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Abstract

Workflow management is widely accepted as a core technology to support long-term business processes
in heterogeneous and distributed environments. However, conventional workflow management systems
do not provide sufficient flexibility support to cope with the broad range of failure situations that may
occur during workflow execution. In particular, most systems do not allow to dynamically adapt a work-
flow due to a failure situation, e.g., to dynamically drop or insert execution steps.
As a contribution to overcome these limitations, this dissertation introduces the agent-based workflow
management system AGENTWORK. AGENTWORK supports the definition, the execution and, as its main
contribution, the event-oriented and semi-automated dynamic adaptation of workflows. Two strategies
for automatic workflow adaptation are provided. Predictive adaptation adapts workflow parts affected by
a failure in advance (predictively), typically as soon as the failure is detected. This is advantageous in
many situations and gives enough time to meet organizational constraints for adapted workflow parts.
Reactive adaptation is typically performed when predictive adaptation is not possible. In this case, adap-
tation is performed when the affected workflow part is to be executed, e.g., before an activity is executed
it is checked whether it is subject to a workflow adaptation such as dropping, postponement or replace-
ment. In particular, the following contributions are provided by AGENTWORK:
A Formal Model for Workflow Definition, Execution, and Estimation: In this context, AGENTWORK first
provides an object-oriented workflow definition language. This language allows for the definition of a
workflow’s control and data flow. Furthermore, a workflow’s cooperation with other workflows or work-
flow systems can be specified. Second, AGENTWORK provides a precise workflow execution model. This
is necessary, as a running workflow usually is a complex collection of concurrent activities and data flow
processes, and as failure situations and dynamic adaptations affect running workflows. Furthermore,
mechanisms for the estimation of a workflow’s future execution behavior are provided. These mecha-
nisms are of particular importance for predictive adaptation.
Mechanisms for Determining and Processing Failure Events and Failure Actions: AGENTWORK provides
mechanisms to decide whether an event constitutes a failure situation and what has to be done to cope
with this failure. This is formally achieved by evaluating event-condition-action rules where the event-
condition part describes under which condition an event has to be viewed as a failure event. The action
part represents the necessary actions needed to cope with the failure. To support the temporal dimension
of events and actions, this dissertation provides a novel event-condition-action model based on a tempo-
ral object-oriented logic.
Mechanisms for the Adaptation of Affected Workflows: In case of failure situations it has to be decided
how an affected workflow has to be dynamically adapted on the node and edge level. AGENTWORK pro-
vides a novel approach that combines the two principal strategies reactive adaptation and predictive adap-
tation. Depending on the context of the failure, the appropriate strategy is selected. Furthermore, control
flow adaptation operators are provided which translate failure actions into structural control flow adapta-
tions. Data flow operators adapt the data flow after a control flow adaptation, if necessary.
Mechanisms for the Handling of Inter-Workflow Implications of Failure Situations: AGENTWORK pro-
vides novel mechanisms to decide whether a failure situation occurring to a workflow affects other work-
flows that communicate and cooperate with this workflow. In particular, AGENTWORK derives the
temporal implications of a dynamic adaptation by estimating the duration that will be needed to process
the changed workflow definition (in comparison with the original definition). Furthermore, qualitative
implications of the dynamic change are determined. For this purpose, so-called quality measuring objects
are introduced.
All mechanisms provided by AGENTWORK include that users may interact during the failure handling
process. In particular, the user has the possibility to reject or modify suggested workflow adaptations.
A Prototypical Implementation: Finally, a prototypical CORBA-based implementation of AGENTWORK is
described. This implementation supports the integration of AGENTWORK into the distributed and hetero-
geneous environments of real-world organizations such as hospitals or insurance business enterprises.
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1Remarks visible

CHAPTER 1 Introduction and Problem 
Description

Workflow management is widely accepted as a core technology to support long-term business pro-
cesses in heterogeneous and distributed environments [GEORGAKOPOULOS ET AL. 1995, REICHERT
& DADAM 2000, FISCHER 2002]. However, conventional workflow management systems do not
provide sufficient flexibility support to cope with the broad range of failure situations that may
occur during workflow execution. In particular, most systems do not allow to dynamically adapt a
workflow due to a failure situation, e.g., to dynamically drop or insert execution steps [SHETH
1997, REICHERT & DADAM 1998, HORN & JABLONSKI 1998].
As a contribution to overcome these limitations, this thesis introduces the agent-based workflow
management system AGENTWORK [MÜLLER & RAHM 1999, MÜLLER & RAHM 2000]. AGENT-
WORK supports the definition, the execution and, as its main contribution, the event-oriented and
semi-automated dynamic adaptation of workflows. AGENTWORK originates from the HEMATO-
WORK system which addresses workflow support for cancer treatment and which is currently
developed at the University of Leipzig [MÜLLER ET AL. 1998]. Though important conceptual deci-
sions are motivated by this medical workflow application, AGENTWORK has been designed to be
usable in other workflow application domains as well (such as insurance business or banking).
This introductory chapter is organized as follows: In Section 1.1, we briefly characterize workflow
management systems. In Section 1.2, we give a classification of failure situations relevant for
workflow management systems. In particular, we introduce so-called logical failures and control
flow failures as an important subclass of logical failures. Informally, a control flow failure occurs if
for some reason the control flow of a running workflow is not adequate anymore from the view-
point of the workflow application. As a consequence, such an inadequate workflow may have to be
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aborted, suspended or dynamically adapted (e.g., by dropping, inserting, or replacing execution
steps). In Section 1.3, we characterize control flow failures more comprehensively and discuss the
requirements that have to be met when dealing with this failure type. Section 1.4 describes the spe-
cific contributions of this thesis w.r.t. the handling of control flow failures in the context of work-
flow management. Section 1.5 briefly describes the HEMATOWORK system to which the concepts
and implementation of AGENTWORK have been applied. Section 1.6 completes the chapter with a
final overview of the structure of this thesis.

1.1 Workflow Management
For enterprises and organizations operating in global and complex business or public environ-
ments, an increased productivity, profitability, flexibility and quality insurance are critical factors
for success [REICHERT & DADAM 2000]. A major precondition for this is that organizational struc-
tures and business processes are identified, analyzed and optimized continuously in the context of
computer-based business process reengineering [HAMMER & STANTON 1995, SCHEER 1998 A]. In
this connection, the term business process commonly refers to a logical unit of work relevant for an
enterprise or an organization. Typical examples for business processes include the processing of a
bank customer’s credit application, the processing of a damage case at an insurance company, or
the administration of a chemotherapy to a cancer patient. More formally, a business process is a set
of business activities and their temporal relationships. For example, a typical activity is to check
whether an insurance holder has filled out a car damage report correctly, or the performing of a x-
ray examination in a hospital. The temporal relationships specify which activities have to be pro-
cessed sequentially, in parallel, or only when certain conditions hold. Business processes may also
be distributed over multiple locations due to enterprise collaborations.
Traditionally, information systems have been implemented in a function- and data-centered manner
[BREITBART ET AL. 1993], and do not have any explicit notion of business processes. This implies
that users themselves have to know when an execution step has to be performed. In particular, the
passive behavior of such traditional information systems does not support any work coordination,
and does not provide mechanisms for process monitoring such as generating reminders in case of
deadline violations. Consequently, process-oriented information systems are required that actively
provide the right data together with the right execution instructions to the right staff member at the
right time. 
Conventionally, such process-oriented information systems have been implemented by incorporat-
ing the process logic directly into the application programs. This means that the different applica-
tion programs supporting activities of the business process invoke each other according to the
process logic, and communicate bilaterally. Though this allows to actively operate a business pro-
cess, it has the serious disadvantage that the overall execution logic of a business process is hidden
and split up within the code of the different application programs. As a consequence, tasks that go
beyond the scope of a single application program cannot be supported significantly, as a higher-
level control component is missing. For example, if such a higher-level control component is miss-
ing, it is difficult to determine which processes are at which execution steps, which users work on
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which documents and so one. Furthermore, failure handling such as setting a running process into
a consistent state when an application program or database server crashes is nearly impossible.
Additionally, process maintenance is difficult as any change of the process logic has to be realized
by changing the code of the different application programs. For a detailed discussion on the disad-
vantages of passive information systems and conventional process-oriented information systems,
we refer to [REICHERT 2000].
To overcome these limitations, workflow management systems have been introduced [GEORGAKO-
POULOS ET AL. 1995, ALONSO & MOHAN 1997, LEYMANN & ROLLER 2000]. Their basic character-
istic is that they strictly separate the application program code from the overall logic of a business
process. This allows to support a broad range of tasks going beyond the scope of a single applica-
tion program, such as process monitoring, failure handling and load balancing in the sense of
assigning execution steps to free human or machine resources. In workflow management systems,
the overall process logic is explicitly represented in an executable process or workflow definition.
Such a workflow definition first consists of a control flow definition specifying in which order the
activities have to be executed. Second, it consists of a data flow definition specifying which data is
needed as input for the activities, and which data is produced as output of the activities. Further-
more, the data flow specifies when data has to be retrieved from or written to data sources such as
relational databases or user interfaces. Third, the workflow specifies which workflow resources
(e.g., users, application programs, equipment) are needed for the execution of an activity. In addi-
tion to such intra-workflow aspects, some workflow management systems also allow to specify
inter-workflow aspects which are needed for workflow cooperation. For example, such an inter-
workflow specification may define when one workflow has to provide a result for another (remote)
workflow, and which temporal or qualitative constraints have to be met by this result. Orthogonal
to this, workflows may also be organized hierarchically, i.e., to an activity a sub-workflow may be
assigned which is executed when the control flow reaches this activity.
Figure 1-1 gives an example of a workflow definition for the domain of cancer therapy. This work-
flow definition specifies that first a pre-examination has to be performed for the patient to which
this chemotherapy shall be administered (e.g., it is checked whether the patient has an infection
which forbids to administer the chemotherapy drugs). If the preconditions are met, the four drugs of
the chemotherapy (i.e., CYCLOPHOSPHAMID, DOXORUBICIN, VINCRISTIN, and PREDNISOLON) are
administered. In particular, PREDNISOLON is given five times. Then, a post-examination is
performed, and a final chemotherapy report is written. If the preconditions for the chemotherapy
are not met, an external expert panel is informed which gives advice to the treating physicians how
to cope with this patient. Furthermore, the workflow definition of Figure 1-1 specifies that two
application programs − namely a chemotherapy calculator determining the patient-specific drug
dosages and a report generator − are required for the execution of some activities. Concerning the
data flow, the definition of Figure 1-1 specifies that the administered drug dosages have to be
stored in the patient database, and that the total drug dosages of the entire chemotherapy are needed
as input for the Write Chemotherapy Report activity.
Figure 1-2 shows the core components and key aspects of a typical workflow management system,
as suggested by the WORKFLOW MANAGEMENT COALITION [FISCHER 2002, WFMC 2002]:
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Workflow Definition Tool: This tool supports the definition of workflow activities and of the con-
trol and data flow between these activities. In particular, references to the organization model can
be specified to express which activities have to be executed by which organizational units and staff
members. Analogously, references to application programs can be specified to indicate which pro-
grams are required for which activities. Depending on the particular workflow management sys-
tem, the definition of the organizational model and the applications programs itself either can be
done by the workflow definition tool, or can be imported from other tools (not shown in
Figure 1-2). Typical workflow definition tools allow to define workflows with a graph-based lan-
guage (such as the one shown in Figure 1-1). Sometimes also a verification component is provided
to avoid incomplete or inconsistent workflow definitions.
Workflow Enactment System: The workflow enactment system is responsible for the execution of
workflows. Its core component is the so-called workflow engine. The workflow engine instantiates
workflows from workflow definitions, and decides which activities of the workflow have to be exe-
cuted next. To control and monitor workflow execution and to handle failure situations, the work-
flow engine maintains so-called workflow control data. For example, these workflow control data
describe the actual execution stage of a workflow and its activities, or record the execution chronol-
ogy. In particular, workflow control data cannot be manipulated by application programs or users.
During workflow execution, the workflow engine invokes application programs if they have been
assigned to the activity to be executed next. For activities which have to be executed by users, a
worklist handler maintains the worklists stating which activities are to be executed by which staff

Figure 1-1:  Workflow definition for a cancer chemotherapy.
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members, and propagates this information to the respective user interfaces. From these user inter-
faces, application programs may also be invoked (instead of being invoked by the workflow engine
itself). These application programs maintain application data, such as data about patients or cus-
tomers. In contrast to workflow control data, application data may be also maintained directly by
users. Some application data may also be used by the workflow engine itself, e.g., to evaluate a
conditional branching such as the "Preconditions fullfilled" branching of Figure 1-1.
For further architectural aspects of workflow management systems, we refer to [BAUER & DADAM
2000, GREFEN & REMMERTS DE VRIES 1998, MILLER ET AL. 1998, MUTH ET AL. 1998 A,
JABLONSKI 1997, REINWALD 1993].

1.2 Failure Handling in Workflow Management Systems
A workflow environment typically covers a heterogeneous and distributed collection of different
hosts, network components, databases, application programs, and user interfaces. Within this envi-
ronment, the workflow engine executes workflows, invokes programs and reads or writes data
from or to user interfaces, programs and databases. In this context, a broad range of failure situa-
tions may occur which have to be handled. Such failure situations can be classified into device fail-
ures, system failures, transaction failures, and logical failures [HÄRDER & RAHM 2001]. For the
latter failure class, so-called control flow failures form an important subclass. To better understand

Figure 1-2:  Simplified architecture of a workflow management system (according to [WFMC 2002]).
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these control flow failures which form the main topic of this thesis, we briefly characterize these
principal failure types and the mechanisms to cope with them.r1

1.2.1 Device, System, and Transaction Failures
Device failures mainly concern disk failures caused, for example, by a head crash. As a conse-
quence, database files containing important information such as workflow definitions or status data
of running workflows may be destroyed. System failures cover failures in the execution environ-
ment of workflows, e.g., malfunctions and crashes of operating system components or database
servers. So-called transaction failures occur when the workflow system itself or an application pro-
gram performs invalid operations such as the division by zero or a database tuple insert violating
data integrity constraints.
In “classical“ database applications device, system and transaction failures usually are handled by
transaction management which is based on the so-called ACID1 paradigm and which is realized by
archiving, logging and recovery mechanisms [HÄRDER & RAHM 2001, GRAY & REUTER 1993].
Principally, a transaction is a collection of database operations with the following four basic prop-
erties: 

1. Atomicity: A transaction is either processed entirely or not at all (“all-or-nothing“ principle). In
case of a failure the database system sets back (“rolls back“) all database operations already per-
formed by the transaction (undo recovery).

2. Consistency: A transaction transfers a database from one consistent state to another consistent
state. Typically, “consistency” is expressed by integrity constraints assigned to database objects.
If an integrity constraint is violated at the end of a transaction, the transaction is rolled back.

3. Isolation: If a transaction T accesses a database object this object is isolated from other transac-
tions until T is finished. This avoids that other transactions read or update the data processed by
T before T has been able to complete its data processing. Most database systems implement iso-
lation by locking an object which is accessed by a transaction, and by releasing the lock at the
end of the lock-holding transaction.

4. Durability: Whenever a transaction has committed, the durability of its effects is guaranteed.
This means, that database changes performed by a transaction survive all errors occurring after
the commit of this transaction, including operating system crashes or device failures. To achieve
this, a redo recovery may have to be performed by the database system.r2

However, it has been widely recognized that the classical ACID model is not appropriate to handle
device, system or transaction failures for workflows [ALONSO ET AL. 1994, ELMARGARMID 1992].
This is because the ACID model assumes a short life span of operations, i.e., that relevant
operations typically last only seconds or minutes. This assumption is not valid anymore for

1. ACID = Atomicity, Consistency, Isolation, Durability
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workflows. Workflows typically represent long-term processes with an average life time of hours,
days, weeks or even months. Therefore, for many workflow applications a rollback of a workflow
is not acceptable as this would imply that too much work already done by the workflow would be
lost. Additionally, workflow activities such as administering a drug infusion cannot simply be
rolled back at all. Furthermore, strict isolation of a database object for the whole life span of a
workflow often would mean that other workflows needing this object as well would have to wait
unacceptably long for this object.
Consequently, during the last years there have been many efforts to generalize and relax the classi-
cal ACID model to achieve a more workflow-oriented transaction management [RUSINKIEWICZ &
BREGOLIN 1997, JAJODIA & KERSCHBERG 1997, GEORGAKOPOULOS & HORNICK 1994]. For exam-
ple, to reduce the loss of work as much as possible, the so-called forward recovery model
[WÄCHTER & REUTER 1992r3] does not roll back a running workflow entirely when a failure occurs
but interrupts it with a minimum of undo recovery (i.e., usually only activities executed at the
moment of the failure are rolled back). When the failure has been resolved the workflow is contin-
ued on the basis of the already successfully committed activities.
Though this thesis does not focus on workflow transaction management, we will discuss several
advanced transaction models in Chapter 2 (Related Work) in detail. This is because advanced trans-
action models such as compensation-based transaction models [GREFEN ET AL. 1999 B, LEYMANN
1995] also consider aspects being relevant for the handling of so-called logical failures.

1.2.2 Logical Failures
Logical failures occur if for some reason the workflow definition on which a running workflow is
based becomes inadequate. For example, imagine that the workflow of Figure 1-1 is executed for
cancer patient Bob Miller, and that the loop administering the drug PREDNISOLON has already been
started. Suddenly, Bob Miller shows allergic reactions against PREDNISOLON, which could not have
been predicted before the loop execution. Therefore, if the control flow that still has to be executed
contains activity executions administering PREDNISOLON, these activity executions dynamically
have to be removed from the workflow to avoid further allergic reactions of patient Bob Miller. In
contrast to this, the execution of the other activity nodes (e.g., the VINCRISTIN node) can be contin-
ued without change. In particular, the alternative to abort the whole workflow is unacceptable as
only a few activity executions (i.e., the PREDNISOLON administrations) are affected by the allergy.
Furthermore, other workflows based on the same workflow definition but running for other patients
can be executed entirely according to the original workflow definition. 
Logical failures may not only cover the inadequacy of control flows as illustrated in the PREDNISO-
LON example, but also the inadequacy of data flow definitions or temporal constraints (such as
deadlines) assigned to a workflow. For example, if it turns out during workflow execution that a
deadline assigned to this workflow cannot be met anymore, this deadline may have to be adapted,
e.g., extended.
Typically, logical failures are caused by application events, e.g., events related to the customers,
products and employees of an enterprise, or events concerning the patients, diseases, treatment pro-
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cedures and doctors in a hospital. In the example above, the logical failure that the PREDNISOLON
activity executions become inadequate for Bob Miller is caused by the application event that an
allergy against PREDNISOLON has been detected for this patient. Application events are described
by application data introduced in Section 1.1.
A logical failure may be caused not only by events occurring to those entities for which a workflow
is executed (e.g., the patients or customers), but also by events occurring to a workflow resource,
such as a user or piece of equipment. For example, let us assume that a medical workflow consists
of a difficult medical activity that requires a lot of experience and therefore can only be performed
by a senior physician. If this senior physician becomes ill for a few days and if no adequate proxy
is available for this activity, the workflow may also have to be adapted. For example, the corre-
sponding activity could be postponed until the senior physician is back to work while other activi-
ties for which the senior physician is not necessary may still be processed as originally planned.r2

1.2.3 Control Flow Failures
In this thesis, we focus on logical failures characterized by a dynamic inadequacy of control flow
and caused by application events, such as the inadequacy of the PREDNISOLON activity executions
due to an allergy event in the cancer workflow example above. Thus, we (informally) define as fol-
lows:

We focus on control flow inadequacy as dealing with this type of logical failures is very important
for many application domains but still a major open research problem in workflow management, as
we will show in Chapter 2 (Related Work). Data flow aspects are only considered when the han-
dling of a control flow inadequacy requires that the data flow has to be handled as well. For exam-
ple, because of an additional activity execution additional data flow edges may have to be provided
as well. In contrast to this, we do not address dynamic deadline adjustment, as this topic has been
largely investigated in the context of workflow deadline management and scheduling systems
[DADAM ET AL. 2000, BLAZEWICZ ET AL. 2001, EDER ET AL. 1999 A]. 
We distinguish two main types of control flow failures:
• Global Control Flow Failures: In this case an application event implies that a running work-

flow becomes inadequate w.r.t. its whole remaining control flow (i.e., w.r.t all of its activities).
Therefore, the workflow has to be suspended for some time or even has to be aborted. For
example, a patient suffering from an unexpected infection during a cancer chemotherapy must

Definition 1.1:   Control Flow Failure
A control flow failure occurs if an application event has the consequence that − from the
application point of view − at least one running workflow becomes inadequate w.r.t. its
control flow. 
An application event inducing a control flow failure is called a control flow failure event
or simply a failure event. 
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not get cancer drugs anymore. Therefore, the entire chemotherapy workflow has to be sus-
pended until the infection is over. A non-medical example for such a global control flow failure
could be that a customer cancels his order. As a consequence workflows processing the cus-
tomer’s order usually do not make much sense anymore and have to be aborted. 
Global control flow failures are already covered by several recent workflow failure handling
approaches [CASATI 1998, HAGEN & ALONSO 1998]. Therefore, this thesis does not concentrate
on this control flow failure type. However, it is nevertheless integrated in the failure handling
approach of AGENTWORK to achieve completeness.

• Local Control Flow Failures: In this case an application event implies that a running workflow
becomes inadequate not as a whole but only locally, i.e., only some of its activities are not
appropriate anymore (such as the PREDNISOLON activities in the cancer example above). The
principal mechanism to deal with this type of control flow failures is the following: First, the
control flow is dynamically adapted (e.g., by removing or inserting activities). Second, if neces-
sary the data flow is adjusted. Third, the adapted workflow is continued. At any moment during
these steps a user interaction must be possible.
Although this type of control flow failure has also been investigated by several authors [CASATI
1998, REICHERT & DADAM 1998, WESKE ET AL. 1998, HEINL ET AL. 1999, BORGIDA &
MURATA 1999], there is still a number of serious problems that have not been addressed suffi-
ciently, such as the automated detection and predictive handling of local control flow failures.
Therefore, the main focus of this thesis is on this second type of control flow failures. In Sec-
tion 1.3, we discuss several of these open problems.

It could be argued that one could also cope with control flow failures by adding conditional
branches to a workflow definition (such as the two branches Patient has allergy concerning
PREDNISOLON versus Patient has no allergy concerning PREDNISOLON). This would avoid the
dynamic adaptation of a workflow as the possibility of an allergy concerning PREDNISOLON is
already considered in the workflow definition. However, this approach is not appropriate because
of the following reasons:
• First, considering control flow failures by conditional branches would lead to an enormous

number of different branches within the workflow definitions and would reduce workflow read-
ability and maintenance significantly. For example, during a typical chemotherapy with about 4
drugs every drug may cause about 5-10 different side effects so that about 20-40 conditional
branches would be necessary.

• Second, and more important, the failure events causing control flow failures typically occur
asynchronously at any time during workflow execution, i.e., the relative point in time of their
occurrence w.r.t. a particular position in a workflow definition is not known in advance. Con-
sidering a failure event by a conditional branch would require that it is known, for example,
after which activities this event will occur so that the conditional branch can be placed there.
However, this is not possible for most types of failure events.
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In artificial intelligence, the problem that for many application classes it is impossible to pre-model
all situations is also known as the qualification problem [REITER 2001].
We complete this section with

In case of a global control flow failure, a control action is performed on the workflow level (e.g.,
abort or suspend workflow of type W). In case of a local control flow failure, a control action is
performed on the activity level (e.g., drop or replace activity of type A). The formalization and han-
dling of these control actions will be one of the main topics of this thesis.

1.3 Requirements of Handling Control Flow Failures for Workflow Systems
Many current approaches assume that the workflow administrator or an authorized workflow user
decides which events constitute control flow failures and which control actions and structural adap-
tations have to be done w.r.t. running workflows when a control flow failure occurs [WESKE 1999
B, HEINL ET AL. 1999, REICHERT & DADAM 1998]. This manual process can be supported, for
example, by a workflow editor which in case of a local control flow failure only allows adaptations
leading to a consistent workflow after the dynamic change.
However, in many domains events occur continuously and simultaneously, and typically several
workflows run in parallel. Therefore, in such domains a purely manual handling of control flow
failures is likely to overcharge the user. For example, during a cancer chemotherapy a physician is
often faced with 10-30 findings and laboratory values per patient every day. Furthermore, for every
patient several workflows usually run in parallel. One may be dealing with diagnostic procedures,
another may coordinate the therapeutic procedures. Further supportive workflows may manage the
appointments and requests with other involved departments for this patient (such as the radiologi-
cal department or the central drug store of the hospital). With a manual failure handling, important
events constituting control flow failures may be overseen or detected too late. As a consequence
workflows would be continued although not being adequate anymore. At least, the manual han-
dling must be viewed as a very time-consuming process in data-intensive domains.r5

The potential of automating the handling of control flow failures in the workflow context has
already been identified by several authors [SINGH & HUHNS 1994, DELLEN ET AL. 1997, CASATI
1998, BECKSTEIN & KLAUSNER 1999A]. However, there are still major requirements in this context
that are not sufficiently met by current approaches. This includes 

1. the representation of failure events and control actions, 
2. the translation of control actions into workflow execution operations and structural adapta-

tions,

Definition 1.2:   Control Action
An action which has to be performed from the application point of view to cope with a
control flow failure, is called a control action.
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3. the handling of inter-workflow implications of control flow failures, and 
4. the handling of data and event distribution and heterogeneity.

We discuss these requirements in the following to make the rationale of AGENTWORK more
transparent and to better motivate the thesis contributions listed in Section 1.4. 

Requirement 1: Representation of Failure Events and Control Actions
First of all, events and control actions have to be described on the application level so that they are
meaningful for the workflow user such as the physician. This is necessary as it cannot be assumed
that the handling of control flow failures can be automated entirely. Thus, the necessity of human
interaction requires the representation of events and actions on a high semantic level. 
Furthermore, events and control actions in the context of control flow failures may have an arbi-
trarily complex structure. For example, an event often constitutes a control flow failure only
together with other events. More precisely, the question whether an event constitutes a control flow
failure may depend on specific temporal relationships w.r.t. other events. Concerning control
actions, until now we simply stated that in case of a failure event some actions on workflows or
activities (such as abort, drop or add) have to be performed. Similar to events, the structure of such
actions can become arbitrarily complex as well. This holds especially for local control flow fail-
ures. We give examples for such complex events and control actions from two domains:
• Domain of Cancer Treatment: Besides allergies, a typical event that may require to dynamically

remove particular drug administrations from a workflow is that the leukocyte count of a patient
suddenly becomes significantly low as a drug side-effect (e.g., lower than 1000 per mm3

blood). However, in clinical practice such a low leukocyte value often will be tolerated for sev-
eral days without adapting the treatment workflow. Only if similar leukocyte counts (e.g., all
less than 1000) occur during a time period longer than 4 days this is a serious finding showing a
severe blood disorder of the patient and thus requiring a workflow adaptation. Therefore, these
similar leukocyte counts together (and only together) constitute a failure event as a running
workflow may have to be adapted to cope with this critical situation.
A simple control action then could be to drop from a treatment workflow all activities adminis-
tering cytostatic drugs which are known to cause a leukocyte cell reduction as a negative side
effect. However, a physician would often drop these drug activities only for the next 7 days, or
until the leukocyte count again is higher than 25002. This is because the blood system usually
recovers during this time so that blood-toxic cytostatic drugs can again be administered after
this. Alternatively, the physician could also drop these drug activities until the leukocyte count
is higher than 2500/mm3 for more than 3 days.

• Domain of Insurance Business: An insurance holder reports by telephone that he caused a
minor car accident with an assessed damage sum of 700$ w.r.t. the damaged car. Furthermore,
he reports that his velocity was about 30 miles/h. At the insurance office a workflow is started

2. During chemotherapy, leukocyte counts higher than 2500 indicate an acceptable, non-critical range.
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to deal with the damage. As the damage is a minor one the respective workflow definition does
not contain a technical expert report. However, two days later the driver whose car was dam-
aged by the insurance holder sends the requested accident report. There he states that the veloc-
ity of the car causing the accident was at least 45 miles/h. This is inconsistent to the previous
velocity statement of the insurance holder. Both velocity reporting events together therefore
induce a control flow failure. A simple control action then could consist of dynamically adding
a technical expert report activity into the workflow to clarify the situation.
A more complex control action is described in the following example: An insurance workflow
deals with a customer’s proposal for a car liability insurance. After the proposal acceptance the
workflow sends the insurance contract and a bill for the first fee to the customer. If the customer
does not pay the fee within 2 weeks the workflow usually sends a payment reminder to the cus-
tomer, and a second one after another week. If the customer does not respond to the second
reminder within one week, the insurance contract is retrospectively declared inoperative and
cancelled. Let us now assume that for a particular customer such a first payment reminder is
prepared by the workflow. However, this customer is currently also in negotiations with the
enterprise w.r.t. an expensive life insurance. This constitutes a control flow failure inducing the
following control action: To avoid a “disturbance” of the life insurance negotiations by payment
reminders, all reminder activities are dropped from the workflow as long as this customer has
not signed the life insurance contract offered to him, or until additional 2 weeks have been
exceeded w.r.t. the payment of the car insurance fee.

The complexity of events and actions illustrated in these examples is not uncommon in many
application domains and therefore cannot be neglected in the context of workflow failure handling.
The representation of events, actions and their interdependencies has already been addressed in the
fields of active and deductive databases [DAYAL ET AL. 1996, WIDOM & CERI 1996, PATON 1999,
LUDÄSCHER 1998] and artificial intelligence [GIARRATANO & RILEY 1993, BUCHANAN &
SHORTLIFFE 1984]. However, especially the temporal dimension of failure events and of the
induced control actions still is a major problem that has to be addressed in the future.

Requirement 2: Translation of Control Actions into Workflow Execution Operations and
Structural Adaptations

If a control action such as “abort entire workflow” or “drop cytostatic drug activities for the next 7
days” has been derived because of some failure event this has to be translated into appropriate
operations on the workflow execution level.
In case of a workflow abortion, a running workflow is not something that simply can be “switched
off”. Active programs and data processes triggered by the running workflow may have to be termi-
nated carefully, and the effects of the workflow may have to be made undone or at least compen-
sated.r6 In case of a suspension the workflow does not have to be aborted but may have to be
interrupted at the current execution state, and continued later on. As workflow abortion and inter-
ruption has already been addressed largely by advanced workflow-oriented transaction models
[WÄCHTER & REUTER 1992, ALONSO ET AL. 1996, WORAH & SHETH 1997, GREFEN ET AL. 1999 B]
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we do not focus on these topics in this thesis.
In case of local control flow failures a control action such as “replace activity of type A by activity
of type B during the next 7 days” has to be translated into appropriate structural adaptations of run-
ning workflows. For example, the “during the next 7 days” constraint above implies that from a
running workflow all activity nodes of type A that are going to be executed during the next 7 days
have to be replaced by activity nodes of type B. Principally, two main strategies can be identified to
deal with this problem:

Strategy 1: Reactive Adaptation
A straightforward strategy consists of monitoring the workflow for the specified temporal interval
and of determining for every activity to be executed whether it is affected by the control flow fail-
ure. For example, if a particular drug has to be dropped for the next seven days, then the workflow
is monitored for this interval, and whenever the control flow reaches a node administering this
drug, this node is skipped or dropped. 
This strategy is simple to realize and has the advantage that at the moment of the failure event one
does not have to know when an activity node will be executed during some temporal interval, such
as during ”the next 7 days” interval of the “replace activity of type A ...“ example above. However,
reactive adaptation has the serious limitationr6 that it may be too late. This is because the dropping or
adding of activities often requires a comprehensive preparation. For example, the dropping of an
expensive cytostatic infusion requires that − if possible − the central drug store is informed two
days before so that the infusion is not unnecessarily prepared. Otherwise, the infusion has to be
poured away as it cannot simply be administered to other patients because of the patient-specific
concentrations. It could be argued that such preceding or preparing activities could also be derived
during an automated failure handling process, and therefore could automatically be added to a run-
ning workflow by strategy 1 above. However, this would require that all activity types of an orga-
nization are represented electronically within the workflow system. This must be viewed as
unrealistic especially w.r.t. the first phases of bringing a workflow system into practice. Therefore,
many local control flow failures require that necessary structural adaptations are known and
applied as soon as possible so that the staff has enough time for preparing steps not known to the
workflow system.

Strategy 2: Predictive Adaptation
An alternative strategy to translate a local control action into structural workflow adaptations con-
sists of predictively determining which parts of the control flow of an affected workflow corre-
spond to the temporal interval assigned to this control action. More technically, this means that this
strategy makes an estimation which parts of a workflow’s control and data flow will be executed in
the future during this temporal interval (e.g., will be executed during the next 7 days w.r.t. the
replace A by B example above). If such a part corresponding to this temporal interval has been
identified, structural adaptation operators have to be applied which, for example, remove or add
nodes and which also remove, generate or rearrange edges connected with these nodes. This gives
the staff the possibility to perform preparing steps which are − for some reason − not known to the
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workflow system.
Principally, this strategy usually models human failure handling better than the non-predictive
strategy 1 above. However, strategy 2 has two limitations. First, the temporal estimation requires
meta knowledge about the duration of activities. This limitation can be overcome as in many
domains at least heuristic information about the average duration of activities is known. Second,
and more serious, such an estimation may become imprecise or even impossible if the control flow
contains, for example, OR splits or loops. Furthermore, subsequent adaptations may make former
estimations invalid, so that former adaptations may have to be reevaluated.
Therefore, the main requirement concerning the translation of control actions into workflow execu-
tion operations and structural adaptations consists of providing mechanisms to decide whether
reactive or predictive adaptation − or a combination of them − is appropriate to handle a local con-
trol action. This decision will depend on the structure of the affected workflow and the type of trig-
gered control action.r7 Furthermore, the consistency of an adapted workflow and the efficiency of the
adaptation has to be guaranteed.
Concerning this requirement 2, which we can describe in more abstract terms as the problem of
automatically translating declarative control action statements into appropriate adaptations of pro-
cedural constructs, some work has already been done in the field of artificial intelligence planning
[MYERS 1998, HAMMOND 1990]. However, the problem has not yet been addressed sufficiently in
the context of workflow management. This will be discussed in detail in Chapter 2 (Related Work).

Requirement 3: Handling of Inter-Workflow Implications of Control Flow Failures
As mentioned in Section 1.1, a workflow definition may consist of inter-workflow aspects such as
workflow cooperation, e.g., the specification when one workflow has to provide a result for another
(remote) workflow, and which temporal or qualitative constraints have to be met by this result.
Thus, an important problem in the context of handling control flow failures is the question how an
abortion, suspension or dynamic adaptation of a workflow affects other workflows cooperating
with this workflow. A workflow abortion, for example, may cause that a result cannot be provided
anymore for a cooperating workflow, so that this cooperating workflow should be informed.
Again the situation becomes more complicated when local control flow failures occur and there-
fore workflows are adapted. Then, a dynamic deletion or insertion of activities w.r.t. the workflow
providing the result may imply that a cooperating workflow still will receive the result, but proba-
bly later or not in the quality on which both originally agreed. We give motivating examples for
inter-workflow implications of local control flow failures from two domains:
Domain of Cooperative Medical Care: In many medical disciplines patient treatment is performed
not only by a single hospital ward or division, but by several cooperating departments. For exam-
ple, during the treatment of a cancer patient the departments for internal medicine and radiotherapy
closely cooperate. A workflow system at the department of internal medicine may support the phy-
sicians w.r.t. the chemotherapy of a patient. Another workflow system at the radiological depart-
ment may support tasks such as the preparation, performance and aftercare of radiotherapy
procedures. A typical treatment could consist of a two weeks chemotherapy at the department of
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internal medicine and parallel units of supportive radiotherapy every two days (for radiotherapy,
the patient has ambulant appointments at the radiological department). If a control flow failure such
as an unexpected allergy w.r.t. the drug CYCLOPHOSPHAMID occurs, this may require dynamic
adaptations of the chemotherapy workflow such as deleting the activities administering CYCLO-
PHOSPHAMID. This adaptation may impact the radiotherapy workflow. As the dropped drug is
essential for tumor reduction, additional radiological units may become necessary to compensate
the cancellation of this drug. Thus the deletion of activities from one workflow can make it neces-
sary to insert additional activities into a cooperating workflow.
Domain of Banking (Credit Check): When an industrial customer company applies to a bank for a
high project credit, the responsible Credit Management group involves the division Financial
Securities to judge the financial securities of the customer and the division Project Evaluation to
evaluate the success perspectives of the project. For this purpose, both divisions have their own
workflow system. Furthermore, the Credit Management group has a workflow system for the coor-
dination of the divisions and for the final decision process. A control flow failure at Financial
Securities could be that a real estate assessment of an external expert turns out to be incomplete or
wrong. Therefore, additional activities may have to be inserted to provide the necessary informa-
tion (by instructing, for example, a second assessment expert). In this case, the Credit Management
group is affected as the credit notification date which was originally fixed with the customer may
not be realistic anymore. At the Project Evaluation division, a control flow failure may be that the
customer suddenly drops a risky part of the project. As a consequence an activity performing an
evaluation of high-risk subprojects may be dynamically deleted. As a consequence, activities for
high-risk decisions may also be deleted from workflows of the Credit Management group, so that
the customer can be informed earlier.
The problem that control flow failures of a workflow may also impact cooperating workflows is an
additional argument for the predictive adaptation strategy discussed above: If adaptations are per-
formed predictively, cooperation partners can be informed timely and can prepare themselves
according to the new situation. Concerning the example of cooperative medical care above, the
radiological staff would then have enough time to prepare additional radiotherapy units if required.

Cooperation aspects of distributed workflow systems have already been addressed by several
authors. In particular, aspects such as workflow interoperability frameworks [ADAMS & DWORKIN
1996, BUSSLER 1998], workflow synchronization [HEINLEIN 2001, ATTIE ET AL. 1996] and
collaboration management infrastructures [BAKER ET AL. 1999] have been investigated. During the
last years, workflow cooperation has received significant additional attention because of the
strongly evolving fields of electronic commerce and virtual enterprises [ALONSO ET AL. 1999, NGU
1999]. However, not much work has been done yet to cope with failure handling in inter-workflow
cooperation scenarios. In particular, the question how to automatically determine which
cooperating workflows are affected by the dynamic adaptation of a workflow and how these
cooperating workflows have to be informed or adapted as well has not been investigated
sufficiently. We will discuss these aspects of related work in Chapter 2, too.
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Requirement 4: Handling of Data and Event Distribution and Heterogeneity
Until now, when talking about events and control flow failures we ignored aspects such as the loca-
tion and format of the application data representing these events. However, this data is usually
stored in a distributed and heterogeneous environment. Therefore, as an important additional
requirement, a workflow system dealing with control flow failures first must be able to notice
events occurring somewhere in a distributed and heterogeneous environment. Second, it must be
able to deal with the heterogeneity of the data representing these events.

1.4 Contributions of the Thesis
Based on the requirements listed above we can now describe the contributions of this thesis more
precisely. Principally, the overall contribution of this thesis is the design and prototypical imple-
mentation of the agent-based workflow management system AGENTWORK. Like other workflow
management systems, AGENTWORK provides components for the definition and execution of work-
flows. In contrast to most other systems, it provides additional mechanisms to semi-automatically
handle control flow failures. We emphasize that the AGENTWORK approach is mainly motivated by
medical application domains, but is assumed to be useful also for other non-trivial domains. This
assumption is based on the observation that the data and process complexity of medicine subsumes
that of many other application domains [DADAM ET AL. 2000].
The following contributions are described in this thesis. Contribution 1 does not specifically
address one of the requirements listed above, but forms an important and necessary prerequisite.

1. A Formal Model for Workflow Definition, Execution, and Estimation: In this context, AGENT-
WORK first provides a workflow definition language. This language allows for the definition of
a workflow’s control and data flow. Furthermore, a workflow’s communication and cooperation
with other workflows or workflow systems can be specified. In particular, the workflow defini-
tion language supports an object-oriented data flow model. Such a model has been considered
necessary to cope with the data complexity of domains such as medicine.r9 Second, AGENTWORK
provides a precise workflow execution model. This is necessary, as a running workflow usually
is a complex collection of concurrent activities and data flow processes. Therefore, it has pre-
cisely to be defined what terms such as workflow execution, abortion or suspension mean in the
context of handling control flow failures. 
Furthermore, mechanisms for the estimation of a workflow’s future execution behavior are pro-
vided. These mechanisms are of particular importance for predictive adaptation.
This is described in Chapter 5 (Workflow Definition and Execution) and Chapter 6 (Workflow
Duration Estimation).

2. Mechanisms for Determining and Processing Failure Events and Control Actions (Contribu-
tion to requirement 1 in Section 1.3): AGENTWORK provides mechanisms to decide whether an
event constitutes a control flow failure and which control actions have to be performed to cope
with this failure. In particular, these mechanisms decide which workflows are affected by con-
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trol actions and therefore may have to be aborted, suspended, or adapted. This is formally done
by evaluating event-condition-action rules where the event-condition part describes under
which condition an event has to be viewed as a failure event. The action part represents the nec-
essary control action. To overcome the limitations of current event-condition-action approaches
especially w.r.t. the temporal dimension of events and actions, the thesis provides a novel event-
condition-action model based on a temporal object-oriented logic. For this purpose an existing
object-oriented logic (FRAME LOGIC [KIFER ET AL. 1995]) has been extended with temporal
operators to better deal with the time-oriented aspects of events and actions. Furthermore, an
approach is introduced which supports the integrity of event-condition-action rule sets.
This is described in Chapter 7 (Control Actions).

3. Mechanisms for the Adaptation of Affected Workflows (Contribution to requirement 2 in Sec-
tion 1.3): In case of local control flow failures it has to be decided how an affected workflow
has to be dynamically adapted. AGENTWORK provides a novel approach that combines the two
principal strategies reactive adaptation and predictive adaptation discussed w.r.t. requirement 2
in Section 1.3. Depending on the context of the failure, the appropriate strategy is selected. Fur-
thermore, control flow adaptation operators are provided which translate local control actions
into structural control flow adaptations. Data flow operators adapt the data flow after a control
flow adaptation, if necessary.
These aspects are described in Chapter 8 (Structural Adaptation Operators) and Chapter 9 (Pre-
dictive Control Flow Adaptation).

4. Mechanisms for the Handling of Inter-Workflow Implications of Control Flow Failures
(Contribution to requirement 3 in Section 1.3): AGENTWORK provides novel mechanisms to
decide whether a control flow failure occurring to a workflow affects other workflows that com-
municate and cooperate with this workflow. In case of a global control flow failure and an
induced abortion or suspension of a workflow, affected cooperating workflows are informed
about this event. In contrast to this, a dynamic adaptation induced by a local control flow failure
usually does not endanger a workflow’s result as a whole but may violate temporal or quality
constraints on which the cooperation partners agreed. Therefore, AGENTWORK derives the tem-
poral implications of a dynamic adaptation by estimating the duration that will be needed to
process the changed workflow definition (in comparison with the original definition). Further-
more, qualitative implications of the dynamic change are determined. For this purpose, so-
called quality measuring objects are introduced.
This is described in Chapter 10 (Handling Control Flow Failures for Cooperating Workflows).

All mechanisms provided by AGENTWORK include that users may interact at any moment during
the failure handling process. This includes the possibility of the user to classify as a control flow
failure an event which has not been considered by the system. Furthermore, the user has the
possibility to reject or modify workflow adaptations suggested by AGENTWORK.

5. A Prototypical Implementation Supporting the Integration of AGENTWORK into Distributed
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and Heterogeneous Environments (Contribution to requirement 4 in Section 1.3): Besides the
prototypical implementation of the mechanisms above, this thesis describes an implementation
supporting a CORBA3-based integration of AGENTWORK into the distributed and heterogeneous
environments of real-world organizations such as hospitals or insurance business enterprises.
Such an integration is viewed as essential in order to evaluate AGENTWORK under real-world
conditions. The integration is mainly achieved by a generic mechanism that maps all AGENT-
WORK data objects to CORBA objects at execution time. Assuming that the databases and appli-
cation programs of a real-world environment are also connected to CORBA, AGENTWORK can be
integrated into such a new environment with a minimum of re-implementation. Only the
“AGENTWORK Objects to CORBA Objects” mapping has to be adjusted w.r.t. the new environ-
ment.
As significant work has already been done w.r.t. relevant topics such as middleware-based
architectures [BAKER 1997, SESSIONS 1998], event notification [COLLET ET AL. 1998, HANSON
ET AL. 1998] and schema integration [LOPEZ ET AL. 1997, SANTUCCI 1998, MCBRIEN & POU-
LOVASSILIS 1998, SCHMITT & TÜRKER 1998], the AGENTWORK CORBA approach of integrating
heterogeneous and distributed data sources confines itself to combine existing approaches in an
appropriate way.
The implementation of AGENTWORK and especially its integration into CORBA is described in
Chapter 11 (Implementation Issues).

1.5 The HEMATOWORK System: Workflow Management in Hemato-Oncology
The primary application system to which AGENTWORK shall be applied is the system HEMATO-
WORK. This system is jointly developed by the Department of Computer Science and the Depart-
ment of Medical Informatics, Statistics and Epidemiology of the University of Leipzig4 and
addresses the workflow-oriented support of medical and administrative processes in the domain of
hematooncology. This domain covers the diagnosis, therapy and follow-up of cancer diseases of the
hematological and lymphatic system, such as leukemia (tumor of the white blood cells) and lym-
phoma (tumor of the lymph node system). In this section, we give a brief overview concerning
HEMATOWORK. 
Basically, HEMATOWORK consists of two cooperating workflow systems (Figure 1-3). The first
system is termed treatment workflow system and is designed to run at a hospital’s hematooncologi-
cal ward and ambulance. The second system is called data center workflow system and is located at
the data center collecting all patient data for statistical purposes.
The functionality of the treatment workflow system can be classified as follows:
• Support of Cancer Diagnosis, Therapy and Follow-Up: This mainly consists of the execution

3. CORBA = Common Object Request Broker Architecture.
4. HEMATOWORK is currently supported by the GERMAN RESEARCH ASSOCIATION (DFG) under grant

number Ra 497/12-1.
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of workflows based on the standardized treatment specifications for cancer. A typical workflow
executed by this system and related to chemotherapy is shown in Figure 1-1.

