users; managing scientific workflows; and facilitating software interoperability. Based on these requirements, we developed a software framework, Sweet, to \ud assist in the automation of scientific workflows. \ud \ud Throughout the iterative development process, and through a series of structured interviews, we evaluated how the framework was used in practice, and identified \ud increases in productivity and effectiveness and their causes. While the framework provides resources for writing application wrappers, it was easier to code the applications’ functionality directly into the framework using OSS components. Ease of use for the end-user and flexible and fully parameterized workflow representations were key elements of the framework’s success. \u

    Personalizing Situated Workflows for Pervasive Healthcare Applications

    Get PDF
    In this paper, we present an approach where a workflow system is combined with a policy-based framework for the specification and enforcement of policies for healthcare applications. In our approach, workflows are used to capture entitiespsila responsibilities and to assist entities in fulfilling them. The policy-based framework allows us to express authorisation policies to define the rights that entities have in the system, and event-condition-action (ECA) policies that are used to adapt the system to the actual situation. Authorisations will often depend on the context in which patientspsila care takes place, and our policies support predicates that reflect the environment. ECA policies capture events that reflect the current state of the environment and can perform actions to accordingly adapt the workflow execution. We show how the approach can be used for the Edema treatment and how fine-grained authorisation and ECA policies are expressed and used
    corecore