• Report Management: This mainly consists of generating and editing treatment reports, in par-
ticular those that are needed by the data center to analyze the therapies of the different hospitals.

• Communication with External Expert Panels: This includes sending primary diagnoses or
radiotherapy plans to expert panels for pathology respective radiology where these diagnoses
and plans are reviewed, confirmed or revised.

The data center workflow system supports the data center w.r.t. the operational daily work of
documenting and analyzing the therapies performed at the hospitals. Its functionality can be
classified as follows: 
• Data Collection and Patient Tracking: This covers the receipt, validation and storage of the

reports sent by the treating hospitals. In particular, when a new report is received, the system
checks whether all mandatory data fields have been filled out and whether the data is plausible.
Furthermore, the system performs periodical checks whether all reports have been received for
a particular patient. In case of missing, incomplete or implausible reports, the systems generates
and sends reminders and admonitions to the responsible hospital.

• Support of Treatment Analysis: This mainly covers the conversion and movement of the report
data to the programs and staff members performing the statistical analysis of the treatments.

Data Center Workflow System
(Data Collection, Patient Tracking, Treatment Analysis)

Treatment Workflow System
(Support of Diagnosis, Therapy and Follow-Up, Report Management,

Communication with External Expert Panels)

Data
Center

Hospital

Report  RemindersTreatment
Reports

Figure 1-3:  Basic architecture of the HEMATOWORK system.
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One of the major open topics of the HEMATOWORK system is the concept and development of the
treatment workflow system. To determine the requirements for this workflow system, the author of
this thesis has interviewed physicians and has performed an analysis of frequently used hemato-
oncological therapy specifications [HAVEMANN 1994, PFREUNDSCHUH & LÖFFLER 1994, DIEHL
1993, RIEHM 1995]. Furthermore, practical experiences of the author made when developing a
therapy support system for pediatric oncology [MÜLLER ET AL. 1997 B] at the University Hospital
of Mainz, Germany, have been used. The result has been that the treatment workflow system
strongly should be able to cope with control flow failures as defined in Section 1.2, if the
physicians shall accept it. For example, any of the used cytostatic drugs may have serious negative
side-effects for several organs or tissues, so that workflow adaptations such as dropping or
replacing the responsible drugs become necessary when these side-effects occur. In particular,
these side-effects occur quite often so that workflow adaptations have to be performed for a
significant group of patients which cannot be neglected. For a domain analysis motivating the need
of dynamic workflow adaptation in cancer therapy we refer to [MÜLLER & HELLER 1998]. Similar
results showing the need for adaptive workflow management in other medical domains, such as
gynecology, have been found by [KUHN ET AL. 1995, REICHERT ET AL. 2000, DADAM ET AL. 2000].
For further details about the HEMATOWORK system and its preliminary results we refer to [MÜLLER
& HELLER 1998, MÜLLER ET AL. 1998].

1.6 Structure of the Thesis
We complete this chapter with an overview of the thesis’ structure. In Chapter 2, we discuss related
work. This includes relevant work from the fields of commercial workflow products, advanced
transaction management, dynamic and flexible workflow management, artificial intelligence plan-
ning systems, and agent technology. Then, before going into the details concerning the contribu-
tions listed in Section 1.4, Chapter 3 (AgentWork Overview) gives an overview concerning the
principal AGENTWORK approach of handling control flow failures. In Chapter 4 (Data and Rule
Definition with ActiveTFL), a motivation and overview concerning the logic-based data and rule
definition language of AGENTWORK is given.
The specific research contributions listed in Section 1.4 are the topics of Chapter 5 to Chapter 11.
This includes describing the workflow model in Chapter 5, workflow estimation in Chapter 6, the
complete set of control actions in Chapter 7, structural workflow adaptation in Chapter 8 and Chap-
ter 9, workflow cooperation in Chapter 10, and the prototypical implementation in Chapter 11.
The thesis concludes with a summary and outlook in Chapter 12. 
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CHAPTER 2 Related Work

This chapter discusses related work concerning the handling of workflow failures, in particular of
control flow failures. It is organized as follows: In Section 2.1 we characterize current commercial
workflow management systems and show that their failure handling capabilities are too restricted
for our requirements. Section 2.2 discusses the contributions of several advanced transaction mod-
els for the handling of control flow failures. Section 2.3 sketches the possibilities and limitations of
exception handling known from programming languages. In Section 2.4 we discuss relevant
research approaches from the areas of adaptive and cooperative workflow management. Relevant
work done in the field of artificial intelligence (i.e., planning, cooperative agents, and temporal rea-
soning) is discussed in Section 2.5. The chapter concludes with a summary in Section 2.6.
Related work which is very specific for some detailed aspects of this thesis will be discussed in the
respective chapters later on. This includes approaches from active and deductive databases for
event-condition-action rules and temporal algorithms for estimating workflow durations.
To better characterize related work approaches, Table 2-1 summarizes the requirements which have
been identified in Chapter 1 as being essential for the handling of control flow failures. Require-
ment 4 (Handling of Data and Event Distribution and Heterogeneity) of Chapter 1 is not listed in
this table as this thesis does not provide research contributions for this topic. Rather, to cope with
events in distributed and heterogeneous environments we will use and combine existing
approaches in a straightforward manner. Therefore, we discuss related work concerning this
requirement in Chapter 11 (Implementation Issues).
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2.1 Commercial Workflow Management Systems
On the market, several hundred commercial workflow management systems exist [KARK & KARL
2000]. However, it has commonly been identified that most commercial systems do not provide
sufficient support for managing failure situations [CASATI & POZZI 1999, MOHAN 1996, KUHN ET
AL. 1995]. For example, in case of device, system, and transaction failures many commercial sys-
tems simply perform a rollback on the database storing workflow control data such as the current
values of activity parameters. As workflows typically represent long-term processes such a roll-
back is not acceptable in most contexts because too much work already done is lost.
Furthermore, “external“ processes that have been triggered by the workflow system − such as
application program invocations, application database updates, or message deliveries to workflow
users − are usually not covered by the failure handling. Thus, in case of a failure the workflow sys-
tem may be inconsistent as processes are still active that don’t make sense anymore at all or that at
least operate on invalid data. One of the few exceptions in this context is IBM MQSERIES WORK-
FLOW [LEYMANN & ROLLER 2000] which runs on top of the message-oriented middleware IBM
MQSERIES [IBM 2002 D]. This middleware provides application programming services that enable
the workflow system and application programs to communicate asynchronously with each other

Central Requirements Subrequirements

1. Representation of Failure Events 
and Control Actions

1.1 High Semantic Level of Event and Control Action 
Representation

1.2 Temporal Structure of Events
1.3 Temporal Structure of Control Actions
1.4 Integrity of Failure Rules
1.5 Authorization of Control Actions

2. Translation of Control Actions 
into Workflow Execution Opera-
tions and Structural Adaptations

2.1 Workflow Abortion and Suspension
2.2 Support of Reactive Adaptation
2.3 Support of Predictive Adaptation
2.4 Consideration of Data Flow Implications
2.5 Consistency of Adapted Workflows
2.6 Efficiency of Adaptation 

3. Handling of Inter-Workflow 
Implications of Control Flow 
Failures

3.1 Determination of Temporal Implications
3.2 Determination of Qualitative Implications

Table 2-1:  Requirements for the classification of related work.
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using messages. In particular, MQSERIES supports transactional messaging based on persistent
message queues [BLAKELEY ET AL. 1995]. This means that operations on messages (e.g., message
input, message processing, and message output) are processed as transactional units. In case of a
workflow failure not only the affected workflow execution steps but also messages sent by the
workflow system can be rolled back [LEYMANN 1997]. Broader efforts to handle the problem of
such “external“ processes by integrating commercial workflow systems into services or monitors
for distributed ACID transaction processing have not yet been successful. For example, the OBJECT
MANAGEMENT GROUP has specified a standardized CORBA workflow facility [SCHULZE ET AL.
1998, SCHULZE 1999] in order to integrate workflow systems into the 2-phase-commit protocol of
the CORBA TRANSACTION SERVICE [OMG 2002 B]. However, this facility has not yet, to the
author’s knowledge, resulted in any coupling of commercial workflow systems with the CORBA
TRANSACTION SERVICE. Anyway, such approaches as provided by IBM MQSERIES WORKFLOW or
the OBJECT MANAGEMENT GROUP do not solve the principal problem that a rollback − even if it
covers “external“ processes − often is not appropriate as too much work already done may be lost.
Also the WORKFLOW MANAGEMENT COALITION has not suggested any advanced failure handling
approach overcoming the limitations of current commercial systems.

Concerning control flow failures, the situation is similar. Only a few systems provide support: For
example, PROMINAND [IABG 2002, KUBICEK & REICHERT 1996] views a workflow as a control
flow specifying when a document folder has to be sent to which user (“electronic circulation
folder“). This folder and the specifications which document-related activities have to be performed
are modeled as one object migrating from one user to the next one [KARBE ET AL. 1990]. During
this migration process, the system allows the user to skip, insert, or reorder activities dynamically.
PROMINAND also provides a programming interface by which such a dynamic activity skip or
insertion can be induced by external application programs. Thus, an integration of the system into
larger contexts is facilitated. However, several limitations exist:
• First, the expressiveness of the workflow definition language is very poor. For example, loops

are not supported. Furthermore, due to the document-oriented character the data flow is limited
to the exchange of files between activities.

• Second, the set of adaptation operations is incomplete. In particular, no operation is provided to
add new activities parallel to already existing activities so that activity sequences do not have
to be split up. Furthermore, the supported adaptation operations consider only the control flow
but ignore implications of an adaptation for the data flow.

• Third, only activities currently processing the circulation folder may be adapted.r12Thus, a predic-
tive adaptation affecting activities not yet reached by the control flow is not possible.

The workflow management system INCONCERT [ABBOT & SARIN 1994, SARIN 1996, MOHAN
1996] allows the dynamic adding or removing of activities and of control flow dependencies as
well. In addition to PROMINAND, INCONCERT includes event-condition-action (ECA) triggers in its
workflow model. Triggering events may be certain workflow or activity state changes (e.g., an
activity becomes ready for execution), external user-defined events, or temporal events such as an
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elapsing deadline. Allowed actions may be user notifications, the start or abortion of workflows or
activities, or application program calls. However, similar to PROMINAND, the expressiveness of the
workflow definition language is very limited, and data flow implications of adaptations are not
considered.
Other workflow management systems, such as COSA [SOFTWARE LEY GMBH 2000], ACTION
REQUEST SYSTEM [REMEDY CORP. 2000], LOTUS DOMINO WORKFLOW [GIBLIN & LAM 2000], and
PAVONE ESPRESSO [MOHAN 1996] offer a comparable functionality concerning workflow adapta-
tion.
However, none of the mentioned commercial systems can be used to address the requirements
listed in Table 2-1:
• First, although the mentioned systems provide some support concerning requirement 2.2 (Sup-

port of Reactive Adaptation) via ECA rules, they do not sufficiently address the automation of
this process. Even if a trigger automatically derives that for example some activity has to be
performed additionally, the user still has to decide where the new activity node shall be inserted
into the control flow. For example, when several control flow paths are executed in parallel at
the failure moment, the user has to select the path into which the new activity shall be inserted.

• Second, the requirements 2.3 (Support of Predictive Adaptation) and 3 (Handling of Inter-
Workflow Implications of Control Flow Failures) are not supported by commercial workflow
systems.

• Third, requirement 2.4 (Consideration of Data Flow Implications) is neglected seriously as
necessary data flow adaptations are not derived when activities have been dropped or added.

• Fourth, although some commercial systems provide some functionality concerning dynamic
adaptation, they do not allow external programs to access this functionality via a programming
interface (except of PROMINAND). Thus, the coupling of such a commercial system with com-
ponents for an advanced handling of control flow failures is very difficult.

A detailed discussion of commercial workflow systems and their limitations w.r.t. dynamic
workflow adaptation can be found in [REICHERT 2000]. Due to these limitations, it has been
decided not to build AGENTWORK on the basis of a commercial workflow management system. 

2.2 Advanced Transaction Models
As already sketched in Chapter 1, the ACID transaction model [GRAY & REUTER 1993, HÄRDER &
RAHM 2001] is not appropriate for workflow failure handling. This is mainly because workflows
typically represent long-term processes so that too much work already done would be lost in case of
a rollback. Furthermore, strict isolation of a database object for the whole life span of a workflow
usually is not acceptable. Therefore, several advanced transaction models have been proposed
relaxing the strict ACID properties in a workflow-oriented manner. Surveys on such advanced
transaction models can be found, for example, in [ELMARGARMID 1992, JAJODIA & KERSCHBERG
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1997, HÄRDER & RAHM 2001]. In our context, partial backward recovery, compensation-based
recovery and forward recovery are of importance.

2.2.1 Partial Backward Recovery and Compensation-Based Recovery
To minimize the loss of work in case of a failure, partial backward recovery relaxes atomicity and
rolls back a workflow not to its starting point but only partially (partial undo). For example, when
a failure occurs during a booking workflow only the activities that dealt with the hotel booking may
be rolled back while prior work done for the flight booking may not be affected. When the failure
has been resolved the workflow is restarted at that point to which it has been rolled back. Typically,
so-called savepoints are specified at workflow definition time to indicate to which point a work-
flow shall be rolled back in case of a failure [GRAY & REUTER 1993, GREFEN ET AL. 1999 B].
Orthogonal to this, compensation-based backward recovery has to be performed in case that isola-
tion is relaxed and changes performed by a workflow are released already during its execution.
Thus, a rollback cannot be performed anymore by a state-oriented undo recovery, but only by a log-
ical undo through compensation. Such a compensation-based backward recovery which goes back
to the SAGAS model [GARCIA-MOLINA & SALEM 1987, GARCIA-MOLINA ET AL. 1991] can be char-
acterized as follows: First, typically each workflow activity is viewed as an ACID transaction. Sec-
ond, to every activity a compensation activity is assigned which is able to logically undo or at least
to minimize the effects caused by the respective workflow activity. For example, for a hotel book-
ing activity a compensation activity could cancel the hotel booking by generating and sending a
cancellation fax to the hotel. Third, in case of a failure the currently executed activities are rolled
back by a conventional undo recovery, and for every already committed activity the respective
compensation activity is performed. This is usually done in the reverse order of the already exe-
cuted control flow.
Based on these two general recovery models, several workflow failure handling approaches have
been suggested. For example, Leymann proposes a partial backward recovery model based on the
concept of so-called compensation spheres [LEYMANN 1995, LEYMANN & ROLLER 2000]. A com-
pensation sphere is a set of workflow activities which has to be either executed successfully as a
whole or − in case of a failure − has to be rolled back. This sphere roll back is performed by execut-
ing compensation activities for all sphere activities that have already been executed. A workflow
may be hierarchically divided into multiple compensation spheres to achieve an application-ori-
ented partitioning for failure handling purposes. Dependencies between spheres in one workflow or
even in different workflows are also considered. For example, a sphere S1 in a workflow W1 may
have produced data that have been already been consumed by a sphere S2 in a workflow W2. Then,
if S1 has to be compensated because of a failure, S2 is compensated as well (cascading compensa-
tion) since it operated on data not being valid anymore because of the failure of S1. A limitation of
the approach is that it does not consider inter-workflow dependencies as spheres depending on each
other have to belong to the same workflow. Furthermore, to the author’s knowledge no implemen-
tation of compensation spheres has been provided so far.
Several variations and extensions of partial backward recovery and compensation-based recovery
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have also been suggested, such as the dynamic generation of compensation plans [DAVIS ET AL.
1996,r18ALONSO ET AL. 1996] or optimization issues to avoid unnecessary compensation steps
[KAMATH & RAMAMRITHAM 1998].

2.2.2 Forward Recovery
To reduce the loss of work due to failures as much as possible, so-called forward recovery
approaches attempt to avoid a backward recovery whenever this is possible [DAYAL ET AL. 1991,
WÄCHTER & REUTER 1992, WORAH & SHETH 1997]. For example, in the CONTRACTS model
[WÄCHTER & REUTER 1992, REUTER & SCHWENKREIS 1995, REUTER & SCHWENKREIS 1995] it
can be specified that in case of an activity failure this activity shall be repeated or that an alternative
activity shall be executed. This allows to react on failure situations in a more application-specific
manner than as with a backward recovery. The latter is only performed in case that the specified
failure handling fails as well (e.g., if the repeating of the activity or the execution of an alternative
activity fails). 
To handle system failures, the CONTRACTS system first logs the entire workflow execution history
such as the chronology of user inputs and of the activity input and output data persistently in a
transactional database (context management). Second, by using recoverable message queues
[BERNSTEIN ET AL. 1990] it is also achieved that in failure cases the loss of information exchanged
with workflow clients is reduced to a minimum. When a failure such as a server crash occurs, the
CONTRACTS system interrupts the workflow and − after the failure has been resolved − continues it
by restoring the last consistent execution state logged by the context management. The workflow
then is continued according to the specified workflow definition.r20

We omit other details of CONTRACTS such as isolation predicates [WÄCHTER & REUTER 1992], as
they are not relevant for the handling of control flow failures.

Another forward-oriented recovery approach has been realized within the TAM1 system [LIU & PU
1998 A, ZHOU ET AL. 1999]. TAM provides several constructs to specify interaction dependencies
between activities in an application-dependent manner, such as an ’A precede B’ dependency
between two activities A and B. These dependencies can dynamically be restructured if exceptions
occur. For example, for a software engineering process there may be two main activities, namely
the specification activity S (consisting of two subactivities S1 and S2) and the implementation
activity I (consisting of three subactivities I1, I2, and I3). At definition time, the only interaction
dependency specified is that S should precede I. Suppose now S1 has been completed, but S2 has to
be postponed for days or weeks because some important information required from a remote site is
not available. This may cause the problem that subactivities of I which depend only on S1 (e.g., I1
and I3) have to wait for the completion of the entire activity S (in particular for S2 in this case), even
though they do not depend on S2. To cope with this, TAM allows to restructure the ’S precede I’
dependency by breaking it down to a number of subactivity dependencies such as ’S1 precede I1’,

1. TAM = Transactional Activity composition Model
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’{S1, S2} precede I2’, and ’S1 precede I3’.Then, I1 and I3 can be started when S1 has finished as they
do not depend on S2. Furthermore, any activity may be dynamically split up (e.g., S2 may be split up
to S21 and S22), and for the subactivities additional dependencies may be defined.

2.2.3 Discussion
At first glance, the advanced transaction approaches described above can be used to handle control
flow failures, though they have not primarily been proposed for this failure type. For example, the
four chemotherapy drug administrations of the workflow in Figure 1-1 (CYCLOPHOSPHAMID, DOX-
ORUBICIN, VINCRISTIN, PREDNISOLON) could be viewed as a compensation sphere according to
[LEYMANN 1995]. Compensating activities such as giving an antibiotic drug or making an addi-
tional diagnostic examination could be assigned to activities of this chemotherapy sphere. When a
failure event such as a critical hematological toxicity occurs, the sphere could be rolled back to its
beginning by executing the above-mentioned antibiotic or diagnostic activities.2 Alternatively, in
terms of the CONTRACTS model one could specify an antibiotic drug activity or an diagnostic
examination activity as alternative activities that should be performed in case that one of the che-
motherapy administrations fails. Concerning TAM, the dynamic splitting of activities could be used
to add activities to a process at execution time. Thus, at least some primitive reactive “adaptation”
of the control flow can be achieved (requirement 2.2 in Table 2-1).
However, handling control flow failures on the basis of these advanced transaction models is not
appropriate because of the following reasons:
• First, the type of an appropriate compensating or alternative activity very often will depend on

the type of the failure event. For example, the administration of an antibiotic drug may be an
appropriate compensating or alternative activity in case of a hematological toxicity as it helps
to prevent a severe infection due to hematological toxicity. But it usually is useless or even dan-
gerous concerning other event types such as a renal toxicity, as then every additional drug
would only endanger the renal system. Thus, conditional compensating or alternative activities
would have to be specified which is not yet supported sufficiently by current approaches.r21

• Second, even if we allow conditional compensating, alternative activities, or dynamical restruc-
turing, requirement 2.3 (Support of Predictive Adaptation) from Table 2-1 is not met. This is
because none of the above-mentioned transaction approaches copes with any part of the control
flow that has not yet been scheduled for execution at the moment of the failure. Therefore, a
control action such as drop or replace activity of type A for the next two weeks cannot be han-
dled predictively.r22 r23

• Third, not all types of control actions that may become necessary can be realized by these
advanced transaction approaches. For example, depending on the transaction approach it is dif-
ficult to achieve that in case of a failure a single medical activity is dropped or delayed while

2. The antibiotic activity is suitable to compensate a hematological toxicity as its protects from infec-
tions fostered by this type of toxicity. The diagnostic activities are suitable as they provide more
information about the toxicity.
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the rest of the workflow is continued as originally specified.
• Fourth, approaches such as TAM do not sufficiently support the automation of failure handling.

In particular, the restructuring of the activities has to be done manually. This may be suitable for
software engineering applications, where only a small number of high-level activities is mod-
eled. However, it is not appropriate for applications such as cancer therapy where processes are
modeled on a very detailed level and consist of many activities.

Overall, it can be stated that advanced transaction models do not provide sufficient support for
handling control flow failures, although they consider much more application semantics than the
traditional ACID model. However, they form a basis for the control flow failure handling approach
suggested in this thesis. For example, a compensation-based backward recovery may become
necessary in case of a global control flow failure when the continuation of a workflow does not
make sense anymore at all and the workflow therefore has to be aborted. Furthermore, workflow
suspension as supported by CONTRACTS may be useful in case a workflow has to be suspended due
to some control flow failure. As the mechanisms described, for example, by [ALONSO ET AL. 1996,
KIEPUSZEWSKI ET AL. 1998, GREFEN ET AL. 1999 B, WÄCHTER & REUTER 1992] are sufficient for
this purposes, we do not focus on the transactional aspects of workflow abortion and suspension in
this thesis.
Table 2-2 summarizes our discussion of advanced transaction models.

2.3 Exception Handling in Programming Languages
A workflow definition can be viewed as some sort of a high-level program where the activities
form the different program “operations“, and where edges and control flow nodes specify the pro-
gram’s control and data flow. Thus, it makes sense to inspect whether programming languages con-
tribute to the problem of handling control flow failures. In this context we concentrate on
procedural languages (e.g., C++, JAVA) as these languages are characterized by an explicit control
flow notion. Among these procedural languages, we discuss the exception handling approach of
JAVA [WOLFF 1999], as it can be viewed as one of the most advanced ones, and as exception han-
dling has been integrated into the language from the beginning (in contrast to, for example, C++).
We do not discuss the C++ handling approach, as it is very close to that of JAVA. Other program-
ming language types such as functional languages (e.g., LISP) or logic languages (e.g., PROLOG) are
not discussed, as with them a program is not primarily specified by stating the control flow but by
giving a number of functions (LISP) respective rules and predicates (PROLOG).
In JAVA, exception handling is specified by so-called try and catch blocks:
• A try block “tries“ to perform some code. In case something fails, it generates an exception

object which contains information about the failure type and which is “thrown“ (i.e., sent) to
some catch block to handle the failure. e.g.,
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try { some statements “trying“ to generate an object t 

if (t == null) // if failure,
throw new NullPointerException(some detail parameters); // generate and sent 

} // an exception object

To define exception objects, JAVA provides predefined base classes (from which, for instance,
the above class NullPointerException can be derived).

• A catch block has to be placed directly after a try block and specifies how to handle an excep-
tion of a given class, e.g.,

catch(NullPointerException e) { // type declaration of catch block

// handle the null pointer exception using information encoded in e } 

Requirements for Handling of Control Flow 
Failures Supported Representative Approaches 

and Remarks

1.1  High Semantic Level of Event and Con-
trol Action Representation

No
(out of 
scope)

1.2  Temporal Structure of Events
1.3  Temporal Structure of Control Actions
1.4  Integrity of Failure Rules
1.5  Authorization of Control Actions
2.1  Workflow Abortion and Suspension Yes Backward recovery (for abortion)

CONTRACTS (for suspension)
2.2  Support of Reactive Adaptation Limited By conditional compensating activities 

(for compensation-based recovery), by 
conditional alternative activities (for 
forward recovery), or by dynamic 
activity restructuring (TAM)

2.3  Support of Predictive Adaptation

No
(out of 
scope)

2.4  Consideration of Data Flow Implications
2.5  Consistency of Adapted Workflows
2.6  Efficiency of Adaptation
3.1  Determination of Temporal Implications
3.2  Determination of Qualitative Implications

Table 2-2:  Support of advanced transaction models.
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The assignment of catch blocks to throw statements is done type-based, i.e., the first catch
block having a type declaration compatible with the thrown exception is selected.

The main advantage of this approach is that it allows to structure exception handling in a readable
manner as the code identifying the exception is clearly separated from the code where the exception
is handled. Furthermore, the existence of predefined base classes for exception objects facilitates
exception handling programming.
However, this exception handling approach is not appropriate for handling control flow failures.
The main argument is the same made w.r.t. the suggestion in Section 1.2.3 why not to cope with
control flow failures by adding conditional branches to a workflow definition: Exceptional events
causing control flow failures typically may occur asynchronously at any time during workflow exe-
cution. However, handling them by a “try & catch“ approach would require that the relative point
in time of their occurrence w.r.t. a particular position in the program (i.e., the workflow definition)
is known at workflow definition time. However, this is not possible for most types of failure events.
Note that this does not mean that the JAVA exception handling approach cannot be used to imple-
ment a failure handling approach for workflow systems or to handle exceptions in a more restricted
context, such as system exceptions during the execution of single activities. It only means that the
JAVA exception handling approach is not appropriate on the conceptual level to handle control flow
failures as defined in Chapter 1.

2.4 Workflow Research Approaches
In this section, we discuss workflow research approaches, namely approaches from the fields of
adaptive workflow management (2.4.1) and cooperative workflow management (2.4.2).

2.4.1 Adaptive Workflow Management
Research has widely identified that workflow management systems should be able to react on
changing workflow environments and application situations in a more flexible manner than it is
currently possible with commercial workflow products and advanced transaction models [SHETH
1997, REICHERT & DADAM 1997]. Consequently, during the last years several workflow adaptation
models and prototypes have been proposed to overcome these limitations [REICHERT & DADAM
1998, ELLIS ET AL. 1998, WESKE 1999 B, CASATI ET AL. 1999]. Existing approaches can be classi-
fied into three main categories [HEINL ET AL. 1999, DADAM ET AL. 2000]:

1. Late Modeling/Late Binding Adaptation: To achieve more flexibility, approaches of this cate-
gory omit or ”underspecify” several aspects of a workflow definition, such as the particular sub-
workflow that shall be invoked at a certain control flow position, or the particular order in which
an activity sequence shall be executed [JABLONSKI ET AL. 1997, HAGEMEYER ET AL. 1997,
MÜLLER & HELLER 1998]. Some approaches also leave open which particular resources (e.g.,
programs, users, devices) shall be allocated for an activity execution [HAN ET AL. 1996, LIU &
PU 1997, CHIU ET AL. 1999]. The aspects left open are determined at execution time, e.g., when
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data has become available that is needed to decide which particular subworkflow shall be used.
Syntactically, open aspects are often represented by some abstract placeholder nodes or edges in
the workflow definition. The overall limitation of the approaches of this category is that it has to
be known at workflow definition time what has to be left open, and when the open aspect has to
be decided, i.e., the relative workflow position of the placeholder representing the open aspect
has to be known beforehand. Furthermore, depending on the degree of late modeling, the user
has to be familiar with the workflow definition language.

2. Ad Hoc Adaptation (Instance Adaptation): Approaches of this category assume that it may
become necessary at any moment during workflow execution to adapt the workflow in an ad
hoc way that cannot be pre-modeled at workflow definition time and therefore cannot be cov-
ered by late modeling. Such approaches usually provide a set of generic graph operators sup-
porting as many types of structural adaptations as possible [REICHERT & DADAM 1998, CASATI
ET AL. 1999]. The control flow failure handling approach of AGENTWORK belongs to this cate-
gory. The principal challenge of ad hoc adaptation approaches is first to guarantee that an adap-
tation leads to a correct workflow, and second the question to what degree such an adaptation
can be automated.

3. Workflow Definition Adaptation (“Schema Evolution”): Approaches of this category address
the adaptation not of a single running workflow but of a workflow definition (i.e., a workflow
schema or schema) so that all workflows based on this definition may be affected [REICHERT ET
AL. 1998, JOERIS & HERZOG 1998, KRADOLFER & GEPPERT 1999]. This becomes necessary if it
is detected that a workflow definition generally is inadequate, independently from the particular
context in which it is used. For example, in a medical context it may be detected that a certain
drug must not be given anymore to any patient as dangerous side-effects may have become
known so that the drug is taken from the market. Thus, all workflow definitions consisting of
activities administering this drug have to be changed in the workflow definition database (e.g.,
by removing the respective activity nodes). An important subproblem of workflow definition
adaptation is how to cope with workflow instances that have been started on the basis of an old
workflow definition which is no longer valid anymore as it has been changed in the workflow
definition base.r24

We now discuss relevant approaches of these categories. Workflow failure handling and adaptation
approaches that originate from the fields of artificial intelligence planning and agent technology
[DELLEN ET AL. 1997, BECKSTEIN & KLAUSNER 1999A, KLEIN & DELLAROCAS 2000 B] are
discussed in Section 2.5 (Artificial Intelligence Approaches).

MOBILE: MOBILE is a modular workflow management system mainly addressing late modeling
adaptation. It consists of several modules for orthogonal workflow perspectives, such as the so-
called behavior perspective (i.e., when what is executed in the control flow) or the information
perspective (i.e., what data is consumed and produced) [JABLONSKI ET AL. 1997]. In MOMO, the
so-called MOBILE MODELING language, workflow definitions can be left incomplete if, for
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example, the suitable activity, activity order or subworkflow can only be determined at execution
time [HORN & JABLONSKI 1998, HEINL ET AL. 1999]. In particular, goal descriptions can be
assigned to a workflow definition restricting the types of activities, activity orders or subworkflows
that may be selected at execution time (i.e., only such selections are finally allowed which do not
violate the workflow goal). This late modeling approach is termed as descriptive modeling
[JABLONSKI ET AL. 1997], in contrast to prescriptive modeling which would have to specify all
aspects entirely at workflow definition time. Descriptive modeling enables the MOBILE system to
better cope with situations that cannot entirely be foreseen at workflow definition time. However,
in MOBILE the user has to decide how a workflow shall be completed concerning aspects left open
at workflow definition time. Methods to automatically derive the workflow completion when, for
example, relevant data have become available are not discussed by the authors. In particular,
correctness criteria constraining possible completions to avoid inconsistent workflows are not
provided. Furthermore, as with all late modeling approaches, asynchronous failure events
occurring during workflow execution cannot be handled appropriately. This is because their
relative point in time of occurrence w.r.t. the workflow control flow usually is not known in
advance.

ADEPTFLEX: In the context of the ADEPT3 workflow project, the ADEPTFLEX model has been proposed
to support ad hoc workflow adaptation [REICHERT & DADAM 1998, DADAM ET AL. 2000]. In
particular, ADEPTFLEX contributes to the following topics:
• First, it provides a block-oriented workflow definition language. This means that activity

sequences, parallel and conditional branching, and loops are specified as symmetrical blocks
with well-defined start and end nodes. These blocks may be nested, but they are not allowed to
overlap. As an extension, synchronization edges as well as failure backward edges can be
defined between activity nodes. Furthermore, one can specify different modes of parallel exe-
cution, such as that the parallel execution terminates either when the first path commits, or only
when all execution paths commit. Additionally, the data flow between activities can be speci-
fied explicitly.
On one side, this block-oriented model allows to define well-structured and readable work-
flows. On the other side, the expressiveness needed for a broad range of applications is
achieved. Furthermore, a workflow definition is verified on the basis of correctness and consis-
tency constraints. For example, it is verified whether deadlocks may occur or whether an activ-
ity node will be provided with all needed input objects.

• Second, ADEPTFLEX provides a complete operator set for the dynamic insertion, dropping or
moving of activities or activity blocks at any point in time during workflow execution. In par-
ticular, workflow regions which have not yet been entered by the control flow can be changed
as well (in contrast to, for example, PROMINAND). Furthermore, the execution of dynamically
inserted activities can be synchronized with the execution of already existing ones. In particu-

3. ADEPT = APPLICATION DEVELOPMENT BASED ON ENCAPSULATED PREMODELED PROCESS TEM-
PLATES 
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lar, ADEPTFLEX offers operators to adjust the data flow in case of a dynamic adaptation. For
example, such an operator may link a dynamically inserted activity to existing workflow data
elements. Finally, operator subsets are aggregated to high-level “semantic“ operators which
allow the user to perform adaptations without having to take care about details on the node and
edge level.

• Third, ADEPTFLEX distinguishes between permanent changes which are preserved until the work-
flow completion, and temporary changes which are retracted once the changed region has been
executed. This is of importance for long-running workflows, where changes may affect regions
that are entered several times, e.g., due to a partial workflow rollback or due to loop iterations
supporting cyclic processes such as the one in the chemotherapy example in Figure 1-1.

• Fourth, based on the correctness and consistency constraints mentioned above, it is checked
efficiently whether an adaptation may lead to an incorrect workflow (e.g., to a workflow with a
deadlock or an activity node without the needed input objects). If this is the case, the systems
suggests “repair“ operations such as inserting additional data flow edges for missing input
objects.

• Fifth, ADEPTFLEX also addresses the dynamic adaptation of distributed workflows which may be
controlled by multiple servers [BAUER ET AL. 2001].

Furthermore, the ADEPTTIME component [DADAM ET AL. 2000] supports the management of
temporal workflow constraints and determines the effects a dynamic adaptation might have for
such constraints. At workflow definition time a minimal and a maximal duration can be specified
for every activity. Temporal constraints can be assigned to activity nodes specifying that for
example a node has to be reached not later than 48 days after workflow start. The duration
information is then used first to verify at definition time whether a workflow is temporally
consistent (e.g., whether an activity deadline is realistic at all w.r.t the durations of the predecessor
activities). Second, it can also be estimated at execution time whether a dynamic adaptation would
violate any temporal constraint assigned to an activity. If this is the case, the system informs the
user about the conflict and offers different strategies to resolve it, such as aborting the adaptation or
relaxing some temporal constraints. The temporal estimations are based on the Floyd-Warshall
algorithm [DECHTER ET AL. 1991].
Additionally, in [HEINLEIN 2001, HEINLEIN 2000] so-called interaction expressions are used to
specify inter-workflow dependencies in the ADEPT context. For example, such an interaction
expression could specify that a patient cannot be present in two examination rooms at the same
time, so that two activities of two different diagnostic workflows for this patient may have to be
serialized. Generally, these interaction expressions can also be used to add “logical” constraints to
the “syntactical” correctness constraints of ADEPTFLEX. Such a logical constraint could then forbid
the dynamic insertion of a drug activity A if some incompatible drug activity B already shall be per-
formed in the neighborhood.
The overall contribution of the ADEPTFLEX approach is its comprehensive, detailed and formal oper-
ator framework for dynamic workflow adaptations and its focus on correctness and consistency
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issues. However, ADEPTFLEX does not provide algorithms that automatically decide under which cir-
cumstances which structural adaptations should be applied to a workflow instance. Concerning the
determination of temporal implications of a dynamic adaptation, it can be argued that for more pre-
cise temporal estimations not only durations specified at definition time but also activity duration
measurements of prior workflow executions should be used. Furthermore, it is not discussed how a
dynamic adaptation may violate inter-workflow constraints specified via the interaction expres-
sions described above.
To summarize in terms of Table 2-1, ADEPTFLEX provides a clear and detailed formal foundation
concerning requirements 2.2 (Support of Reactive Adaptation), 2.4 (Consideration of Data Flow
Implications) and 2.5 (Consistency of Adapted Workflows) and also a valuable approach for
requirement 3.1 (Determination of Temporal Implications). However, ADEPTFLEX does not address
the automation of dynamic adaptations and does not meet requirements 2.3 (Support of Predictive
Adaptation) and 3.2 (Determination of Qualitative Implications).

CHIMERA-EXC: To cope with so-called expected exceptions in the WIDE workflow project
[GREFEN ET AL. 1999 A], Casati et al. have developed the rule-based exception handling language
CHIMERA-EXC [CASATI 1998, CASATI ET AL. 1999]. CHIMERA-EXC is an object-oriented extension
of the logic-based programming language DATALOG [CERI ET AL. 1989] and has been integrated
into the FAR4 workflow system of WIDE. FAR itself is based on the commercial workflow
management system FORO [SEMA GROUP 2000].
In the terminology of the authors, an expected exception is an event which is known to occur some-
times asynchronously during workflow execution and therefore requires some ad hoc handling,
such as sending an additional message to a user or performing an additional activity. Therefore,
expected exceptions correspond to our notion of control flow failure events. To cope with them,
CHIMERA-EXC supports ECA rules to monitor events and to derive appropriate actions. The follow-
ing event types are supported: Data manipulation events deal with operations changing the con-
tents of a database (such as a table insert or update). External events are raised by external
applications. Workflow events cover, for example, the starting, completion or abortion of workflows
or workflow activities. Temporal events are defined as patterns on a time axis. For example, a tem-
poral event could be that the calendar date reaches the 20th September 2000 or that 60 days have
been elapsed since the 1st January 2000. The condition part of a CHIMERA-EXC rule states when an
event has to be viewed as an exceptional event requiring further handling.
The action part of a CHIMERA-EXC rule includes data manipulation actions and operations on the
workflow and activity level. The latter category includes primitives to start, rollback or suspend
workflows, or to reject, cancel or add activities. For example, in case of a deadline expiration in a
billing workflow such an action part could add an activity to this workflow sending a bill reminder
to the customer who has not yet paid the bill. Additionally, in [CASATI ET AL. 1998] constraints are
introduced specifying when an adapted workflow is viewed as correct. Such a constraint for exam-

4. FAR = Foro Active Rules
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ple specifies that only activities after a conditional branching may have entry conditions as other-
wise − because of the missing alternatives − a violated entry condition may lead to a deadlock.
In [CASATI ET AL. 1996, CASATI 1998] the proposed approach is also used for an event-based pro-
tocol for logical workflow interoperability and cooperation in inter-organizational contexts. Inter-
workflow cooperation is specified at the communication level. By so-called SEND and RECEIVE
nodes, workflows can synchronously exchange information about results via an event notification
service. Failures leading to a workflow starvation (i.e., a receiver workflow waits in vain for a
result) or a deadlock (i.e., two workflows in vain wait for results from each other) can be handled as
follows: When a waiting threshold expires, either an alternative control flow path that already has
been specified at definition time is executed, or the conflict is resolved manually in an ad hoc man-
ner.
Overall, CHIMERA-EXC provides a comprehensive active rule approach to automate the handling of
logical failures and control flow failures in particular. However, several limitations exist: 
• First, the temporal dimension of triggered actions is not supported sufficiently. For example,

when an action states that an activity has to be performed additionally, it is not specified
whether this shall be done immediately after the rule has been triggered or somewhere later on.
An immediate execution sometimes may not be possible because of missing data or unavailable
resources. In particular, control actions such as dropping a particular activity for the next 7 days
or until some termination condition holds are not supported.

• Second, concerning the translation of control actions into structural workflow adaptations, the
approach only supports a reactive strategy. Predictive adaptations based on temporal estima-
tions are not addressed.

• Third, the correctness criteria stating when an adapted workflow is viewed as correct are purely
syntactical and do not cover logical restrictions such as that two certain medical activities must
not be performed in parallel.

• Fourth, the way the system adjusts the data flow after a control flow adaptation remains unclear.
Though in [CASATI ET AL. 1998] some low-level data flow constraints such as type compatibil-
ity conditions are introduced to support data flow consistency, no algorithm is described that
computes necessary data flow adaptation in case of a dynamically adapted control flow.

• Fifth, rule integrity is not explicitly addressed. Though CHIMERA-EXC is based on DATALOG
and therefore has a logical foundation, it is not said how the underlying logic calculus can be
used to achieve rule integrity for the specific failure handling context. This is a critical point, as
already for simple processes large rule sets may be necessary for exception handling. As a con-
sequence, at execution time undesirable side-effects such as contradicting conclusions may
occur. 

• Sixth, concerning inter-workflow cooperation the proposed failure-handling strategy only cov-
ers that a result is not provided at all by a cooperating partner. A more detailed communication
protocol informing that because of a control flow failure a result will be provided later or with
reduced quality is not supported. In particular, the authors do not investigate mechanisms
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adapting a receiver workflow itself dynamically so that it can better cope, for example, with a
result of reduced quality.

Summarizing in terms of Table 2-1, CHIMERA-EXC provides useful contributions w.r.t.
requirements 1.2 (Temporal Structure of Events), 2.2 (Support of Reactive Adaptation) and 2.5
(Consistency of Adapted Workflows). However, CHIMERA-EXC does not sufficiently address
requirements 2.3 (Support of Predictive Adaptation), 2.4 (Consideration of Data Flow
Implications) and 3  (Handling of Inter-Workflow Implications of Control Flow Failures).

MOKASSIN: In contrast to approaches such as ADEPTFLEX [REICHERT & DADAM 1998], MOKASSIN
does not focus on the question which operator set should be provided for workflow adaptation and
which formal correctness criteria should be considered. Rather, the focus is to keep the execution
behavior of a workflows as flexible as possible and as much as configurable by providing an
extensible workflow meta-model [JOERIS 1999, JOERIS & HERZOG 1999, GRONEMANN ET AL.
1999]. Additionally, the applicability of an adaptation is not coupled with global correctness
criteria that have to be met, but depends on the particular workflow and execution context.
The most important modeling primitive in MOKASSIN is the task. Its definition consists of an inter-
face as well as a number of implementations from which one is dynamically selected at execution
time. The task interface specifies the attributes and parameters of the task and describes its context-
free behavior. A task implementation is either a user-defined program or a process model. The lat-
ter is graphically specified by a task network where the nodes represent the tasks and the edges the
control and data flow dependencies between them. The modeler can influence the execution behav-
ior by adapting the context-free behavior of single tasks or by extending the workflow meta-model
by user-defined constructs in a context-sensitive manner. The context-free behavior of a task is
specified by a number of possible execution states and − on the basis of ECA-rules − the valid tran-
sitions between them. The context-sensitive behavior of a task results from its control flow depen-
dencies to other task nodes in the network. These dependencies can be adapted by assigning user-
defined rules to a task which are then interpreted at execution time by the workflow management
system. While these mechanisms of adapting the context-free and context-sensitive behavior of
tasks is done at workflow definition time, dynamic ad hoc adaptation of a single workflow instance
is possible as well. This can be done by a graphical editor, which offers a number of simple adapta-
tion operations, e.g., to add or drop single nodes. 
Overall, MOKASSIN provides a strong rule-based mechanism to extend the workflow meta-model
by user-defined constructs and thus to increase flexibility. However, a serious disadvantage is that
the authors do not provide any approach to analyze the user-defined extensions of the meta-model
in terms of correctness. In particular, the integrity of user-defined rule sets is not checked. Further-
more, if compared with other approaches such as ADEPTFLEX, the operator set for ad hoc adaptations
is very restricted.

FLOW NETS, WORKFLOW NETS: In [ELLIS ET AL. 1995, ELLIS ET AL. 1998], the authors describe
an approach for structural workflow adaptation based on petri nets [PETRI 1962]. For workflow
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modeling and control, a special subtype of petri nets, so-called flow nets, is used. At execution
time, each flow net can control several workflow instances. With a graphical editor, structural
adaptations of a flow net can be performed, such as that two activities which have been executed
sequentially so far now have to be executed in parallel [ELLIS & MALTZAHN 1997]. The correctness
of the adapted networks is guaranteed in terms of reachability analysis of the petri net theory
[BAUMGARTEN 1996]. However, the authors do not provide a set of predefined adaptation operators
or a high-level adaptation interfaces, so that the person performing the adaptations has to know the
syntactical details. Furthermore, as a flow net usually controls several workflow instances, the
direct adaptation of single workflow instances is not possible. In addition to this, the authors do not
consider the adjustment of data flows that may become necessary when a flow net is adapted.
[AALST 1997, VOORHOEVE & AALST 1997] describe an approach where − in contrast to [ELLIS ET
AL. 1995] − every workflow instance is controlled by exactly one so-called workflow net, which is
a workflow-oriented petri net subtype. Thus, ad hoc adaptation of single instances becomes possi-
ble. For this, a number of predefined transformation rules is provided, e.g., to refine an activity with
a subworkflow, or to split up sequences to several paths executed in parallel or conditional, and to
join them again. However, the limitation of this approach is that data flow aspects are neglected,
and that the handling of loops remains unclear.
Furthermore, structural ad hoc adaptations of petri nets usually require the reconfiguration of the
net state (or marking), i.e., of the token distribution [BAUMGARTEN 1996] within the net. However,
many petri net-based adaptation approaches (e.g., [ELLIS ET AL. 1995, VOORHOEVE & AALST
1997]) assume that users are familiar with the petri net modeling language or with a graphical petri
net tool. However, one cannot expect that for example physicians or nurses during clinical routine
are able to change a token distribution of a petri net manually and to overlook all implications.

Several other approaches addressing adaptive workflow management exist, too. However, as they
do not provide additional aspects relevant for this thesis, we do not discuss them here but refer to
the respective literature [EDMOND & HOFSTEDE 2000, KRADOLFER & GEPPERT 1999, BORGIDA &
MURATA 1999, KOKSAL ET AL. 1999, WESKE 1999 B, LIU ET AL. 1998 A].
Summing up, current approaches from the field of adaptive workflow management do not yet
address the automation of control flow failure handling sufficiently, as they usually require a sub-
stantial amount of user input. Furthermore, the support of requirements 1.3 (Temporal Structure of
Control Actions), 2.3 (Support of Predictive Adaptation), 3.1 (Determination of Temporal Implica-
tions) − except ADEPTTIME − and 3.2 (Determination of Qualitative Implications) is very limited.

2.4.2 Cooperative Workflow Management
We now inspect how approaches from the field of cooperative workflow management support
requirement 3 (Handling of Inter-Workflow Implications of Control Flow Failures). Generally,
cooperation and collaboration aspects of workflow systems have already been identified as essen-
tial for workflow technology [DOGAC ET AL. 1998, GEORGAKOPOULOS ET AL. 1999 A], especially
for process-oriented e-commerce applications and virtual enterprises [GREFEN ET AL. 2000, PAPA-
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ZOGLOU & TSALGATIDOU 1999, RIDE 1999]. Research and vendor efforts have focussed on topics
such as interoperability frameworks [FISCHER 2002, BUSSLER 1998], workflow interaction model-
ing [HEINLEIN 2001, DAVULCU ET AL. 1999, NGU 1999], workflow synchronization [ATTIE ET AL.
1996, TANG & VEIJALAINEN 1995], collaboration management infrastructures [BAKER ET AL.
1999], and workflow-oriented event notification systems [GEPPERT ET AL. 1998]. However, only a
few approaches deal with failure management in inter-workflow cooperation scenarios. In particu-
lar, the implications of control flow failures for workflow cooperation scenarios have not yet been
addressed sufficiently.

[HAGEN & ALONSO 1999] describe an approach for event-based communication between processes
cooperating in a consumer-producer relationship. In the terminology of the authors, events are
typed and parameterized signals raised by a running process to inform other processes about certain
situations occurring during its execution (such as product available or product not available in an
order handling scenario). During process execution a dependency graph is maintained storing
which processes have been triggered by which events. The failure handling approach is based on
the OPERA5 system [HAGEN & ALONSO 1998] and has been applied, for example, to the workflow-
based e-commerce system WISE [LAZCANO ET AL. 2000]. It works as follows: Exceptions are
viewed as special events which are generated in case of a process failure. Exception events are
typed and have a parameter list so that they can carry information about the failure type and its
circumstances. In case that a process P fails, the system derives from the dependency graph which
processes depend on P and sends exception events informing them about the occurred failure type.
The notified processes then may perform an abort or compensation-based partial rollback.
Generally, the proposed approach provides a useful event-oriented failure handling model for inter-
dependent processes and is suitable for workflow cooperation scenarios such as distributed order
processing in retail companies. However, it is not suitable for handling failure events in more com-
plex scenarios such as cooperative medical care because of the following reasons: First, dissemi-
nating an exception event E that occurred to a “producer” process P1 to a “consumer” process P2
may be meaningless for P2 as P2 may not be able to derive the implications of E for itself. Rather, P2
often is more interested in obtaining some “predictive” failure information about the delay or qual-
ity reduction that has to be expected w.r.t. the process P2 is waiting for. Second, aborting or partially
rolling back P1 and P2 in case of a failure of P1 may not always be appropriate as both processes
may be able to continue after a dynamic adaptation.

In the context of the VIRTUAL ENTERPRISE CO-ORDINATOR (VEC), [LUDWIG & WHITTINGHAM
1999] introduce so-called agreement-driven gateways for cross-organizational workflow
management. The related failure management approach [LUDWIG 1999] deals with unexpected
terminations of workflows or workflow activities. In case of such a termination, the gateway
protocol informs cooperating workflows about the termination reason and the state of the failed
workflow or activity before termination. Furthermore, cooperating workflows may be informed

5. Opera = Open Process Engine for Reliable Activities
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about a modification of an already agreed-on price for the service or product that is going to be
provided by the workflow affected by the failure. As an example, the author describes a mail order
workflow where the activity delivering the ordered product terminates because the receiver address
turns out to be wrong. Thus, an increased price may have to be paid by the receiver as the mail
order workflow has to figure out the right address and has to send the product again. To determine
the price modification due to a termination, exception rules can be assigned to agreements
specifying under which termination circumstances which price modification shall be applied.
Though the described approach is a first step in “measuring” the consequences of a failure for
cooperating workflows by determining price modifications, it shows several limitations: 
• First, it does not cover failures not leading to a workflow or activity termination but for exam-

ple to the dynamic adding or postponing of some activities.
• Second, mapping the consequence of a failure situation to price modifications is quite restric-

tive. In e-commerce applications often failure-caused temporal delays are at least as important
as price modifications. Furthermore, in many non-commercial cooperation scenarios the conse-
quences of failures cannot only be measured in terms of time and money. For example, in med-
ical care a lot of parameters exist which measure the effectiveness of a therapy in terms of drug
dosages and disease remission. These parameters usually are also influenced by workflow fail-
ures.

In the context of the CMI6 project [GEORGAKOPOULOS ET AL. 1999 B], a crisis mitigation approach
for collaborating processes is proposed in [GEORGAKOPOULOS ET AL. 2000]. In the terminology of
the authors, a crisis is a situation which has to be controlled as soon as possible but for which the
exact course is unknown and unpredictable. Crisis examples may include airplane crashes or the
outbreak of an epidemic that has to be managed cooperatively by health care organizations. To deal
with such crises, the authors assume so-called crisis mitigation processes specified in advance by
the responsible organizations to avoid chaotic response and to increase mitigation effectiveness.
Such a mitigation process then has to be adapted w.r.t. the specific requirements of the current
crisis, e.g., by creating new activities, roles and task forces as needed to deal with the current crisis
demands, and by delegating responsibilities to process participants and task forces. Furthermore, as
for some activities both the exact execution position within the process specification and the
number of executions may not be known beforehand, so-called windows of opportunity can be
defined. At execution time, such a window of opportunity has to be refined w.r.t. its temporal
duration and the number of activity executions. This crisis-oriented adaptation of processes is
termed process escalation.
Technically, process escalation is mainly achieved by a late modeling approach (see Section 2.4.1),
i.e., the mitigation process specifications consist of an arbitrary number of placeholders that have
to be filled out at execution time. In particular, activity placeholders and so-called repeated
optional dependencies allow both expert participants and co-ordinators to escalate the process.

6. CMI = Collaboration Management Infrastructure
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Activity placeholders allow for activities whose concrete types are unknown or intentionally left
open at process specification time. A repeated optional dependency consists of a repeated option
creator and a terminator. The repeated option creator specifies that an activity A may be executed
zero or more times. The time and number of executions is then determined dynamically by the pro-
cess participants assigned to A. The repeated option terminator limits the time span within which A
can be executed. For example, the terminator could specify that the executions of A have to be ter-
minated when another activity B is first started. The process designer may also specify an upper
bound on the total number of executions that can be performed. Activities constrained by such
repeated optional dependencies cannot have outgoing dependencies to the rest of the activities in
the process.
Though the proposed escalation model provides useful modeling primitives to adapt processes in a
crisis-oriented manner, it shows the general limitations of late-modeling approaches (see discus-
sion in Section 2.4.1). In particular, asynchronous events that have not already been reflected by
placeholders cannot be handled. Furthermore, although the authors address collaborative process
management, the implications a process escalation may have for other collaborating processes are
not explicitly addressed. For example, if a crisis expert dynamically determines that in a process P
an activity should be repeated 3 times instead of only once, the temporal implications for another
process waiting for results from P are not determined and handled.

In [KLINGEMANN ET AL. 1999] a technique is described that allows to derive a model of external
services in cross-organizational workflows from the externally observable service behavior. The
approach is based on continuous-time Markov chains that can be incrementally constructed from
the log of the past executions of services. This allows the service requester to build up an external
model of services and to asses their quality without compromising the autonomy of the service
providers. However, though Markov chains could be considered for requirement 3 (Handling of
Inter-Workflow Implications of Control Flow Failures) by stochastically deriving which
implications have to be expected in case of a failure, there usage for AGENTWORK is limited. This
is mainly because the Markov chain property (i.e., a step only depends on the last step before)
usually is not valid in medical domains, as diagnostic or therapeutic steps often depend on several
predecessor steps (or even on the whole treatment chronology).

2.4.3 Summary
We summarize our discussion of approaches from the fields of adaptive and cooperative workflow
management in Table 2-3. We emphasize that a “No” entry in the table does not mean that there is
no support at all w.r.t. the particular requirement. Rather, ”No” means that to the best of our knowl-
edge the support is not explicit and sufficient enough for the purposes of this thesis.

The requirements not sufficiently supported by current approaches will be addressed in this thesis.
Related work from the field of temporal workflows, such as deadline management and algorithms
estimating a workflow’s duration [ADAM ET AL. 1998, EDER ET AL. 1999 A, MARJANOVIC &
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ORLOWSKA 1999] will be discussed later on in Chapter 6 (Workflow Duration Estimation) after the
specific temporal aspects of our adaptation approach have become clearer.

2.5 Artificial Intelligence Approaches
In this section, we discuss approaches from the field of artificial intelligence which are relevant for
the handling of control flow failures in workflow management systems, namely approaches from
the fields of planning (2.5.1), cooperative agents (2.5.2), and temporal reasoning (2.5.3).

2.5.1 Planning
In the terminology of artificial intelligence, planning is the task of choosing and ordering a
sequence of actions (steps) needed to achieve a set of objectives [MCDERMOTT & HENDLER 1995,
AYLETT ET AL. 2000]. A planning problem is usually defined by a domain model and by two states
of that model: the initial state and the goal state. The domain model describes the objects in a
domain (e.g., the available drugs in a medical domain), the actions that can be performed with these

Requirements for the Handling of Control 
Flow Failures Supported 

Representative Approaches 
and Remarks

1.1  High Semantic Level of Event and Control 
Action Representation

(Yes) ADEPTFLEX (w.r.t. actions)

1.2  Temporal Structure of Events Yes CHIMERA-EXC (e.g., deadline violation)
1.3  Temporal Structure of Control Actions No
1.4  Integrity of Failure Rules No
1.5  Authorization of Control Actions Yes ADEPTFLEX

2.1  Workflow Abortion and Suspension Yes Advanced transaction models (2.2)
2.2  Support of Reactive Adaptation Yes CHIMERA-EXC, MOKASSIN

2.3  Support of Predictive Adaptation No
2.4  Consideration of Data Flow Implications Yes ADEPTFLEX 
2.5  Consistency of Adapted Workflows Yes ADEPTFLEX, WORKFLOW NETS

2.6  Efficiency of Adaptation Yes ADEPTFLEX

3.1  Determination of Temporal Implications (Yes) ADEPTFLEX (but only execution durations 
specified at definition time; no duration 
measurements)

3.2  Determination of Qualitative Implications (No) VEC (supports only implications for 
product prices)

Table 2-3:  Support of research approaches from adaptive and cooperative workflow management
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objects (e.g., the administration of a drug), and the constraints on these actions (e.g., the side-
effects that have to be considered when administering a drug). Actions are normally defined by so-
called planning operators. The initial state describes the state of the domain immediately before
any actions have been carried out, while the goal state describes the facts which should be true after
the plan has been completed (e.g., the remission degree of a tumor). From the workflow point of
view, planning can be viewed as a task that constructs a control flow over activities to meet a given
goal. Consequently, there have been some efforts to apply planning techniques to workflow man-
agement [BECKSTEIN & KLAUSNER 1999B, SINGH & HUHNS 1994, LIU & CONRADI 1993].
The necessity to adapt plans to cope with new situations has early been identified by several
authors in this field [BROVERMAN & CROFT 1987, WALTON ET AL. 1987]. Thus, as a plan roughly
corresponds to the control flow of a workflow, it makes sense to discuss plan adaptation approaches
to see whether they contribute to the handling of control flow failures. For this, we first sketch prin-
cipal planning techniques. Second, we discuss representative plan adaptation approaches.

Planning techniques are typically classified into linear and non-linear planning [PUPPE 1993].
Linear planning assumes that the planning operators are totally ordered with the consequence that
only operator sequences can be performed. In contrast to this, for nonlinear planning the operators
are only partially ordered to allow other execution modes such as parallel operator execution as
well. However, a limitation of nonlinear planning is that many problems are NP-hard [CHAPMAN
1987], such as the problem of determining whether a proposition is necessarily true in a nonlinear
plan for which the action representation allows conditional actions. A linear planning technique has
been implemented within the system STRIPS [FIKES & NILSSON 1971]. The system SIPE [WILKINS
1988] is an example for a nonlinear planning system.
Another way to classify planning techniques is to distinguish between non-hierarchical and hierar-
chical planning [HERTZBERG 1989]. Non-hierarchical planning tries to construct a plan in one turn.
In contrast to this, hierarchical planning performs plan construction in different abstraction steps to
reduce complexity. First a rough plan is created, which is then refined step by step. This corre-
sponds to hierarchical workflow modeling where activities are refined by subworkflows. Both for
non-hierarchical and hierarchical planning, linear or non-linear planning techniques can be used. 
For other planning techniques such as real time planning [ATKINS ET AL. 1999], planning under
uncertainty [DEJONG & BENNET 1997], agent-based planning [DRABBLE & TATE 1995], or plan-
ning under resource constraints [KÖHLER 1998], we refer to the respective literature.
Despite the similarities between planning techniques and workflow management, there are substan-
tial differences that have to be considered when discussing the usage of planning techniques for
control flow failure handling [REICHERT 2000]. First of all, to model conditional paths, complex
extensions become necessary for the above planning techniques (conditional planning). Second,
many planning techniques do not support loops which are essential for workflow management.
Third, most planning systems do not explicitly consider data flow aspects as they assume that all
relevant data are globally available. As a direct consequence, the integration of planning systems
into real-world environments is difficult.
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We now discuss two representative plan adaptation approaches, namely those of the planning
systems CHEF and CPEF.
CHEF [HAMMOND 1990] is a hierarchical planning system that is based on a case-based reasoning
approach [KOLODNER ET AL. 1985], i.e., it takes existing plans out of its memory and incrementally
adjusts and refines them w.r.t. the current planning goals. In our context, the most important mod-
ule of CHEF is the so-called REPAIRER. This module is able to detect when a plan has failed, to
repair the plan, and to store and index the repaired plan in its plan base to use it later on when con-
structing new plans.
To detect failures, REPAIRER uses two principal criteria: First, a plan fails if the goal assigned to the
plan is violated. Second, it fails if a precondition of an action is violated. When such a failure has
been detected, REPAIRER attempts to repair the plan by removing, adding or replacing actions. For
this purpose it uses a base of rules and constraints stating when an action has to be removed, added,
or replaced. For example, if a violated precondition led to the plan failure, REPAIRER would attempt
to replace the violating action by another action that has a precondition not being violated and that
does not violate the plan’s goal.

CPEF (Continuous Planning and Execution Framework) is a planning system to support the
generation, execution, monitoring, and repairing of plans in unpredictable and dynamic
environments such as military campaign planning [MYERS 1998]. In contrast to CHEF [HAMMOND
1990], the proposed framework does not restrict plan failures to the violations of single
preconditions and goals. Rather, also so-called aggregate failures are supported reflecting that
often multiple precondition or goal violations together cause a plan failure. For example, air
campaign plans often include extra missions beyond what is required to satisfy the military goals in
order to improve the likelihood of success. Thus if only a few of these extra mission goals are
violated this does not already induce the failure of the whole plan.
Plan repair in CPEF is performed as so-called asynchronous run-time replanning [WILKINS ET AL.
1995] based on the nonlinear SIPE planner [WILKINS 1988]. This means that plan execution contin-
ues with those branches of the plan that are not affected by the failure while the other affected
branches are repaired. This mode of operation contrasts with synchronous replanning where plan
execution is halted while the plan is repaired (as, for example, in CHEF). The authors view asyn-
chronous replanning as essential for many domains as it would be infeasible to halt execution while
only some parts of the plan are adapted. Replanning itself is then performed by applying plan adap-
tation rules which remove or insert actions or change goals, similar to the approach described in
[HAMMOND 1990]. Because of the asynchronous replanning mode, the system also continuously
reconciles the adapted plan with the state to which plan execution has progressed during replan-
ning.

Although the above-mentioned approaches provide a flexible failure handling for a broad range of
planning scenarios (see, for example, [CLYMER 1993] for a discussion of CHEF), their usage in our
specific context is limited:
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• First, the temporal dimension of plan failures and repairs is not supported sufficiently. Though
approaches such as CHEF and CPEF support temporal constraints that induce a plan failure in
case of their violation, they are not able to repair a plan for a specified temporal window such as
“for the next seven days“ or “until a termination condition C holds“. However, this is necessary,
for example, in many medical contexts. In particular, predictive adaptations based on temporal
estimations are not addressed sufficiently. Though the temporal dimension of plan actions has
early been identified as important [MCDERMOTT 1982] and several plan duration estimation
algorithms exist [BLUM & FURST 1997, SCHWALB & DECHTER 1997], the latter do not have
explicitly been used for predictive plan adaptation.

• Second, cyclic processes are not considered. Thus, the plan repair approaches cannot be used to
adapt a control flow containing a loop. In particular, the approaches do not address the problem
for how many loop iterations an adaptation shall be valid.

• Third, the integrity of rule bases for plan adaptation is not explicitly addressed. Though several
approaches have been proposed in artificial intelligence concerning the rule base integrity in
general [SUWA ET AL. 1982, MESEGUER 1992, ROANES-LOZANO ET AL. 2000], these
approaches have not specifically been used to avoid incompatible plan adaptation rules.

• Fourth, the above approaches usually restrict data flow aspects to the information exchange
between the components performing the plan adaptation. The consequences a plan adaptation
may have for the data flow between the plan actions themselves are not considered.

• Fifth, due to the inherent complexity especially of nonlinear planning, their practical usage for
real-world applications is limited.

Several other approaches have been suggested to support workflow flexibility and adaptation by
using planning techniques [DELLEN ET AL. 1997, BECKSTEIN & KLAUSNER 1999B]. However, none
of these approaches suggests technical solutions going beyond those already provided by CHEF and
CPEF, so that we omit details here.

2.5.2 Cooperative Agents
Recently, also techniques from the field of cooperative agents [KRAUS 1997, LESSER 1998] have
been applied to process and workflow management [HALL & SHAHMEHRI 1996, MERZ ET AL.
1996, JENNINGS ET AL. 2000, KLEIN & DELLAROCAS 2000 B]. Concerning the term agent we refer
to [WOOLDRIDGE 1997] who characterizes an agent as “an encapsulated computer system that is
situated in some environment and that is capable of flexible, autonomous action in that environ-
ment in order to meet its design objectives.”7 However, only a few approaches address failure han-
dling for agent-based workflow management. 
For example, Jennings et al. describe the project ADEPT8 [JENNINGS ET AL. 2000] where the main

7. For the ongoing debate what exactly characterizes agents we refer to [JENNINGS 2000, FRANKLIN &
GRAESSER 1997].
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components are interacting, autonomous agents being responsible for performing particular activi-
ties. The term service is used to denote a manual or automated activity that an agent can manage
and that forms a conceptual unit in a business process, such as designing a software module or
reviewing a paper for a scientific journal. A resource is anything that is needed to perform a service
(e.g., material, time, or money). If an agent needs a service that is managed by another agent during
process execution, this requires both agents to come to a mutually acceptable agreement about the
terms and conditions under which the desired service will be performed. In the terminology of the
authors, such contracts are called service level agreements (SLAs). The mechanism for making
SLAs is termed inter-agent negotiation − a process in which parties verbalize possibly conflicting
demands and then move towards agreement by making concessions or by searching for new alter-
natives [MÜLLER 1996].
The so-called situation assessment module (SAM) is responsible for assessing and monitoring an
agent's ability to meet the SLAs it has already agreed to and the potential SLAs which it may agree
to in the future. This involves scheduling and exception handling. The former involves maintaining
a record of the availability of the agent's resources which are used to determine whether SLAs can
be met or whether new SLAs can be accepted. The exception handler receives exception reports
during service execution such as “service may fail”, “service has failed”, or “no SLA in place”,
and decides upon the appropriate response. For example, if a service is delayed the SAM may
decide to locally reschedule it, to renegotiate its SLA, or to terminate it altogether. 
The specific contribution of ADEPT is that it models business processes in terms of services, agents,
(re-)negotiations, and service failures, and therefore on a high level of application-oriented abstrac-
tion. However, concerning failure handling ADEPT does not provide any technical details how fail-
ures are detected and how they are resolved in terms of structural process adaptations. For example,
no formal criteria or estimation algorithms are suggested which could derive that a service ''may
fail''. Thus, ADEPT can be viewed as an agent-oriented protocol that could be used on top of a work-
flow management system and the failure handling mechanism as addressed in this thesis. Further-
more, the emphasis on negotiation may be suitable for e-commerce applications but it is of limited
use for workflow management in cooperative health care and other non-commercial workflow
application scenarios.

In [KLEIN & DELLAROCAS 2000 B, KLEIN & DELLAROCAS 1999], an agent-based workflow system
is described consisting first of so-called problem solving agents which focus on managing their
own “normal” problem, such as the execution of some manufacturing and delivery workflow in an
e-commerce scenario. Second, exception handling agents concentrate on detecting and resolving
exceptions during workflow execution. The exception handling is based on heuristic classification
[CLANCEY 1985] known also from the field of medical diagnosis. In contrast to traditional rule-
based exception handling approaches, heuristic classification supports data abstraction and
intermediately allows competitive diagnoses. Technically, this is achieved by arranging exception

8. ADVANCED DECISION ENVIRONMENT FOR PROCESS TASKS (not related to ADEPTFLEX described in
[REICHERT & DADAM 1998])
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types in a taxonomy ranging from highly general failure modes at the top to more specific ones at
the bottom. Every exception type includes a set of defining characteristics that need to be true in
order to make the diagnosis assigned to it potentially applicable to the current situation. For
example, in a manufacturing workflow a time-out exception may occur indicating that some item
needed for assembling the product is missing. Competitive diagnoses obtained from the taxonomy
may include that the responsible (human) agent is unavailable (e.g., ill), that the item has been
misrouted or that the production of the item itself has been delayed. To identify the right diagnosis,
a user then has to answer a specific set of questions in order to narrow down the exception
diagnosis. Alternatively, if the needed information is available in a database, diagnosis elimination
can also be automated.
Once an exception has been detected and diagnosed, the system attempts to resolve it. This is
achieved by selecting and instantiating one of the generic exception resolution strategies that are
associated with the proposed diagnosis. These strategies are processes like any other and are anno-
tated with attributes defining preconditions for their execution. Strategies suggested by the authors
for example include: 
• If a highly serial process is operating too slowly to meet an impending deadline, then partial

results already available are released to allow later activities to start earlier (termed pipelining),
or execution is parallelized to meet the deadline.

• If an agent may be late in producing a time-critical output, then it is checked whether the con-
sumer agent will accept a less accurate output in exchange for a quicker response. 

The strength of the approach is the application of a powerful, well-proved diagnostic method (i.e.,
heuristic classification) for the detection and handling of exceptions. This method is more
appropriate than traditional ECA rules as it supports, for example, data abstraction and competitive
diagnoses. However, there are several limitations making the approach unsuitable for the problems
addressed by this thesis:
• Though heuristic classification is applied to workflow management for the purposes of excep-

tion handling, the authors do not really adapt it in a workflow-oriented manner. In particular,
especially the resolution strategies are only formulated on a relatively abstract level, and not in
terms of dropping, adding or re-ordering workflow activities. Thus, for a workflow the struc-
tural consequences of exception resolution in terms of control and data flow adaptations remain
unclear.

• Furthermore, there is no automated derivation about the implications an exception resolution
may have for cooperating workflows. For example, if a producer agent may be late in produc-
ing a time-critical output, one resolution strategy mentioned above consists of checking
whether the consumer agent will accept a less accurate output in exchange for a quicker
response. However, this usually is only one of the later steps during the exception handling pro-
cess. The authors do not discuss any strategies determining predictively whether the workflow
to which some exception occurred will be unable to meet a deadline in the future. As workflows
usually consist of conditional branches and loops, this is not a trivial problem.
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2.5.3 Temporal Reasoning
According to requirements 1.2 (Temporal Structure of Events) and 1.3 (Temporal Structure of Con-
trol Actions), the representation and processing of temporal structures plays an important role for
the handling of control flow failures. Thus, we inspect work from the field of temporal reasoning
which addresses the formalization of time and the processing of temporal information [VILA 1994].
Typically, a temporal reasoning framework consists of two main components: 
• A temporal ontology: The ontology describes the “structure of time“ by specifying the temporal

primitives (e.g., points in time, intervals etc.), and the temporal relations that exist between
them. Often, temporal ontologies are classified into interval-based [ALLEN 1984] and point-
based ontologies [DELGRANDE ET AL. 1999].

• A temporal reasoning system: This component allows one to determine the truth of any tempo-
ral assertion expressed in terms of the underlying temporal ontology. 

Most temporal reasoning systems are based on logics due to their well-founded semantics and
computational power [SCHÖNING 1989]. Three principal methods of logic-based temporal
reasoning can be identified, namely first-order logics with temporal arguments, modal temporal
logics, and reified temporal logics [VILA 1994, MA & KNIGHT 2001]:
• First-order logics with temporal arguments [HAUGH 1987]: This method simply consists of

representing time just as another parameter in a first-order predicate calculus. Logical functions
and predicates are extended with additional temporal arguments denoting the particular time at
which they have to be interpreted. The advantage of this method is that it can use the well-
known proof theory of first-order logics without having to extend it for temporal purposes. Its
main shortcoming is its low expressive power. In particular, as time is just another parameter
between others, the reasoning system cannot distinguish between temporal and non-temporal
assertions. 

• Modal temporal logics [GABBAY 1987]: This method is an extension of the propositional or
predicate calculus with so-called modal temporal operators [PRIOR 1955] such as (φ being a for-
mula):

F φ meaning φ is true in some future time, or 
P φ meaning φ is true in some past time. 

Concerning expressiveness, modal temporal logics are better than first-order logics with tempo-
ral arguments [VILA 1994], so that they are preferred for complex tasks such as natural lan-
guage processing and program verification. However, the complexity of their theorem proving
is higher than that of first-order logics and therefore makes modal temporal logics less attrac-
tive for many application classes.

• Reified temporal logics [MCDERMOTT 1982]: This method can be understood as an attempt of
achieving a higher expressive power than first-order logics with temporal arguments while
staying in the proof theory of first-order logics. This is done by moving into a temporal meta-
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language where a formula of an initial first-object logic language becomes a term − namely a
propositional term − in the temporal meta-language [VILA 1994]. In particular, the “truth predi-
cates“ of the temporal meta-language take as arguments a formula in the initial first-object logic
language and an expression denoting a temporal object, such as

Holds(critical-hemato-status(“Bob Miller“), 17 Aug 2001) (i)

with Holds being a truth predicate of the temporal meta-language, and critical-hemato-status
being a predicate of the initial first-order logic language. The assigned temporal object − e.g.,
17 Aug 2001 in (i) − is often also termed as the valid time of an assertion. As this mechanism on
one side provides an expressiveness that is sufficient for many application classes, and on the
other side keeps the well-known proof theory of first-order logics, reified temporal logics have
been favored in temporal reasoning by many authors [MA & KNIGHT 2001]. Nevertheless, an
open issue is characterizing efficient specialized inference methods for first-order reified lan-
guages [VILA 1994].

Due to the qualities of a reified temporal logic in contrast to a first-order logic with temporal
arguments or a modal temporal logic, several approaches have been proposed to formalize events
and their temporal structure (requirement 1.2.) on the basis of such a reified temporal logic (e.g.,
[MOTAKIS & ZANIOLO 1997 A, DINN ET AL. 1999]). For example, in [MOTAKIS & ZANIOLO 1997
A] the temporal language TREPL is introduced which allows to define composite events and which
provides temporal aggregation constructs to express time series such as that for the daily closing
prices for a fixed set of stocks. Formally, TREPL is based on a reified version of the logic-based
programming language DATALOG [CERI ET AL. 1989]. However, a limitation of the approach is that
no rule templates are provided to define application-specific event aggregations.
As the aim of this thesis is not to provide a general-purpose event specification and processing
approach but to cope with events in a way suitable for control flow failure handling, we do not dis-
cuss further event-oriented temporal reasoning approaches here, but refer to Chapter 4 (Data and
Rule Definition with ActiveTFL). There, existing temporal reasoning approaches based on reified
temporal logics will be adapted for the event-handling purposes of this thesis.
Concerning control actions (requirement 1.3.), there are no specific approaches from the field of
temporal reasoning addressing this problem for workflow failure handling. However, as we will see
in Chapter 4 (Data and Rule Definition with ActiveTFL), due to their expressiveness reified tempo-
ral logics provide the necessary aspects to specify control actions and their temporal structure.
For advanced temporal reasoning approaches that are beyond the scope of this thesis, we refer to
the literature, e.g., to [STURM & WOLTER 2002, CERRITO & MAYER 1998, VAN BEEK & MANCHAK
1996].

2.5.4 Summary 
We summarize our discussion of approaches from the field of artificial intelligence in Table 2-4.
Again, we emphasize that a “No” only means that the support is not explicit and sufficient enough
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for the specific purposes of this thesis.

2.6 Chapter Summary
In this chapter we discussed approaches from commercial workflow management systems,
advanced transactions models, exception handling in programming languages, adaptive and coop-
erative workflow management, and artificial intelligence. The main result has been that especially
the requirements 1.3 (Temporal Structure of Control Actions), 2.3 (Support of Predictive Adapta-
tion) and 3 (Handling of Inter-Workflow Implications of Control Flow Failures) are not supported
sufficiently. Therefore, this thesis will focus on these requirements.

Requirements for the Handling of Control 
Flow Failures Supported 

Representative Approaches
and Remarks

1.1  High Semantic Level of Event and Control 
Action Representation

Yes ADEPT [JENNINGS ET AL. 2000]

1.2  Temporal Structure of Events Yes CHEF, temporal reasoning approaches
1.3  Temporal Structure of Control Actions (No) Not specifically for failure handling
1.4  Integrity of Failure Rules No Existing rule integrity approaches not 

used for failure handling
1.5  Authorization of Control Actions No
2.1  Workflow Abortion and Suspension No
2.2  Support of Reactive Adaptation Yes CHEF, CMEP, ADEPT

2.3  Support of Predictive Adaptation No
2.4  Consideration of Data Flow Implications No
2.5  Consistency of Adapted Workflows Yes CHEF, CMEP

2.6  Efficiency of Adaptation No
3.1  Determination of Temporal Implications (No) No explicit use of algorithms estimat-

ing plan durations for failure handling 
3.2  Determination of Qualitative Implications (No) Only in terms of goal violations

Table 2-4:  Support of research approaches from artificial intelligence.
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 CHAPTER 3 AGENTWORK Overview

This chapter gives an overview of the workflow management system AGENTWORK. The principal
goal of AGENTWORK is to support the requirements discussed in Chapter 1 and summarized in
Table 2-1, due to the limitations of current workflow systems. In particular, the support of predic-
tive adaptation is one of the central goals of AGENTWORK.
The purpose of this overview is to motivate and describe central design decisions of AGENTWORK
before going into the technical details in the following chapters. In particular, we show that tempo-
ral aspects play an important role at nearly all steps during the handling of control flow failures so
that it becomes clear why a temporal logic has been selected as primary specification language for
AGENTWORK. The chapter is organized as follows: In Section 3.1 we briefly describe the three
architectural layers of AGENTWORK and their components. Section 3.2 sketches the workflow def-
inition and execution model. Section 3.3 introduces rules for control flow failures. These rules play
a central role as they identify failure events and trigger control actions stating how to handle such
failure events. Section 3.4 sketches how these control actions are transformed into structural work-
flow adaptations. A summary and discussion in Section 3.5 completes the chapter.r44

3.1 Layers and Components of AGENTWORK

To clearly separate the basic workflow management from failure handling aspects and communica-
tion, AGENTWORK consists of three architectural layers: The workflow definition and execution
layer, the layer for handling control flow failures, and the communication and integration layer
(Figure 3-1).
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Workflow Definition and Execution Layer
This layer provides components for the definition and execution of workflows. A workflow editor
and a workflow engine form the main components corresponding to the core of a typical workflow
management system as sketched in Chapter 1. However, this layer differs from other workflow
management systems as it, for example, allows to suspend or adapt workflows which are currently
being executed.

Layer for Handling Control Flow Failures
This layer implements the main concepts of this thesis. It provides five agents for the handling of
control flow failures (see Definition 1.1 in Chapter 1). The event monitoring agent decides which
application events occurring somewhere in the workflow environment constitute relevant failure

Figure 3-1:  Layers and components of AGENTWORK.
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events. The control agent determines which running workflows are affected by such a failure event.
In case of a global failure event affecting a workflow as a whole the control agent instructs the
workflow definition and execution layer to abort or suspend the workflow. In case of a local failure
event affecting only some activities of a workflow the adaptation agent is instructed to adapt the
workflow. This adaptation agent, for example, removes or inserts activities so that the workflow
can better cope with the new situation caused by the failure event. The so-called workflow monitor-
ing agent is additionally involved to check whether the adaptation assumptions of the adaptation
agent are matched when the adapted workflow is executed. This is necessary, as the adaptation
agent − depending on the type of control flow failure − estimates which parts of a workflow will be
executed during a given temporal interval. Finally, the inter-workflow agent determines whether a
control flow failure occurring to a workflow has any implications for other workflows cooperating
with this workflow. These cooperating workflows may be executed by the same workflow engine
as the workflow to which the failure occurred, or may belong to external workflow systems in other
departments or even other enterprises or hospitals.

The components of this layer are called agents because they have several properties, that are
associated with agent-oriented modeling and programming, such as “intelligence“, autonomy and
cooperation [WOOLDRIDGE & JENNINGS 1995 A, FRANKLIN & GRAESSER 1997]. However, the
thesis does not aim at contributing to agent technology research. For the latter, we refer to the
literature (e.g., [MÜLLER ET AL. 1999 B, MEYER & SCHOBBENS 1999, BRADSHAW ET AL. 1999]).

Communication and Integration Layer
This layer manages the communication between the workflow definition and execution layer and
the layer for handling control flow failures on one side, and the AGENTWORK environment and
remote workflow systems on the other side. To address requirement 4 (Handling of Data and Event
Distribution and Heterogeneity) discussed in Chapter 1, the communication and integration layer is
based on the middleware CORBA [BAKER 1997]. As it has been implemented in a straightforward
manner and does not address any aspects of interoperability research, we refer to Chapter 11
(Implementation Issues) for further details.

3.2 Workflow Definition and Execution
We now sketch how workflows are defined and executed in AGENTWORK. This covers the global
AGENTWORK data schema, and the model of workflow definitions and workflow instances.

3.2.1 Global Data Schema
In AGENTWORK all relevant elements such as activities and events are specified on the basis of an
object-oriented global data schema on a high level of abstraction. This supports user interaction
and achieves transparency for the agents of the layer for handling control flow failures w.r.t. the dis-
tribution and heterogeneity of application data (requirement 1.1: High Semantic Level of Event and
Control Action Representation). The dependencies between this global data schema and the local
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data sources are managed by the communication and integration layer mentioned above. 
In this global data schema, the classes Case, Resource, Activity, and Event play a central role for the
process of handling control flow failures (Figure 3-2). This is because control flow failures first are
viewed as an inadequacy of a workflow’s activity set, and second are induced by events occurring
to cases or resources (1.2.2). These classes are sketched now in an informal manner:
• Class Case: An object of this class represents a person or institution for which an enterprise or

organization provides its services and thus executes its workflows. In a medical application, the
patient is the typical case. A typical case for insurance business or banking is the customer.

• Class Activity: An Activity object represents something that is executed for a case (activity-for
association between Activity and Case). A single activity instance is executed for exactly one
case, but for a case an arbitrary number of activities may be executed. In a medical application,
a typical activity is a diagnostic examination or a drug administration.

• Class Resource: A Resource object represents someone or something needed to execute an
activity (needed-to-execute association between Resource and Activity). Such a resource may
either be a person, an application program or some piece of equipment. At least one resource is

Figure 3-2:  Central classes of the global AGENTWORK data schema.
The notation is in UML [FOWLER & SCOTT 1998]. Not all attributes of the shown classes are listed. The
left number of a cardinality specifies the minimal number of associations an object may have to associated
objects, the right number specifies the maximal number (“*“ stands for “unlimited“). For example, an
Event object has an of association to at most one Case object (0..1), while a Case object may participate
in arbitrary many of associations to Event objects (0..*).
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needed to execute a single activity instance, and a resource may be involved within the execu-
tion of an arbitrary number of activities. In a medical application, a personnel resource could be
a physician or nurse performing treatment activities for the patient. An example of a piece of
equipment is a computer tomograph.

• Class Event: Objects of the class Event represent anything that happens w.r.t. a case or a
resource. In AGENTWORK an arbitrary number of events may happen w.r.t. one case or resource,
but a particular event happens either to exactly one case or exactly one resource (of association
between Event and Case respective Resource). In a medical application, a case-related event
could be that the patient has a decreased leukocyte count. A case-related event in insurance
business could be that a customer causes a car accident for which the insurance company has to
be pay the damage. A resource-related event could be that the computer tomograph of a ward
gets broken. We recall from Chapter 1 that both case- and resource related events may require
that a workflow has to be adapted dynamically.

Details about the global data schema can be found in Chapter 4 (Data and Rule Definition with
ActiveTFL).

3.2.2 Workflow Definitions
On the basis of the global data schema, workflows can be defined. Workflow activities are repre-
sented by so-called activity nodes. To an activity node, a so-called activity definition has to be
assigned specifying which activity has to be executed when the activity node is reached. Such an
activity definition has the general structurer48 

activity-class[attribute-value-set]

where activity-class is an Activity subclass of the global data schema (Section 3.2.1), and attribute-
value-set is a valuing of the attribute set of activity-class. An example for such an activity defini-
tion is (informal notation)

Drug-Administration[drug = “G-CSF“, dosage = 300, unit = µg, type = injection] (i)

specifying that a G-CSF injection with a dosage of 300 µg has to be administered (assuming that
Drug-Administration is an Activity subclass). Furthermore, an activity definition consists of the
specification which input objects are needed and which output objects are provided.
The control flow between activity nodes is specified by so-called control nodes and control edges.
AGENTWORK provides control node types for the begin and the end of a workflow (node types
START/END), for parallel execution (node types AND-SPLIT/AND-JOIN), for conditional
branching (node types OR-SPLIT/OR-JOIN) and for loops (node types LOOP-START/LOOP-
END). Control edges connect activity and control flow nodes to node sequences to specify which
nodes have to be executed next when an activity or control flow node has been executed. As an
additional control flow element, synchronization edges [REICHERT & DADAM 1998] are offered to
synchronize nodes belonging to different execution paths.r49
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The data flow is specified by so-called data flow edges which connect workflow nodes. AGENT-
WORK distinguishes two main types: Internal data flow edges specify the data flow between nodes
within a workflow. For example, such an internal data flow edge could specify that within a node
sequence an output object produced by one node is used as an input object of one of the following
nodes. External data flow edges specify the data flow between activity nodes and external data
sources such as databases or user interfaces. For example, let us assume that the output of an activ-
ity based on (i) consists of some report describing how much of the dosage actually has been
administered to the patient and if there where any complications. Then, an external data flow
between this activity node and a relational patient database could specify that this information has
be inserted into some table of the patient database. For this, data manipulation or retrieval state-
ments can be assigned to an external data flow edge.
Details about the AGENTWORK workflow definition model can be found in Chapter 5. This chapter
will describe further definition principles of AGENTWORK, such as using symmetrical control flow
blocks [REICHERT 2000]. Furthermore, it will be described in detail how the data flow between
activities is specified, and why alternative workflow definition languages such as petri nets [AALST
1998] or state/activity charts [WODTKE & WEIKUM 1997] have not been selected.

3.2.3 Workflow Instances
At workflow execution time the workflow engine reads workflow definitions and executes them.
As in most other workflow systems, such an executed workflow is termed workflow instance in
AGENTWORK. In particular, for each activity node an Activity instance is created on the basis of the
assigned activity definition. At a given point in time an arbitrary number of workflow instances
based on the same workflow definition may be executed. In the following we may also say work-
flow instead of workflow instance when it is clear from the context that we mean a currently exe-
cuted workflow and not a workflow definition.
An event may induce a control flow failure of a workflow instance I if this event occurs to a case
for which I executes some or all of its activities (activity-for association between an activity and a
case in Figure 3-2), or if the event occurs to a resource which is needed to execute activities of I
(needed-to-execute association between a resource and an activity in Figure 3-2). The question
under which circumstances events have implications for workflow instances is handled by rules for
control flow rules which are sketched now.

3.3 Rules for Control Flow Failures
For a failure event, the relative point in time of its occurrence w.r.t. a particular position in a work-
flow definition typically is unknown in advance. Furthermore, the information needed to handle a
control flow failure appropriately is also known often only at execution time. Thus, pre-modeling
them by inserting for instance a conditional branching for the normal and the failure case is not
appropriate. Rather, it is more flexible to define event-condition-action rules (ECA rules) [WIDOM
& CERI 1996] which actively react on events, and to derive the implications for running workflows
dynamically. Therefore, AGENTWORK uses such ECA rules for control flow failures. Their main
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characteristic is that they trigger so-called control actions which declaratively state on a high level
of abstraction what should be done to handle a control flow failure (see Definition 1.2). In particu-
lar, they do only make minimal assumptions first about the workflow definition language and sec-
ond about how the activities are spread over different workflow definitions.r49 This has the advantage
that changing the workflow definition language or reorganizing activities and workflows has only
minimal effects on ECA failure rules.
In the following, all ECA rules are given in an informal notation to focus on the principal aspects of
ECA rules in AGENTWORK. The formal notation is a subject of Chapter 4. 

3.3.1 ECA Rules with Control Actions
The event-condition part of an AGENTWORK ECA failure rule specifies which event constitutes a
failure event under which condition. A typical example for an event-condition part is that the leu-
kocyte count of a patient is less than a critical range, e.g.,

WHEN new hematological finding of patient P (ii)
WITH leukocyte count < 1000 #/mm3

The action part states which control action has to be performed. AGENTWORK supports two main
types of control actions:
Global control actions state that a workflow is not adequate anymore as a whole. For example,
AGENTWORK supports the control action abort(W,C) which states that for case C (e.g., for a partic-
ular patient) workflows based on definition W have to be aborted.r50 An example for an ECA rule
with an abort control action is (with W being a workflow definition for chemotherapy support):

WHEN new hematological finding of patient P (iii)
WITH leukocyte count < 500 #/mm3

THEN abort(W,P)

as leukocyte values less than 500 forbid to continue with a chemotherapy.
Local control actions state that only some activities of a workflow are not adequate anymore.
Thus, the workflow can be continued but has to be adapted locally. For example, AGENTWORK sup-
ports − beside others − the two local control actions drop(A,C) and add(A,C). They state that for
case C an activity based on the activity definition A has to be dropped respectively added. An
example for an ECA rule with such a local control action is

WHEN new hematological finding of patient P (iv)
WITH leukocyte count < 1000 #/mm3

THEN add(A,P)

where A shall be the G-CSF drug administration of (i). This rule states that whenever a patient has
a leukocyte count less than 1000 that then one activity of administering a G-CSF injection with a
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dosage of 300 µg drug has to be added. A variation of the add(A, P) control action is the control
action 

add-repetitively(A,d,P) (v)

which states that A should be performed repetitively for patient P with period d. 
Both for global and local control actions, two subtypes can be identified: Case-related control
actions are triggered when an event occurs to a case (3.2.1). They state what has to be done with a
workflow from the case point of view, e.g., which workflow has to be aborted for this case or which
activities have to be dropped or added for this case. The control actions used in (iii)-(v) are exam-
ples for such case-related control actions. Resource-related control actions are triggered when an
event occurs to a resource. For example, they state which workflow has to be suspended or which
activities may have to be dropped if some resources are not available temporarily. An example for
such a resource-related control actions is the following: Let CT denote the (only) computer tomo-
graph of a ward. Then, an ECA failure rule with a resource-related (local) control action could be

WHEN broken(CT) // If computer tomograph is broken (vi)
THEN drop-activities-of(CT) // drop all activities for which CT is needed

An ECA rule such as (vi) may look trivial. However, many workflow systems (in particular com-
mercial systems) are not able to adapt their control flow even for simple resource limitations, such
as a broken piece of equipment making it temporarily impossible to execute some activities.
With ECA rules such as (iv) and (vi), we can define a (control flow) failure event more precisely
than it was done in Chapter 1:

3.3.2 Composite Events
We recall from the discussion of requirement 1 (Representation of Failure Events and Control
Actions) in Chapter 1 that is must be possible to express, for example, that a laboratory value must
have been critical for several times to constitute a failure event. Based on approaches described in
[CHAKRAVARTHY ET AL. 1994, MOTAKIS & ZANIOLO 1997 A], AGENTWORK therefore provides a
composite event model. For example, the composite event type TIME-SERIES allows to specify
the repetitive occurrence of an event: If A again is an activity as defined in (i) and EC the event-
condition part specified in (ii), then the rule

WHEN TIME-SERIES(EC, 3, “one week“) for P (vii)
THEN add(A, P)

Definition 3.1:   (Control Flow) Failure Event
An application event is called a control flow failure event or simply failure event if it triggers
at least one ECA rule with a global or local control action in its action part.
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specifies that an activity based on A has be to added when the leukocyte count of P has been less
than 1000 (1st parameter in TIME-SERIES) for three times (2nd parameter) within one week (3rd
parameter).

3.3.3 Activity Patterns
To give ECA failure rules more flexibility, AGENTWORK also allows to use activity patterns within
the control actions. For example, instead of using an activity definition such as (i) which specifies
all attribute values precisely, an activity pattern such as 

B := Drug-Administration[drug = “ETOPOSID“] (viii)

can be used in a rule as follows:

WHEN new hematological finding of patient P (ix)
WITH leukocyte count < 1000 #/mm3

THEN drop(B, C).

This rule states that whenever a patient has a leukocyte count less than 1000 that then all activities
administering the drug “ETOPOSID“ − independently from their dosage or administration type −
have to be dropped.
If A is an activity definition such as (i) or an activity pattern such as (viii), we call an activity based
on A or matching A an A-activity, and a node executing an A-activity an A-node.r46 In the following,
we will only assume activity patterns in ECA rules, as patterns subsume activity definitions such as
(i) (i.e., any activity definition can be viewed as a very restrictive activity pattern).

3.3.4 Valid Time
So far, the action part of a failure rule such as (ix) does not state whether the control action
drop(B, C) holds, for instance, only for “a moment“ or “for ever“ or for a number of days. As the
discussion in Chapter 1 has shown, it is however essential for many applications that the temporal
window during which a control action shall hold is specified precisely. Therefore, in AGENTWORK
a so-called valid time can be assigned to a control action. The concept of valid time has been intro-
duced in temporal databases to restrict the validity of a statement to some period of time
[SNODGRASS 1999, CHOMICKI 1994]. In AGENTWORK, valid time is used to specify for which
period of time a control action holds.r52 AGENTWORK supports two principal valid time types for con-
trol actions:

Fixed valid time describes a period of time by an explicit duration specification, e.g.,

THEN drop(B, P) during the next seven days (x){

fixed duration
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This line specifies that all activities based on B have to be dropped for the next seven days.
Conditional valid time describes a period of time by using termination conditions, e.g.,

THEN drop(B, P) until leukocyte count of P is higher than 2500 again (xi)

This specifies that all activities based on B have to be dropped for a patient P until the leukocyte
count of P becomes higher than 2500. In particular, the duration such a conditional valid time is not
known beforehand. A special type of termination condition is the condition “until user cancels
control action“ that is also supported. This is necessary, as for example the period of time during
which a particular drug shall be dropped often cannot be specified at rule definition time. Rather,
the physician dynamically wants to decide at execution time on the basis of the current findings
when a control action is not valid anymore. However, for the ECA model the termination condition
“until user cancels control action“ is a condition among others and therefore can be handled like a
condition such as the one in (xi).
Transaction time which stores when some information has been present in a data source
[SNODGRASS 1999] is irrelevant for this thesis, so that we do not consider this type of time in the
following.

Figure 3-3r47 summarizes the dependencies between the global data schema, workflow definitions,
workflow instances, and rules for control flow failures as described in Sections 3.2 and 3.3. The

{
termination condition

Figure 3-3:  Interdependencies between central AGENTWORK model elements.
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detailed ECA model and syntax of AGENTWORK − including the composite event model and the
temporal model of ECA rules − will be described in Chapter 4. The complete listing and
description of AGENTWORK supported control actions − including the problem of control action
consistency and dependencies − will be given in Chapter 7.

3.4 Control Action Processing
We now sketch the principal way AGENTWORK processes triggered control actions. In this over-
view chapter, we concentrate on local control actions as they induce most of the complexity of
AGENTWORK. Furthermore, we consider only that a single control action has been triggered. The
question how multiple control actions and possible dependencies between them are handled is dis-
cussed in the chapters later on.
We first describe how AGENTWORK decides which adaptation strategy (reactive or predictive) shall
be used when a control action is triggered (Section 3.4.1). Second, we sketch the principles of
workflow estimation which is needed for predictive adaptation (Section 3.4.2). Third, we sketch
how adaptation operators translate control actions into structural adaptations of the workflow (Sec-
tion 3.4.3). Fourth, we discuss that such a structural adaptation may have some side-effects on a
workflow that have to be controlled (Section 3.4.4). Fifth, we describe how a workflow that has
been adapted by predictive adaptation is monitored to check whether the estimations are met by the
actual execution (Section 3.4.5).

3.4.1 Strategy Selection
We recall from Chapter 1 (Section 1.3) that two principal adaptation strategies exist to handle con-
trol actions. Reactive adaptation handles a control flow failure only on immediate demand, e.g.,
drops a node that may not be executed anymore just before the node is scheduled for execution. In
contrast to this, predictive adaptation adapts workflow parts that are farther away from the cur-
rently executed nodes. The main advantage of the latter strategy is that it gives the workflow users
more time to prepare themselves w.r.t changed workflow definitions.
Thus, when a local control action such as drop(A,C) or drop-activities-of(R) (R being a resource)
has been triggered by an ECA rule, AGENTWORK has to determine which adaptation strategy
should be selected (Figure 3-4).

3.4.1.1 Predictive Adaptation
The strategy of predictive adaptation is selected if the following two conditions hold: 

Condition 1: A fixed valid time VT is assigned to the local control action, i.e., it is known at the
moment of the failure event for how long the control action will hold (see (1) in
Figure 3-4).

Condition 2: At the moment of the failure event, the cases respective resources assigned to the
affected activities are already known (see (2) in Figure 3-4). For example, for a
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drop(B,C) control action with fixed valid time VT and with B being the activity pat-
tern defined in (viii), predictive adaptation can be used for those nodes administering
ETOPOSID for which it is known at the failure moment that they will be executed for
case C (during VT). A typical workflow where it is already known at the moment of
the failure event for which cases the activity nodes will be executed, is the chemo-
therapy workflow in Figure 1-1. For this workflow, all activity nodes are executed
for one case which is assigned to the workflow at initialization time.r55

Condition 1 for predictive adaptation means that the temporal interval VT during which the control
action is valid is exactly known already at the moment of the failure event. Therefore AGENTWORK
can estimate which workflow part PVT will be executed during this assigned fixed VT. This is done
by using temporal meta information about the duration of workflow activities (see 3.4.2 below). 
Condition 2 means that for the workflow part PVT that is assumed to be executed during VT it is
known which activity nodes are affected by the control action as the cases and resources assigned
to the activity nodes are already known. Thus, for PVT operations translating the control action into
structural workflow adaptations can be performed. For example, in Figure 3-5, first the workflow
part PVT that will be executed during the fixed valid time VT of the case-related drop(A,C) control

Figure 3-4:  Strategy selection for local control actions.
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action is estimated. Second, if we assume that it is known at the moment of the failure event that the
two A-nodes 4 and 12 have to be executed for case C, both nodes can be dropped predictively from
the control flow. Furthermore, the data flow may have to adapted as well after the control adapta-
tion. For example, if a node n of the remaining control flow in Figure 3-5 needs output data from
one of the dropped A-nodes, it may be necessary to compensate the dropping of the A-node by gen-
erating a new data flow edge for n which retrieves the needed data from external data sources.
An adaptation may require user interaction (e.g., a confirmation) and therefore may have a duration
that is not negligible. For example, if A in Figure 3-5 is some drug administration activity, the phy-
sician that has to confirm the dropping of this drug may be absent. Therefore, to avoid an execution
delay AGENTWORK continues a workflow during such a predictive adaptation as long as possible.
For example, in Figure 3-5 the three paths starting at nodes 1, 7 and 10 are continued while the A-
nodes 4 and 12 are dropped from the control flow. However, it cannot be assumed in general that
the adaptation will be completed when the control flow reaches a node affected by this adaptation.
For example, the execution may reach node 12 before it has been dropped (as the system is waiting
for the user confirmation to drop this node). In such a situation, AGENTWORK interrupts a path exe-
cution if the node to be executed next is affected by a control action, and if the necessary adaptation

Figure 3-5:  Predictive workflow adaptation.
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operations have not yet been performed for this node (e.g., in Figure 3-5 the path starting at node 10
would have to interrupted after node 11 if node 12 has not yet been dropped). After the adaptation
operations have been performed, the path execution can be continued.r55 r56

If the fixed valid time is very long as its duration exceeds some specified upper bound threshold,
AGENTWORK selects an iterative predictive adaptation. This means, that instead of estimating the
whole part corresponding to the valid time at once (“one-shot“ predictive adaptation), this valid
time is divided into several sub-intervals VT1, VT2, ..., VTn (where the duration of each sub-interval
does not exceed the threshold). Then, it is estimated for VT1 which workflow part P1 will be exe-
cuted during VT1, and the adaptation is only applied to P1. After P1 has been executed, the proce-
dure is continued for VT2 and so on. The question which valid time duration threshold should be
selected to decide between “one-shot“ and iterative predictive adaptation is an empirical matter as
it depends on the application domain and the quality of workflow estimation. AGENTWORK allows
to specify this threshold as a configuration parameter at installation time and to refine it during the
operational work of the system.
An alternative to such an iterative predictive adaptation with sub-intervals is the so-called con-
ditional iterative predictive adaptation. This means that AGENTWORK at most estimates the
workflow only until the next conditional control flow node, i.e., until the next OR-SPLIT or LOOP-
END node1. For this workflow part, the workflow is adapted according to the valid control actions,
and continued. When workflow execution reaches the next OR-SPLIT or LOOP-END node,
AGENTWORK again estimates the remaining workflow part until the next conditional control flow
node, adapts this part, continues the workflow and so on. This is iteratively done until the valid
time interval elapses. This strategy is typically selected when there is no possibility to resolve an
OR-SPLIT or LOOP-END node predictively (see Section 3.4.2).WANN WIRD DAS GEMACHT, KONDITIONEN??

3.4.1.2 Reactive Adaptation
The strategy of reactive adaptation is selected whenever the conditions for predictive adaptation are
not met (see (3) and (4) in Figure 3-4). For example, if a conditional valid time is assigned to a con-
trol action, it is not possible to predict for how long the control action will hold (violation of condi-
tion 1 for predictive adaptation). Consequently, it is also not possible to derive which part of the
remaining workflow will be executed during the valid time of the control action. For example, for
a drop(A,C) control action with conditional valid time it is unknown whether an A-node of the
remaining control flow will be executed during this valid time or not. A reactive adaptation is also
selected even if a fixed valid time is assigned to the control action, but if it is unknown at the
moment of the failure event which cases respective resources will be assigned to the affected activ-
ity nodes of the remaining control flow (violation of condition 2 for predictive adaptation). For
example, in case of a drop(A,C) control action it may not necessarily be known at the moment of
the failure whether an A-node of the remaining control flow will be executed for case C or for some
other case C’. A typical sample workflow for such a situation may be found at a radiological ambu-

1. In AGENTWORK, a loop termination condition is specified at the LOOP-END node as loops have a
REPEAT-UNTIL semantics.
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lance. Such a workflow could contain a loop where the loop body consists of radiological examina-
tions and where every loop iteration usually deals with a different patient. Thus, even if a workflow
estimation may be possible, it is unknown at the moment of the failure event whether affected
nodes in the loop sequence will be executed for the case referenced in the control action. The reac-
tive strategy is also selected, if the conditions for the predictive adaptation hold but if a workflow
estimation is not possible. For example, this may be because of unresolvable OR-SPLIT nodes or
insufficient temporal information about the workflow activities.
Reactive adaptation handles a node directly before it shall be executed. For example, if a drop(A,C)
control action has been triggered, it is checked for every node n that is reached by the control flow
during the valid time interval assigned to drop(A,C), whether n is an A-node that shall be executed
for case C. If this is the case, the A-node is dropped from the control flow.r57 Analogously to predic-
tive adaptation, data flow edges may also have to be removed, adjusted or inserted. After the node
has been handled according to the triggered control action, the affected execution path is continued.
This procedure is repeated until the valid time of the control action expires.

3.4.2 Workflow Estimation
We now sketch the principles of workflow estimation (Figure 3-6). In the following, VT denotes the
valid time assigned to a control action. For the purpose of this overview, we simply assume that VT
starts at the moment when the control action has been triggered, and that VT does not consist of sev-
eral unconnected parts (i.e., we do not allow that the valid time has a structure such as “during the
next two days and during the 4th and 5th day from now on, but not during the 3rd day“). Workflow
estimation then tries to estimate that part of the remaining workflow that will be executed during
VT.
Principally, AGENTWORK performs an average-based workflow estimation. This means that for the
estimation the expected average duration of activities is used. AGENTWORK supports two principal
possibilities to obtain such average activity duration information:
• The workflow modeler can assign an expected average duration to every activity definition.
• The workflow engine measures the duration for every activity execution and calculates the

average duration of activities based on a given activity definition.

A useful combination of these two possibilities could be to use duration information specified at
workflow definition time for the first phase of an AGENTWORK installation and then to
continuously improve this duration information by temporal measurements done at workflow
execution time.
Workflow parts are then estimated as follows: For each node which has been currently executed or
prepared for execution in the moment of the failure event, the control flow path starting from this
node is explored. For each path, the average activity durations of the activity nodes are iteratively
summed up to estimate how long the execution of such a path will take. The execution of control
nodes such as an AND-SPLIT and control flow edges is assumed to have − compared with the
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duration of activity durations − a negligible duration, unless not specified otherwise in the work-
flow definition. Duration information w.r.t. data accesses is also obtained from the workflow
engine which measures the average duration of data accesses ordered by the different data sources.
The problem that an activity execution or a data access may last unexpectedly long − for example
because of system failures − cannot be considered the workflow estimation. Rather, such an unex-
pected delay of workflow execution would be detected by during the workflow monitoring and
may induce a correction of the estimation and a readaptation of the workflow (see Section 3.4.5). 
When an AND-SPLIT is discovered during the exploration of such a path, AGENTWORK continues
with the procedure for each of the parallel paths. If it discovers an OR-SPLIT, it tries to decide
which of the paths starting at the OR-SPLIT will qualify for execution. This may be possible, for
example, if the nodes executed at the moment of the failure event are “close“ to the OR-SPLIT.
Then, data needed for determining which paths will qualify for execution may already be available.
For example, in Figure 3-6 such an OR-SPLIT is detected when exploring the path consisting of the
nodes 14 and 15. One path qualifies for execution if the cancer patient treated by the workflow has

Figure 3-6:  Estimation of the workflow part executed during a valid time interval VT.
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liver metastases, the other one if the patient has no liver metastases. Let us assume for this example,
that at the moment of the failure event it is already definitely known that the patient has liver
metastases2. Therefore, it can be assumed that the path 14→15→18→19→20 will be executed and
not 14→15→16→17→20. However, for the other OR-SPLIT after node 7, the branching condition
is that the current leukocyte count is less than 2500 respective equal or higher than 2500. Usually,
the medical definition of “current“ w.r.t. a leukocyte count is that the value has to be measured at
the current day (i.e., the day at which the OR-SPLIT is actually executed). Thus, it cannot be deter-
mined at adaptation time whether the path starting at node 8 or at node 10 will be executed if it has
estimated that the execution of path 5→6→7 will take more than one day.r60 Thus, for the nodes 8, 9,
10 and 11, the failure handling process has to shift to the reactive adaptation (as already described
in Section 3.4.1). The problem that data that have been used to predict the OR-SPLIT behavior may
unexpectedly change (e.g., the patient suddenly may not have liver metastases anymore) is handled
by workflow monitoring after the adaptation. For example, if it would be detected that the path
14→15→16→17→20 in Figure 3-6 would be executed unexpectedly (instead of
14→15→18→19→20), AGENTWORK would re-estimate and re-adapt the workflow if necessary
(see Section 3.4.5).
All details and further aspects such as the estimation of loops will be described in Chapter 6 (Work-
flow Duration Estimation).

3.4.3 Structural Workflow Adaptation
Independently from whether reactive or predictive adaptation has been selected, a triggered local
control action has to be translated into structural adaptations of the affected control and data flow.
For this, AGENTWORK provides a set of adaptation operators. The difference between control
actions on one side and such adaptations operators one the other side is that control actions express
how to cope with a failure event from the point of view of the user on a high level of abstraction. In
particular, control actions do not take care about syntactical and structural details of workflow def-
initions. In contrast to this, adaptation operators deal with the adaptation on the syntactical and
structural level (e.g., they remove, insert or replace nodes and edges to satisfy the control actions).
AGENTWORK distinguishes between control flow operators that adapt the control flow according to
triggered control actions, and data flow operators that adjust the data flow if necessary. As the data
flow operators can only become clear after the data flow model of AGENTWORK has been described
in Chapter 5 (Workflow Definition and Execution), we give only two examples for control flow
operators (Figure 3-7) in this overview chapter. The operator

cfop-drop-node(node-id)3

is used if a drop control action has been triggered (Section 3.3.1). This operator takes the identifier
of a node within a sequence as input and removes it from this sequence (Figure 3-7 a). The operator

2. As metastases usually do not occur “over night”, this assumption makes sense.
3. cfop stands for “control flow operator“.
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cfop-add-node(activity-def, case-obj, node-id)

is used if an add control action (Section 3.3.1) has been triggered. This operator takes as input the
activity definition that shall be assigned to the new node (activity-def), the case object for which the
new node shall be executed, and the identifier of the activity node behind which the new node shall
be addedr62 (node-id). The operator then generates a new node based on this activity definition and
inserts it after the specified node (Figure 3-7 b). AGENTWORK provides several variations of these
operators which are used depending on whether the affected nodes belong to parallel or conditional
execution parts, or to loops. The full set of control flow operators will be described in Chapter 8
(Structural Adaptation Operators). There it will be also described how it is decided where a new
node has to be inserted in case of an add control action.r63

3.4.4 Adaptation Side-Effects
The application of structural adaptation operators such as those shown in Figure 3-7 may have
some side effects that can lead to considerable adaptation “anomalies”. We distinguish so-called
pull-in and push-out effects. As these effects and their handling has influenced the design of
AGENTWORK significantly, we discuss them already in this overview chapter. With PVT we again
denote that part of a workflow that is (assumed to be) executed during a valid time interval VT. Fur-
thermore, we assume that the activity nodes of the workflows used in the examples of this section
are always executed for the same case C.

Figure 3-7:  Examples for
control flow adaptation
operators.
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3.4.4.1 Pull-in Effects
Pull-in effects denote effects where the translation of a control action into a structural workflow
adaptation causes that nodes so far not belonging to PVT become a member of PVT (i.e., they are
“pulled into“ PVT). For example, in Figure 3-8 a) PVT initially consists of the nodes 1, 2, 3 and 4.
Node 3 with activity definition X is removed because of a drop(X,C) control action. As a conse-
quence, node 5 now will be executed during VT so that node 5 becomes a member of PVT. At first
glance, this mechanism of dynamically adjusting PVT looks appropriate as nodes such as the T-node
5 now can be executed earlier which usually will be desirable. However, there is at least one prob-
lem which is illustrated in Figure 3-8 b). There, node 5 also would have to be pulled into PVT anal-
ogously to the situation in Figure 3-8 a). However, in Figure 3-8 b) node 5 is a X-node as well.
Thus, after having been pulled into PVT it also would have to be dropped as the semantics of
drop(X,C) with valid time VT is that no X-node must be executed during VT (see 3.3.4). The same
would then happen to X-node 6. If such a X-node for example would represent a drug administra-
tion, this would mean that not only drug administrations within PVT would be dropped but also
some that originally were scheduled for execution beyond VT. As an even more extreme example,
imagine that the workflow in Figure 3-8 b) would exclusively consist of X-nodes from node 5 on
(e.g., of a sequence of 10 X-nodes). If we would allow an uncontrolled pull-in of these X-nodes into
PVT, all these 10 X-nodes would be removed.
The question is whether this really is intended by control actions such as drop(X,C) with valid time
VT. At least, those pull-in effects should be carefully controlled or even avoided where nodes that
originally would have been executed beyond VT would be affected by a control action valid during
VT, if pulled into PVT. In particular, the user should be requested whether a pull-in should be
allowed or not.

Figure 3-8:  Pull-in effects of a drop(X,C) control action. 
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3.4.4.2 Push-Out Effects
Vice versa, an adaptation may also “push out” some nodes from PVT. For example, in Figure 3-9 an
A-node (node 10) is inserted for case C into the sequence 1→2→3 because of an add(A,C) control
action. Because of this additional node, the Z-node 3 will not be executed anymore during VT and
therefore would not belong to PVT anymore, i.e., it is “pushed out” from PVT. Generally, this may be
acceptable. However, there is at least one problem if other control actions hold during VT as well.
For example, imagine that in Figure 3-9 a drop(Z,C) control action holds during VT as well. Then,
the push-out effect of add(A,C) would mean that Z-node 3 would not be “reached” anymore by the
drop(Z,C) control action. At first glance, this may also be acceptable as the constraint expressed by
drop(Z,C) (i.e., that no Z-node may be executed during VT) is met. However, in this case this is met
not by removing the Z-node but by pushing it out from PVT. In particular, this is a problem of the
order of control action processing. If the drop(Z,C) control action is processed first and the
add(A,C) second, then Z-node 3 is removed from PVT, and not pushed out. If the opposite order is
used, then the Z-node 3 is pushed out from PVT but not removed. Thus, analogously to pull-in
effects, one should carefully control or even avoid those push-out effects where nodes are pushed
out from PVT by a control action though they are affected by other control actions being valid during
VT. In particular, the user should be requested whether a push-out should be allowed or avoided.

Figure 3-9:  Push-out effect of
an add control action. 
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Pull-in and push-out effects are not only a problem of predictive adaptation, as Figure 3-8 and
Figure 3-9 may suggest. They can also occur in the context of reactive adaptation, and additionally
show another weakness of this adaptation strategy: As reactive adaptation does not estimate a
workflow and thus has no notion of PVT, this strategy even would not notice subsequent pull-in or
push-out effects. For example, reactive adaptation would simply perform the subsequent pull-in
and dropping of X-nodes in Figure 3-8 b) without any possibility to intervene, as reactive
adaptation does not “know“ that the X-nodes pulled in originally did not belong to the workflow
part corresponding to the valid time VT.

One may argue that the problem of push-out and pull-effects arises only because of the particular
structure of control flow failure rules as suggested in Section 3.3. In particular, the fact that a
control action such as drop(A, C) only states that no A-nodes may be executed during some valid
time VT causes this problem. Thus, one may suggest alternative rules that consist of a tighter
coupling between events and local workflow structures such as activity nodes, e.g.,

WHEN new hematological finding of patient P (xii)
WITH leukocyte count < 1000 #/mm3 
THEN drop node n (for workflows based on W and running for P)

where n is the identifier of a node applying the drug Etoposid. Then, one would not have to deal
with pull-in or push-out effects as node n is removed anyway, regardless how it is “pulled” or
“pushed” by other control actions. However, this approach is not appropriate because of the follow-
ing reasons: 
• First, such tightly-coupled rules as in (xii) do not provide the level of abstraction that has been

considered necessary according to requirement 1 (Representation of Failure Events and Control
Actions) discussed in Section 1.3. In particular, there it has been identified that rules for control
flow failures should express the point of view of the workflow user (e.g., the physician) without
making any assumptions about the structure of the workflows. In contrast to this, rules such as
(xii) require that it is known at rule definition time in which workflows affected nodes are
located and what the value of their identifier is.

• Second, when the workflow modeler rearranges workflow definitions by moving activity nodes
from one workflow definition to another, tightly-coupled local failure rules such as (xii) would
also have to be rearranged as they directly reference workflow structures. This complicates the
maintenance of a rule base consisting of rules for control flow failures.

The handling of pull-in and push-out effects will be described in detail in Chapter 8 (Structural
Adaptation Operators) and Chapter 9 (Predictive Control Flow Adaptation).

3.4.5 Workflow Monitoring
Workflow monitoring is necessary in the context of predictive adaptation to check whether the tem-
poral estimation on which an adaptation is based matches the actual execution of the adapted work-



Summary and Discussion

72

flow. For example, subsequent adaptations adding or dropping nodes, or technical errors may have
the consequence that estimations become invalid. We distinguish two principal mismatch types
between estimations on one side and the actual execution one the other side, namely temporal
acceleration and temporal delay (Figure 3-10). Let PVT again denote the workflow part that is
assumed to be executed during a valid time VT, and let exec-time(PVT) denote the interval actually
needed to execute PVT.

3.4.5.1 Temporal Acceleration
PVT is executed faster than it has been estimated. This means that workflow parts which have not
been considered so far are now as well going to be executed during VT. For example, due to a faster
execution of the nodes 1-8 in Figure 3-10 b), an additional workflow part consisting of nodes 9-11
in Figure 3-10 b) may now be executed during VT as well. This part then may have to be adapted as
well to satisfy control actions that are valid during VT. In particular, it has to be considered that
such an adaptation due to a temporal acceleration may lead to pull-in or push-out anomalies as
described in Section 3.4.4.

3.4.5.2 Temporal Delay
The execution of PVT is delayed. This means that parts of PVT that have been assumed to be executed
during VT will not be executed anymore during VT. For example, in Figure 3-10 c) the execution of
the nodes 1-5 has taken unexpectedly long. Therefore, adaptations that have been performed for the
part that will not be executed anymore during VT (e.g., the part consisting of nodes 6-8 in
Figure 3-10 c) may have to be taken back again. Analogously to temporal acceleration, pull-in or
push-out anomalies have to be considered.

Details about the workflow monitoring approach of AGENTWORK are described in Chapter 9
(Predictive Control Flow Adaptation).

3.5 Summary and Discussion
In this chapter we have given an overview of AGENTWORK. First, we have characterized the princi-
pal modeling approach. This approach provides a global data schema to relieve the AGENTWORK
components from data distribution and heterogeneity, control actions that express what has to be
done with workflows or activities, and rules for control flow failures stating which application
events trigger which control actions. Second, it has been sketched under which conditions which
adaptation strategy (reactive or predictive) is selected to handle triggered control actions, and how
these different strategies are performed. It has further been identified that temporal aspects play a
substantial role for predictive adaptation. This is because predictive adaptation has to estimate
workflow durations, so that the duration of activities, parallel and conditional execution paths has
to be determined. Thus, a precise an appropriate notion of “time“ and “duration“ is required and
consequently will be given in the following chapters.
It could be asked why predictive adaptation is supported at all by AGENTWORK, though it seems to
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Figure 3-10:  Temporal mismatch types between workflow estimation and actual execution.
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cover only a minority of cases according to Figure 3-4, and though its complexity is very high as
workflow estimation and workflow monitoring is required. This is a matter of the percentage of
control actions with fixed valid time and of the question for how many workflows the cases for
which the activities are executed are known already at workflow initialization time (as then predic-
tive adaptation can be performed). For example, in hemato-oncology most failure handling rules
can be defined with a fixed valid time as physicians have quite precise temporal heuristics for how
long a drug should be dropped or given additionally. Furthermore, in medical domains it can be
observed that many treatment workflows (such as the one in Figure 1-1) are typically designed to
be executed for exactly one patient during their life span. This avoids mixing up a treatment work-
flow with different patients as this would increase the danger of administering the wrong drugs and
dosages to the wrong patients. Therefore, the failure handling rules and workflows meeting the
conditions for predictive adaptation form a large class that cannot be neglected. Together with the
advantages of predictive adaptation listed in Chapter 1, it can be clearly said that for the medical
domain the costs for supporting this strategy are justified. It is the assumption of the thesis that this
also holds for many other application domains. For example, typical workflows supporting contract
or damage processing in insurance business usually are executed for one and only one customer
during their life span.

Before we describe the details of handling control flow failures in the chapters 5-11, we now
introduce the data and rule definition language of AGENTWORK in Chapter 4 (Data and Rule
Definition with ActiveTFL). Because of the above-mentioned importance of temporal aspects, this
language focuses not only on data and rule modeling but also on the modeling of time and temporal
operators.
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 CHAPTER 4 Data and Rule Definition with 
ACTIVETFL

In this chapter we introduce ACTIVETFL (Active Temporal Frame Logic) which is the AGENT-
WORK data and rule definition language. ACTIVETFL will be used in the following to specify data,
events, control actions and failure rules. Basically, ACTIVETFL combines a temporal logic and
active rule elements known from the field of active databases. ACTIVETFL is not a general-purpose
active rule language. Rather, it has been designed for the specific purposes of this thesis.
The chapter is organized as follows: In Section 4.1 we identify the requirements that should be met
by a data and rule definition language in the AGENTWORK context, and show that a temporal logic
meets central requirements better than other language types. This is mainly because important
phases of handling control flow failures can be viewed as a deductive process over temporal struc-
tures. Section 4.2 describes Frame Logic, an object-oriented logic which serves as the basis of
ACTIVETFL. In Section 4.3, we extend Frame Logic by several elements known from temporal log-
ics to achieve better temporal support. In Section 4.4, we describe the notion of active rules in
ACTIVETFL. The chapter concludes with a summary in 4.5.r111

4.1 Language Requirements
For data and rule definition purposes a broad range of specification languages exists, such as SQL1-
based languages (e.g., SQL92 [DATE & DARWEN 1997], SQL:99 [EISENBERG & MELTON 1999]),
ODL2 [CATTELL ET AL. 2000], XML schema languages3 [MARCHAL 1999], or logical languages

1. Structured Query Language
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(e.g., Description Logic [BRACHMAN 1977, CALVANESE ET AL. 1998], Frame Logic [KIFER ET AL.
1995]). They significantly differ w.r.t. the supported data model, the support of rules and temporal
aspects, and the way the semantics is formalized. To identify the most appropriate language type,
we list the requirements that should be met by an AGENTWORK data and rule definition language
and discuss how the different languages meet these requirements.

4.1.1 Support of Object-Oriented or Object-Relational Data Models
It has been widely recognized that in many application domains object-oriented or object-relational
modeling capabilities are required to cope with data complexity. This holds especially for the med-
ical domain. For example, in former studies performed by the author it is shown that in hemato-
oncology the broad range of different medical findings and activities can best be modeled by spe-
cialization hierarchies and aggregation, and that the numerous causal and temporal associations
between medical data entries are best supported by an object-oriented data model [MÜLLER 1997,
MÜLLER 1994, MÜLLER ET AL. 1997 B]. In particular, the object-oriented or object-relational data
model allows to define application data on a high-level of abstraction understandable also for end
users (e.g., workflow users).
Object-oriented or object-relational data models are supported, for instance, by SQL:99, ODL, and
several logical languages (e.g., Frame Logic). In contrast to this, languages based on the relational
model [CODD 1970] (such as SQL92) provide limited support concerning specialization, associa-
tion and aggregation. The same holds for “classical” first-order predicate logic as it closely corre-
sponds to the relational model [REITER 1984].

4.1.2 Support of Rule Definitions
As sketched in Chapter 3, control flow failures can be handled in an intuitive manner by event-con-
dition-action rules (ECA rules). Such a rule specifies in its event-condition part under which condi-
tion an event may raise a control flow failure. The action part states which control action has to be
performed to cope with the control flow failure. Therefore, the support of rules must be viewed as
a mandatory requirement for an AGENTWORK data definition language. 
Rules are supported by SQL:99 and logical languages. In contrast to this, ODL and XML do not
provide any explicit constructs for rules. Recent efforts that have been undertaken to add rule-ori-
ented elements to ODL [SAMPAIO & PATON 2000] have not been considered for this thesis as the
results provided are of only preliminary nature so far. 

4.1.3 Support of Temporal Aspects
As already discussed in Chapter 1 and Chapter 3, temporal aspects of events and actions cannot be
neglected in the domains addressed by AGENTWORK. In particular, the following temporal support

2. Object Definition Language
3. eXtensible Markup Language
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has to be viewed as mandatory (we do not discuss ODL and XML in this section as they do not pro-
vide any temporal support).

4.1.3.1 Fixed Valid Time
Action parts such as (see Section 3.3.4)

THEN drop(B, P) during the next seven days

require that valid time intervals which are specified by a fixed number of points in time can be
assigned to actions. This is supported by temporal extensions of SQL such as TSQL2 [SNODGRASS
ET AL. 1995] and SQL:99/TEMPORAL which is currently proposed as a temporal extension for the
SQL:99 standard [SNODGRASS ET AL. 1998, SNODGRASS 1999]. Furthermore, several logical lan-
guages have been extended with a fixed valid time dimension [BAUDINET ET AL. 1993, CHOMICKI
& TOMAN 1998]. 

4.1.3.2 Conditional Valid Time
Action parts such as (see Section 3.3.4)

THEN drop(B, P) until leukocyte count of P is higher than 2500 again (i)

require that a valid time can be specified conditionally by a termination condition on data.
A dependency such as (i) is difficult to represent with current temporal SQL extensions, as fixed
valid time intervals cannot be used for this. For example, to specify that the drug ETOPOSID has to
be dropped when the leukocyte count is less than 1000 and that it can be administered again when
the leukocyte count becomes higher than 2500, in SQL:99 a trigger such as the drop-or-redrop-eto-
posid trigger in Table 4-1 would have to be defined. This trigger reacts when the leukocyte count is
less than 1000 or when the leukocyte count becomes higher than 2500. In the first case, it inserts a
drop instruction into a table drug-orders to express that ETOPOSID must not be administered any-
more. In the second case, it deletes the ETOPOSID drop instruction again. However, this solution has
two disadvantages:
• First, for a domain such as hemato-oncology several hundreds of dependencies of type (i) exist.

Therefore, representing each dependency by triggers with such large conditional action parts as
in (i) would reduce readability.

• Second, and more important, trigger definitions such as those shown in Table 4-1 may have
negative side-effects. For example, let us assume that there is another trigger dropping the drug
ETOPOSID because of critical renal valuesr112 by also inserting a drop instruction into the table
drug-orders. Then, the trigger drop-or-redrop-etoposid would also delete this drop instruction
when the leukocyte count becomes higher than 2500 though the renal values still may be criti-
cal. Certainly one could add additional columns (such as the reason for dropping the drug) into
the drug-orders table. Then, the second case statement of drop-or-redrop-etoposid would addi-
tionally have to check whether the reason for the dropping really was a hematological one.
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However, this makes the triggers more complex and reduces readability additionally, as addi-
tional conditions have to be checked.r113

In contrast to this, temporal logics provide operators to express a broad range of temporal
dependencies in a compact manner [CHOMICKI & TOMAN 1998, MANNA & PNUELI 1992]. For
example, to represent rules with an action part such as (i) temporal logics provide the so-called
Unless operator. Informally, a formula such as p Unless q states that p holds at leastr118 unless q holds
or holds forever in case that q never holds. After having introduced such temporal operators
formally in 4.3, we will show that dependencies such as (i) can be expressed in temporal logics
without the above-mentioned disadvantages. At the moment, the SQL:99 committee does not plan
to support temporal operators such as Unless in the future4, so that SQL:99 does not provide the
needed temporal support in the next future.

4.1.3.3 Composite Temporal Events
As already identified as requirement 1 in Chapter 1, an event often will constitute a control flow
failure only together with other events. Thus, event-condition parts such as

4. Personal e-mail note received from R. Snodgrass who closely works with the ISO SQL:99 committee
on the temporal support of this language.

Notation in SQL:99 Description

CREATE TRIGGER drop-or-redrop-etoposid
AFTER INSERT ON laboratory-findings
REFERENCING NEW AS new
WHEN new.parameter = “Leukocyte-Count“ AND 

(new.value < 1000 OR new.value > 2500)

When a tuple is inserted into table
laboratory-findings stating that a
patient has a leukocyte count less
than 1000 or higher than 2500, then
do the following:

BEGIN ATOMIC
CASE WHEN new.value < 1000
THEN INSERT INTO 

drug-orders values (new.pat-id, “ETOPOSID”, drop)

If new leukocyte count less than
1000: Insert tuple in table drug-
orders stating that respective patient
must not get ETOPOSID anymore.

CASE WHEN new.value > 2500
THEN DELETE FROM drug-orders WHERE pid = new.pat-id 
AND name = “ETOPOSID” AND order-type = drop

END

If new leukocyte count higher than
2500: Delete the tuple in table drug-
orders stating that the patient must
not get ETOPOSID anymore.

Table 4-1:   Two SQL:99 triggers defining a failure rule with conditional valid time.
We assume a table laboratory-findings(lab-id INTEGER, pat-id INTEGER, parameter VARCHAR(40),
value FLOAT) storing laboratory values (omitting any units) and a table drug-orders(pat-id INTEGER,
name VARCHAR(40), order-type ENUM{add, drop}) storing administration orders for drugs. For both
tables, pat-id denotes the patient identifier. The trigger syntax is taken from [KULKARNI ET AL. 1999].
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WHEN TIME-SERIES(EC, 3, “one week“) for P (ii)

(with EC being some critical leukocyte count) require to define composite events. This is not sup-
ported by most of the above-mentioned languages. For example, a SQL:99 trigger can only monitor
one event, but not a conjunction or disjunction of events. Temporal logics can combine events by
conjunction or disjunction but do not support time series events such as (ii). In contrast to this, sev-
eral research approaches have suggested event algebras to allow the composition of events
[GEHANI ET AL. 1992, CHAKRAVARTHY ET AL. 1994, MOTAKIS & ZANIOLO 1997 A, DINN ET AL.
1999].

4.1.4 Declarative Semantics
As this thesis focuses on the semi-automated handling of control flow failures, an important addi-
tional aspect is the way the semantics of a definition language is defined. It is widely accepted that
whenever a significant automation of some process is intended, a declarative semantics is of
advantage [POOLE ET AL. 1998].r119 Declarative semantics is available for logical languages and lan-
guages based on the relational calculus. It is not available for ODL, XMLr120 and for those parts of
SQL:99 going beyond the relational calculus (e.g., triggers).

4.1.5 Conclusion
Table 4-2 summarizes the support of the different languages w.r.t. the listed requirements. Because
logical languages support most of the requirements, a logic has been selected as the primary data
and rule definition language for AGENTWORK. In particular, it had to be decided whether to use
Frame Logic [KIFER ET AL. 1995] or Description Logic [BRACHMAN 1977] as core language, as

Language Requirements SQL92 SQL:99 ODL XML Logic 
Languages

Support of Object-Oriented or 
Object-Relational Data Models

No Yes Yes Partially 
(aggregation)

Some 
(e.g., F-Logic)

Support of Rule Definitions No Yes No No Yes

Support of 
Temporal 
Aspects

Fixed Valid 
Time

Yes
(TSQL2)

Yes
(SQL99/TEMPORAL)

No No Some
(Temporal Logics)

Conditional 
Valid Time

No Limited (only 
through triggers)

No No Some
(Temporal Logics)

Composite Tem-
poral Events

No No No No Limited
(no time series)

Declarative Semantics Yes Yes
(relational part)

No No Yes

Table 4-2:  Language support w.r.t. requirements for handling control flow failures.
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both logics support the object-oriented data model. Between these two, Frame Logic has been
selected because of the following reasons:
• Frame Logic has been designed to specify information systems and database applications. It

provides a database-oriented uniform language for classes, objects, functions, methods, predi-
cates, queries and deduction rules. In contrast to this, Description Logic focuses on natural lan-
guage processing and terminological reasoning [FRANCONI 2002, INGENERF 1993] by strictly
separating terminological knowledge (i.e., concepts and their relationships) and assertional
knowledge (i.e., facts). However, this focus of Description Logic is not relevant for the pur-
poses of this thesis. 

• F-logic is also an extensible logic, as it can be combined with other recently proposed logics for
knowledge representation, such as HILOG [CHEN ET AL. 1993], Transaction Logic [BONNER &
KIFER 1994], and Annotated Predicate Logic [KIFER & SUBRAHMANIAN 1992]. Though these
extensions are not used in this thesis, they may be useful for future versions of AGENTWORK.
For example, Annotated Predicate Logic may be used for an enhanced handling of inconsis-
tency aspects when dealing with control flow failures [KIFER & LOZINSKII 1992].

As Frame Logic in its original version is “non-temporal“, it has been decided to extend it with
elements of a reified temporal logic (see 2.5.3) such as fixed and conditional valid time.r121

Furthermore, this temporal Frame Logic is enriched with a composite event model and with active
rules. The three layers of the resulting language called ACTIVETFL are illustrated in Figure 4-1.

Taking a logic-based data and rule definition language
does not imply that relational, object-relational, ODL or
XML databases cannot be used as data sources in an
AGENTWORK environment. It only means that the
AGENTWORK components operate on a global data
schema not specified in these languages. However, via
the communication and integration layer introduced in
Chapter 3, these database types can be accessed.
In the following, we describe the different parts of
ACTIVETFL mainly by means of examples.

4.2  Frame Logic (F-Logic)
Frame Logic (F-Logic) [KIFER & LAUSEN 1989, KIFER
ET AL. 1995] is an object-oriented logic based on Maier‘s
O-Logic [MAIER 1986]. Model-theoretic declarative

semantics on the basis of first-order predicate logic and a proof theory are provided.r122 Prototypical
implementations of F-Logic have been realized, for example, at the University of Freiburg, Ger-
many [FROHN ET AL. 1997] and the University of Valencia, Spain [CARSI ET AL 1998].
In this thesis the syntax of F-Logic has been partially adapted. This is because some syntactical ele-

Figure 4-1:  Structure of ACTIVETFL.

Composite Events and Active Rules

Temporal Logics Elements

Frame-Logic
(Data and Rule Definition Core)

Extended
 with

Extended
 with
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ments of F-Logic − such as the “=>=>“ and “→→“ symbols for set-valued object components −
are uncommon for readers not familiar with this logic class. Therefore, such symbols have been
replaced by more intuitive notions such as Set<Type>. Furthermore, instead of using the classical
logic symbols ∧, ∨, ¬, ∈, ∃ and ∀, we use AND, OR, NOT, IN, EXISTS and FOR-ALL for a better
readability. Nevertheless, the language model and semantics is that of F-Logic as described in
[KIFER ET AL. 1995].
We now introduce the main F-Logic elements, namely class definitions, objects (i.e., class
instances), object paths, object patterns, methods, object extensions, predicates, formulas, queries,
and rules.

4.2.1 F-Logic Classes and Objects

4.2.1.1 Class Definitions
F-Logic class definitions are of the form

Case[case-id: Integer, name: String, activities: Set<Activity>], (iii)
Resource[name: String, needed-to-execute: Set<Activity>, ...],
Activity[date: Date, time: Clock-Time, activity-for: Case, ...], 

Patient IS-A Case, Physician IS-A Resource,
Patient[social-num: Integer, diagnosis: String, doctor: Physician],
Physician[degree: Enum{Senior, Assistant, ..}, speciality: String, patients: Set<Patient>].

In this example, the classes Case, Resource, and Activity are the F-Logic notations of the UML
classes Case, Resource, and Activity in Figure 3-2. For example, the entries 

activity-for: Case in the class Activity and 
activities: Set<Activity> in the class Case

represent the n:1 UML associations between activities and cases of Figure 3-2 (i.e., an activity is
executed for exactly one case, and for one case an arbitrary number of activities may be executed).
As with SQL:99’s REF construct, F-Logic does not specify whether an object association also has
an aggregation or composition semantics. This is left up to an class implementation. The symbol
“IS-A“ denotes the subclass relationship (e.g., Patient is a subclass of Case). By convention, it
always holds C IS-A C for an F-Logic class C. 
Figure 4-2 shows a graphical notation of the most important F-Logic classes of the global AGENT-
WORK data schema, including the classes of (iii) and all other classes specified in Figure 3-2. The
grey part of Figure 4-2 contains domain-specific subclasses for HEMATOWORK, which we will fre-
quently use in examples of this thesis. As we want to concentrate on the principal handling of con-
trol flow failures and not on medical data modeling, we refer to approaches of the author described
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parameter: Enum{Leukocyte-Count, ...}
value: Float

unit: Enum{#/mm3, mg/mm3, ...}

case-id: Integer
name: String
activities: Set<Activity>
has-events: Set<Event>

name: String
needed-to-execute: Set<Activity>
has-events: Set<Event>

drug: String
dosage: Float

unit: Enum{mg/m2, µg, ..}
type: Enum{infusion, tablet,
                     injection, ...}

Medical-Event

Object

Medical-Activity

date: Date
time: Clock-Time
activity-for: Case
ordered-by: Staff-Member
needs-resources: Set<Resource>
documented-by: Set<Document>

Staff-Member

Diagnostic-Event

Finding

Diagnostic-Activity

Therapeutic-Activity

identifies: Set<Diagnostic-Event>

Drug -AdministrationSurgical-Activity

Nurse

Application-Program Equipment

Laboratory-Finding

Radiotherapeutic-
Activity

Patient

date: Date
time: Clock-Time
of: {Case, Resource}
documented-by: Set<Document>

Hemato-Finding

Clinical-Finding

Drug-Allergy

Event
Case

Activity

Document

Resourceof: Case
name: String
documents: Set<Event>
content: Text

HematoWork Classes

Medical-Report

Radiodiagnostic-Activity

X-Ray-Examination CT-Examination

focus: String
image: DICOM-Image
finding: Radiological-Finding

Radiological-Report

CT-Report

Computer-Tomograph

identified-by:
Set<Diagnostic-Activity>

degree: Enum{Senior, Assistant, ...}
speciality: String
patients: Set<Patient>

Chemo-Report

X-Ray-Report

MRT-Report

MRT-Examination

Physician

orders:
Set<Activity>

= "IS-A"
(Super class
relationship)

reported-activity:
Radiodiagnostic-
Activity

tumor-tissue: Bool

Radiological-Finding

social-num: Integer
diagnosis: String
doctor: Physician

Neuropathy-Finding

Infection-Finding

AgentWork Classes

function: String
release: Float

Tumor-Marker-Examination

marker-to-check: Tumor-Marker

Tumor-Marker

X-Ray-Finding

marked-tumor: String

Sonography

Figure 4-2:  F-Logic class hierarchy of the global data schema. 
The rectangles contain the class names, the attributes and object associations are listed below the rectangle (without
the “[]” brackets). For several classes attributes and object associations have been omitted. 
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in [MÜLLER 1994, MÜLLER 1997]. The HEMATOWORK medical data schema is based on the
approaches described in these references.

4.2.1.2 Objects
F-Logic objects (i.e., class instances) are denoted as follows:

bob:Patient [case-id: 124576, name: “Miller, Bob“, activities: {}, 
social-num: 63728888, diagnosis: “Hodgkin-Lymphoma“, doctor: steve]

steve:Physician [name: “Taylor, Steve“, degree: Senior, speciality: “Oncology“, 
patients: {bob, fred, mary}].

with “:“ denoting the is-object-of relationship (e.g., bob is an object of class Patient). 
The “.“-operator is used to reference components of an object and to navigate along object associ-
ations. For example,

bob.doctor.degree

refers to the degree of the doctor treating bob.r123

4.2.1.3 F-Logic Methods and Functions
A class may have methods. In contrast to attributes, methods have round brackets (enclosing
optional input parameters) and an optional “:” to indicate the return type. For example, to the class
Physician we could add the method

patientNames(): Set<String>

returning the names of all patients treated by a physician.r124

Functions are declared analogously, but are not assigned to classes.

4.2.1.4 Object Paths
An object path is any path expression starting from an F-logic object and navigating along the asso-
ciations of this object. For example, if d is a Drug-Administration object according to Figure 4-2,
then d.ordered-by.name is the object path leading to the name of the Staff-Member object that
ordered d. The attributes and methods of an object o are viewed as special object paths, i.e., as paths
with length 1.r125

4.2.1.5 Object Patterns
An object pattern specifies constraints w.r.t. the internal structure of an object. It has the form

Class[path-constraints]
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with Class being an F-Logic class and path-constraints being a set of constraints on paths of Class
objects. For example, the object definition

Hemato-Finding[parameter = Leukocyte-Count, unit = #/mm3] (iv)

specifies the pattern of Hemato-Finding objects where the measured parameter is the leukocyte
count in #/mm3 (i.e., the object pattern (iv) contains two path constraints, one for path parameter
and one for path unit). An example for an object pattern with a constraint on a path with length > 1
is 

Drug-Administration[ordered-by.name = “Taylor, Steve”]

which describes the pattern of Drug-Administration objects where the ordering staff member has to
have the name “Taylor, Steve”. 
The type of an object pattern is denoted with Obj-Patt<Class>. For example, the object pattern in
(iv) is of type Obj-Patt<Hemato-Finding>.
Object patterns will play two important roles in this thesis: First, they will be used to specify the
requested structure of objects an activity expects as input or which it will provide as output (Chap-
ter 5). Second, a special subtype of object patterns, namely the type Obj-Patt<Activity> (“activity
patterns“), will be used to specify which workflow activities are affected by a control flow failure
(Chapter 7).

4.2.1.6 Pattern Subsumption and Pattern Matching
The terms pattern subsumption and pattern matching deal with the question which patterns are
more general than other ones. Both terms play a central role in this thesis, as with them we can
define formally which control actions affect which activities of running workflows. We first define
pattern subsumption, and second pattern matching. 

Pattern subsumption: Let pattern P1 be of type Obj-Patt(Class1) and let P2 be of type Obj-
Patt(Class2). We say that P1 subsumes P2 if any object that fulfills P2 also fulfills P1. Formally, this
is given if the following conditions hold:

1. Class2 IS-A Class1, and 
2. for any object path constraint defined on P1, this constraint is fulfilled by any object meeting

constraints of P2.r266 

For example, if we have

P1 := Drug-Administration[drug = “ETOPOSID”, dosage > 100, unit = mg] (v)
P2 := Drug-Administration[drug = “ETOPOSID”, dosage > 150, unit = mg] (vi)

then P1 subsumes P2 as every ETOPOSID administration with more than 150 mg is also an ETOPOSID
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administration of more than 100 mg. 
By definition, a pattern P always subsumes itself. Furthermore, we agree on the following termino-
logical convention: If A1 is of type Obj-Patt(Class1) and A2 of type Obj-Patt(Class2) with
Classi IS-A Activity, and if A1 subsumes A2 then we may also say that any A2-activity (see 3.3.3) is
an A1-activity.
Pattern matching: If a pattern P1 subsumes a pattern P2, we may also say that P2 matches P1 (as all
constraints defined by P1 are met by P2). Thus, the matches relationship between two patterns can
be viewed as the inverse of the subsumes relationship.

4.2.1.7 Object-Pattern Matching
The terms object-pattern matching deals with the question when an object meets a given pattern.
To define this, let P be a pattern of type Obj-Patt(Class), and let o be an object of class Class’. We
say that object o matches P if the following conditions hold:

1. Class’ IS-A Class, and 
2. any object path constraint defined by P is fulfilled by o.

For example, if we have

P := Drug-Administration[drug = “ETOPOSID”, dosage > 100, unit = mg], (vii)
o:Drug-Administration[drug = “ETOPOSID”, dosage = 150, unit = mg], (viii)

then o matches P, as a dosage of 150 mg is higher than 100 mg.

4.2.1.8 Object Extensions
For storage purposes, objects can be collected persistently in so-called object extensions. For exam-
ple,

extension patients(Patient) (ix)

defines an extension of Patient objects. As the failure handling approach of this thesis abstracts
from aspects of data heterogeneity and distribution, extensions such as (ix) do not specify in which
data sources the extensions are physically stored. The mapping from F-Logic object extensions to
physical data sources such as file systems or relational databases is an implementation matter (see
Chapter 11).r126

In the following, we assume that for a workflow application there exists exactly one extension for
every F-Logic class. This will facilitate data flow adaptation as described in Chapter 8 (Structural
Adaptation Operators) significantly. If an object of class Class is inserted into the extension for this
class, it immediately is inserted into all extensions for the super-classes of Class.
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4.2.2 F-Logic Predicates
As in first-order predicate logic, predicates can be defined over F-Logic objects. Generally, predi-
cates are used to express that some property holds for some objects.r127 For example, Table 4-3 con-
tains three predicates defined on Patient objects to describe their hematological status. In
AGENTWORK predicates are primarily used to express control actions as introduced in Chapter 3.
For example, to realize the control action drop used in Chapter 3 we can define the predicate 

drop(A, C)r128

with A being of type Obj-Patt(Activity) (i.e., an activity pattern), and C being an object of class
Case. This control action states that any activity executed for case C and matching pattern A has to
be dropped.
Though predicates syntactically are similar to methods (the “return“ type of a predicate is always
Bool), predicates differ from methods as they are not assigned to classes to define their behavior,
but are defined on objects to express relationships between them.

4.2.2.1 Resource Availability Predicates
A special predicate that will be frequently used describes the availability of resources. Let R be of
type Obj-Patt(Resource) (i.e., a resource pattern). Then the predicate 

instances-not-available(R)

returns TRUE when no Resource instance exists that matches R.

4.2.3 F-Logic Formulas
F-Logic formulas are statements on objects that are either true or false. As in classical logic
[SCHÖNING 1989], we can define F-Logic formulas inductively as follows:

• If o1, o2, ..., on are F-Logic objects and P is a predicate defined on them, then P(o1, o2, ..., on) is
a formula.

Predicate
(for P being a Patient object) True iff (x = leukocyte count in #/mm3)

severe-hemato-status(P)  x < 1000

critical-hemato-status(P) 1000 ≤ x ≤ 2500

normal-hemato-status(P)  2500 < x

Table 4-3:  F-Logic predicates for leukocyte ranges under chemotherapy. 
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• If F is a formula, then NOT F is a formula.
• If F, G are formulas, then F AND G, F OR G are formulas.
• If o is an object variable, and G a formula, then

- EXISTS o G (“it exists an object o so that G is true“) and
- FOR-ALL o G (“for all objects o, G is true“)

are formulas.

4.2.4 F-Logic Queries
F-Logic queries are expressed with the “?-” operator, e.g.,

?- P IN patients AND P.diagnosis = “Hodgkin-Lymphoma“ 
AND P.doctor.name = “Taylor, Steve“.

This query selects all objects from the extension patients with diagnosis “Hodgkin-Lymphoma“
who are treated by a doctor with name “Taylor, Steve“. 
Note that F-Logic queries always are retrieval queries. Object insertion, removal and updating has
to be done by extension operators which we do not discuss in detail here.

4.2.5 F-Logic Rules
Rules in F-Logic are used to express which formulas imply other formulas. For example, if A
denotes the administration of ETOPOSID, then the rule

WHEN severe-hemato-status(P) (x)
THEN drop(A, P).

states that whenever a patient P has a severe hematological status, that then ETOPOSID has to be
dropped for P. Note that a rule such as (x) is not an ECA rule as it has no notion of “events”. It only
states that the formula drop(A,P) becomes true when another formula severe-hemato-status(P)
becomes true. In particular, it does not state how a formula such as severe-hemato-status(P) relates
to events such as inserting a new object containing hematological data into some object extension.
This will be described in Section 4.4, where the ACTIVETFL notion of events and active rules on
events is explained.

4.3 Temporal Frame Logic
We now describe our temporal extension of F-Logic. For this, we introduce important prerequi-
sites, namely temporal frames, temporal durations and distances, and temporal functions. Then,
the central concept of temporal formulas is introduced which allows to assign fixed or conditional
valid times to F-Logic formulas.
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4.3.1 Temporal Frames
A temporal frame TF = (T, <) is a tuple consisting of a non-empty discrete set T of “points in time”
(i.e., the “time axis“), ordered by a non-reflexive binary relation < of precedence (“earlier than“)
[BENTHEM 1995]. As for the domains addressed by AGENTWORK the time does not have to go back
to the past unlimitedly, we can assume a minimum of T, i.e., that a tmin ∈ T exists with tmin < t for all
t ∈ T with t ≠ tmin.
A typical set of points in time is the set of calendar points in time of the gregorian calendar starting
from 1 Jan 0000 or 1 Jan 1900. For example, for HEMATOWORK we can use 

T = {1 Jan 1900: 0.0 am, ..., 1 Jan 2001: 0.0 am, 1 Jan 2001: 0.1 am, ..., 1 Jan 2001: 0.59 am,}5(xi)

if we assume that no patient has been born before 1900 and that it is sufficient to take the hour as
the smallest unit of time6. In the following we restrict ourselves to points in time such as (xi), i.e.,
points in time based on the gregorian calendar with the smallest granularity hour as this is sufficient
for the application domains addressed by AGENTWORK.

4.3.2 Temporal Durations and Distances
Let TF = (T, <) be a temporal frame based on the gregorian calendar. A temporal duration is a tuple
(v, u) with v ≥ 0 (duration value) and u ∈ {hour, day, week, month, year} (duration unit).
Such a tuple (v, u) may alternatively be called temporal distance (instead of duration), if it describes
the amount of time that passes when time shifts from a point in time t1 to a point in time t2 with
t1 < t2. For example, the temporal distance between the points in time 1 Jan 1900: 0 am and
1 Jan 1900: 7 am is (7, hour). In the following, we will consider only sets of gregorian points in
time where the distance between two subsequent points in time always is the same. For example,
for T as defined in (xi) the distance between two subsequent points in time always is (1, hour).
If T is a set of points in time with such uniform distances between two subsequent points in time, a
duration is said to be T-conform if it always is a whole-numbered multiple of the distance between
two subsequent points in time of T. For example, the durations (2, hour), (0.5, day), and (2, day) are
conform to T as defined in (xi), as (0.5, day) = (12, hour) and (2, day) = (48, hour). In contrast to
this, the durations (0.5, hour) and (0.7, day) = (16.8, hour) are not T-conform.
For temporal frames consisting of more general sets of points in time and more general distance
metrics we refer to [BENTHEM 1995, MANNA & PNUELI 1992].

4.3.3 Temporal Functions
Let again TF = (T, <) denote a gregorian temporal frame with uniform distances and with the small-

5. x.y am denotes the x-th hour and y-th minute am.
6. In disciplines such as intensive care one may have to model time on the level of seconds.
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est granularity hour. Table 4-4 lists several temporal functions that will be frequently used in this
thesis. Other functions not listed in the table may deal with the transformation of temporal state-
ments from one granularity level to another. For example, a function days2hours( (v, day) ) may
transform a temporal duration or distance in days to a notation in hours, e.g., days2hours( (4, day) )
= (96, hour).r129

4.3.4 Temporal Formulas
So far, an F-Logic formula such as

drop(A, bob)

does not state when it is valid, i.e., for how long the activity specified by A shall be dropped for bob
(e.g., whether it shall be dropped only for “the moment“ or “for a while“ or “for ever”). To express
this ACTIVETFL allows to assign either a fixed or conditional valid time to a formula. In the follow-
ing, let again TF = (T, <) denote a gregorian temporal frame with uniform distances between two
subsequent points in time.

4.3.4.1 Fixed Valid Time in ACTIVETFL
A fixed valid time is any set S ⊂ T which is described either by an explicit listing of points in time

Function  Arguments Return value Remarks

succ(t) t ∈ T Direct successor point in time of t Alternative nota-
tions: 
t + 1 for succ(t) 
t − 1 for pred(t)

pred(t) t ∈T, t ≠ tmin Direct predecessor point in time of t

t + n t ∈ T, n ∈ |N0 Defined inductively: t + 1 := succ(t)
t + n := succ(t + n - 1)

t − n t ∈ T, n ∈ |N0 with
t ≥ tmin + n

Defined inductively: t - 1 := pred(t)
t - n := pred(t - n + 1)

| t1 − t2 | t1, t2 ∈ T Distance between t1 and t2 | t1 − t2 | = | t2 − t1 |

t + (v, u) t ∈ T, (v, u) = T-conform 
duration

Point in time t’ ≥ t with | t’ − t | = (v, u)

t − (v, u) t ∈ T, (v, u) = T-conform 
duration with
t ≥ tmin + (v, u)

Point in time t’ ≤ t with | t’ − t | = (v, u)

(v1, u) + (v2, u) (v1, u), (v2, u) 
= T-conform 
durations

(v1 + v2, u)

(v1, u) − (v2, u) v1 ≥ v2 ≥ 0 (v1 − v2, u)

Table 4-4:  Temporal functions.
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or by temporal functions. Examples for fixed valid time sets include
• [2 Dec 2002: 8 pm, 4 Dec 2002: 6  pm] = The set of points in time starting at 2 Dec 2002: 8 pm

and ending at 4 Dec 2002: 6  pm (by using the interval notation “[]” as a shortcut for the listing
of all points in time between these two points in time).

• [2 Dec 2002: 8  pm, 2 Dec 2002: 8 pm + (72, hour)] = The set of points in time starting at
2 Dec 2002: 8  pm and ending after 72 hours (i.e., at 5 Dec 2002: 8  pm).

• [now, now + (72, hour)] = The set of points in time starting at the current system time now
(rounded to the closest point in time of T) and ending after 72 hours.

• [t, ∞) = The set of all points t’ ≥ t (∞ being the symbol for “ad infinitum”).
• Any combination of fixed valid time sets constructed via the set operators ∪, ∩ or \ (the latter

symbol denoting the complement set).

Such a fixed valid time S then can be assigned to any formula F via the VALID-TIME statement,
i.e., 

F VALID-TIME S 

states that F holds at every t ∈ S. For example,

drop(A, bob) VALID-TIME [2 Dec 2002: 8  pm, 4 Dec 2002: 6  pm] (xii)

states that the activity specified by A shall be dropped for bob from 2 Dec 2002: 8 pm until
4 Dec 2002: 6  pm. An example for a rule with such a VALID-TIME statement is

WHEN severe-hemato-status(P) VALID-TIME [now − (7, day), now] (xiii)
THEN drop(A, P) VALID-TIME [now, now + (4, day)].

This rule states that whenever the predicate severe-hemato-status(P) is valid for the last 7 days, that
then drop(A, P) is valid for the next four days (the way how WHEN severe-hemato-status(P)
VALID-TIME [now - (7, day), now] can be related to events is described in 4.4). If no fixed valid
time has been assigned to a formula in the WHEN or THEN part the valid time is assumed to be
now. For example, if rule (xiii) would not consist of any VALID-TIME statement this would mean
that whenever the predicate severe-hemato-status(P) holds, that then drop(A, P) holds exactly for
the point in time at which the rule has been triggered (e.g., for one hour when taking (xi) as tempo-
ral frame).
Note that (xii) and (xiii) are reified logical expressions and are equivalent with the Holds notation in
2.5.3 (Temporal Reasoning), e.g., (xii) could also be expressed as 

Holds(drop(A, bob), [2 Dec 2002: 8  pm, 4 Dec 2002: 6  pm])

Due to its better readability, the VALID-TIME notation is preferred in this thesis.
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4.3.5 Conditional Valid Time in ACTIVETFL
To describe a valid time conditionally by a termination condition, ACTIVETFL provides the two
temporal operators Until and Unless which have been introduced by several temporal logics
[CHOMICKI & TOMAN 1998, MANNA & PNUELI 1992]. With these two operators it can be stated in
what way the valid time of an F-Logic formula is related to the valid time of another formula. In
particular, we will show that temporal dependencies such as the one introduced in Section 4.1.3.2
can be represented better by these temporal operators than by SQL triggers. Other temporal opera-
tors known from temporal logics − such as Eventually, Has-Always-Been, Once and Back-To − are
not required for handling control flow failures so that they are not described in this thesis. In the
following, F and G are F-Logic formulas while t, t’, t’’ denote points in time.
Until operator: This operator is used to express that a formula G eventually will be valid in the
future and that a formula F is valid at least until G (first) becomes valid (Figure 4-3), i.e.,

Note that the definition of F Until G does not exclude that F also holds from t’ on. Furthermore, if
it holds (F Until G) VALID-TIME t and if t’ > t is the first point in time for which G becomes valid,
then it also holds:

(F Until G) VALID-TIME t’’ for t ≤ t’’ < t’. (xiv)

A typical medical example for the Until operator is the rule

WHEN critical-hemato-status(P) VALID-TIME [now − (7, day), now] (xv)
THEN (add-repetitively(DOXYCYCLIN, (1, day), P) Until drop(ETOPOSID, P))r131 

VALID-TIME now

It holds: 
(F Until G) VALID-TIME t iff 

it holds:
It exists t’ > t: G VALID-TIME t’ and for all t’’ with 
t ≤ t’’ < t’: F VALID-TIME t’’AND 

NOT (G VALID-TIME t’’)

t t‘‘ t´

Points in time at which F is valid

t´- 1

Point in time at
which G becomes
valid

Figure 4-3:  Illustration of F Until G
formula.
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This rule states that whenever a patient P has a critical hematological status during the last 7 days,
P must get the drug DOXYCYCLIN every day until the drug ETOPOSID is dropped. The medical back-
ground for this example is that a cytostatic drug such as ETOPOSID significantly increases the prob-
ability of serious bacterial infections because of its immune-suppressive side-effects. Therefore,
antibiotic drugs such as DOXYCYCLIN are given prophylactically during chemotherapy when the
hematological situation becomes critical.
If the valid time of an Until formula in the THEN part of a rule is now − such as in (xv) − it can also
be omitted, i.e., the THEN part of (xv) may be also written as

THEN add-repetitively(DOXYCYCLIN, (1, day), P) Until drop(ETOPOSID, P) (xvi)

with the meaning that add-repetitively(DOXYCYCLIN, (1, day), P) Until drop(ETOPOSID, P) holds at
the point in time when the rule has been triggered (i.e., at now).

Unless (Waiting-for) operator: A limitation of F Until G is that it requires that G will eventually
occur. In the example of rule (xv) this is no problem as a drug such as ETOPOSID cannot be given
arbitrarily long due to its strong toxicity (i.e., the point in time where drop(ETOPOSID, P) becomes
valid will definitely occur). However, often weaker statements are required stating that, at a point in
time t, F is valid either until G becomes valid, or is valid forever in case that G will never become
valid in the future. This is done by the Unless operator. Formally, Unless is defined as

With the Unless operator, we can now express dependencies such as the one described in Section
4.1.3.2, i.e., that the drug ETOPOSID has to be dropped when a patient has a severe hematological
status for the last two days (leukocyte count < 1000) and that ETOPOSID can only be given again
when the hematological status becomes normal again (leukocyte count > 2500):

WHEN severe-hemato-status(P) VALID-TIME [now − (2, day), now] (xvii)
THEN drop(ETOPOSID, P) Unless normal-hemato-status(P)r132 VALID-TIME now

This notation first is more compact than the trigger notation in Table 4-1. Second, negative side-
effects between different rules can be avoided. Concerning the latter point, let us assume that there
is another rule stating that ETOPOSID should also be dropped when a patient has a severe renal sta-
tus since two days and that ETOPOSID can only be given again when the renal status becomes nor-
mal again (e.g., when the creatinin clearance is higher than 80 again): 

WHEN severe-renal-status(P) VALID-TIME [now − (2, day), now] (xviii)
THEN drop(ETOPOSID, P) Unless normal-renal-status(P) VALID-TIME now

It holds:
(F Unless G) VALID-TIME t
(at point in time t, F is valid 
unless G is valid)

iff 
it holds:
(F Until G) VALID-TIME t OR 
F VALID-TIME [t, ∞)



Active Rules

93

Furthermore, let us assume for a sequence t0, t1, ..., t7 of points in time that rule (xvii) is triggered at
t1 and that rule (xviii) is triggered at t3 (Table 4-5). Then, when the hematological status becomes
normal again for t5, t6 and t7, then drop(ETOPOSID, P) is still valid at t5 and t6 as drop(ETOPOSID, P)
Unless normal-renal-status(P) is valid at t5 and t6 (as t7 is the first point in time where the renal sta-
tus becomes normal again). Therefore, side effects such as that the termination condition for drop-
ping ETOPOSID in case of critical leukocyte counts also may terminate the dropping of ETOPOSID in
case of a renal toxicity cannot occur (in contrast to the SQL trigger solution in Table 4-1). 

4.4 Active Rules
We now describe the AGENTWORK notion of active rules. Principally, active rules are rules such as
those described in 4.2 and 4.3, but with the following additional characteristics.
• First, an explicit notion of primitive and composite “events“ is added.
• Second, a WITH part is added by which conditions can be specified that filter relevant events. 
• Third, the THEN part is restricted to control actions, i.e., F-Logic formulas stating what has to

be done concerning workflows or activities.

Formula
Points in time

t0 t1 t2 t3 t4 t5 t6 t7

1 drop(ETOPOSID, P) Unless normal-hemato-status(P) NV V V V V

2 drop(ETOPOSID, P) Unless normal-renal-status(P) NV NV NV V V V V V

3 drop(ETOPOSID, P) NV V V V V V V (NV)

Table 4-5:  Valid table for three formulas (V = Valid, NV = Not Valid).
The main point is that formula 3 is valid unless the hematological status and the renal status become nor-
mal (i.e., from t1 to t6). It is not valid at t7 only if a drop(ETOPOSID, P) for t7 has not been triggered by a
third rule (indicated by the brackets). The valid values for formula 1 and formula 2 are not given for the
black rectangles, as they do not play any role for the valid time of formula 3. Note that formula 1 is not
only valid at t1 when the hematological status becomes severe, but also from t2 to t4 because of (xiv).
Because of the same argument, formula 2 is not only valid at t3 but also from t4 to t6.

First point in time at which severe-hemato-status(P) is valid

First point in time at which normal-hemato-statu(P) is valid

First point in time at which severe-renal-status(P) is valid

First point in time at which normal-renal-status(P) is valid
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This section describes only the principal structure of active rules in AGENTWORK. Advanced topics
such as rule integrity are described in Chapter 7 after the full list of control actions has been
introduced. In the following, TF = (T, <) again denotes a gregorian temporal frame.

4.4.1 Events
In ACTIVETFL, an event is something that happens at a point in time. We first describe so-called
primitive events and conditions on primitive events. Second, we describe the construction of com-
posite events from other events. Third, we introduce conditions for composite events. Fourth, we
discuss several event consumption policies stating to how many occurrences of a composite event
an event may contribute. Fifth, the relationship between predicate formulas and composite events is
described.r133

4.4.1.1 Primitive Events and Conditions
In ACTIVETFL, a primitive event is the occurrence of a basic operation on an extension (see 4.2.1.8)
storing objects of class Event. We recall from Chapter 3 that objects of class Event describe events
that occur to a case such as a patient (such as a hematological event described by the Event subclass
Hemato-Finding; see Figure 4-2) or to a resource, and that such events have the competence to trig-
ger control flow failures. Thus, any insertion, removing or updating of such an Event object in the
respective object extension is a relevant event that may have to be monitored by active rules. For
this, ACTIVETFL supports the primitive event types INSERT, REMOVE and UPDATE correspond-
ing to the respective operations on extensions of Event objects. For example, for the extension

hemato-findings(Hemato-Finding) 

of Hemato-Finding objects the line

WHEN INSERT ON hemato-findings

specifies the primitive event of inserting a Hemato-Finding object into the extension hemato-find-
ings. Please recall from 4.2.1.8 that object extensions such as hemato-findings may cover data from
any data source such as databases, file systems, or user interfaces. In particular, AGENTWORK
assumes that for any new or updated data item describing a case or resource event there is at least
one INSERT or UPDATE event bringing this data item into at least one extension of Event objects.
Other event types as described for instance by [WIDOM & CERI 1996, PATON 1999] − such as trans-
action events (e.g., transaction abort)r135 − are not considered as they typically do not cause control
flow failures. However, if necessary ACTIVETFL can easily be extended with such other event types
as they do not imply any additional complexity for active rules.
Furthermore, as ACTIVETFL addresses the control flow adequacy of workflows and not data integ-
rity aspects, ACTIVETFL rules do not distinguish between the state before and after an insert,
update or remove event (in contrast to SQL triggers). Rather, ACTIVETFL implicitly considers only
rules triggered after an insert, update or deletion event. Rules triggered immediately before such an
event would be needed if for example the insertion of data violating any integrity constraints shall
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be avoided. As this is out of scope of this thesis, such “before“-triggers are not considered.
To filter relevant events, a condition can be assigned to a primitive event in the WITH part of a rule.
This condition may consist of any formula f on the data object referenced by the event in the WHEN
part. For referencing purposes, two symbols new and old are provided. For an INSERT event, new
denotes the new object inserted. For an UPDATE event such as the change of an attribute value, old
denotes the old version of the object before the update while new denotes the new version after the
update. For a REMOVE event, old denotes the object removed from the extension7. An
ACTIVETFL then rule is said to be triggered at the point in time t if the event described in the
WHEN part occurs at t and if the formula f in the WITH part is valid at t.
An example for a primitive event with a condition is

WHEN INSERT ON hemato-findings (xix)
WITH new.parameter = Leukocyte-Count AND new.value < 1000.

In the following, the term primitive event denotes any INSERT, UPDATE or REMOVE event with
or without a condition.

4.4.1.2 Composite Events
Furthermore, so-called composite events can be defined. ACTIVETFL supports the composite event
types conjunction, disjunction, negation, sequence, and time series, as introduced by [GEHANI ET
AL. 1992, CHAKRAVARTHY ET AL. 1994, MOTAKIS & ZANIOLO 1997 A]. 
In the following, E, E1, E2, ..., En first will denote primitive events while I ⊂ T denotes a non-empty
fixed set of points.r143 Furthermore, the occurrence of an event type will also be termed as an instance
of an event type. 

Conjunction: The conjunction of E1, E2, ..., En − written as CONJ(E1, E2, ..., En, I) − occurs during
I if all Ei occur during I. Formally,

The point in time at which an instance of CONJ(E1, E2, ..., En, I) occurs is the point in time at which
the last Ei occurs that is needed to establish this instance. For example, if I = {t1, t2, t3, t4} and E2
occurs at t1 and E1 at t3, then the instance of CONJ(E1, E2, I) established by these occurrences of E1,
E2 is said to occur at t3. By restricting I to a single point in time it can be expressed that the
E1, E2, ..., En have to occur simultaneously. Note that the question how often CONJ(E1, E2, ..., En, I)
may occur during I depends on the event consumption policy selected (see 4.4.1.4 below).

7. The question whether an object removed from an extension is also physically deleted is viewed as an
implementation issue.

CONJ(E1, E2, ..., En, I) occurs iff for all i ∈ {1, ..., n} it exists a ti ∈ I 
at which Ei occurs

(xx)
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Disjunction: The disjunction of E1, E2, ..., En − written as DISJ(E1, E2, ..., En, I) − occurs during I if
at least one Ei occurs during I. Formally,

The point in time at which an instance of DISJ(E1, E2, ..., En, I) occurs is the point in time at which
the Ei occurred that established this instance. For example, if I = {t1, t2, t3, t4} and E1 occurs at t2 and
E2 at t3, then the instance of DISJ(E1, E2, I) established by E1 is said to occur at t2 while the instance
of DISJ(E1, E2, I) established by E2 is said to occur at t3.

Negation: The negation of an event E − written as NEG(E, I) − occurs during I if E does not occur
during I. Formally,

The point in time at which NEG(E, I) occurs is the last t ∈ I. For example, if I = {t1, t2, t3, t4} and E
occurs at none of these four points in time, then NEG(E, I) occurs at t4.

Sequence: A sequence of events E1, E2, ..., En − written as SEQ(E1, E2, ..., En, I) − occurs during I
if the Ei occur sequentially during I. Formally,

The point in time at which an instance of SEQ(E1, E2, ..., En, I) occurs is the point in time at which
En occurs. For example, if I = {t1, t2, t3, t4} and E1 occurs at t1 and E2 at t3, then the instance of
SEQ(E1, E2, I) established by these occurrences of E1, E2 is said to occur at t3.

Time Series: Time series are a special type of sequence events that are of particular importance for
medical domains. For example, a single critical finding such as a low leukocyte value does not
necessarily induce some control flow failure. Rather, often only the repetitive occurrence of critical
findings may induce a control flow failure. For this, ACTIVETFL provides time series events: Given
some event E, a time series event over E with length n, minimal and maximal distances dmin and
dmax occurs during I, if E occurs repetitively during I at a sequence of n points in time with a

DISJ(E1, E2, ..., En, I) occurs iff it exists an i ∈ {1, ..., n} for which 
an ti ∈ I exists at which Ei occurs

(xxi)

NEG(E, I) occurs iff there is no t ∈ I at which E occurs (xxii)

SEQ(E1, E2, ..., En, I) occurs iff it exist t1 < t2 < ...< tn, ti ∈ I with Ei 
occurring at ti

(xxiii)
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minimal distance of dmin and a maximal distance of dmax between two successive points of the
sequence. Formally,

The point in time at which an instance of TIME-SERIES(E, n, dmin, dmax, I) occurs is tn (as then the
last instance of E establishing the time series occurred).r136

A typical medical example for a time series event is the following: Let E be the event that the leu-
kocyte count of a patient is less than 1000 as defined in (xix). Then, the composite event 

WHEN TIME-SERIES(E, 3, (2, day), (4, day), [now, now + (2, week)]) (xxv)

occurs if during the next two weeks the leukocyte count of a patient is less than 1000 at 3 points in
time with a minimal distance of 2 days and a maximal distance of 4 days between two leukocyte
measurements.
The specification of a minimal or maximal distance dmin respective dmax between the sequence
points makes sense as often occurrences of E being too close together or too far away from each
other have a limited significance. For example, on one side two leukocyte count measurements at
two subsequent days do not mean more information than one measurement, as the leukocyte value
usually does not change significantly during two days. On the other side, two leukocyte counts l1
and l2 being too far away from each other bear the risk that between them the leukocyte count has
been totally different than l1 and l2. Thus, a physician often will be only interested in a time series
event with a minimal and maximal distance between two measurements, such as specified in (xxv).
If only dmax or only dmin has been specified, the sequence only has to meet |ti − ti+1| ≤ dmax respective
dmin ≤ |ti − ti+1|.

Recently, time series have gained additional attention in the fields of medical informatics and also
in data mining. In these fields, several other types of time series have been defined which are not
introduced in this thesis, as we want to focus not on composite events such as time series but on the
handling of control flow failures. Therefore, for more extended approaches concerning time series
events, we refer to [KOUDAS ET AL. 2000, BELAZZI ET AL. 1999, BERNDT & CLIFFORD 1996].

As for any composite event the point in time of its occurrence is precisely defined, the definitions
(xx) − (xxiv) also hold if the events establishing the composite event themselves are composite
events. 

4.4.1.3 Composite Events with Conditions
Often it is necessary for a composite event established by primitive events to define a condition
which cannot be expressed as a number of conditions w.r.t. the primitive events. For example, in

TIME-SERIES(E, n, dmin, dmax, I) occurs iff it exist t1 < t2 < ...< tn, ti ∈ I with: 
• dmin ≤ |ti − ti-1| ≤ dmax, i = 2, ..., n
• E occurs at every ti

(xxiv)
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case of the leukocyte time series event in (xxv) it has to be specified that all occurrences of E estab-
lishing the time series have to be related to the same patient. Furthermore, the physician addition-
ally may want to specify the condition that the measurements also show a decreasing tendency
which is an even worse clinical situation than leukocyte counts being only smaller than 1000. Such
a composite condition may consist of any formula f on the data objects referenced by the primitive
events establishing the composite event. For referencing purposes, the symbols newi and oldi are
used. The index i refers to the i-th event in the composite event expression CONJ(E1, E2, ..., En, I),
DISJ(E1, E2, ..., En, I) or SEQ(E1, E2, ..., En, I), or to the i-th occurrence of E in case of TIME-
SERIES(E, n, dmin, dmax, I). In case of NEG(E, I), no symbol new is needed as E does not occur dur-
ing I. The symbol newi is provided in case the referenced primitive event is an INSERT or
UPDATE. The symbol oldi is provided in case the referenced primitive event is an UPDATE or
REMOVE. With these symbols, our decreasing leukocyte trend could be defined as 

WHEN TIME-SERIES(E, 3, (2, day), (4, day), [now, now + (2, week)]) (xxvi)
WITH new1.of = new2.of AND new2.of = new3.of AND 
 new1.value > new2.value AND new2.value > new3.value 

Please recall that in medical applications of refers to the Patient object to which the event occurs
(see 3.2.1 and 4.2.1.2). As it is self-evident that for medical composite events all establishing
events refer to the same patient, we omit conditions such as new1.of = new2.of in the following
examples. In particular, as a shortcut we use PE or  to denote the patient to which an event E or
Ei occurred.
If necessary, this referencing mechanism can be extended also for larger composition hierarchies
by a multi-dimensional index. For example, if we have a composite event constructed from com-
posite events constructed from primitive events, then newi,j refers to the i-th primitive event of the
j-th composite event establishing the top level composite event.

4.4.1.4 Event Consumption Policies
Consumption policiesr138 state the way in
which events may contribute to a com-
posite event [PATON 1999, MOTAKIS &
ZANIOLO 1997 B, CHAKRAVARTHY ET
AL. 1994].r138 The appropriate policy highly
depends on the application domain.r139 As
this thesis focuses on medical workflow
applications, we restrict ourselves to the
policies relevant for this application area,
namely the policies unrestricted, chroni-
cle, and continuous. For other policies,
such as recent and cumulative, we refer
to [PATON 1999, MOTAKIS & ZANIOLO
1997 B]. To illustrate the following poli-

PEi

Figure 4-4:  Sample event history.

t1 (E1 ) t2 ( E1 ) t1 ( E2 ) t1(E3 ) t2 ( E2 ) t2 ( E3 )
 

ti (Ej ) = point in time of i-th occurrence of Ej

I

Time
axis



Active Rules

99

cies, we use an example given in [CHAKRAVARTHY ET AL. 1994]. This example assumes a
sequence composite event SEQ(E1, E2, E3, I) of some primitive events E1, E2, E3 which occur in the
relative order shown in Figure 4-4 (ti(Ej) denotes the point in time of the i-th occurrence of Ej).

Unrestricted Policy: With this policy, any event occurrence combination that matches the
definition of the composite event establishes the occurrence of this composite event. In Figure 4-4,
occurrences of SEQ(E1, E2, E3, I) will be established at 

{t1(E1), t1(E2), t1(E3)}, {t1(E1), t1(E2), t2(E3)}, {t1(E1), t2(E2), t2(E3)}, 
{t2(E1), t1(E2), t1(E3)}, {t2(E1), t1(E2), t2(E3)} and {t2(E1), t2(E2), t2(E3)}.

Chronicle Policy: With this policy, events contribute to a composite event in their chronological
order of occurrence. Only the oldest occurrence, respectively, of an event is used. When a
composite event is established, the used occurrences of the establishing events cannot participate in
any other occurrences of this composite event (of course, they can still be used for other composite
event types). In Figure 4-4, with the chronicle policy occurrences of SEQ(E1, E2, E3, I) will be
established at 

{t1(E1), t1(E2), t1(E3)} (these occurrences are then removed from the event history) and 
{t2(E1), t2(E2), t2(E3)}.

The chronicle policy is suitable for applications where some causal dependency exists between the
events establishing the composite event. For example, let as assume that in a doctor’s ambulance E1
is the problem report of a patient, E2 the diagnosis event and E3 the prescription of some drug
regarding the same patient. Assuming furthermore that the patients are handled by a FIFO8 strategy
in the ambulance, then only the chronicle sequences {t1(E1), t1(E2), t1(E3)} and
{t2(E1), t2(E2), t2(E3)} are of interest as each describes the handling of one patient. The composite
event then may be raised to generate the bill for the patient.r140

Continuous Policy: This policy checks at every point in time which composite events have
occurred w.r.t. a given composite event type. Then, all establishing events of these composite
events are removed from the event history for this composite event type, so that they cannot
contribute to other occurrences of this composite event type anymore. By this policy some sort of a
sliding point is defined which moves from the “left to the right” of the time axis, and for which all
events at the left side that already contributed to a given composite event type are not considered
anymore for this type. In Figure 4-4, the first point in time where occurrences of SEQ(E1, E2, E3, I)
will be established is t1(E3), as SEQ(E1, E2, E3, I) is raised by 

{t1(E1), t1(E2), t1(E3)} and {t2(E1), t1(E2), t1(E3)}. 

8. First In First Out
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Then, with the continuous policy, the occurrences of E1, E2, and E3 at t1(E1), t2(E1), t1(E2) and t1(E3)
are removed from the event history for SEQ(E1, E2, E3, I) with the consequence that there is no
more occurrence of SEQ(E1, E2, E3, I).r140

The continuous policy is suitable for trend detection problems. For example, when having detected
decreasing leukocyte counts by (xxvi), the physician usually wants to see whether his procedures
undertaken to reverse this trend have been successful. This can best be done by inspecting new leu-
kocyte counts so that the old leukocyte counts raising (xxvi) beforehand are of no further interest.

The particular policy that holds for a composite event definition is expressed by the keywords
POLICY UNRESTRICTED, POLICY CHRONICLE, and POLICY CONTINUOUS, e.g.,

WHEN TIME-SERIES(E, 3, (2, day), (4, day), [now, now + (2, week)])
POLICY CONTINUOUS
WITH new1.value > new2.value AND new2.value > new3.value

4.4.1.5 Events and Predicates
As already sketched in former sections of this chapter, a predicate formula such as 

severe-hemato-status(P) VALID-TIME [t, t + d], t ∈ T, d some duration (xxvii)

does not make any statement how it is related to data-oriented events such as the insertion of
Hemato-Finding objects into some data source. To close this gap, we can use composite events to
define such predicates in a more data-oriented manner than it has been done in Table 4-3. For
example, for E being the event defined in (xix) we could define that 

severe-hemato-status(P) VALID-TIME [t, t + (1, week)]

holds iff 

TIME-SERIES(E, 3, dmin = (48, hour), [t, t + (1, week)]), PE = P

occurs, i.e., iff there are three leukocyte count measurements during this week which are less than
1000 and which have a temporal distance of at least 48 hours between two subsequent measure-
ments.

4.4.2 Actions
The THEN part of an active rule consists of exactly one control action, e.g., 

WHEN TIME-SERIES(E, 3, (2, day), (4, day) [now - (2, week), now] (xxviii)
POLICY CONTINUOUS
WITH new1.value > new2.value AND new2.value > new3.value
THEN drop(ETOPOSID, PE ) VALID-TIME [now, now + (1, week)]
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with E being the event defined in (xix) (and PE being the patient w.r.t. whom the three instances of
E occurred). In particular, the THEN part of an ACTIVETFL rule must not contain any data manip-
ulation statements or procedure calls. This restrictive structure of THEN parts is because active
rules in AGENTWORK shall specify what shall be done with a failed workflow on a high level of
abstraction. Any details such as the order of control actions (in case that multiple rules such as
(xxviii) are triggered) and the nodes that may have to be dropped or added, can only be determined
at execution time when the particular structure of the failed workflow is known. Furthermore, the
restrictive structure of the THEN part supports rule integrity as we will show in Chapter 7 (Control
Actions). Note that the restriction to one control action is only syntactically and does not reduce
expressiveness w.r.t. control actions. For example, if for a single event E two control actions have
to be triggered, this can be expressed by two active rules which are both triggered by E and where
each rule triggers one of the two control actions.
As our active rules are clearly related to the handling of control flow failures, we call them also
rules for control flow failures in the following (as already done in Chapter 3). The complete listing
of control actions supported by ACTIVETFL will be given in Chapter 7.

4.5 Summary
In this chapter, we motivated and introduced ACTIVETFL as the data and rule definition language
for AGENTWORK. This language has been based on F-Logic, to which elements of a temporal logic
have been added. Furthermore, a model of primitive and composite events has been added to cover
a broad range of events that may occur in domains such as hemato-oncology and that may cause
control flow failures. The main reason for selecting a temporal logic as the core of ACTIVETFL has
been that such a temporal logic provides a better support of temporal requirements than for exam-
ple SQL:99 or ODL/OQL. In particular, we have shown that temporal logic operators such as
Unless allow to express failure rules where the valid time of a control action depends on the occur-
rence of other events in a compact and clear manner.
We conclude the chapter by emphasizing two important points: First, ACTIVETFL is not a general
purpose language. In particular, the THEN part of active rules has been restricted significantly (if
compared with general active rules) as it contains exactly one control action. This has been done to
reduce the language complexity9, to support rule integrity (see Chapter 7) and to facilitate the han-
dling of control flow failures. Note that such a restriction is not possible for the WHEN part as com-
posite events are needed for many application classes and as composition types such as event
conjunction cannot be expressed by “decomposing” and “distributing” the event among different
rules. Second, ACTIVETFL allows for the definition of data and rules on a high level of abstraction.
It is the matter of an implementation such as the one described in Chapter 11 to decide which lan-
guages (e.g., one of the prototypical F-Logic implementations, SQL:99, or PROLOG) should be used
to implement the data and rule definitions in an operational manner.

9. Note that due to Horn clause theory [SCHÖNING 1989], rules that only allow one control action, and
not for example the disjunction of control actions, are satisfiable.
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 CHAPTER 5 Workflow Definition and 
Execution

After our overview in Chapter 3 and the ACTIVETFL introduction in Chapter 4, we now describe
the AGENTWORK model of workflow definition and workflow execution. The chapter is organized
as follows: Section 5.1 lists the design goals of the AGENTWORK workflow model. Section 5.2
introduces some auxiliary definitions. Section 5.3 describes the workflow definition model which
includes activities, control and data flow, and workflow cooperation. Section 5.4 contains the exe-
cution model. In Section 5.5 we compare our model with related approaches, namely with petri nets
and state/activity charts. A summary and discussion in Section 5.6. concludes the chapter.
Note that only those temporal aspects are discussed in this chapter which are necessary to define
“normal” workflow execution (e.g., waiting conditions for edges). Temporal aspects that are dedi-
cated to workflow estimation − such as how to define and estimate the “duration“ of an activity or
edge execution − can only be discussed after the entire execution model has been introduced. Fur-
thermore, as the definition of “duration“ and the description of workflow estimation takes some
place, these aspects are discussed in an own chapter, namely Chapter 6.

5.1 Design Goals
The design goals of the AGENTWORK workflow definition and execution model are as follows:

1. Expressiveness
The workflow definition and execution model has to be expressive enough to cover a broad
range of business processes. Frequently required control flow structures such as sequences,
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conditional branching, and parallel and iterative execution have to be supported. Furthermore,
the data flow model has to support object-oriented or object-relational data structures which are
necessary to cover the data complexity of domains such as medicine. Inter-workflow dependen-
cies have to be expressed as well.

2. Adaptation-Oriented Workflow Structuring
As workflow definitions can become very complex, structuring mechanisms are required that
support workflow adaptation. In particular, the control flow and the data flow should be repre-
sented explicitely so that they do not have to be reconstructed from an implicit representation
(such as ECA rules). Furthermore, nesting structures such as super-workflow/sub-workflow
hierarchies should be supported as they facilitate workflow analysis such as temporal workflow
estimation.

3. Formal Foundation
As AGENTWORK addresses the semi-automated adaptation of workflows, a non-ambiguous for-
mal representation of workflows is required. In particular, formal integrity constraints such as
that the input of an activity has to be provided entirely by data flow edges are needed to first
ensure correct workflow definitions and second that adaptations do not lead to incorrect work-
flows.

4. Adaptation-Oriented Execution Support
The workflow model has to define a clear operational semantics specifying how workflow def-
initions are executed. This is important as control flow failures affect currently executed work-
flows. In particular, the different states of a workflow and its activities during execution have to
be precisely defined. As events inducing control flow failures occur to cases or resources, it
also has to be clearly defined how such cases and resources are assigned to running workflows. 

5. Readability
Workflow definitions have to be readable not only for computer scientists, but also for users
(e.g., physicians). This helps to avoid workflow definitions that may fulfill all integrity con-
straints but still contain inconsistencies from the application point of view. As an adaptation
may require user interaction or even a manual adaptation of some workflow parts, readability
also helps to avoid workflow adaptations leading to semantically inconsistent workflows.

Obviously, the listed goals show some dependencies or have a contrasting nature. For example, an
increased expressiveness (goal 1) often means decreased readability (goal 5). Therefore, a
compromise between such contrasting goals has to be found. For a broader discussion on workflow
model requirements including workflow reusability and visualization support we refer to
[REICHERT ET AL. 2000, WESKE 2000 C].
To achieve the goals 1-5 listed above, AGENTWORK uses a workflow model based on symmetrical
and hierarchical control flow blocks as introduced in [REICHERT & DADAM 1998]. This model will
be described in the following.
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5.2 Auxiliary Definitions
We start by introducing two auxiliary definitions, namely named object patterns and time-con-
strained object patterns. They extend the definitions of object patterns given in Section 4.2.1.5 for
the purpose of workflow definition. In the following, Class always denotes an arbitrary F-Logic
class needed for a particular workflow application (e.g., Class may be any class shown in
Figure 4-2).

5.2.1 Named Object Patterns
Let P be some object pattern according to 4.2.1.5. A named object pattern additionally gives an
object matching a pattern a name. For example,

h: Hemato-Finding[parameter = Leukocyte-Count, unit = #/mm3] (i)

gives an object matching (i) the name h. The type of a named object definition is denoted with
Named-Obj-Patt<Class>. For example, the named object definition in (i) is of type
Named-Obj-Patt<Hemato-Finding>.

5.2.2 Time-Constrained Object Patterns
Often it is necessary also to specify time constraints stating for example that an object may not be
older than two days w.r.t. the current point in time now. This can be done by so-called time-con-
strained object patterns. Formally, if T is a (gregorian) set of points in time according to 4.3.1, a
time-constrained object pattern has the form

obj-patt NOT-OLDER-THAN d (ii)

where obj-patt is a (named) object pattern and d a duration according to 4.3.2. An object o matches
a time-constrained object pattern (ii) if it fulfills obj-patt and if for the point in time t at which it has
been updated at last it holds now − d ≤ t ≤ now. An example is

h: Hemato-Finding[parameter = Leukocyte-Count] NOT-OLDER-THAN (2, day) (iii)

which specifies a Hemato-Finding object h where the measured parameter is the leukocyte count
and that must not be older than 2 days. For example, such time-constrained patterns can be used to
specify the currentness of input data needed by a workflow activity. In this context, they also will
play an important role for data flow adaptation. For example, when a new node is added to a work-
flow and data has to be provided for its input, time-constrained patterns form the basis to decide
which data being already available in a workflow may be used for this.
The time-constrained (named) object pattern type is denoted with Time-Constr-Obj-Patt<Class>
respective Time-Constr-Named-Obj-Patt<Class>. For example, the time-constrained object defi-
nition in (iii) is of type Time-Constr-Named-Obj-Patt<Hemato-Finding>. If P is of type Time-Con-
str-Named-Obj-Patt<Class> we call the d-parameter in (iii) the time constraint of P. 
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5.3 Workflow Definition Model
We now describe how workflows are defined. First, we explain how basic activities, resources, and
conditions are defined (5.3.1-5.3.4). Second, we describe how the control and data flow of a work-
flow is defined (5.3.5-5.3.7). Third, we explain the definition of complex (i.e., nested) activities
and workflows (5.3.8-5.3.9). Fourth, the definition of workflow cooperation is described (5.3.10).

5.3.1 Basic Activity Definitions
A basic activity definition is a declarative description of a basic unit of work. Its main characteristic
is that it describes what has to be done on a high semantic level. In particular, an activity definition
is described in terms of the global data schema (Figure 4-2) and thus in the terminology of the
workflow user (e.g., the physician). This supports goal 2 (adaptation-oriented workflow structur-
ing) as it relieves the adaptation from technical details such as the programs needed for the activity
execution. Furthermore, goal 5 (readability) is supported by semantically rich activity definitions.
Syntactically, a basic activity definition has the form (Set<P> denotes a set of elements matching a
pattern P):

An example for a basic activity definition in a table-oriented notation is shown in Table 5-1. This
activity definition specifies that the drug ETOPOSID has to be administered with a dosage of 100 mg
per square meter body surface. Furthermore, it is specified that two Hemato-Finding objects are
expected as input and termed as h1 and h2. They have to fulfill the constraints that the measured
parameter is the leukocyte respective thrombocyte count. Additionally, both objects may not be
older than 2 days. Furthermore, the activity definition in Table 5-1 specifies that a Chemo-Report
object is produced as output.

Basic-Activity-Def {
name: String; // unique identifier
input: Set<Time-Constr-Named-Obj-Patt<{Document, Event}>>; 
activity: Obj-Patt<Activity>;
output: Set<Named-Obj-Patt<{Document, Event}>>; } 

“Administer Etoposid”
input activity output

h1 :  Hemato-Finding
[parameter = Leukocyte-Count]
NOT-OLDER-THAN  (2, day)

h2 :  Hemato-Finding
[parameter = Thrombocyte-Count]
NOT-OLDER-THAN (2, day)

Drug-Administration

[drug = “ETOPOSID”
dosage = 100
unit  = mg/m2

type = infusion]

c: Chemo-Report[]

Table 5-1:  Activity definition for an ETOPOSID administration.
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We make the following remarks:
• For input and output object patterns (entries input and output) only the classes Document and

Event are used as we assume that all relevant data that are needed for activity execution are
either documents (class Document) or data describing events that occurred to a case (i.e.,
objects derived from class Event).

• As the activity entry is defined as a pattern, not every attribute of the used Activity class in
Obj-Patt<Activity> has to be set to a concrete value at workflow definition time as it has been
done in Table 5-1. Rather, attribute values may be specified at execution time by a user assigned
to this activity definition (see 5.3.3.1). For example, for the activity definition in Table 5-1 the
value of the attribute dosage may be left unspecified and then determined by a physician when
an activity based on this activity definition is scheduled for execution.

• The assignment of the Case instance (activity-for association in Figure 4-2) respective of
Resource instances (needs-resources association in Figure 4-2) to the activity entry is a matter
of workflow execution and will be described in Section 5.4.r145

• Furthermore, activity may refer to objects in input or to paths starting from these objects. By
this it can be specified how the input objects are used by the activity. For example, if xrr is an
input object of class X-Ray-Report then the activity entry for a computer tomography (ct) exam-
ination may have the form

CT-Examination[focus = xrr.reported-activity.focus]

to express that the ct examination shall focus on the focus region of the x-ray examination xrr
(with focus being an attribute of a radiological activity representing the focus area such as the
lung; see Figure 4-2). This makes sense as a ct usually is initiated by a preceding x-ray exami-
nation with a pathological finding that has to be examined further.r146 r147

• Note that AGENTWORK activity definitions differ from other workflow approaches w.r.t. the
semantic level and the explicitness of what workflow activities do in terms of the application
domain. As AGENTWORK has to automatically decide whether an event implies that a currently
executed workflow is not adequate anymore, we need a declarative formal description stating
what a workflow is currently doing or what it will do in the future. For example, if the situation
occurs that a patient must not get the drug ETOPOSID anymore for several days, AGENTWORK
has to inspect which workflow activities of running workflows deal with this drug. This is Sup-
ported by activity definitions as shown in Table 5-1. Most commercial workflow systems and
research prototypes (see Chapter 2) encode this only in a very implicit manner by listing the
application programs which are assigned to the workflow activities or by un- or semi-structured
text descriptions. For an automated handling this is not sufficient.

With Basic-Activity-Defs we denote the basic activity definitions needed for a workflow
application. In the following, a basic activity definition such as the one in Table 5-1 will be
assigned to a workflow node to describe what is done when the node is executed (see 5.3.5). The
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input and output objects are relevant for the definition of the data flow (see 5.3.6).

5.3.2 Activity Compensation
To a basic activity definition A, a compensating activity definition A-1 can be assigned. A-1 logically
undoes or at least minimizes the effects of A. Such compensating activities are needed in case of a
workflow rollback. The following points are important to note:
First, the purpose of compensating activities in AGENTWORK is to minimize the effects of activities
on the data and communication level, such as cancelling messages that have already been sent.
They do not contribute to the handling of control flow failures in the sense that they compensate the
situation caused by a failure event. It has already been discussed in Chapter 2 (Related Work) that
workflow compensation models are not adequate for handling control flow failures as defined in
this thesis. 
Second, for many activities a compensating activity will only be manual or will simply not exist.
This holds especially for medical domains. For example, for the „Administer ETOPOSID“ activity in
5.3.1 neither the infused drug fluid can be made undone nor would it be appropriate to undo any
database operation related to the drug documentation as the drug administration must be docu-
mented for legal reasons. If a compensating activity does not exist for an activity definition A, we
say that A-1 is the so-called NULL activity.

5.3.3 Resource Definitions
Resource definitions specify the resources (i.e., users, programs, and equipment pieces) needed to
execute activities. A declarative definition of resources is needed as events occurring to resources
(e.g., a computer tomograph may get broken) may cause control flow failures (see 3.3.1).

5.3.3.1 User Definitions
User definitions specify the “profile” of users involved in the execution of an activity. A user defi-
nition has the following form:

An example is

User-Def {
name: String; // unique identifier
user: Obj-Patt<Staff-Member>; 
proxy: Obj-Patt<Staff-Member>;}

User-Def {
name: “Senior-Oncologist”; 
user: Physician[degree = Senior; speciality = “Oncology”];
proxy: Physician[degree = Assistant; speciality = “Oncology”];}
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With User-Defs we denote the user definitions needed for a workflow application. The mapping
AUM (Activity → User Mapping)

AUM: Basic-Activity-Defs → ℘(User-Defs)

maps a basic activity definition to a set of user definitions (with ℘ being the power set operator).
This means that an activity based on an basic activity definition A must be executed by a set of
Staff-Member objects matching the user definitions in AUM(A). The image of AUM is a set as often
several users together execute one activity. For example, an x-ray examination usually is executed
by a physician and a nurse. If AUM(A) is the empty set then A is said to be an automated activity. In
this case, at least one program has to be assigned to A (see 5.3.3.2).r151

5.3.3.2 Program Definitions
Program definitions specify the application programs involved in the execution of an activity. A
program definition has the following form:

Program definitions totally abstract from the question where a program is physically installed and
executed. This is considered as a matter of some application-integrating middleware such as
CORBA. This middleware registers all application programs in a network, provides logical identifi-
ers (as done for example by the CORBA trading service), and determines at execution time at which
host which application program code shall be invoked. Furthermore, we do not consider the input
and output objects of programs as they are not relevant for workflow adaptation. An example for a
program definition is

defining the controller program of a computer tomograph.r152 With Program-Defs we denote the set of
program definitions needed for a workflow application. The mapping APM (Activity → Program
Mapping)

APM: Basic-Activity-Defs → ℘(Program-Defs)

maps a basic activity definition to a set of program definitions. The image of APM is a set as often
several programs together are involved in the execution of one activity. If APM(A) is the empty set

Program-Def {
name: String; // unique identifier
program: Obj-Patt<Application-Program>;
controls: String; // optional; name of controlled equipment (see 5.3.3.3)

Program-Def {
name: “CT-Controller”;
program: Application-Program[function = “CT-CONTROL“; release = 7.4];
controls: “CT”
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then A is said to be a pure manual activity. In this case, at least one user definition according to
5.3.3.1 has to be assigned to A.

5.3.3.3 Equipment Definitions
Equipment definitions specify the application equipment needed for the execution of an activity. A
typical example for an application equipment is a computer tomograph in a hospital or a copy
machine in an office. An equipment definition has the following form:

An example is

defining a computer tomograph. Analogously to the situation with programs, we denote with
Equipment-Defs the set of equipment definitions needed for a workflow application. The mapping
AEM (Activity → Equipment Mapping)

AEM: Basic-Activity-Defs → ℘(Equipment-Defs)

maps a basic activity definition to a set of equipment definitions.

5.3.4 Condition Definitions
For control flow definition purposes, AGENTWORK provides two condition types. A branching con-
dition specifies the condition that has to be met to execute a particular set of activities. A waiting
condition is used to define the temporal distance between two activities. 
A branching condition has the following form:

Equipment-Def {
name: String;
equipment: Obj-Patt<Equipment>;
controlled-by: String; }

Equipment-Def {
name: “CT”;
equipment: Computer-Tomograph[];
controlled-by: “CT-Controller”; }

Branching-Cond-Def {
name: String; // optional
input: Set<Time-Constr-Named-Obj-Patt<{Document, Event}>>;
condition:r153 Formula;} 
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where condition is a formula according to 4.2.3 which is defined on objects in input. An example is:

A waiting condition has the form:

with Duration being the temporal distance type as defined in 4.3.2. An example is:

that may be inserted between two chemotherapy activities to specify that the patient should recover
from the first chemotherapy activity at least one week but not longer than two weeks. If min = max,
this specifies an exact waiting time.r155

The precise semantics of these conditions is explained in 5.3.5.1 where they are assigned to control
flow edges. With Branching-Cond-Defs and Waiting-Cond-Defs, we denote the sets of definitions
for branching and waiting conditions needed for a workflow application.

5.3.5 Control Flow Definitions
We now describe the control flow model of AGENTWORK. We first introduce the definition of the
so-called basic control flow (5.3.5.1). Second, we introduce several control flow constraints that
have to be met to facilitate workflow adaptation without reducing expressiveness too much
(5.3.5.3). In particular, these constraints enforce that the control flow model is organized by sym-
metrical blocks.

5.3.5.1 Basic Control Flow Definitions
A basic (or unnested) control flow definition CF over Basic-Activity-Defs is a tuple

CF = (Activity-Nodes, NAMbasic , Control-Nodes, Edges, BC, WC)

Branching-Cond-Def {
name: “Severe-Leukocyte-Finding”;
input:  {h: Hemato-Finding[parameter = Leukocyte-Count]};
condition:  h.value < 1000 AND h.unit = #/mm3; }

Waiting-Cond-Def {
name: String; // optional
min: Duration;
max: Duration;} 

Waiting-Cond-Def {
name: “Chemo-Therapy-Recovery”;
min: (1, week);
max: (2, week);} 
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with the following meaning:
• Activity-Nodes is the set of activity nodes.
• The function

NAMbasic : Activity-Nodes → Basic-Activity-Defs 

maps a basic activity definition to every activity node (NAMbasic = Node → Activity Definition
Mapping). We call n an A-node, if NAMbasic (n) = A, i.e., if n executes an activity based on the
activity definition A.

• Control-Nodes is the set of control flow nodes (with Control-Nodes ∩ Activity-Nodes = φ).
Figure 5-1 and Table 5-2 show the control node types supported by AGENTWORK. Note that the
relationship between control nodes and control actions is that control nodes specify the control
flow (i.e., conditional, parallel, or iterative activity execution) which then may be adapted due
to triggered control actions.

• Edges ⊂ (Activity-Nodes ∪ Control-Nodes) × (Activity-Nodes ∪ Control-Nodes) is the set of
directed control flow edges. For an edge e = (n, m) ∈ Edges, n is called source node and m is

a) AND-SPLIT/AND-JOIN (parallel execution)

AND-
SPLIT

AND-
JOIN

A B

......

D EC

b) OR-SPLIT/OR-JOIN (conditional execution)

BC(e1)

OR-
SPLIT

OR-
JOIN

A B

......

D ECBC(e2)

e1

e2

c) LOOP-START/LOOP-END (iterative execution)

BC
(e

)

LOOP-
START

LOOP-
ENDB C ......

e
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Figure 5-1:  Parallel, conditional, and iterative execution of workflow nodes. 
Capital letters denote activity definitions. BC(e) denotes the branching condition assigned to an edge e.
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called target node. A control flow edge e = (n, m) has the semantics that a necessary precondi-
tion for executing m is that the execution of n has been completed successfully.

• BC: Edges → Branching-Cond-Defs assigns branching conditions (see 5.3.4) to edges. By con-
vention, we set BC(e) := NULL (the “null condition” which is always TRUE) if no branching
condition shall be assigned to e. For an edge e = (n, m) with BC(e) ≠ NULL it holds that a nec-
essary precondition to execute m is that BC(e) is fulfilled. 
To avoid deadlocks, such branching conditions will be restricted to edges having OR-SPLIT or
LOOP-END nodes as source (see 5.3.5.3).

• WC: Edges → Waiting-Cond-Defs assigns waiting conditions (see 5.3.4) to edges. By conven-
tion, we set WC(e) := NULL (the “null condition” which is always TRUE) if no waiting condi-
tion shall be assigned to e. For an edge e = (n, m) with WC(e) ≠ NULL it holds that a necessary
precondition to execute m is that at least the time specified by the min entry of WC(e) has
elapsed and that the time specified by the max entry of WC(e) has not yet elapsed (since n has
been executed).r156

 

Node Type Explanation

START
END

Specify the beginning and the end of a workflow, i.e., a START node may not have
a predecessor node and an END node may not have a successor node.

AND-SPLIT
AND-JOIN

Specify the beginning and end of a parallel execution (Figure 5-1 a). A necessary
condition for continuing the workflow after the AND-JOIN node is that all paths
have been executed entirely.

OR-SPLIT
OR-JOIN

Specify the beginning and end of a conditional execution (Figure 5-1 b). The ques-
tion whether a conditional execution has an ”exclusive or” semantics (exactly one
from many) or not is a matter of the condition definitions assigned to it. A necessary
condition for continuing the workflow after the OR-JOIN node is that all paths that
qualified for execution have been executed entirely.

LOOP-START
LOOP-END

Specify the beginning and the end of a loop with REPEAT-UNTIL semantics, i.e.,
the loop sequence is executed at least once and as long as the termination condition
does not hold (e.g., BC(e) in Figure 5-1 c). Loops with a WHILE-DO or FOR-TO
semantics are not explicitly supported, but can easily be specified either by placing
a conditional branching before the LOOP-START node (WHILE-DO) or by
embedding the loop sequence within some “counting” activities and by specifying
an appropriate termination condition (FOR-TO).

Definitions: Nodes of type START, AND-SPLIT, OR-SPLIT or LOOP-START are called
“opening” nodes (as they open a workflow, a parallel execution etc.).
Nodes of type END, AND-JOIN, OR-JOIN or LOOP-END are called “closing”
nodes. 

Table 5-2:  Control node types.
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Figure 5-2 gives an example for a control flow definition of the HEMATOWORK system. This
control flow starts with an x-ray examination (activity node a1). If the x-ray examination detects
tumor tissue, this tissue is further inspected by a computer tomography examination (a2). If no
tumor tissue is detected by the x-ray examination, a controlling tumor marker examination is
executed (a3) to check whether there is tumor issue not detectable by radiological examinations.

5.3.5.2 Control Flow Paths, Predecessor and Successor Nodes and Edges
Let CF = (Activity-Nodes, NAMbasic , Control-Nodes, Edges, BC, WC) be a basic control flow defi-
nition. Then, a control flow path is any sequence 

(n1, n2), (n2, n3), (n3, n4) ... (nk-1, nk) ∈ Edgesk-1.

Alternatively, we may also write n1 → n2 → n3 → ... → nk for such a control flow path.
If n and m are nodes or edges of CF, then n is called predecessor node or edge of m if it exists at
least one control flow path leading from n to m. Analogously, n is called successor node or edge of
the node or edge m if it exists at least one control flow path leading from m to n. The node n is
called direct predecessor or successor node of m, if the control flow path between n and m does not
contain any other node than n and m.

input
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c2 = BC((a1, a3))

input activity output
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Report
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CT-Report

a2

input condition

f: Radio-
logical-
Finding

c1 = BC((a1, a2))

f.tumor-tissue
= TRUE

input activity output

a: String x:
X-Ray-

Finding

input activity output

m: Tumor-
      Marker

Tumor-Marker-Examination
[marker-to-check =m]

a3

a1

CT-Examination
[focus =
  r.reported-activity.
  focus]

X-Ray-Examination
[focus = a]

OR-
SPLIT

a4

c3 = WC((a2, a4))

tumor-
provable:

Bool

    ...

condition

f.tumor-tissue
= FALSE

min

(2, day)

max

(1, week)

Legend

BC = Branching condition
WC = Waiting condition

Control flow edge

Figure 5-2:  Example of a control flow for tumor diagnosis.
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5.3.5.3 Control Flow Constraints
So far, the definition of Section 5.3.5.1 allows to specify arbitrary control flows. In particular, it
allows to insert control flow edges between arbitrary activity and control nodes and to assign
branching or waiting conditions to any of these edges. However, such arbitrary control flows sig-
nificantly increase the risk of deadlocks or node starvation during execution and complicate tempo-
ral workflow estimation. Thus, it is necessary to define some workflow constraints so that
workflow definitions remain controllable and readable without restricting them too much. For this
purpose, we list three constraints which forbid 1. isolated nodes, 2. activity splits and joins, and 3.
unbalanced control nodes. These three constraints correspond to the workflow structuring rules
introduced in [REICHERT 2000]. For the purposes of this thesis, we give a semi-formal description
of these constraints. A formal definition based on set-theory can be found in chapter 3 of
[REICHERT 2000].

Control Flow Constraint 1 (Node Reachability)
For every node n ∈ Activity-Nodes ∪ Control-Nodes it must hold that n has to be reachable from
the START node, and that the END-node is reachable from n. This means that there must be at least
one control flow path START → n1→ n2 ... → nk → n ∈ Edgesk+1, and at least one control flow path
n → n1 → n2 ... → nk → END ∈ Edgesj+1.r158

By this constraint, isolated nodes such as the B-node in
Figure 5-3 are avoided .r159

Control Flow Constraint 2 (No Activity Split/Join)
Only AND-SPLIT, OR-SPLIT and LOOP-END nodes may
have more than one outgoing edge. In particular, the edges
with a branching condition are exactly those edges having
an OR-SPLIT or LOOP-END as source, i.e., for e = (n,m)
with BC(e) ≠ NULL, n must be an OR-SPLIT or LOOP-END node. A LOOP-END node must have
exactly two outgoing edges, one for the next loop iteration, and one for loop termination. To the lat-
ter edge, a branching condition has to be assigned playing the role of a loop termination condition
(see Figure 5-1 c).
Analogously, only AND-JOIN, OR-JOIN and LOOP-START nodes may have more than one
incoming edge. A LOOP-START node must have exactly two incoming edges, one from the node
executed last before the first loop iteration and one from the LOOP-END node (see Figure 5-1 c).
By this constraint, implicit and unclear split, join and loop semantics that are not under the control
of AND-SPLIT/AND-JOIN, OR-SPLIT/OR-JOIN and LOOP-START/LOOP-END nodes are
avoided. For example, in Figure 5-4 on one side it would be unclear for the control flow edge from
the F-node to the C-node (*) what shall happen if the F-node is not executed at all in case the path
OR-SPLIT → E → F did not qualify for execution (as a necessary condition to execute the C-node
is that the F-node has been executed successfully). On the other side, if the F-node would be exe-

Figure 5-3:  Isolated node (viola-
tion of Criterion 1).

START A

B

END
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cuted it would be unclear for which iteration (e.g., the first?) of the implicit loop (**) it would hold
that the C-node must not be executed before the F-node has been completed successfully.r161

More important, the estimation of a
workflow’s duration is facilitated if
activity cross-overs such as (*) and
implicit loops such as (**) are avoided.
Otherwise, a control flow path may
have arbitrary control flow dependen-
cies with other paths which make it
more difficult to estimate the path’s
duration. For example, in Figure 5-4
the duration of the path
A → B → C → D also depends on the
duration of the conditional path
OR-SPLIT → E → F, as C cannot be
executed before F has not been com-
pleted.r162 Thus, if such arbitrary depen-
dencies are avoided workflow estimation durations become more precise.
In particular, constraints 1 and 2 together imply that an activity node always has exactly one incom-
ing and one outgoing control flow edge. This characteristic will be frequently used in the following
for workflow execution and workflow analysis.
However, constraints 1 and 2 do not forbid “pathological” crossings between control nodes such as
the one shown in Figure 5-5 where one path starting at an OR-SPLIT “jumps out” of a loop. As
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Figure 5-4:  Activity split/join
(violation of Criterion 2).

Figure 5-5:  Crossing of control nodes (violation of Criterion 3).
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such crossings reduce readability and make temporal estimations much more difficult and thus are
incompatible with goals 5 and 2, they should not be allowed. Therefore, we introduce another con-
straint which restricts control flow definitions to so-called symmetrical control flow blocks. This
structuring principle is known from structured programming [DIJKSTRA 1968, HERRTWICH &
HOMMEL 1994] and has recently also been applied to workflow management [REICHERT & DADAM
1998, KIEPUSZEWSKI ET AL. 2000].

Control Flow Constraint 3 (Symmetrical Blocks)
For an AND-SPLIT or OR-SPLIT node there has to be a one-to-one corresponding AND-JOIN
respective OR-JOIN node joining all paths starting at the AND-SPLIT respective OR-SPLIT node.
In particular, the number of outgoing edges of the AND-SPLIT respective OR-SPLIT node must be
the same as the number of incoming edges at the corresponding AND-JOIN respective OR-JOIN
node. In Figure 5-5, this constraint is violated as the paths starting at the two OR-SPLIT nodes are
joined by only one OR-JOIN node.
Analogously, for every LOOP-START n node there must be exactly one LOOP-END node m with
an edge (n, m).
A workflow part starting from an AND-SPLIT, OR-SPLIT, or LOOP-START node and closed by

Figure 5-6:  Symmetrical control flow blocks in AGENTWORK (without branching conditions).
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the corresponding AND-JOIN, OR-JOIN, respective LOOP-END node is called parallel, condi-
tional, respective loop block (Figure 5-6). The whole workflow starting from the START node and
ending at the END-node is also called workflow block.

We make the following remarks:
• Constraint 3 allows that blocks may be arbitrarily nested. This means that instead of consisting

solely of activity nodes a block may also contain other blocks. Together with constraint 2, con-
straint 3 enforces that such a sub-block entirely belong to its super-block, i.e., that it cannot not
“share“ any of its nodes with other super-blocks (i.e., the relationship between blocks and
sub-blocks is a one-to-many relationship). Figure 5-6 shows a parallel block containing a con-
ditional and a loop block.r160

• Waiting conditions can be assigned to all control edges. If both a branching and a waiting con-
dition have been assigned to an edge e = (n,m) (i.e., BC(e) ≠ NULL and WC(e) ≠ NULL), this
means by default that BC(e) must hold at the end of the waiting time. If the workflow modeler
needs the semantics that BC(e) must hold at the beginning of the waiting time this has to be
specified explicitly.

• Furthermore, for an OR-SPLIT node and its branching conditions it must be guaranteed that at
least one path will be executed.

• Obviously, especially constraints 2 and 3 reduce workflow expressiveness for the sake of read-
ability and analysis. As shown in [KIEPUSZEWSKI ET AL. 2000], not every workflow can be
transformed into a workflow meeting the constraints listed above. For example, the workflow
in Figure 5-7 a) violates constraint 3 (as the path C → AND-SPLIT → E is not leading to the
AND-JOIN node 3, if we assume that 1 corresponds to 3 and 2 to 41). At first glance, it seems
that the workflow Figure 5-7 b) which meets constraints 1-3 is equivalent. However, it intro-
duces an additional causal dependency between B and E, as now E cannot be executed before B
has been completed. This was not expressed in workflow a). The alternative to use only one
AND-SPLIT/AND-JOIN block with two parallel paths C → E and B → D also would not solve
the problem as then the dependency between C and D would be lost. 
In Section 5.4, after having described the different states a node may have during execution, we
will use so-called synchronization edges [REICHERT & DADAM 1998] to synchronize nodes
belonging to different parallel control flow paths within an AND-SPLIT/AND-JOIN block or
an OR-SPLIT/OR-JOIN block. This additional element allows to express workflows such as
the one shown in Figure 5-7 a) but does not violate constraints 1-3 and not leading to deadlocks
or unclear execution semantics.

1. If we assume that 1 corresponds to 4 and 2 to 3, then constraint 3 would also be violated as the path
AND-SPLIT → E would not lead to node 3.
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5.3.5.4 Minimal Block
We conclude this section on control flow specification with a definition of the so-called minimal
block of a node set. This definition will frequently be used especially for workflow estimation pur-
poses and control flow adaptations.
Let S be an arbitrary set of nodes of a workflow control flow definition. The minimal block MBS is
that AND-SPLIT/AND-JOIN, OR-SPLIT/OR-JOIN, LOOP-START/LOOP-END, or START/
END block which fulfills the following two conditions:

1. S is entirely contained in MBS (with S ≠ MBS , i.e., MBS contains at least one node not belonging
to S).

2. There is no other block MB’S ≠ MBS that contains S (with S ≠ MB’S) and that itself is entirely
contained in MBS .
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Figure 5-7:  Non-transformable workflow.
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For example, the minimal block of the B-node in Figure 5-6 is the OR-SPLIT/OR-JOIN block
while the minimal block of the A-node is the whole workflow. By postulating S ≠ MBS in condition
1, we enforce that the minimal block of a minimal block MB is not MB itself, but the next
surrounding block (this has only technical reasons for workflow estimation and adaptation). An
algorithm for determining minimal blocks can be found in chapter 3 of [REICHERT 2000].
Note that in contrast to [REICHERT 2000], sequences of activity nodes such as E → F in Figure 5-6
are not viewed as entire blocks, i.e., the minimal block always is the surrounding AND-SPLIT/
AND-JOIN, OR-SPLIT/OR-JOIN, LOOP-START/LOOP-END, or START/END block. This has
only technical reasons w.r.t. workflow estimation and adaptation.

5.3.6 Data Flow Definitions
So far, we have specified which objects are processed by activities or branching conditions. How-
ever, we also need to specify where these objects ”come from” and where they are “moved to”, i.e.,
how the data shall flow during workflow execution. As AGENTWORK focuses on control flow adap-
tation and views data flow adaptation “only” as a consequence of control flow adaptation (e.g., for
added nodes the needed input objects additionally have to be provided by the data flow), this thesis
provides a straightforward data flow model. 
The basic data flow construct in AGENTWORK is the so-called data flow edge. Data flow edges
specify how input objects are “filled” or “initialized” by other objects, or how output objects are
written to an object extension that may represent a table in a relational database. 
The principal structure of a data flow edge is best illustrated by an example (Figure 5-8): Let C1 and
C2 be two ACTIVETFL classes, and let us assume that activity node 3 in Figure 5-8 needs the input
objects o1: C1 and o2: C2 . If we want to "fill" o1 and o2 by using two objects x: C1 and y: C2 pro-
vided as output objects by two other activity nodes 1 and 2, we can specify this by two tuples:

d1 = (1.x, 3.o1) and d2 = (2.y, 3.o2) (iv)

with the meaning that first the output object x of node 1 is mapped to the input object o1 of node 3,

Figure 5-8:  Data flow
edges.
The non-dashed lines
denote the control flow. 
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and that second the output object y of node 2 is mapped to the input object o2 of node 3. Whether
“mapped” means that o1 becomes a reference to x or that x is copied to o1 is considered as a matter
of implementation. In the current AGENTWORK implementation (see Chapter 11), the mappings by
default are implemented by a reference semantics to achieve a high data currentness.r167 Thus, in the
following we will read a tuple such as (1.x, 3.o1) as “o1 becomes a reference to x1“.
As the tuples in (iv) can graphically be illustrated as edges connecting input and output objects of
different nodes (Figure 5-8), we call them data flow edges in the following.

We now describe the data flow between activity nodes, branching conditions, and object extensions
in Section 5.3.6.1. Then, we roughly sketch the data flow between activity nodes and programs in
Section 5.3.6.2, and motivate why this second data flow type can be neglected in this thesis. For the
sake of simplicity, we assume unique names for all input and output object definitions used within
a control flow definition.2

5.3.6.1 Data Flow between Activity Nodes, Branching Conditions, and Object Extensions
Let CF denote a basic control flow definition according to Section 5.3.5.1. To define the data flow
between activity nodes, branching conditions, and object extensions for CF, we introduce the fol-
lowing sets:
Activity-Input denotes the set of all activity input objects of all activity nodes of CF. For example,
for the workflow sketched in Figure 5-8, o1 and o2 belong to Activity-Input. Analogously, Activ-
ity-Output denotes the set of all activity output objects of all activity nodes of CF. Cond-Input
denotes the set of all input objects of all control flow edges of CF.r169 For example, the Hemato-Find-
ing object h of the “Severe-Leukocyte-Finding“ condition in Section 5.3.4 would belong to
Cond-Input, if this condition would be assigned to a control flow edge of CF. Note that waiting
conditions do not need objects so that we don’t have to consider them for data flow.
With Obj-Extensions we denote the set of object extensions according to 4.2.1.8. We recall from
Chapter 4 that in AGENTWORK these object extensions are used as abstractions of physical data
sources such as file systems or relational databases. In particular, some object extension may be
also used for the communication with remote workflow systems, i.e., objects inserted into such an
extension may be read by such remote workflow systems. The mapping between these object
extensions on one side and the physical data sources or remote workflow systems on the other side
is the task of the communication and integration layer (Chapter 11). 
Concerning the data flow between activity nodes, branching conditions, and object extensions, we
distinguish two types of data flow edges, namely such for internal and external data flow. This dis-
tinction is motivated by their different handling during workflow execution.

2. This can be enforced, for example, by postulating unique names within a single activity or branching
condition, and by indexing these names by the node and edge identifiers.
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Internal Data Flow: A tuple (s, t) is called an internal data flow edge, if it holds:r168

We call these tuples internal data flow edges, as they describe the data flow between “internal”
workflow elements such as activities and conditions. An example for such an internal data flow
edge is shown in Figure 5-9. In this figure, the internal data flow edge (x, f) between activity node

(s, t ) ∈
1. Activity-Output × Activity-Input ∪ // from activity output to activity input
2. Activity-Output × Cond-Input // from activity output to branching conditions

and
s matches t (according to Section 4.2.1.7)
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a1 and the upper branching condition c1 specifies that the X-Ray-Finding output object x of a1 shall
be mapped to the c1 input object f of class Radiological-Finding.

External Data Flow: A tuple (s, t) is called an external data flow edge, if it fulfills one of the two
definitions:

We call these tuples external data flow edges, as they describe the data flow between workflow
elements and object extensions representing “external” data sources. An example for an external
data flow edge meeting definition 1 is given in Figure 5-9. There the external data flow edge 

(?−x IN tumor-markers AND x.marked-tumor = “Osteosarkoma“, m) (v)

specifies that first the marker shall be found in the object extension tumor-markers that is able to
detect tissue of an osteosarkoma (a bone tumor type).r174 Second, the retrieved object x shall be
mapped to the Tumor-Marker input object m of node a3 (assuming that there is exactly one marker
for each tumor type).

5.3.6.2 Data Flow between Activity Nodes and Programs
The data flow between activity nodes and the programs assigned to these activity nodes is entirely
determined by the respective activity definitions and program definitions. In particular, the input
objects of an activity definition have to be mapped to the objects needed for a program execution,
and the objects produced by a program execution have to be mapped to the output objects of an
activity definition. The important point is that this mapping does not additionally depend on the
location of the node which uses a particular activity definition (in contrast to internal and external
data flow described above). As a consequence, the adaptation of data flow between activity nodes
and programs in case of control flow failures is very simple. For example, if an activity node is
dropped, the data flow between its activity definition and the program definition has entirely to be
dropped as well. If a node is added, the full mapping between the node’s activity definition and the
programs needed to execute the node has to be established. For this reason, we do not consider the

1. Data flow from object extensions to activity input or condition input objects (“reading“ edge):

• s is an ACTIVETFL query on an object in Obj-Extensions,
• t ∈ Activity-Input ∪ Cond-Input
• the result object of s matches t (according to Section 4.2.1.7).

2. Data flow from activity output to object extensions (“writing“ edge):

• s ∈ Activity-Output
• t is an insert or update operation on an object extension ext and uses s (e.g., inserts s into ext)
• for the class Classs of s it holds: Classs IS-A Classext, where Classext is the class for which the exten-

sion ext has been defined (according to Section 4.2.1.8), e.g., Classext = Hemato-Finding for ext =
hemato-findings(Hemato-Finding).
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data flow between activity nodes and programs anymore in the context of handling control flow
failures.r171 r172

5.3.6.3 Data Flow Definitions
A workflow data flow definition DF then is a tuple

DF=(Internal-Data-Flow, External-Data-Flow)

where Internal-Data-Flow is a set of internal data flow edges, and External-Data-Flow a set of
external data flow edges according to Section 5.3.6.1.r174r175 

5.3.6.4 Data Flow Constraints
To avoid complications during workflow execution, a data flow definition should meet some cor-
rectness constraints.r182 As this thesis does not focus on data flow aspects, we restrict ourselves to two
important data flow constraints, namely input completeness and forward-oriented data flow. A
more comprehensive discussion on data flow constraints can be found in [REICHERT 2000].
In the following, inputx denotes the set of input objects of an activity node or branching condition x.
Analogously, outputx denotes the set of output objects an activity node x is providing as output.

Data Flow Constraint 1 (Input Completeness)
Let x be an activity node or a control flow edge with branching condition.r181 For every element
c ∈ inputx, there has to be a data flow edge so that c can be initialized when the control flow reaches
x. Formally, it has to hold:

For each t ∈ inputx it holds:
It exists (r, s) ∈ Internal-Data-Flow ∪ External-Data-Flow with: s = t

Of course, due to conditional branching this constraint not yet guarantees that all input objects can
be initialized at execution time. For example, imagine an internal data flow edge where the source
node belongs to an OR-SPLIT/OR-JOIN block and where the target node is located behind the
resp. OR-JOIN node. Then, if the source node would not be executed as its path has not qualified
for execution, the target node may not receive some of its input objects anymore. One possibility to
cope with this problem would be to forbid any constellation where the target node of an internal
data flow edge may be executed while the resp. source node may not be executed as its path is con-
ditional. However, this is viewed as too restrictive. The better alternative is − as described in 5.4
(Workflow Execution Model), in particular 5.4.3.5 − to allow such conditional data flow constella-
tions, and to claim for missing data at execution time, if necessary.r176 r177 r178

Data Flow Constraint 2 (Forward-Oriented Data Flow)
A data flow edge e = (s, t) ∈ Internal-Data-Flow is not allowed to go “backwards” to a preceding
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activity node or control flow edge. For example, in Figure 5-10 a) the data flow edge e2 mapping o4
back to o1 is not allowed as node m cannot receive o4 because n is executed later in the control flow. 
The only exception allowing a “backward-oriented“ data flow is in the context of loops
(Figure 5-10 b). However, this requires that there is an additional data flow edge (e.g., e0 in
Figure 5-10 b) specifying from where the input data shall be retrieved for the first loop iteration.r179

Formally, a forward-oriented data flow is achieved if for any internal data flow edge
e = (s, t) between two nodes x and y there is at least one control flow path from x to y. 

5.3.7 Basic Workflow Definitions
A basic (or unnested) workflow definition W over Basic-Activity-Defs is a triple 

W = (name, CF , DF) where

• name is a unique name for the workflow definition,
• CF is a basic control flow definition meeting all control flow constraints, and 
• DF is a data flow definition according to 5.3.6.3 meeting all data flow constraints of 5.3.6.4.

Figure 5-10:  Data flow constraint 2 (forward-oriented data flow).
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After having introduced basic activities and basic workflow definitions, we now introduce
so-called complex activity definitions and complex workflow definitions to allow sub-workflows
within a workflow. Generally, AGENTWORK assumes that any workflow at one time may be
executed as a sub-workflow and at another time may be executed as a “stand-alone” workflow.
Sub-workflows support goal 2 (adaptation-oriented workflow structuring). For instance, if a
workflow is used in different workflows as a sub-workflow, its temporal estimation can be re-used.
Furthermore, sub-workflows increase workflow readability (goal 5) as they allow to hierarchically
decompose workflows.

5.3.8 Complex Activity Definitions
A complex activity definition is used as a placeholder for a sub-workflow and describes the input
and output data of this sub-workflow. It has the following form:

where sub-workflow is the name either of a basic workflow definition according to 5.3.7 or of a
complex workflow definition introduced below (see 5.3.9). At workflow execution time, the
workflow identified by sub-workflow has to be executed when the control flow reaches a node n to
which a complex activity definition has been assigned.r183r184 This execution has to be performed
synchronously, i.e., the control flow after n can only continue after the whole sub-workflow has
been executed.
Concerning data flow aspects, the mapping 

1. from the input objects of a complex activity definition to the input objects of its sub-workflow’s
activity nodes and control flow edges, and 

2. from the activity output objects of the sub-workflow to the output objects of the complex activ-
ity definition

is defined analogously to the internal data flow described in 5.3.6.1 so that we omit details here.
With Complex-Activity-Defs we denote the set of all complex activity definitions with data flow
needed for a workflow application.

5.3.9 Complex Workflow Definitions
We can now give the full definition of a workflow with control flow, data flow and sub-workflows.
Let therefore Activity-Defs = Basic-Activity-Defs ∪ Complex-Activity-Defs be the union of all basic

Complex-Activity-Def {
name: String;
input: Set<Time-Constr-Named-Obj-Patt<Object>>; 
sub-workflow: String; 
output: Set<Named-Obj-Patt<Object>>; }



Workflow Definition Model

127

and complex workflow activity definitions. A complex (or nested) workflow definition Wcomplex then
is a triple

Wcomplex = (name, CFcomplex , DF) where

• name is a unique name for the workflow definition
• CFcomplex is a control flow as defined in 5.3.6.3 but where the node activity mapping 

NAMbasic : Activity-Nodes → Basic-Activity-Defs 

has been extended to the mapping 

NAM : Activity-Nodes → Activity-Defs 

(so that also a complex activity definition can be assigned to an activity node).
• DF is a data flow definition according to 5.3.6.

In the sequel, an activity node n with NAM(n) ∈ Basic-Activity-Defs is called a basic activity node.
Analogously, an activity node with NAM(n) ∈ Complex-Activity-Defs is called a complex activity
node.
With Activity-Def we denote the activity definition type, i.e., the type extensionally specified by
Activity-Defs.

5.3.10 Workflow Cooperation
We now specify how workflows cooperate, in particular workflows that are executed at different
sites. The central assumption of the AGENTWORK cooperation model is that a workflow modeler
specifying workflows at one site usually will not have detailed knowledge about the control and
data flow of workflows running at another site. Thus, cooperation can only be modeled in a mes-
sage-oriented manner by specifying with which remote workflow system or − more abstractly −
with which cooperation partner which type of information shall be exchanged when. Any stronger
workflow coupling − such as connecting nodes of different workflows directly by control or data
flow edges − is viewed as inappropriate as this would require knowledge about the control and data
flow of the cooperation partner.
Principally, workflow communication could be modeled by external data flow edges where the
used object extensions represent some object “pool“ shared by different workflow systems. How-
ever, as the handling of inter-workflow implications of control flow failures is one the topics of this
thesis, AGENTWORK models workflow communication more explicit by special communication
nodes. This has the advantage that the adaptation components can easier detect whether an adapta-
tion affects cooperating workflows or not. Note that the handling of inter-workflow implications of
control flow failures does not assume that the workflow management system AGENTWORK is used
by both cooperation partners. It is only assumed that both cooperation partners use the same work-
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flow communication model as described in the following. 

5.3.10.1 Communication Nodes
To model workflow communication, AGENTWORK provides two additional node types, namely
COMM-IN and COMM-OUT nodes. A COMM-IN node is placed within a workflow to specify
that some information is expected from some other remote workflow system. A COMM-OUT node
specifies that some information has to be sent to some other remote workflow system. The message
content and the sender respective receiver is specified by so called inter-workflow communication
definitions that can be assigned to COMM-IN or COMM-OUT nodes.

5.3.10.2 Inter-Workflow Communication Definitions
An inter-workflow communication definition is a tuple

(ws; o1, o2, ..., on ; c) wherer188

• ws identifies the cooperating workflow system that shall receive objects or that is expected to
send objects.

• o1, o2, ..., on are named object patterns according to 5.2.1 specifying the objects that shall be
sent or that are expected to be received. These objects usually contain or describe (parts of) a
product or service. For example, they may describe an electronic document containing an
expertise needed by a cooperation partner (such as a chemotherapy report). They may also be
describe an electronic letter stating that a product has now been delivered to a parcel service
and will arrive at the cooperation partner during the next few days.

• c identifies the Case object to which the objects o1, o2, ..., on belong (e.g., the patient or cus-
tomer). The receiving workflow system uses c to identify the workflows needing the received
objects o1, o2, ..., on.r189 

In case that an inter-workflow communication definition (ws; o1, o2, ..., on ; c) has been assigned to
a COMM-OUT node, this means that the objects o1, o2, ..., on and c have to be delivered to ws when
the control flow reaches the COMM-OUT node. The system ws then uses c to identify the
workflows needing o1, o2, ..., on. In case that an inter-workflow communication definition
(ws; o1, o2, ..., on ; c) has been assigned to a COMM-IN node, this means that it has to be inspected
whether objects o1, o2, ..., on have been received from ws for case c.
To a communication node, an arbitrary number of inter-workflow communication definitions can
be assigned (e.g., to one COMM-OUT node two inter-workflow objects with different receiving
workflow systems can be assigned). Neither users, programs or equipment can be assigned to com-
munication nodes. Furthermore, communication nodes have to fulfill the same control flow con-
straints as activity nodes.
If n is a COMM-OUT or COMM-IN node, comm-objsn denotes the oi of all inter-workflow com-
munication definitions assigned to n. The elements in comm-objsn are called communication
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objects.

5.3.10.3 Communication Data Flow
The data flow w.r.t. communication nodes is defined similarly as for activity nodes. For a COMM-
OUT node n, the communication objects comm-objsn are initialized by data flow edges having
activity output objects or objects extensions as their source. Then, these communication objects are
mapped via external data flow edges to object extensions (from where they are sent to remote
workflow systems by some ecommunication infrastructure). Vice versa, for a COMM-IN node n,
the elements in comm-objsn are intialized via external data flow edges from object extensions to
which remote workflow systems have sent their data. Then, these communication objects are
mapped to activity input or condition input objects or to object extensions. Thus, we only have to
extend our definition of internal and external data flow in Section 5.3.6 by allowing elements of
comm-objsn at any place where activity input objects, activity output objects, condition input
objects, or object extensions are allowed.
Furthermore, data flow constraint 1 (input completeness) of Section 5.3.6.4 has to be extended in
the sense that every communication object of a COMM-OUT node can be initialized properly by
data flow edges.r191 The data flow constraint 2 (forward-oriented data flow) has to be extended in the
sense that also data flow edges having communication nodes as source or target have to be consid-
ered.

5.3.10.4 Workflow Definitions for Cooperation
A workflow definition Wcoop for cooperation then is a triple

Wcoop = (name, CFcoop , DFcoop) where

• name is an unique name for the workflow definition,
• WFcoop is a complex control flow as defined in 5.3.9 to which COMM-IN and COMM-OUT

nodes with inter-workflow communication definitions have been added, and
• DF is a data flow definition according to 5.3.6 to which data flow edges having communication

objects as their source or target have been added.

5.4 Workflow Execution Model
We nowr190 describe the AGENTWORK model of workflow execution by means of state transitions. A
precise description of possible workflow execution states is necessary, as the handling of control
flow failures affects running workflows and as the result of failure handling may depend on the
particular states of nodes and edges at the moment of the failure. Furthermore, a state-based execu-
tion model allows to describe execution on a high level of abstraction, so that the failure handling
process can be relieved from technical details.
We first introduce the different edge and node execution states (5.4.1-5.4.2). Second, we describe
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how a workflow is executed by means of state transitions (5.4.3-5.4.6).r193 

5.4.1 Edges States
A control or data flow edge e may be in the states Untouched, Unreachable, Control-Activated,
Data-Activated, Active, Committed, Committed-False, Committed-True, or Technically-Failed
(Figure 5-11):
• Untouched means that the control flow has not yet reached e.
• Unreachable means that the control flow will not reach e anymore (i.e., e will not be executed

anymore, given that no rollback or loop back occurs). For example, for a control flow edge
e = (n,m) this is the case if n and m belong to a path of an OR-SPLIT/OR-JOIN block that does
not qualify for execution.r192 

• Control-Activated means that the control flow has reached e, i.e., the source node of e has com-
mitted.

• Data-Activated means that all input data needed for the execution of e are available.r202 This state
if only possible for edges with branching conditions (5.3.4), as this is the only edge type need-
ing data for its execution. Note, that data flow edges provide data as an result, but do not need
this data for their execution.

• Active means that the edge is currently executed.
• Committed means that the processing of e has been completed successfully, e.g., that the data

Figure 5-11:  Edge states and edge state transitions. 
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have been successfully mapped from the source node to the target node in case e is a data flow
edge. For a control flow edge e with branching condition (i.e., BC(e) ≠ NULL) we additionally
introduce two sub-states to which e can commit: Committed-True means that BC(e) has been
evaluated to TRUE, while Committed-False means that BC(e) has been evaluated to FALSE. 

• Technically-Failed means that for some reason the processing of the edge failed. For example,
an external data flow edge may be set to this state if the object extension from which data shall
be retrieved is not accessible because of some database server crash.r194 We call this state Techni-
cally-Failed to emphasize that it has nothing to do with control flow failures but corresponds to
“technical” failures such as device, system, and transaction failures as described in 1.2.1. Nev-
ertheless we have to consider such technical failures as they may imply that workflow duration
estimations on which a workflow adaptation is based may not be met when the adapted work-
flow is continued.

The state of an edge e at a point in time t is returned by the function 

edge-state(e, t). (vi)

An edge e may be executed several times during the execution of a workflow instance I (due to
loop iterations or rollbacks). Therefore, we define the function 

entry-of-edge-state(I, ei, s) (vii)

which returns the point in time when an edge e enters a state s during its i-th execution w.r.t. a
workflow instance I. If only the current or next execution of e is of interest, we may use the term
entry-of-edge-state(I, eCurrent, s) or entry-of-edge-state(I, eNext, s) to get the point in time when e
enters state s during this current respective next execution. If it is clear from the context which
workflow instance or which execution of e is meant, we may simply omit the respective parameter,
e.g., we may write entry-of-edge-state(ei, s) or entry-of-edge-state(e, s).

5.4.2 Node States
A control, activity or communication node n may be in the states Untouched, Unreachable, Con-
trol-Activated, Data-Activated, Active, Committed, Technically-Failed or Control-Flow-Failed
(Figure 5-12):
• Untouched means that the control flow has not yet reached node n.
• Unreachable means that the control flow will not reach n anymore (given that no rollback or

loop back occurs). For example, if a path after an OR-SPLIT node does not qualify for execu-
tion, all nodes of this path (up to the last node before the closing OR-JOIN node) are set to state
Unreachable.r195

• Control-Activated means that the control flow has reached n, and − if n is a basic activity
node − that the case and the resources needed to execute n have been assigned to n.r201 A neces-
sary condition for setting n to this state is that all incoming control flow edges have been set to
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state Committed.
• Data-Activated means that all input data needed for the execution of n are available.r202 This state

if only possible for activity and communication nodes, as control nodes do not need data. Please
recall that the condition evaluation at an OR-SPLIT node or a LOOP-END node is a matter of
the associated control flow edges to which branching conditions have been assigned and which
have the OR-SPLIT or LOOP-END node as their source node.

• Active means that the node is currently executed. For example, for a basic activity node n this
means that the users or programs assigned to n are currently processing the activity definition
assigned to n. r203 r204 r207

• Committed means that the processing of n has been successfully completed. In case of an activ-
ity or communication node this state also means that the output objects of n have been pro-
vided.r205 A control node is set to state Committed directly after it has been set to state
Control-Activated (as it does not process any data).

• Technically-Failed means that the execution of n is not possible because of technical reasons. A
node n may be set to this state from the states Control-Activated, Data-Activated, or Active. For
example, the transition Control-Activated → Technically-Failed may occur when at least one of
the incoming data flow edges of n is set to state Technically-Failed because of a database server
crash so that n cannot be set to state Data-Activated.

• Control-Flow-Failed means that n is not adequate anymore because of a control flow failure.

Figure 5-12:  Node states and node state transitions.
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As this thesis views control flow failures as a inadequacy of activities, this state is only possible
for activity nodes. A node n may be set to this state from the states Untouched, Control-Acti-
vated, Data-Activated, Active and Committed.r205

A state transition Committed → Control-Flow-Failed means that the activity NAM(n) has retro-
spectively been identified as wrong from the control flow point of view. For example, after hav-
ing administered a drug several times to a patient it may be detected that this patient has an
allergy against this drug, so that the former activity nodes administering this drug must have to
viewed as Control-Flow-Failed retrospectively. The reason for setting these already committed
activity nodes is to avoid that this nodes are executed again in case of a workflow rollback.

The question how a workflow with nodes in state Control-Flow-Failed can be set back to “normal“
states is exactly the matter of control flow failure handling and the central topic of the following
chapters.

The state of a node n at a point in time t is returned by the function

node-state(n, t). (viii)

Analogously to edges, the point in time when a node n enters a state s during its i-th execution (dur-
ing the execution of a workflow instance I) is returned by the function

entry-of-node-state(I, ni, s). (ix)

If only the current or next execution of n is of interest, we may use the terms
entry-of-node-state(I, nCurrent, s) respective entry-of-node-state(I, nNext, s) to get the point in time
when n enters state s during this current or next execution. If it is clear from the context which
workflow instance or which execution of n is meant, we may simply omit the respective parameter,
e.g., we may write entry-of-edge-state(ni, s) or entry-of-edge-state(n, s).

5.4.2.1 Node State Synchronization Edges
Beside the control flow edges introduced in Section 5.3.5.1, it sometimes is useful to allow addi-
tional control flow dependencies between nodes. For example, let us assume that an oncological
workflow consists of two parallel paths. One path administers cytostatic drugs while the other path
performs monitoring activities for these cytostatic drugs. One of the monitoring activities must not
be started before a particular drug administration in the other path has started, as the monitoring
activity measures the side-effects of this drug administration.r213 Formally, this means that a necessary
condition for setting the monitoring activity node to state Active is that the drug administration
node has been set to state Active as well. This cannot be achieved via the control flow edges of Sec-
tion 5.3.5.1, as such a control flow edge e = (n,m) has the semantics that m can only be set to state
Control-Activated (and thus to Active) if n has been set to state Committed. Furthermore, it is for-
bidden by Criterion 2.
To support dependencies such as the one above without giving up the workflow structuring as
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introduced in Criterion 5.3.5.3, we use so-called synchronization edges [REICHERT & DADAM
1998]: Given two nodes n1 and n2 and states s1 and s2, a synchronization edge3 is a tuple

( (n1, s1), (n2, s2) ), s1, s2 ≠ Untouched, Unreachable

with the meaning that a necessary condition for setting n2 to state s2 is that

1. n1 has been set to state s1 , or that

2. n1 has been set to state Unreachable.r209

By this, control flow dependencies such as the one in
Figure 5-7 a) can be expressed without violating
constraints 1-3 (Figure 5-13).
Condition 2 is necessary to avoid the “starvation” of n2 if
the path to which n1 belongs will not be executed as it is,
for example, a conditional path that does not qualifies for
execution.r210

Additionally, it is not allowed that a synchronization edge
has its source node within a LOOP-START/LOOP-END
block, and its target node outside this LOOP-START/
LOOP-END block, or vice versa. This is because it then
would be unclear for which loop iteration the synchroni-
zation shall take place.
Formally, the control flow edges of Section 5.3.5.1 are
special synchronization edges of type 

( (n1, Committed), (n2, Control-Activated) ) (x)

For them, we still write (n1, n2) as a distinguishing notation as these edges express the “main-
stream“ of the control flow. In particular, in the following we term any edge of type (x) a control
flow edge while any edge of a type different from (x) (such as ( (n1, Active), (n2, Active) ) is termed
synchronization edge.
To a synchronization edge ( (n1, s1), (n2, s2) ) a waiting condition WC = (min, max) may be assigned
with the semantics that a necessary precondition to set n2 to state s2 is that since n1 has been set to
state s2 at least the time specified by min and at most the time specified by max must have elapsed.
Assigning a waiting condition WC(e) to a synchronization edge e implicitly means that it has to be
verified whether the min and max entries of WC(e) are satisfiable at all (e.g., if e connects nodes of
different paths of and AND-SPLIT/AND-JOIN block). In AGENTWORK, this sort of temporal veri-
fication is possible due to the temporal estimation algorithms introduced in Chapter 6 (Workflow

3. Corresponding to a soft synchronization edge of [REICHERT & DADAM 1998].
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Duration Estimation), but not further addressed as workflow verification is not our major topic.
It is not allowed to assign a branching condition to a synchronization edge as it otherwise would be
unclear what to do if the branching condition is not TRUE. A synchronization edge may be in the
states Untouched, Unreachable, Active and Committed.r211 r212

5.4.3 Edge and Node Execution
We now describe how edges and nodes are executed. For this we first introduce some temporal tol-
erance parameters (5.4.3.1). Second, we describe the execution of the different edge types (5.4.3.2-
5.4.3.4) and node types (5.4.3.5-5.4.3.6). Finally, we discuss transactional aspects of edge and node
executions (5.4.3.7). As a preliminary remark we state that during workflow execution some edge
or node types remain in some state only with a duration 0. This has only technical reasons to avoid
too many case distinctions w.r.t. state transitions.

5.4.3.1 Tolerance Parameters 
As workflows typically have a longer time span, the execution of nodes or edge should not be
aborted immediately when technical difficulties occur. Rather, execution steps should be retried or
difficulties should be repaired manually, if possible. To model this, AGENTWORK introduces two
parameters eng-time and user-time of the duration type (4.3.2). They have the following semantics:
• eng-time specifies the maximal amount of time the workflow engine tries to perform a particu-

lar execution step (such as reading data from a source activity node or from a relational data-
base). If the engine is not able to complete this execution step successfully during eng-time (as
for example the source node has not been executed at all due to some conditional branching or
as a database server has crashed), the engine requests a user to resolve the situation manually,
e.g., by typing in the needed data.

• user-time specifies the maximal amount of time given to an “authorized“ user to resolve the sit-
uation manually. The question which user is authorized is considered as a matter of implemen-
tation. For example, if the execution step deals with an activity node n, this user may be a
member of AUM(n) which may type in some missing data manually, or an administrator in case
of some technical problem such as that an application program cannot be started. If the situation
is not resolved manually during user-time, as for example the user is not available or is not able
to resolve the situation manually, the execution step is assumed to have failed. The motivation
for this parameter is that it is too restrictive to let an execution step fail without giving the
workflow user or administrator the chance to intervene.

In particular, a node or edge is only set to state Technically-Failed after the time intervals specified
by eng-time and user-time have elapsed without any successful attempt to complete an execution
step. The particular values of eng-time and user-time and the question whether these values are
global or may depend on the type of the execution step (e.g., edge or node execution) is left up to an
implementation. Typically, eng-time should be not longer than several minutes, while user-time
may last several hours, as it is the time scheduled for a manual process.



Workflow Execution Model

136

For more enhanced fault tolerance models concerning “normal“ workflow execution (i.e., without
considering control flow failures), we refer to [WÄCHTER 1996, LIEBHART 1998].

5.4.3.2 Execution of Data Flow Edges
We describe the principal execution of data flow edges by the example of an external data flow
edge. The other data flow edge types are executed analogously.r163

If e = (s, t) is a reading external edge, e is set to state Control-Activated and then directly to Active
when its target activity node or branching condition x (i.e., the node or condition x with t ∈ inputx)
has been set to state Control-Activated (as in this state x needs its input data). During eng-time the
engine tries to perform the object extension query specified by s and to map the retrieved data to t.r166

If this data mapping fails as the database server has crashed or as the query returns an empty set
because no object meeting the pattern expressed by t can be found, the engine requests an autho-
rized to resolve the situation manually during user-time. For example, this user can try to restart the
crashed database server, or can enter the requested data manually. If this also fails, e is set to state
Technically-Failed. Otherwise, if the data can be mapped to t during eng-time or user-time, e is set
to state Committed.
If e = (s, t) is a writing external edge, e is set to state Control-Activated and then directly to Active
when its source activity node n (i.e., the node n with s ∈ outputn) has been set to state Committed
(as in this state n provides its output data).r164 The further execution of e is analogously to the execu-
tion of the reading external edge.
All other data flow edge types are executed analogously so that we omit the description of their
execution here.
Note that any edge e = (s, t) is also set to state Technically-Failed, if the source object described by
s does not match the pattern required by t according to 4.2.1.6, or if the currentness of the source
object is not sufficient. For example, if h is an activity input pattern defined as 

h: Hemato-Finding[parameter = Leukocyte-Count] NOT-OLDER-THAN (2, day)

(see 5.2.2), then e = (s, h) would be set to Technically-Failed if s is a thrombocyte count or a leuko-
cyte count older than 2 days.r165

5.4.3.3 Execution of Control Flow Edges
A control flow edge e = (n,m) is set to state Control-Activated when n has been set to state Commit-
ted. In case no waiting or branching condition has been assigned to it, e is directly set to state Active
and then to Committed (i.e., the duration of state Active is 0 in this case).
In case a waiting condition WC(e) with min and max entries has been assigned to e, e is then
directly set to state Active and remains in this state at least for the duration described by min and at
most for the duration described by max. There are two principal possibilities to determine when the
waiting time is over and e thus shall enter state Committed: First, the engine itself can select a point
in time



Workflow Execution Model

137

t ∈ [entry-of-edge-state(I, eCurrent, Active) + min, entry-of-edge-state(I, eCurrent, Active) + max], 

e.g., the half temporal distance (I being the workflow instance e belongs to). If an authorized user
confirms t, the engine sets e to state Committed. Second, an authorized user himself selects a point
in time t to indicate that the waiting time is over. In this case, the engine rejects this if
t < entry-of-edge-state(I, eCurrent, Active) + min, or generates an alert if the point in time
entry-of-edge-state(I, eCurrent, Active) + max has been reached but the user has not selected such a t.r214

It is considered as a matter of configuration which possibility is used. For the AGENTWORK work-
flow model it is sufficient to assume that the waiting constraint in some way is met.r215r216

In case a branching condition BC(e) has been assigned to e, the engine executes every data flow
edge of the set 

Se := {(s, t) ∈ Internal-Data-Flow ∪ External-Data-Flow | t ∈ inpute} (xi)

which is the set of all edges mapping data to an input object of e. If all edges in Se have been set to
state Committed (i.e., all objects in inpute could have been initialized), e is set to state Data-Acti-
vated (as all data needed for the condition evaluation are available). Then, e is set to state Active,
and the condition BC(e) assigned to e is evaluated. In case the condition is fulfilled, e is set to state
Committed-True. In case the condition is not fulfilled, e is set to state Committed-False.r218 In the lat-
ter case, all nodes and edges that cannot be reached anymore during the current workflow execu-
tion are set to state Unreachable.4 If at least one data flow edge in Se has been set to state
Technically-Failed or if the condition BC(e) assigned to e could not have been evaluated, e is set to
state Technically-Failed.

5.4.3.4 Execution of Synchronization Edges
A synchronization edge e = ( (n1, s1), (n2, s2) ) is set to state Control-Activated and then to Active if
n1 has been set to state s1. If no waiting condition has been assigned to e, it is then set directly to
state Committed. If a waiting condition has been assigned to e, e is executed analogously to a nor-
mal control flow edge with waiting condition.r219

In the following we do not explicitly mention anymore that a necessary condition for setting any
node n to any state s is: If a synchronization edge e = ((m, s’), (n, s)) exists, e must be in state Com-
mitted or in state Unreachable.r196

5.4.3.5 Execution of Basic Activity Node
We now describe how a basic activity node n with activity definition A is executed during the exe-
cution of a workflow instance I. As the execution of a basic activity node is a rather complex pro-
cess, we order our description according to the different state transitions.

Transition Untouched → Control-Activated: A node n is set to state Control-Activated when the

4. The node reachability algorithm is described in [BÖHME 2000].
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control flow reaches n (i.e., when all incoming control flow and synchronization edges have been
set to state Committed or Committed-True), and when the case for which n shall be executed and the
required resources have been assigned to n. Concercing case and resource assignment, we are not
interested in the details and in particular assume first that the case for which a node shall be
executed is known when the control reaches n, and that second the needed resources are available.
Therefore, we simply model this case/activity assignment via the functions

case(I, ni): Case, and

resources(I, ni): Set<Resource>. (xii)

The function case(I, ni) returns the Case object that is assigned to the i-th execution of an activity
node n during the execution of a workflow instance I.r197 If it is clear from the context which work-
flow instance or which execution of n is meant, we may simply omit the respective parameter, e.g.,
we may write case(n).
The function resources(I, ni) returns the Resource objects that are assigned to the i-th execution of
an activity node n during the execution of the instance I. In contrast to the case assignment, the
resource assignment is restricted by the function mappings AUM (Activity → User Mapping), APM
(Activity → Program Mapping), and AEM (Activity → Equipment Mapping), as defined in 5.3.3.1-
5.3.3.3. For example, all User objects in the result set of resources(I, ni) have to match the patterns
of the user definitions assigned to the activity definition of n by AUM.r198 If it is clear from the context
which workflow instance or which execution of n is meant, we may simply omit the respective
parameter, e.g., we may write resources(n).r198

Both functions will play an important role in Chapter 7 (Control Actions), as their return values
determine whether a node execution is affected by a case-related respective a resource-related con-
trol action.
Transition Control-Activated → Data-Activated: To set a node n from state Control-Activated to
state Data-Activated, all data flow edges providing input data for n are executed. Formally, this is
the set:r196

Input-Edgesn := {(s, t) ∈ Internal-Data-Flow ∪ External-Data-Flow | t ∈ inputn} (xiii)

If the execution of an edge (s, t) ∈ Input-Edgesn fails, n is set to state Technically-Failed. The exe-
cution of (s, t) may fail as data could not have been read from an object extension,r220or as the source
node that should have provided s has not been executed at all due to a conditional path. Another
reason may be that s is not assigned to the same case which is assigned to n, i.e., if it holds
s.of ≠ case(n). If all edges in Input-Edgesn have committed, n is set to state Data-Activated, as all
data needed to execute n are available now.
Transition Data-Activated → Active: To set a node n from state Data-Activated to state Active,
first all programs that have been assigned to n − via the function APM (Activity → Program Map-
ping) as defined in 5.3.3.2 − have to be launched and provided with their input data. Second, to the
users assigned to n, messages about the activity node to be executed are sent to the worklists of
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these users. The node n is then set to state Active, when either a user assigned to n confirms that the
activity execution has been started or when the first program assigned to n has been invoked suc-
cessfully. 
Transition Active → Committed: After the execution of the activity the output objects provided by
the programs are mapped to the output objects of n. If at least one output object of n could not have
been filled properly as for example one of the assigned programs has not been able to execute prop-
erly, n is set to state Technically-Failed as well.r220 Otherwise, if all output objects of n have been
filled properly, the execution of n is completed by setting it to state Committed.r221

5.4.3.6 Execution of Communication Nodes
A communication node is set to state Control-Activated when all incoming control flow and syn-
chronization edges have been set to state Committed or Committed-True. The further processing is
as follows:
For a COMM-OUT node n, all data flow edges initializing the communication objects of n are exe-
cuted. If at least one of this edges is set to state Technically-Failed, n is set to Technically-Failed. If
all edges initializing the communication objects have committed, n is set to Data-Activated and
then directly to state Active. During the state Active, for each inter-workflow communication defi-
nition (ws; o1, o2, ..., om ; c) assigned to n, the communication objects o1, o2, ..., om are delivered to
the receiver system ws via the communication and integration layer. This is done asynchronously,
as n is set to state Committed after the objects have been delivered and as the execution of the suc-
cessor node of n is continued after this. If the successor node of n shall not be continued until ws
sends a confirmation this has to be specified via a COMM-IN node placed directly after n.
In case that the delivery of the o1, o2, ..., om is not possible during eng-time as for example ws is a
workflow system not registered, the engine sends a message to an authorized user or the adminis-
trator to resolve the failure situation (e.g., to achieve that the ws entry is manually corrected). If the
failure situation is not resolved during user-time, n is set to state Technically-Failed.

Vice versa, for a COMM-IN node n it is inspected for each inter-workflow communication
definition (ws; o1, o2, ..., om ; c) assigned to n, whether the objects o1, o2, ..., om have been sent for
case c by ws and therefore are available. If at least one oi is missing, the engine waits until a time
described by comm-in-time has passed. The parameter comm-in-time specifies a duration typically
significant longer than eng-time or user-time, as the time that should be waited until information
from remote cooperation partners is received should be longer than the time it is waited until
“internal” users respond. If there is at least one object missing after comm-in-time has expired, n is
set to state Technically-Failed. If all objects are available, n passes the states Data-Activated and
Active (both with duration 0) and is set to state Committed. The received objects are then mapped to
other workflow objects or to object extensions via internal resp. external data flow edges.

5.4.3.7 ACID Transactions and Edge/Node Execution
In contrast to other approaches (e.g., [WÄCHTER & REUTER 1992]), AGENTWORK does not make
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any assumption which steps during edge and node execution are enclosed within transactional bor-
ders, especially such following the ACID principle. This is left entirely up to an implementation.
One could argue that it could make sense to enclose all steps executing a basic activity nodes (i.e.,
all steps between the states Control-Activated and Committed) within one ACID transaction. How-
ever, this does not make sense for many medical activities such as administering an 1 hour ETOPO-
SID infusion, as this activity cannot be rolled back from the moment at which it has been started (as
the drug fluid cannot be extracted from the patient again). In particular, the demand to defer such
“real actions” [GRAY & REUTER 1993] at the end of the transaction is not suitable for such medical
activities as they mainly consist of such real actions, and not of database operations. Therefore,
when it is said in the following that the execution of an edge or node has to be aborted, this does not
necessarily mean a rollback of an ACID transaction, probably operated in the context of some 2-
phase-commit protocol. It may also mean a manual abort, such as the immediate stop of an ETOPO-
SID infusion by an physician.r222

5.4.4 Block Execution
We now describe how the AGENTWORK engine executes control flow blocks. As an introductory
remark we state that the opening node of a block (i.e., the AND-SPLIT, OR-SPLIT or
LOOP-START node) is set to state Control-Activated when all incoming control flow and synchro-
nization edges have been set to state Committed or Committed-True.

5.4.4.1 Execution of AND-SPLIT/AND-JOIN Blocks
The execution of an AND-SPLIT/AND-JOIN block with k parallel paths is performed as follows:
After having been set to state Control-Activated, the AND-SPLIT node is directly set to state Active
and then to state Committed. After this, the edges and nodes of the k parallel paths are executed.
The closing AND-JOIN node is set to state Control-Activated when all edges between it and the last
activity nodes of the k paths have been set to state Committed. Finally, the AND-JOIN node directly
passes to the state Committed.

5.4.4.2 Execution of OR-SPLIT/OR-JOIN Blocks
The execution of an OR-SPLIT/OR-JOIN block with k conditional paths is performed as follows:
After having been set to state Control-Activated, the OR-SPLIT node is directly set to state Active
and then to state Committed. After this, the k outgoing control flow edges with branching condi-
tions are evaluated. For each condition for which the condition evaluates to TRUE, the respective
path is executed. For each condition for which the condition evaluates to FALSE, all path nodes
and edges up to the closing OR-JOIN node are set to state Unreachable. The closing OR-JOIN
node is set to state Control-Activated when all edges between it and the last activity nodes of the
executed paths have been set to state Committed. Finally, the OR-JOIN node directly passes to the
state Committed.
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5.4.4.3 Execution of LOOP-START/LOOP-END Blocks
The execution of a LOOP-START/LOOP-END block is performed as follows: After having been
set to state Control-Activated, the LOOP-START node is directly set to state Active and then to state
Committed. After this, the path between the LOOP-START and the LOOP-END node is executed.
Every time the path execution has been completed, the termination condition is evaluated. If the
termination condition is FALSE, the loop path is executed again. If the termination condition is
TRUE, the LOOP-END is set to state Control-Activated, and directly passes to state Committed.
After this, the successor node of the LOOP-END node which is not identical with the correspond-
ing LOOP-START node is executed.

5.4.5 Workflow Instance States
In the following we describe the states in which a workflow instance as a whole may be during its
execution. These are the states Being-Initialized, Active, Committed, Rolling-Back, Aborted and
Suspended (Figure 5-14). These states have the following meaning:
When a workflow definition shall be executed, an instance I based on this definition is generated
and set to state Being-Initialized. In particular, the START node is set to state Active. During the
state Being-Initialized, only “technical“ procedures − such as setting all nodes (except the START
node) and edges to state Untouched − are performed so that we omit details here. If at least one ini-
tialization procedure could not have been executed properly, the START node is set to state Techni-
cally-Failed (see below for the further handling of I in case that a node failed technically). If all
initialization procedures have been executed successfully, the START node is set to Committed,
and I is set to state Active. Then, the edges, nodes and blocks of the workflow are executed as
described in 5.4.3 and 5.4.4. When the END-node has been reached, I is set to state Committed.

Being-InitializedBeing-Initialized ActiveActive CommittedCommitted

SuspendedSuspendedAbortedAborted

Rolling-BackRolling-Back

This transition only if 
currently executed nodes
are allowed to commit

Transitions during “normal” execution Transitions in failure situations

Figure 5-14:  Workflow
instance states and state
transitions.
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During the states Being-Initialized and Active, I may be set to one of the “failure” states Roll-
ing-Back, Aborted, and Suspended. For example, the state transition sequence Active → Rolling-
Back → Aborted may be performed for I if an abort control action has been triggered by some con-
trol flow failure (see Section 3.3.1), or if at least one node or edge of I has been set to state Techni-
cally-Failed.5 The state Rolling-Back means that I is rolled back to some already committed nodes.
In particular, first the execution of edges and nodes in state Active (e.g., of the T-node in
Figure 5-15) is aborted (also see 5.4.3.7). Second, for all nodes in state Committed compensating
activities (5.3.2) are processed in the reverse order of the executed control flow (Figure 5-15). 
Alternatively, instead of being set to state Aborted, I may be set to state Suspended if it makes sense
to continue the workflow after a while. For example, a chemotherapy workflow may have to be
suspended because the patient has got a hematological toxicity and has to recover for one week
before the chemotherapy can be continued. Before setting I to state Suspended, a rollback to the last
committed nodes may become necessary if nodes in state Control-Activated, Data-Activated, or
Active are not allowed to commit (state transition sequence Active → Rolling-Back → Suspended in
Figure 5-14). For example, this may be because nodes in state Active administer drugs that are
responsible for the toxicity and thus have to be aborted immediately. When the workflow instance
is continued after the suspension, it is set back to state Active.
The precise criteria stating which types of control flow failures lead to rollbacks, abortions or sus-
pensions of workflows are given in Chapter 7 (Control Actions). Furthermore, as we focus on the
dynamic adaptation of workflow due to local control flow failures, and not an workflow transaction
aspects, we refer to the authors already mentioned in Chapter 2 (Related Work), in particular
[GREFEN ET AL. 1999 B, KAMATH & RAMAMRITHAM 1998, DAVIS ET AL. 1996,r18 ALONSO ET AL.
1996, LEYMANN 1995] for more technical details on workflow abortion and compensation.r225

5. Recall from 5.4.3 that a node is only set to state Technically-Failed if short-term attempts (e.g., during
the next hours) to resolve the technical failure already have failed.
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Figure 5-15:  Workflow rollback. 
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5.4.6 Execution of Complex Activity Nodes
A node n with complex activity definition C is executed as follows: When n has been set to state
Control-Activated, a workflow instance IC based on the workflow definition WC assigned to C is
generated and synchronously executed as described in 5.4.5. During the execution of IC, input
objects from n are mapped to activity nodes or control flow edges of IC according to the data flow
definition. Analogously, output object from activity nodes of IC are mapped to the output objects of
n. When IC is set to state Committed, also n is set to state Committed, and the super-workflow to
which n belongs continues with the successor node of n.
We emphasize that IC is viewed as a part of its super-workflow with composite semantics. In partic-
ular, if the super-workflow is set to one of the failure states, this is also done for the sub-workflow.
In contrary to this, this does not necessarily hold for the other direction. For example, if IC is set to
state Suspended because of some control flow failure, other paths of the super-workflow (i.e., those
paths not containing the node with the complex activity definition C) may be continued.r226

5.5 Related Work
We now compare the workflow model of AGENTWORK with other workflow models in terms of
goals 1-5 of 5.1. We concentrate on petri nets and state/activity charts as these are some of the most
frequently language types used for workflow management. For other language types relevant for
workflow management we refer to the literature (e.g., [BAETEN & WEIJLAND 1990] for process
algebras and [SENKUL ET AL. 2002, DAVULCU ET AL. 1999] for transaction logics).

5.5.1 Petri Net-Based Workflow Modelling
Petri nets have been introduced as a calculus for the formal description of dynamic systems such as
nuclear power plant control systems or computer networks [PETRI 1962]. Formally, a petri net is a
bipartite graph consisting of a set T of so-called transition nodes, a set P of so-called place nodes
and a set of edges E ⊆ T × P ∪ P × T connecting places and transitions. A transition usually repre-
sents a unit of work (i.e., an activity). A place typically represents an information “container“ that
can be marked with a set of so-called tokens representing data objects which are used, modified, or
created by transitions. For example, in a medical domain a transition could model an examination
or a drug administration, while tokens may represent patient data. A transition “fires“ when for all
input places the specified number of tokens is available. When the transition has been completed,
its produced output tokens are moved to its output places. For further details concerning petri net
syntax/semantics and the different petri net classes (e.g., place/transition, colored, hierarchical, sto-
chastic and time-oriented nets), we refer to [BAUMGARTEN 1996, MURATA 1984].
Recently, petri nets also have been used for workflow modeling purposes in commercial workflow
management systems (e.g., COSA [SOFTWARE LEY GMBH 2000], PROMATIS INCOME [OBERWEIS
ET AL. 1994]) and workflow research projects (e.g., [QUAGLINI ET AL. 1999, ADAM ET AL. 1998,
AALST 1998, OBERWEIS 1996]). This is because of the following reasons:
• First, their expressiveness (goal 1) is high. Especially colored and hierarchical nets provide a
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broad range of constructs for control and data flow modeling suitable for workflow manage-
ment. In particular, petri nets allow to integrate workflows with data distribution and communi-
cation processes. This means that not only the workflows themselves but also any
communication of the workflows with users, application programs, databases, repositories and
remote workflow systems can be modeled uniformly with transitions, places and tokens.

• Second, they provide a clear formal foundation (goal 3) supporting workflow analysis, such as
reachability analysis or deadlock analysis [ADAM ET AL. 1998, AALST 1997].

• Third, several approaches have extended petri nets with temporal elements (timed petri nets)
[ABDULLA & NYLÉN 2001, INABA ET AL. 1998, SCHÖF ET AL. 1995], e.g., to specify the mini-
mal or maximal duration transitions. Thus, similar to waiting conditions introduced in 5.3.5.1,
temporal constraints of workflow execution can be specified by using such timed petri nets. 

However, there are several disadvantages so that petri nets have not been selected for this thesis: 
• First, petri nets do not support object-oriented or object-relational data flow sufficiently (partial

violation of goal 1). Though some work has been done to extend petri nets with object-oriented
concepts (e.g., by modeling tokens as objects [LAKOS 1995]r227), results are of only preliminary
nature yet. In particular, the question how to tailor analysis techniques to such object-oriented
petri nets has not yet been answered clearly. Thus, as an object-oriented or object-relational
data model is considered necessary for AGENTWORK, petri nets have not been selected.

• Second, goal 2 (adaptation-oriented workflow structuring) is not supported sufficiently. This is
because the control flow and the data flow are not clearly separated as both are described by the
same syntactical model elements (i.e., places, transitions and tokens). As in AGENTWORK adap-
tation primarily is an adaptation of control flow, this mixing up of control and data flow is not
suitable for the purposes of this thesis.r228 

• Third, goal 4 (adaptation-oriented execution support) is not met. In particular, the question
which net parts have already been executed and which still have to be executed can only be
answered by maintaining additional execution time information or by performing an extensive
reachability analysis. This is a serious limitation, as the information about a workflows current
execution state is essential for the dynamic adaptation process.r229

5.5.2 State/Activity-Charts
State/activity charts have been introduced by [HAREL 1987] as a formalism for specifying dynamic
systems. So-called activity charts represent activities and their data dependencies while so-called
state charts specify state transitions and thus the control flow between activities. For example, in
Figure 5-16 the activity chart MAIN_ACTIVITY consists of the three activities A0, A1 and A2, and
specifies that A1 and A2 need the data elements DATA1 respective DATA2 from A0. The control flow
between A0, A1 and A2 is specified by the state chart CONTROL. For example, CONTROL specifies
that state Z0 starts when activity A0 has started (/st!(A0) for start activity A0). Furthermore, it speci-
fies that the state transition Z0 → Z0 first has to be performed when event E1 occurs with condition



Summary and Discussion

145

C1, and second consists of stopping A0 (/sp!(A0) for stop activity A0) and of starting A1 (/st!(A1).
Because of their formal foundation and very strict distinction between control and data flow, state/
activity charts have recently been used for process modeling in application development tools (e.g.,
STATEMATE/RHAPSODY [I-LOGIXS 2002], IBM OBJCHARTr230) and in workflow research projects
(e.g., [WODTKE & WEIKUM 1997]). However, their usage for AGENTWORK is limited as the control
flow is “hidden“ in the state transition of the state charts. Thus, when a control action such as
drop(A) would have been derived one would have to process all transition labels of the form E[C]/
st!(..) to identify where in the control flow A-nodes occur. Though this is possible, a block-oriented
control flow definition as described in this chapter is much more suitable for the purposes of work-
flow adaptation as the control flow flow is represented much more explicitly.

5.6 Summary and Discussion
In this chapter we have introduced the AGENTWORK workflow model. Table 5-3 summarizes the
characteristics of this workflow model and shows how they support the goals of 5.1. Particular
strengths that go beyond the capabilities of other models such as the ADEPTFLEX model [REICHERT
2000] include the fine-grained activity definitions and the full-fledged object-oriented data model.
Generally, one may ask why external data-related actions such as database accesses or user inputs
are linked to control (i.e., conditional) and data flow edges, and not to special data-providing activ-
ity nodes (as [REICHERT 2000] suggests). This requires that numerous definitions (e.g., for param-
eter supply and time computations) have to be provided not only for nodes, but also for edges. The
main reason for this has been − in order to support an adaptation-oriented workflow structuring
(goal 2) − to separate application activities such as administering a drug from “operational“ aspects
such as data retrieval, as activities are the main objectives of adaptation, and not operational ele-
ments. Thus, the suggested workflow structuring directly supports workflow adaptation.
Several limitations have to be mentioned: First, the control and data flow constraints listed in
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Figure 5-16:  State and activity charts.



Summary and Discussion

146

5.3.5.3 and 5.3.6.4 can only ensure some basic forms of correctness, and cannot avoid all possible
types of incorrect workflows. For example, AGENTWORK does not provide a mechanism to verify
whether the conditions at an OR-SPLIT node guarantee that for any data constellation at least one
path will qualify for execution. However, as workflow definitions have a higher complexity than
typical procedural languages such as C++ or Java because of parallel path execution, and because
program verification already cannot be solved in general for these language types [APT & OLD-
EROG 1994], one cannot expect a list of constraints ensuring an overall correct workflow definition.
For enhanced work on workflow correctness and verification, see [REICHERT 2000, AALST 1997].
Second, AGENTWORK does not provide a full-fledged workflow transaction approach. Rather, to
concentrate on the handling of control flow failures and dynamic adaptation, AGENTWORK incorpo-
rates only basic transactional elements such as compensating activities and rollbacks to support
workflow abortion. For more enhanced aspects, such as forward recovery and cascading compen-
sation to cope with data dependencies, we refer to the literature already mentioned in Chapter 2
(Related Work), e.g., [GREFEN ET AL. 1999 B, REUTER & SCHWENKREIS 1995, LEYMANN 1995].
Finally, though readability is supported by connected, symmetrical control flow blocks and hierar-
chical workflows, it is unlikely that the introduced workflow model will directly be usable by non-
computer experts such as physicians. Thus, enhanced user interfaces visualizing workflows on a
more abstract level and libraries of application-specific pre-defined workflow patterns are needed.
However, this topic is beyond our scope so that we refer the literature (e.g., [AALST ET AL. 2000]).r231 

Goal Supported by 

1 Expressiveness • Fine-grained high-level activity definitions on the basis of object-oriented
data model (5.3.1)

• Control node types for parallel, conditional and iterative execution (5.3.5)
• Object-oriented data flow (5.3.6)
• Node types for inter-workflow communication (5.3.10)
• Synchronization edges (5.4.2.1)

2 Adaptation-Oriented 
Workflow Structuring

• Separation of activity definitions, control flow, and data flow (5.3.5-5.3.6)
• Connected, symmetrical blocks without activity split/join (control flow

constraints 1-3, (5.3.5.3) ⇒ Support of temporal workflow estimation
• Hierarchical workflow modeling by sub-workflows (5.3.9) ⇒ Reusability

of temporal sub-workflow estimation
3 Formal Foundation • Logic-based data modeling (Chapter 4)

• Set-oriented control and data flow definition (5.3.5-5.3.6)
• Control and data flow constraints (5.3.5.3 and 5.3.6.4)

4 Adaptation-Oriented 
Execution Support

• Explicit edge, node and instance states (5.4.1, 5.4.2 and 5.4.5)
• Explicit state transitions

5 Readability • Connected, symmetrical control flow blocks (5.3.5.3)
• Hierarchical workflow modeling by sub-workflows (5.3.9)

Table 5-3:  Design goals and support by AGENTWORK workflow model.
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 CHAPTER 6 Workflow Duration Estimation

In this chapter we describe how AGENTWORK estimates workflow durations. As already sketched
in Chapter 3, duration estimations are mainly used in the context of predictive adaptation. As we
will see in Chapter 8 (Structural Adaptation Operators), also the control flow operators invoked in
the context of reactive adaptation will use workflow estimations under certain conditions in order
to optimize structural adaptations. Thus, before going into the details of structural workflow adap-
tation, this Chapter 6 explains the AGENTWORK workflow estimation approach in detail. In partic-
ular, after having formalized “time“ in Chapter 4 and workflow execution in Chapter 5, we have the
formal instruments needed for this.
This chapter is organized as follows: In Section 6.1, we describe the principles of workflow estima-
tion in AGENTWORK, and introduce some useful definitions. In Section 6.2 and Section 6.3, we
describe how the durations of edge resp. node executions are estimated. In Section 6.4 we describe
how node sequences and entire workflow blocks such as OR-SPLIT/OR-JOIN blocks are esti-
mated. In Section 6.5 we describe how arbitrary control flow paths are estimated, and how such
path estimations are used for predictive adaptation. In Section 6.6, we compare the AGENTWORK
workflow estimation approach with related work. The chapter concludes with a summary and dis-
cussion in Section 6.7.

6.1 Estimation Principles and Definitions
In this section we introduce estimation principles and definitions. For this we first introduce which
estimation strategies can be used (6.1.1). Second, we describe how estimation values for the dura-

r1: Vorsicht bei Formeln (xxxv) - (xxxvii): Eigentlich kann (Hinweis Timo) nur >= Angennommen werden. Bsp: Ein Pfad im Durchschnitt 8 h, der andere im Durchschnitt 6 h. Bei einem parallelen Durchlauf kann es nun sein, dass der im Durchschnitt
kuerzere mal 10 h dauert, der andere im Durchschnitt längere gar nur 2 h = also das ganze 10 h. Was folgt daraus?
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tions of edge or node executions can be obtained in principle (6.1.2). Third, we introduce useful
conventions and definitions (6.1.3).

6.1.1 Estimation Strategies: Average Case, Worst Case, Best Case
If a workflow execution duration shall be estimated, one can principally select between three esti-
mation strategies, namely worst case estimation, best case estimation, and average case estimation.
These different strategies are characterized now. In the following, VT again denotes the valid time
interval of a control action ca, and PVT the workflow part that is assumed to be executed during VT. 

6.1.1.1 Worst Case Estimation
Worst case estimation means that for every edge, node, and block execution that duration is taken
that is assumed to be the longest (i.e., ”worst”) one being possible. For example, if it is assumed
that a certain drug infusion D will never take longer than 4 hours, then for worst case estimation the
duration (4, hour) would be taken as estimation value for every D-node. In the context of predictive
adaptation, estimating PVT by worst case estimation has the advantage that adaptations caused by ca
and applied to PVT ”usually” do not have to be taken back. This is because typically the affected
workflow part is executed faster as estimated (i.e., a temporal acceleration as described in 3.4.5
occurs), so that PVT does not become smaller. Thus, it usually cannot occur that a subpart of PVT that
has been assumed to be executed during VT now suddenly is executed beyond VT, which would
mean that adaptations may have to be taken back. We say “usually“ as of course worst case estima-
tion cannot exclude that the execution of an edge, node, or block takes even longer than the
assumed maximal duration. For example, it cannot definitely be excluded that the execution of a
node based on the drug administration D will take 5 hours instead of 4 hours.
However, worst case estimation has the disadvantage that in order to satisfy ca often further adap-
tations have to be made when the workflow is continued after the adaptation. This is because often
workflow parts which have not been considered so far now will be executed during VT as well (i.e.,
PVT becomes larger due to faster execution), and thus may have to be adapted as well to satisfy ca.

6.1.1.2 Best Case Estimation
In contrast to worst case estimation, best case estimation means that for every edge and node exe-
cution that duration is taken which is assumed to be the shortest (i.e., ”best”) one being possible.
Concerning advantages and disadvantages of best case estimation in the context of predictive adap-
tation, the situation is diametrical to worst case estimation: The main advantage of estimating PVT
by best case estimation is that “usually“ further adaptations regarding ca do not have to be made
when the workflow is continued after the adaptation. This is because typically the affected work-
flow part is executed slower than estimated (i.e., a temporal delay as described in 3.4.5 occurs), so
that PVT cannot become larger. We again say “usually“ as best case estimation cannot exclude that
the execution of an edge, node, or block is even faster than the assumed minimal duration. 
However, best case estimation has the disadvantage that very often adaptations performed to satisfy
ca and applied to PVT have to be taken back, as workflow parts that have been assumed to be exe-
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cuted during VT are now not executed during VT (due to the slower execution).

6.1.1.3 Average Case Estimation
Average case estimation takes a middle course between worst case estimation and best case estima-
tion as for every edge, node, and block execution that duration is taken that is assumed to be the
duration on the average. For example, if it is assumed that a certain drug infusion D will never take
longer than 4 hours, but will always last at least 1 hour, then the arithmetic mean value of 2.5 hours
could be taken as such an average duration. Obviously, in the context of predictive adaptation aver-
age case estimation has both the advantages and disadvantages of worst case estimation and best
case estimation. But these advantages and disadvantages keep themselves in balance, i.e., it can be
assumed that the necessity to take back an adaptation arises as often as the necessity of performing
additional adaptations to satisfy ca.

6.1.1.4 Estimation Strategy of AGENTWORK

As already mentioned in 3.4.2, AGENTWORK in its current version uses average case estimation as
default estimation strategy. There is no hard reason for using just exactly this estimation strategy.
Rather, it is assumed that in practice the situations where adaptations have to be taken back and the
situations where additional adaptations become necessary to satisfy a control action should keep
themselves in balance. As this assumption may not be right we nevertheless describe all three esti-
mation strategies, or, more precisely, describe how estimation values for maximal, minimal, and
average execution durations can be defined and acquired. An estimation algorithm then performs
worst case estimation, best case estimation, or average case estimation if it uses estimation values
for maximal, minimal, resp. average execution durations. The final decision which estimation strat-
egy shall be used for a workflow application can only be made when the three different estimation
strategies and the adaptations based on them have been evaluated in practice.
Another reason why we describe all three estimation strategies is that in the context of workflow
cooperation (Chapter 10) worst case estimation and best case estimation play an important role,
too. This is because during such a workflow cooperation deadlines can be assigned to workflows to
specify when a cooperation partner expects some result or service. Thus, when a structural work-
flow adaptation affects a workflow that shall provide such a result or service, worst and best case
estimations can be performed to give the collaboration partner some information what this adapta-
tion means in the best and in the worst case for deadline satisfaction.

6.1.2 Acquisition of Duration Estimation Values
Independently from the selected estimation strategy, any workflow estimation requires that estima-
tion values exist at least for the execution durations of edges and nodes. As in AGENTWORK work-
flow estimation plays a central role especially for predictive adaptation, these values have to be of
a high quality, as a wrong estimation may require that adaptations have to be taken back or have to
be performed additionally to satisfy a control action. Thus, AGENTWORK takes care very much of
providing realistic estimation values. As roughly sketched in Chapter 3, AGENTWORK supports two
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principal possibilities to obtain estimation values, namely duration estimations at definition time
and duration measurements at execution time.

6.1.2.1 Duration Estimations at Definition Time
This means that the workflow modeler assigns estimation values to edges and nodes of a workflow
definition. For some workflow applications, this is possible as often textual process descriptions
specify how long some activities shall last. For example, most hematooncological therapy guide-
lines (e.g., [HAVEMANN 1994, PFREUNDSCHUH & LÖFFLER 1994, DIEHL 1993, RIEHM 1995]) spec-
ify the duration of drug infusions precisely. This is because in order to achieve a maximal
therapeutic effect and minimal side-effects, strict drug time tables have to be met.
In order to facilitate such duration estimations at definition time, it often makes sense to group
edges and nodes in a workflow definition, and to specify estimation values only for these groups.
For example, concerning nodes it makes sense to group nodes by their assigned activity definition,
and to assign estimation values only to these groups where all node of a group have the same activ-
ity definition. The particular grouping criteria will be described in the sections on edge and node
execution durations (6.2 and 6.3).

6.1.2.2 Duration Measurements at Execution Time
It is clear that it will not be possible for all workflow applications to specify representative and real-
istic estimation values at workflow definition time. This is because execution durations often will
be influenced by events occurring during execution, such as a delayed database server response or
the absence of a workflow user in the moment when an activity is presented in the worklist of this
user. It is unlikely that the influence of such events on execution durations can be estimated at
workflow definition time. One way to cope with this is to perform long-term measurements of the
durations of edge and node executions for every executed workflow by the workflow engine. If
these measurements have been performed and recorded for a longer time (e.g., for 6 months or a
year), estimation values based on these measurements can be assumed to be much more represen-
tative than duration estimations obtained at workflow definition time. Thus, estimations about
future workflow executions can be based on these measurements. Analogously to duration estima-
tions at definition time, the measurements may be grouped, e.g., the execution durations for activity
nodes may be grouped by the activity definitions. In Section 6.1.3.2, we will precisely describe
how estimation values can be obtained from such (grouped) execution measurements.
The idea to measure and store execution durations has already been implemented in several work-
flow management systems. For example, in order to detect bottlenecks and thus to optimize work-
flows or workflow environments, the SAP WORKFLOW system provides the so-called SAP
BUSINESS INFORMATION CENTER which stores and groups execution data such as activity execu-
tion durations in a multidimensional way [BERTHOLD ET AL. 1999]. By this multidimensional
grouping, it can be derived for instance how long it takes a certain department or staff member to
execute a certain activity type on the average. AGENTWORK adopts this idea of measuring execu-
tion durations and grouping them in a multidimensional manner, and extends this idea for the spe-
cific purposes of workflow estimation and adaptation. As already mentioned in Chapter 3, a useful
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combination of these two principal possibilities of obtaining estimation values is to use duration
estimations specified at workflow definition time for the first phase of an AGENTWORK installation,
and then to continuously refine them by temporal measurements performed at execution time.

6.1.3 Conventions and Definitions
In this section we introduce some useful conventions and definitions, namely for the significance of
durations (6.1.3.1), for estimation values (6.1.3.2), and for state transition durations (6.1.3.3).

6.1.3.1 Significance of Durations
In practical workflow management, the question which durations have to be considered depends on
the average execution durations of all edges and nodes viewed together. For example, if for a work-
flow application the execution of an external data flow edge retrieving data from a database server
takes only a few seconds on the average, this may be negligible if the average execution durations
of activities in this workflow application are hours. However, this may not be negligible if the aver-
age execution durations of activities are minutes or even seconds (e.g., if all activities are processed
entirely by programs without any manual interaction). Thus, when we say that a duration is signif-
icantly longer or shorter than another duration, this is always meant in this application-specific
way. In particular, all temporal relationship notations used for durations and points in time in the
following, such as 

d1 < d2, d1 ≤ d2 etc., t ∈ [t1, t2], t1 < t2, t1 ≤ t2 etc. d1, d2 durations, t, t1, t2 points in time

implicitly consider this significance aspect, e.g., t ∈ [t1, t2] means that point in time t is not signif-
cantly earlier than t1 and not significantly later than t2.
To quantify significance, AGENTWORK allows to specify an application-specific threshold stating
from when on a duration is significantly longer than zero.

6.1.3.2 Estimation Values
Let x be any workflow construct (e.g., an edge, node, or block) that is going to be executed in the
future. Then, with

dur(x)

we denote the in-fact execution duration of x. The particular value of dur(x) is unknown in advance.
Thus, in correspondence to the three estimation strategies described in 6.1.1, we need estimation
values to predict the execution duration of x. We define:

dur-av(x): assumed average execution duration of x (for average case estimation), (i)

dur-max(x): assumed maximal execution duration of x (for worst case estimation), (ii)

dur-min(x): assumed minimal execution duration of x (for best case estimation). (iii)
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If we use duration estimations at definition time as described in Section 6.1.2.1, these values have
to be specified when the workflow is defined. If we use duration measurements at execution time as
described in 6.1.2.2, these values can be derived as follows:
Having duration measurements d1, ..., dn of n in-fact executions of x, we can set 

dur-av(x) = (arithmetic mean value of all di) (iv)

dur-max(x) = (absolute maximum of all di) (v)

dur-min(x) = (absolute minimum of all di) (vi)

Formulas (v) and (vi) have the disadvantage that outliers are weighted too much, as the largest resp.
smallest di determines dur-max(x) resp. dur-min(x). To avoid this, AGENTWORK allows to use the
“average“ maximum and minimum, i.e.,

dur-max(x) = dur-av(x) + σ (“average” maximum of all di) (vii)

dur-min(x) = dur-av(x) − σ (“average” minimum of all di) (viii)

with σ =  being the standard deviation of the di.

From the statistical point of view, (vii) and (viii) measure the average deviation of the di from their
mean value “to the right” (vii) and “to the left” (viii), and thus reduce the influence of outliers.

As sketched in 6.1.2, it sometimes is more suitable to estimate duration values not for single edges
or nodes but for a group of edges or nodes, if it can be assumed that the execution durations of the
different group members do not differ significantly from each other. Then, we denote the average,
maximal, and minimal duration of a group g as 

dur-av(g) meaning: For all x ∈ g it is assumed that dur-av(x) = dur-av(g) (ix)

dur-max(g)  meaning: For all x ∈ g it is assumed that dur-max(x) = dur-max(g) (x)

dur-min(g) meaning: For all x ∈ g it is assumed that dur-min(x) = dur-min(g) (xi)

The question which grouping criteria should be used highly depends on the particular edge or node
type, and therefore will be discussed in the resp. sections, i.e., 6.2 and 6.3.

1
n--- di

i 1=

n
∑

max
i 1…n=

di{ }

min
i 1…n=
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1
n
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n
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6.1.3.3 State Transition Durations
Let x be a node and y a successor node of x (both in state Untouched), and let s, t be two node states.
Then, we define

dur[x(s) → y(t)] = entry-of-node-state(I, yNext, t) − entry-of-node-state(I, xNext, s), (xii)

i.e., dur[x(s) → y(t)] denotes the duration between the next1 point in time at which x is set to state
s, and the next point in time at which y is set to state t (with I being the instance for which x and y
are executed).
For arbitrary pairs x, y from the union of all nodes and edges (e.g., x being a node and y an edge),
and node resp. edge states s, t, the term (xii) is defined analogously (i.e., by using the function
entry-of-edge-state instead).

In the following sections 6.2−6.4, we will describe how the durations of edge, node, block, and path
executions are estimated.

6.2 Edge Execution Durations
According to Chapter 5, an edge passes several states during its execution. Formally, we can define
the duration of an edge e as 

dur(e) = dur[e(Control-Activated) → e(Committed)]. (xiii)

Now, we have to estimate the values dur-av(e), dur-max(e) and dur-min(e) as defined in 6.1.3.2.
We first consider data flow edges (6.2.1 and 6.2.2), and then control flow and synchronization
edges (6.2.3-6.2.5).

6.2.1 Edges for Internal Data Flow
In this case we can always assume that dur(e) = 0, so that dur-av(e), dur-max(e) and dur-min(e) can
be set to zero as well. This is suitable, as an edge e of the internal data flow only maps already
available data either to an activity node or an edge with a branching condition.

6.2.2 Edges for External Data Flow
External data flow edges represent the data flow from or to data sources of the workflow environ-
ment, such as the data flow from or to a relational database or an user interface. As these data
sources may be located anywhere in a distributed and heterogeneous environment, we cannot
assume that the processing of such a data flow edge always has duration zero. This holds especially
for external data flow edges which request data from an user interface. This is because the user

1. The Next parameter in (xii) is necessary as nodes may be executed more than once during a workflow
execution (e.g., if located within a loop). 
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from whom the data is requested may not be present at the moment of the request so that some sig-
nificant amount of time may pass until the requested data is entered. Generally, we only have to
consider reading external data flow edges (5.3.6.1), i.e., where e is a data flow edge reading data
from an object extension (the latter representing some data source). An edge e writing to an object
extension has not to be considered, as its duration does not ”directly” influence workflow execution
as the execution of the control flow usually can be continued without waiting for the commitment
of e.2

Independently from the way of obtaining estimation values dur-av(e), dur-max(e) and dur-min(e)
for reading external edges (e.g., by duration estimations at definition time or by duration measure-
ments at execution time), AGENTWORK assumes that is not practicable and even not necessary to
estimate dur-av(e), dur-max(e) and dur-min(e) for every reading external data flow edge e in every
workflow. Rather, AGENTWORK views it as sufficient to group all reading external data flow edges
by the accessed data source type, and to estimate for each group g the group-specific values dur-
min(g), dur-max(g) and dur-av(g) which are then assumed to hold for every group element (as
defined in 6.1.3.2). For example, such a group could consist of all reading external data flow edge
accessing a certain relational database, and another group could consist of all reading external data
flow edges accessing the user interfaces of a certain staff member class such as the physicians in a
hospital. The rationale for such data source-oriented grouping is that typically the access durations
will differ much more between different data sources than between different accesses to the same
data source, and that furthermore the differences between the accesses of the same data source usu-
ally are negligible. For example, reading data from user interfaces usually will take significant
longer than reading data from a relational database, and reading from a file-based system signifi-
cant longer than reading from a relational database. In contrast to this, the durations of two reading
accesses to the same relational database will not be significantly different.
If the estimation values are obtained by duration estimations at definition time, the workflow mod-
eler consequently only has to specify the values dur-av(g), dur-max(g) and dur-min(g) for each
group g. If the estimation values are obtained by duration measurements at execution time, the
measurements di in the formulas (iv)-(viii) consequently have to be the measurements of all so far
executed group members.
Additionally, the edge executions may be grouped not only by the accessed data sources but also by
day times and week days. For example, in many hospitals the morning shift between 8-12 a.m. usu-
ally is much more work- and data-intensive than other shifts in the afternoon or during the night.
Thus, the execution of reading external data flow edges may take significantly longer during such
a morning shift, as the data load of the workflow environment is higher. Furthermore, the execution
duration may additionally depend on the week day. For example, many hospitals have fixed week
days for surgical procedures or extended examinations, so that the data load may be higher during

2. Of course, a delayed or failed execution of a writing external data flow edge e may cause that a read-
ing external data flow edge e’ of a successor node that needs the data written by e cannot read this
data, so that e’ may be set to state Technically-Failed (5.4.3.2). However, such a failure cannot be
considered by workflow estimation, but has to be handled by workflow monitoring.
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a Tuesday than during a Wednesday. In particular, data requests to physician interfaces make take
significantly longer at such surgical or examination days then the physicians are much more absent
from their desktops.
Thus, if such additional grouping criteria are used, this results in a multidimensional cube organi-
zation as shown in the example of Figure 6-1. The grouping dimensions Data Sources, Working
Shifts, and User Types in this example are those used for the HEMATOWORK application. Each cube
cell represents one group of reading external data flow edges (e.g., the group of all external data
flow edge executions accessing assistant physician interfaces during the Tuesday morning shift)
and stores the average execution duration (in minutes) of all group members. 
One could argue that the cube of Figure 6-1 could be refined by additionally grouping the user
interface accesses by each single physician or nurse. However, this is not appropriate as typically
the particular user instance accessed by an external data flow edge e will often be unknown before
e is in-fact executed. Thus, the estimation algorithm would not know which cell in the cube is the
relevant one. Furthermore, such personalized duration measurements may affect data privacy and
data protection [HERRMANN & BAYER 1998]. For example, in some countries it is not allowed to
store how long a particular user needs for a particular task (such as entering data).
Obviously, the question which grouping dimensions shall be selected depends on the particular
workflow application, and cannot be answered in general. Nevertheless, it is important that AGENT-
WORK allows such a multidimensional grouping at all to obtain representative estimation values.

6.2.3 Unconditional Control Flow and Synchronization Edges
In this case we can always assume that dur(e) = 0, so that dur-av(e), dur-max(e) and dur-min(e) can
be set to zero as well. This is suitable as nothing really happens when such an edge is executed
because no branching or waiting condition has been assigned to it.

Figure 6-1:  Multidimensional
grouping of execution dura-
tions (in minutes) for reading
external data flow edges.
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6.2.4 Control Flow and Synchronization Edges with Waiting Condition
In this case a waiting condition has been assigned to e via the mapping WC(e) introduced in 5.3.
According to 5.3.4 (Condition Definitions), such a waiting condition consists of a min and a max
entry specifying the minimal and maximal duration e may be in state Active.
If the estimation values are obtained by duration estimations at definition time, we set

dur-av(e) = , (xiv)

dur-max(e) = max, and (xv)

dur-min(e) = min. (xvi)

Otherwise, if the estimation values are obtained by duration measurements at execution time, they
have to be calculated according to the formulas (iv)-(viii). A grouping does not make sense for
edges with waiting condition, as a waiting condition is very specific w.r.t. the source and target
node connected by it, and typically not determined by other criteria.r281r282

6.2.5 Control Flow Edges with Branching Condition
Generally, the duration of an edge e with a branching condition (i.e., with BC(e) ≠ NULL) cannot be
assumed to be zero. This is because the input objects needed to evaluate the branching condition
(see 5.3.4) may be provided by reading external data flow edges, that may not have duration zero
(according to 6.2.2). Thus, if we assume that the condition evaluation itself has duration zero, the
duration of an edge e with a branching condition is entirely determined by the edge set

Se = {x = (s, t) ∈ External-Data-Flow | t ∈ inpute} (xvii)

i.e., the set of all reading external edges mapping data from a data source to an input object of e.
Then, independently from whether estimation values are obtained by duration estimations at defini-
tion time or by duration measurements at execution time, we set

dur-av(e) = (xviii)

(i.e., the average duration of e is the sum of the average execution durations of all
edges in Se).

dur-max(e) =  (xix)

(i.e., the maximal duration of e is the sum of the maximal execution durations of all
edges in Se).

min max+
2-------------------------

Σ
x Se∈

dur-av(x)

Σ
x Se∈

dur-max(x)
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dur-min(e) = (xx)

(i.e., the minimal duration of e is the sum of the minimal execution durations of all
edges in Se).

Formulas (xviii)-(xx) hold for the pessimistic (and probably more realistic) assumption that in
general the edges in Se have to be processed sequentially (as, for example, Se consists of external
data flow edges that have to access the same database). If it can be assumed that the edges in Se can
be processed in parallel, one could use the maximum instead of the sum in (xviii)-(xx). 

Note that formulas (xviii)-(xx) do not consider that an internal data flow edge f mapping data to one
of the input objects of e may increase the duration e remains in state Data-Activated and thus may
increase the execution duration of e significantly (as the source node of f has not yet committed
when e is set to state Control-Activated; Figure 6-2). The necessary condition that such a situation
may occur is that the source node of f is not a predecessor node of e. Such “synchronizing“ internal
data flow edges are not considered here because they are not a matter of e itself but of the workflow
structure in the neighborhood of e. The handling of them will be discussed in 6.5 where the
estimation of arbitrary control flow paths is described.

Σ
x Se∈

dur-min(x)
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6.2.6 Summary
As we will often refer to edge durations in the following, Table 6-1 summarizes how AGENTWORK
estimates and measures the durations of control and data flow edges.

6.3 Node Execution Durations
According to Chapter 5, a node passes several states during a workflow execution. Formally, we
can define the duration of a node n as 

dur(n) = dur[n(Control-Activated) → n(Committed)]. (xxi)

 

Duration Estimations

Edge Type
Duration Estimations at Definition 
Time

Duration Measurements at 
Execution Time

Edges for Internal Data Flow Zero Zero (measurements not done)
Edges for External 
Data Flow

Reading Grouped by data source type, and optionally by other dimensions such 
as user types (in case of user interfaces), or day times and week days

Writing Zero Zero (measurements not done)
Unconditional Control Flow and 
Synchronization Edges

Zero Zero (measurements not done)

Control Flow and Synchroniza-
tion Edges with Waiting Condi-
tion

dur-av(e) =

dur-max(e) = max
dur-min(e) = min

Values of min and max according to 
condition definition in 5.3.4

Calculated on the basis of exe-
cution duration measurements 
according to formulas (iv)−
(viii)

Control Flow Edges with 
Branching Condition

For Se = {x = (s, t) ∈ External-Data-Flow | t ∈ inpute}:

dur-av(e) =

dur-max(e) =  

dur-min(e) =

Table 6-1:  Estimation of edge execution durations.

min max+
2

-------------------------

max
x Se∈

dur-av x( ){ }

max
x Se∈

dur-max x( ){ }

max
x Se∈

dur-min x( ){ }
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Analogously to edges, we have to estimate the values dur-av(n), dur-max(n) and dur-min(n) for the
different node types. We first consider control nodes (6.3.1), then activity nodes (6.3.2), and finally
communication nodes (6.3.3).

6.3.1 Control Nodes
For control nodes (i.e., nodes of type START/END, AND-SPLIT/AND-JOIN, OR-SPLIT/OR-
JOIN, and LOOP-START/LOOP-END) we can always assume that dur(n) = 0, so that dur-av(n),
dur-max(n) and dur-min(n) can be set to zero as well. This is suitable as nothing time-consuming
happens when such a node is executed. Please recall from 5.4.4 (Block Execution) that the condi-
tion evaluation at an OR-SPLIT or a LOOP-END node is not part of the execution of the
OR-SPLIT or LOOP-END node itself. Rather, it is a matter of the associated control flow edges to
which branching conditions have been assigned and which have the OR-SPLIT or LOOP-END
node as their source node.
The execution duration of entire blocks enclosed by START/END, AND-SPLIT/AND-JOIN, OR-
SPLIT/OR-JOIN, or LOOP-START/LOOP-END nodes, and in particular the execution delays
caused by AND-JOIN or OR-JOIN nodes will be discussed in 6.4. 

6.3.2 Activity Nodes
The execution of an activity node n can be divided into two phases which both have a duration sig-
nificantly different from zero. The first phase starts at the moment when n is set to state Control-
Activated and ends when n is set to state Data-Activated (data activation phase). This phase gener-
ally will have a duration significantly different from zero as reading external data flow edges (see
6.2.2) may have to be executed to provide all input objects for n. The second phase starts at the
moment when n is set to state Data-Activated and ends when n is set to state Committed (working
phase). This phase generally will have a duration significantly different from zero as it covers the
work that has to be done according to the assigned activity definition. Thus, we can decompose the
execution duration of n into

dur(n) = dur1(n) + dur2(n) (xxii)

with

dur1(n) = dur[n(Control-Activated) → n(Data-Activated)] and (xxiii)

dur2(n) = dur[n(Data-Activated) → n(Committed)]. (xxiv)

The question how estimation values dur-avi(n), dur-maxi(n), and dur-mini(n) (i = 1, 2) can be
obtained for dur1(n) and dur2(n) will now be discussed in the following two subsections.

6.3.2.1 Data Activation Phase
Concerning the data activation phase, dur-av1(n), dur-max1(n), and dur-min1(n) are obtained analo-
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gously to control flow edges with branching conditions (see 6.2.5). This is because similar to con-
trol flow edges with branching conditions, the only time-consuming factor during the data
activation phase of a node n are those reading external data flow edges initializing input objects of
n. Thus, we can assume that dur1(n) is entirely determined by the edge set

Sn := {x = (s, t) ∈ External-Data-Flow | t ∈ inputn}. (xxv)

The values of dur-av1(n), dur-max1(n), and dur-min1(n) are then obtained analogously to control
flow edges with branching conditions, i.e., by replacing Se by Sn in the formulas (xviii)−(xx). Note
that analogously to control flow edges with branching conditions, we do not yet consider that an
internal data flow edge mapping data to one of the input objects of n may increase the duration n
remains in state Data-Activated and thus may increase the execution duration of n significantly.
This problem will be discussed in 6.5.r283

6.3.2.2 Working Phase
AGENTWORK assumes that for an activity node n the working phase duration of an activity node n
does not depend on the particular workflow location of n but only on the activity definition A
assigned to n via NAM(n) (NAM = Node → Activity Definition Mapping; see 5.3.9)3. Thus, we set

dur-av2(n) = dur-av(A), (xxvi)

dur-max2(n) = dur-max(A), and (xxvii)

dur-min2(n) = dur-min(A), (xxviii)

with A = NAM(n) and dur-av(A), dur-max(A), dur-min(A) being the average, maximal, and minimal
duration that is assumed to be required to execute an activity specified by A (i.e., for all A-nodes the
same values dur-av(A), dur-max(A) and dur-min(A) are taken). We first assume that A is a basic
activity definition according to 5.3.1. Second, we describe how to cope with A being a complex
activity definition according to 5.3.8.
A = basic activity definition: If the estimation values are obtained by duration estimations at defi-
nition time, the workflow modeler consequently has to specify the values dur-av(A), dur-max(A),
and dur-min(A) for each basic activity definition. If the estimation values are obtained by duration
measurements at execution time, the working phase durations of all A-node executions are mea-
sured for every basic activity definition A. Then, dur-av(A), dur-max(A), and dur-min(A) are calcu-
lated according to the formulas (iv)−(viii) introduced in 6.1.3.2.
Analogously to the duration estimations for external reading data flow edges, further grouping cri-
teria may be useful to obtain more precise estimation values dur-av(A), dur-max(A), and dur-

3. Note that this assumption does not hold for the data activation phase duration of an A-node. This is
because the way the input data are provided may depend on the location of the node. For example, in
one workflow an A-node may receive its input data from external data flow edges, in another work-
flow from internal data flow edges.
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min(A). For example, for a medical application such as HEMATOWORK it makes sense to group the
estimation values dur-av(A), dur-max(A), and dur-min(A) by the user types and programs involved
in the execution of an A-node. For instance, an experienced senior physician may be much faster
with a bone marrow puncture then an assistant physician. Furthermore, for a chemotherapy admin-
istration a program calculating chemotherapy dosages typically will be much faster then a physi-
cian calculating the dosages manually.
At first glance, it does not make sense to additionally group the estimation values dur-av(A), dur-
max(A), and dur-min(A) by day times and week days, as it has been done for external reading data
flow edges in 6.2.2. The argument for this is that for example in a medical application a bone mar-
row punctuation will take the same amount of time both during the work-intensive morning shift
and the afternoon shift, as the medical procedure that has to be performed does not depend on the
day time or week day. However, this argument does not consider that the working phase as defined
in (xxiv) does not only cover the time the execution remains in state Active. Rather, it also covers
the time the execution remains in state Data-Activated. According to our activity execution model
described in 5.4.3.5, a node execution enters state Active, when either a user assigned to the node
confirms that the activity execution has been started or when the first program assigned to n has
been invoked successfully. Thus, the duration a node may remain in state Data-Activated may be
significantly longer during work-intensive working shifts. For example, during the morning shift a
physician may have to perform 6-10 bone marrow punctures while only one or two punctures may
have to be performed during an afternoon shift. Thus, not the puncture duration itself but the dura-
tion until the physician can start the next puncture (of those punctures in his worklist) may be sig-
nificantly different during such different working shifts.
A non-medical example where activity durations may depend not on the day time but on the calen-
dar month is the following: For software vendors there usually are one or two important exhibitions
where they present new releases of their product. Due to such exhibition-related deadlines, work-
flow activities not related to the software development and preparation (such as writing internal
reports or acquiring new projects) are often executed with a low priority during the months before
the exhibition. Thus, due to the longer remaining of such activities in the state Data-Activated
before such exhibition-related deadlines, the duration of the same activity may depend on the cal-
endar month.
Therefore, if grouping criteria such as the one mentioned above are used, this results in a multidi-
mensional cube organization of activity execution durations as shown in Figure 6-3. The dimen-
sions Basic Activity Definitions, Working Shifts, and User Types/Programs of this example are
those used for the HEMATOWORK application. Each cube cell stores the average execution duration
(in minutes) of all node executions based on a particular basic activity definition and executed by a
particular user type or program during a particular working shift. Again, we emphasize that the
question which dimensions shall be selected depends on the particular workflow application, and
cannot be answered in general. Nevertheless, it is important to note that AGENTWORK allows such
a multidimensional grouping of estimation values at all to obtain representative estimation values.
A = complex activity definition: If A is a complex definition, this means that a workflow defini-
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tion is assigned to A and executed when the control flow reaches an A-node. Thus, in this case the
duration of the A-node has to be determined by estimating the duration of the whole workflow.
However, this requires that workflow blocks and arbitrary control flow paths can be estimated
which will be described in sections 6.4 and 6.5.

6.3.3 Communication Nodes
We recall from Chapter 5, that communication nodes in AGENTWORK specify when a workflow
expects some information from some other workflow system (COMM-IN nodes), or when it sends
information to some other workflow system (COMM-OUT nodes). Furthermore, we recall that the
receiving or sending of the communication objects to COMM-IN or COMM-OUT nodes is done
via data flow edges. Thus, similar to control flow edges with branching conditions or activity
nodes, for a COMM-IN or COMM-OUT node n the duration of the phase from being set to state
Control-Activated until entering the state Data-Activated cannot be assumed to be zero as external
data flow edges may have to be processed to provide the communication objects. 
In contrast to this, the duration a COMM-OUT node needs to deliver the received communication
objects (i.e., dur[n(Data-Activated) → n(Committed)]) to remote workflow systems by inserting
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Figure 6-3:  Multidimensional grouping of execution durations (in minutes) for activity nodes.
Dashes indicate that the respective activity cannot be performed by this user type or program. The shown
cube is a simplified version as the dimension User Types and Programs only lists single user types and
programs, and not sets of them. Note that according to 5.3.3.1 and 5.3.3.2, more than one user type or
program may be involved in executing a single activity node, so that the dimension User Types and Pro-
grams would have to take combinations from the power sets ℘(User-Defs) ∪ ℘(Program-Defs).
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them into some object extension for workflow communication, is assumed to have a negligible
duration. This is because a COMM-OUT node is executed asynchronously, i.e., as soon as the com-
munication objects have been delivered to object extensions for communication between workflow
systems, n is set to state Committed and the execution of the sequence n belongs is continued. Thus,
the time until the objects arrive at their destination does not delay the execution of the successors of
n. Analogously, the duration a COMM-IN node needs to map the communication objects received
from remote workflow systems to activity nodes, control flow edges with branching conditions or
object extensions, is assumed to have a negligible duration as well.
Thus, the execution duration of COMM-IN or COMM-OUT node n is entirely determined by the
set of the incoming reading external data flow edges retrieving communication objects, i.e., 

Sn = {x = (s, t) ∈ External-Data-Flow | t ∈ comm-objsn}, (xxix)

with comm-objsn denoting the communication objects assigned to the COMM-IN or COMM-OUT
node n. The estimation values dur-av(n), dur-max(n), and dur-min(n) then are obtained according
to the formulas (xviii) - (xx) by replacing Se through Sn. 
Note that analogously to control flow edges with branching conditions and activity nodes, we do
not yet consider that an internal data flow edge mapping data to one of the communication objects
of n may increase the duration n remains in state Data-Activated and thus may increase the execu-
tion duration of n significantly. This problem will be discussed in 6.5.

6.3.4 Summary
Table 6-2 summarizes how AGENTWORK estimates and measures the durations of nodes.

6.4 Execution Duration of Sequences and Blocks
After having described how the execution durations of basic workflow elements such as edges and
nodes can be obtained, we now can describe how more complex structures can be estimated. For
this, we first describe how activity and communication sequences (6.4.1), AND-SPLIT/AND-JOIN
blocks (6.4.2), OR-SPLIT/OR-JOIN blocks (6.4.3), and LOOP-START/LOOP-END blocks (6.4.4)
can be estimated. In these sections, we assume that blocks are not nested, e.g., that a considered
AND-SPLIT/AND-JOIN block does not contain an OR-SPLIT/OR-JOIN block. Furthermore, we
assume that the nodes or edges in these sequences and blocks are not a target of synchronization
edges or “synchronizing“ internal data flow edges (as the one in Figure 6-2). 
Second, we describe how the execution duration of arbitrarily nested blocks (6.4.5) and arbitrary
control flow paths (6.5) is estimated.

6.4.1 Activity and Communication Sequences
Let s = n1 → n2 → .... → nk be a sequence of basic activity nodes or communication nodes. Let fur-
thermore ei be the control flow edge between ni and ni+1 (as no ni is an OR-SPLIT or LOOP-END
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node, ei cannot have a branching condition). Then, we define the execution duration of s as

dur(s) = dur[n1(Control-Activated) → nk(Committed)]. (xxx)

This duration can be estimated as follows:

dur-av(s) = dur-av(ni) +  dur-av(ei) (xxxi)

dur-max(s) = dur-max(ni) +  dur-max(ei) (xxxii)

dur-min(s) = dur-min(ni) +  dur-min(ei) (xxxiii)

6.4.2 AND-SPLIT/AND-JOIN Blocks
Let b be an AND-SPLIT/AND-JOIN block consisting of n parallel sequences s1, s2 ..., sn of basic
activity nodes or communication nodes. Then, we can define the execution duration of b (AND-
SPLITb and AND-JOINb denote the opening resp. closing node of b) as

dur(b) = dur[AND-SPLITb(Control-Activated) → AND-JOINb(Committed)] (xxxiv)

 

Duration Estimations

Node Type
Duration Estimations at Defini-
tion Time

Duration Measurements at Exe-
cution Time

Control Nodes Zero Not done (as duration assumed 
to be zero)

Activity 
Nodes

Data Activation 
Phase

For Sn = {x = (s, t) ∈ External-Data-Flow | t ∈ inputn}:

dur-av1(n) =

dur-max1(n) =  

dur-min1(n) =

Working Phase Grouped by activity definitions and optionally by other dimensions 
such as users types and programs, or day times and week days

Communication Nodes Analogously to data activation phase of activity nodes

Table 6-2:  Estimation of node execution durations.

max
x Sn∈

dur-av x( ){ }

max
x Sn∈

dur-max x( ){ }

max
x Sn∈

dur-min x( ){ }

i 1=

k
∑

i 1=

k 1–
∑

i 1=

k
∑

i 1=

k 1–
∑

i 1=

k
∑

i 1=

k 1–
∑



Execution Duration of Sequences and Blocks

165

= {dur(si)}

As the slowest sequence always determines the duration of the whole block, dur(b) can be esti-
mated as follows:

dur-av(b) = {dur-av(si)} (xxxv)

dur-max(b) = {dur-max(si)} (xxxvi)

dur-min(b) = {dur-min(si)}. (xxxvii)

6.4.3 OR-SPLIT/OR-JOIN Blocks
Let b be an OR-SPLIT/OR-JOIN block consisting of n conditional basic activity nodes or commu-
nication nodes. Let furthermore s1, s2, ..., sk (k ≤ n) denote exactly those sequences that will be exe-
cuted because the conditional control flow edges ei (i = 1...k) between the OR-SPLIT node and the
first nodes of the sequences si (i = 1...k) will commit to TRUE. Then, we can define the execution
duration of b (OR-SPLITb and OR-JOINb denote the opening resp. closing node of b) as

dur(b) = dur[OR-SPLITb(Control-Activated) → OR-JOINb(Committed)] (xxxviii)

= {dur(si)}.

If those sequences s1, s2, ..., sk (k ≤ n) that will be executed are known in advance, the duration
dur(b) can be estimated analogously as for AND-JOIN/AND-SPLIT blocks by using only the
sequences s1, s2, ..., sk in the formulas (xxxv)-(xxxvii). Thus, the main problem is to determine those
sequences s1, s2, ..., sk (k ≤ n) that will be executed. We have to distinguish between two situations:
First, that the estimation of the OR-JOIN/OR-SPLIT block occurs during “one-shot“ predictive
adaptation or iterative predictive adaptation with sub-intervals (6.4.3.1). Second, that it occurs dur-
ing conditional iterative predictive adaptation (6.4.3.2).

6.4.3.1 Estimation of OR-JOIN/OR-SPLIT Blocks During One-Shot Predictive Adaptation
or Iterative Predictive Adaptation with Sub-Intervals

We recall from Chapter 3, that for these two subtypes of predictive adaptation it is estimated which
workflow part PVT corresponds to a given valid time interval VT. During the estimation of PVT, an
OR-SPLIT node in state Untouched may be reached from which n conditional sequences
s1, s2, ..., sn may start. As already sketched in 3.4.2, AGENTWORK then principally tries to predict
which sequences s1, s2, ..., sk (k ≤ n) starting at this untouched OR-SPLIT node will qualify for exe-
cution. This may be possible, if the data needed for determining which s1, s2, ..., sk (k ≤ n) will qual-
ify for execution are already available. Formally, this is done as follows: For every conditional edge
ei (i = 1...n) between the untouched OR-SPLIT node and the first nodes of the sequences si
(i = 1...n) the two sets of all internal resp. external data flow edges retrieving data for ei, i.e.,

max
1…n

max
1…n

max
1…n

max
1…n

max
1…k
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 = {x = (s, t) ∈ Internal-Data-Flow | t ∈ } and (xxxix)

 = {x = (s, t) ∈ External-Data-Flow | t ∈ } (xl)

are processed as follows: First, for every element x = (s, t) of  it is checked whether

a) the source node of s (i.e., the activity or communication node that provides s as output resp.
communication object) is already in state Committed (as then s is available), and whether 

b) the currentness of s is sufficient w.r.t. the NOT-OLDER-THAN constraint of t (see 5.2.2).r284

Second, for every element x = (s, t) of  it is checked whether

c) the execution of the query described by s4 returns an object of which the currentness is suffi-
cient w.r.t. the NOT-OLDER-THAN constraint of t.

If for all ei (i = 1...n) and all elements of and  these conditions a) and b) resp. c) hold, this
means that all input objects needed to predictively evaluate the branching conditions for all ei are
available. By evaluating these conditions, it can then be determined predictively which sequences
s1, s2, ..., sk (k ≤ n) will qualify for execution. Thus, the duration of the OR-SPLIT/OR-JOIN block
as defined in (xxxviii) can be estimated analogously as for AND-JOIN/AND-SPLIT blocks by
using only the sequences s1, s2, ..., sk in the formulas (xxxv)−(xxxvii).
If for at least one ei (i = 1...n) and at least one element in  or  conditions a) or b) resp. c) are
not met, this means that at least one input object needed to predictively evaluate the branching con-
dition assigned to ei is not yet available. Thus, not all sequences s1, s2, ..., sk (k ≤ n) that will qualify
for execution can be determined but only a (possibly empty) subset s1, s2, ..., sl (l < k). The way
AGENTWORK copes with this is to handle the other sequences sl+1, s2, ..., sn by reactive adaptation,
as it cannot be estimated whether they will be executed during VT or not. Furthermore, if the ques-
tion whether a successor node n of the OR-JOIN node will be executed during VT or not also
depends on which of the sequences sl+1, s2, ..., sn will be executed in-fact, this node n also has to be
handled reactively.r281

However, one problem remains: If condition c) holds for an ei and an element x ∈ , this does not
exclude that an object retrieved by x when ei is executed leads to the opposite condition evaluation
result than the one derived at estimation time. For example, let us assume that the branching condi-
tion of an ei states that the leukocyte count of the patient has to be not less than 2500, and that this
leukocyte count must not be older than 24 hours. Let us furthermore assume that the OR-SPLIT/
OR-JOIN node to which ei belongs is estimated 18 hours before its actual execution, and that dur-
ing this estimation the patient database query retrieving the leukocyte count provides a leukocyte
count of 3000, so that the branching condition of ei is predicted as true. However, when ei is actu-
ally executed 18 hours later, the patient query may return a more recent leukocyte value of 2400

4. Recall from 5.3.6.1 that for reading external data flow edges (s, t), s is a query on an object extension.

Iei
inputei

Eei
inputei

Iei

Eei

Iei
Eei

Iei
Eei

Eei
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with the consequence that ei commits to false. Such constellations cannot be avoided and are
detected by workflow monitoring (see Chapter 9) which is able to detect that branching conditions
have been predicted wrong.

6.4.3.2 Estimation of OR-JOIN/OR-SPLIT Blocks During Conditional Iterative Predictive
Adaptation

We recall from Chapter 3, that for this subtype of predictive adaptation only the workflow part until
the next conditional control node is estimated, i.e., until the next OR-SPLIT or LOOP-END node.
For this workflow part, the workflow is adapted and continued. When workflow execution reaches
the next OR-SPLIT or LOOP-END node, the remaining workflow part is estimated until the next
conditional control node, and so on. By definition, this strategy has the consequence that for an
OR-SPLIT node the sequences s1, s2, ..., sk (k ≤ n) that will be executed are always known in
advance so that no condition resolution has to be performed.

6.4.4 LOOP-START/LOOP-END Blocks
At first glance, the estimation of LOOP-START/LOOP-END blocks can be handled similar to OR-
SPLIT/OR-JOIN blocks, as for LOOP-START/LOOP-END blocks conditions determine the exe-
cution as well. We recall from 5.3.5.1, that for a loop such a condition is assigned to the edge
between the LOOP-END node and its successor node not being the LOOP-START node, and that
this condition plays the role of the loop’s termination condition. However, in contrast to OR-
SPLIT/OR-JOIN blocks, LOOP-START/LOOP-END blocks form some sort of iterative condi-
tional execution. In particular, the data needed to evaluate a loop’s termination condition often will
be provided by activity nodes within the loop sequence. This has the consequence that during a sin-
gle loop iteration it may be possible to predict whether there may be another loop iteration or not
(by using the same prediction mechanisms as used for condition evaluation in the context of OR-
SPLIT/OR-JOIN blocks). However, these prediction mechanisms typically will be of no use to pre-
dict how many loop iterations will occur at all. For this, additional estimation values for the number
of loop iterations become necessary. Thus, we first describe how to obtain such estimation values
for the number of loop iterations (Section 6.4.4.1). Second, we describe how loop durations can be
finally estimated on the basis of these estimation values for the number of loop iterations (Section
6.4.4.2). Note that these considerations are only relevant for estimations performed not under con-
ditional iterative predictive adaptation. If conditional iterative predictive adaptation is the strategy
during which the estimation is performed, this means that only the loop sequence is estimated until
the LOOP-END node, then waited whether the loop will be executed once again, so that no predic-
tion about the number of loop iterations is required for this strategy.

6.4.4.1 Estimation Values for Number of Loop Iterations
According to the two principal possibilities to obtain estimation information (duration estimations
at definition time and duration measurements at execution time), two principal ways exist to obtain
estimation values it-num-av(l), it-num-max(l), and it-num-min(l) for the average, maximal resp.
minimal number of iterations for a LOOP-START/LOOP-END block l.
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First, at workflow definition time the workflow modeler specifies it-num-av(l), it-num-max(l), and
it-num-min(l) for every loop l in every workflow definition. For example, in hematooncology the
average number of radiotherapy units that usually is necessary to achieve a permanent liver
metastasis remission is known for many tumor types. Furthermore, a minimal number of radiother-
apy units can be estimated on the basis of the minimal dosage that has to be applied to achieve a
therapeutical effect at all. Analogously, a maximal number of radiotherapy units can be estimated
on the basis of the dosage range that may cause toxic side effects and thus should not be entered.
Second, at execution time the number of iterations is recorded for every execution of every loop l.
Then, the values it-num-av(l), it-num-max(l), and it-num-min(l) are determined analogously to the
formulas (iv)−(viii), i.e., by replacing dur-av(x) by it-num-av(l), dur-max(x) by it-num-max(l), dur-
min(x) by it-num-min(l), and by using the recorded number of loop iterations as the di in the formu-
las (iv)−(viii).
For both ways, AGENTWORK assumes that a grouping of the values it-num-av(l), it-num-max(l),
and it-num-min(l) for instance by day times is not necessary. This is because AGENTWORK assumes
first that the number of loop iterations does not depend for instance on day times, and second that
any dependency of a loop’s execution duration on day times or performing users or programs is
entirely determined by the durations of the activities and edges in the loop sequence. For these
activity and edge durations, grouping criteria have already been given in the sections 6.2 and 6.3.r285

6.4.4.2 Estimation of LOOP-START/LOOP-END Block
If values it-num-av(l), it-num-max(l), and it-num-min(l) have been obtained for a loop l, the execu-
tion of the entire loop l can be estimated as follows: Let s denote the sequence of basic activity
nodes or communication nodes between the LOOP-START and the LOOP-END node. Then, the
duration of l can be estimated as follows:

dur-av(l) = it-num-av(l) dur-av(s) (xli)

dur-max(l) = it-num-max(l) dur-max(s) (xlii)

dur-min(l) = it-num-min(l) dur-min(s) (xliii)

6.4.5 Nested Blocks
So far, we have assumed that blocks are not nested, e.g., that an AND-SPLIT/AND-JOIN block
does not contain an OR-SPLIT/OR-JOIN block. We now describe to cope with a block b which
contains at least one further block. The duration of such a nested block can be estimated in a
straightforward manner by combining the estimation mechanisms described in sections 6.4.1−6.4.4
recursively. For example, let us assume that an OR-SPLIT/OR-JOIN block b is estimated, and that
one of its sequences s that is assumed to be executed contains an AND-SPLIT/AND-JOIN block
b’, i.e., that

s = n1 → .... → nj-1 → b’ → nj+1 ... → nk (ni being a basic activity or communication node).

⋅

⋅

⋅



Execution Duration of Arbitrary Control Flow Paths

169

Then dur(s) has to be estimated by replacing the resp. estimation value of nj in the formulas (xxxi)−
(xxxiii) by the resp. estimation value for block b’. As this has to be done analogously for all other
nesting constellations, we omit a formal notation of estimation values for nested blocks.

6.5 Execution Duration of Arbitrary Control Flow Paths
We now describe how AGENTWORK estimates the execution duration of arbitrary control flow
paths, or in other words, of a workflow part that does not form a complete workflow block. This is
necessary, as for a control flow failure the failure node set (Section 7.4.1) describing the beginning
of the workflow part to be estimated may consist of arbitrary nodes of the control flow, e.g., of
nodes 3, 9, and 19 in Figure 6-4. As during predictive adaptation all paths starting from such a fail-
ure node set have to be estimated to see which nodes will be executed during the valid time interval
of a triggered control action, we have to cope with such arbitrary control flow paths. We recall from
Section 5.3.5.2 that a control flow path formally is any sequence n1 → n2 → ... → nk of activity,
control or communication nodes (with using the symbol “→“ as an abbreviation for the control
flow edge between two nodes). For example, in Figure 6-4 the two sequences

9→10→11→12 and 9→10→13→14→15→16

are control flow paths. Furthermore, for estimation purposes we also call a sequence which starts or
ends with an edge, such as 

→10→11→12 or 9→10→13→14→

a control flow path as well. If there is more than one incoming or outgoing edge for a node, the edge
has to be named explicitly instead of using the symbol →, e.g., it has to be specified (22,27)27→28
which means that the path starts with the edge (22,27) and ends with node 28.
In 6.5.1, we describe the estimation of control flow paths for which the execution duration is not
influenced by synchronization edges or “synchronizing“ internal data flow edges (as the one in
Figure 6-2). In 6.5.2, we describe the estimation of control flow paths with such a synchronization.
The results of 6.5.1 and 6.5.2 are then used to estimate entire workflows (6.5.3) and to determine
during predictive adaptation the part PVT that will be executed during a valid time VT (6.5.4).
For the workflow of Figure 6-4 we assume that all nodes of the failure node set just have been set
to state Control-Activated, i.e., for the estimation of paths starting at a node n of the failure node set
the full duration of n has to be considered. If this cannot be assumed (e.g., if node n already is in
state Active) the duration during which n already has been executed has to be subtracted from the
estimation value estimating the execution duration of n.

6.5.1 Control Flow Paths Without Synchronization
The estimation of control flow paths without synchronization can directly be derived from the esti-
mation mechanisms described in sections 6.4.1−6.4.5. This is described best by an example for
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which we use the path

p = 19→20→25→26→27→28→29

in Figure 6-4: First, the subpath until the last node before the next control node is determined. In
Figure 6-4 this is the subpath 19→. As this subpath is a sequence of activity or communication
nodes, the estimation mechanisms of 6.4.1 can be used for it. Then, as the first node of the remain-
ing sequence is an OR-SPLIT node (node 20), it has to be predicted by the mechanisms of 6.4.3
which of the remaining nodes of p will be executed at all. Let us assume that it can be predicted that
the nodes 25 and 26 of our path p will be executed. Thus, the average duration of p to be assumed is
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dur-av(p) = dur-av(19→) + dur-av(b) + dur-av(→28→29) (xliv)

where b is the block opened by node 20 and closed by node 27. Note that the whole duration of b
has to be considered, i.e., dur-av(b), and not only the duration of the subpath 20→25→26→27.
This is because according to the execution model of an OR-SPLIT/OR-JOIN block (see 5.4.4.2)
node 28 can be set to state Control-Activated only after all executed paths of b have been com-
pleted. The minimal and maximal duration of p is estimated analogously to (xliv).
If it is derived that nodes 25 and 26 will not be executed, this means that for p only the subpaths
19→20 and 27→28→29 will be executed. For these subpaths, the estimation mechanisms of 6.3.1
and 6.4.1 are sufficient.
All other path constellations, i.e., paths with AND-SPLIT, AND-JOIN, LOOP-START, LOOP-
END, START, or END nodes are estimated analogously by combining the estimation mechanisms
of sections 6.4.1−6.4.5 according to the type of control nodes appearing in the path.

6.5.2 Control Flow Paths With Synchronization
We now describe the estimation of control flow paths with a synchronization, i.e., of control flow
paths which consist of at least one node being a target of a synchronization or ”synchronizing”
internal data flow edge e. For example, in Figure 6-4 this is the case for the paths 

p = 3→4→5→6 and p’ = 9→10→13→14→15→16 (xlv)

as node 5 is a target of the synchronization edge leading from node 16 to node 5, and as node 14
needs an output object from node 28. The edge (16,5) resp. the internal data flow edge leading from
node 28 to node 14 may delay the execution duration of p resp. p’ as their source nodes (i.e., nodes
16 and 28) are not predecessor nodes of their target nodes (i.e., of nodes 5 and 14). Thus, the esti-
mation mechanisms described in 6.5.1 are not sufficient for such paths with synchronization. 
We restrict our considerations to synchronization edges with the structure

( (x, Committed), (y, Control-Activated) ) (xlvi)

i.e., edges specifying that y cannot be set to state Control-Activated before x has not been set to
state Committed. Thus we can only write (x,y) instead of the expression in (xlvi). The handling of
synchronization edges using node states different from those in (xlvi) and of ”synchronizing” inter-
nal data flow edges is analogously.
To describe the estimation of a control flow path p where at least one node is a target of a synchro-
nization edge (x,y) we can assume without loss of generality that y is the first node of p which is a
target of such a synchronization edge. To illustrate our description we use the sample path p in
(xlv), i.e., p = 3→4→5→6, and (x,y) = (16,5). 
The execution duration of p is estimated as follows: First, two paths py and px are to be determined
which fulfill the following conditions:
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a) py is the maximal subpath of p, that leads from the failure node set to y, but does not contain y
itself.

b) px leads from the failure node set to x, ends with x, and can be assumed to be executed entirely.

For example, in Figure 6-4 this is the case for the paths

py = 3→4→ and px = 9→10→13→14→15→16 (xlvii)

Condition a) means that the maximal subpath of p is determined that starts at the failure node set
and that is not yet influenced by (x,y). Condition b) means that a path is determined that has to be
executed to reach and execute x. If no path px exists meeting condition b), this means that at estima-
tion time it has to be assumed that x will not be executed at all. For example, in Figure 6-4 this
would be the case for a synchronization edge (21,5) if it would be determined that the path
19→20→21 would not be executed as the branching condition between node 20 and 21 would be
evaluated to FALSE. According to the execution semantics of a synchronization edge (5.4.2.1), y
can then be set to state Control-Activated without having to wait for the commitment of (x,y).
If however a path px exists meeting condition b), this means that y can only be set to state Con-
trol-Activated after both py and px have been executed. Thus, the average execution of p is 

dur-av(p) = max{dur-av(py), dur-av(px)} + dur-av(p - py) (xlviii)

where p - py denotes the remaining subpath of p after py , e.g., p - py = 5→6 in Figure 6-4. The max-
imal and minimal execution duration of p is estimated analogously.

6.5.3 Entire Workflows
As a direct result of sections 6.5.1 and 6.5.2, we can now estimate the duration of an entire work-
flow. First, we have to predictively resolve all conditions at OR-SPLIT nodes to determine those
paths starting at the START node that will be executed. Then, all control flow paths up to the END
node have to be estimated, and the maximum of their average, maximal or minimal execution dura-
tion then is the average, maximal resp. minimal duration to be assumed for the workflow execution.
As a consequence, we retrospectively can use complex activity definitions (which assign a whole
workflow definition to an activity node) in the formulas in sections 6.4−6.5 as well.
It is clear that the duration estimation of an entire workflow usually will not be possible for all
parts, as it is unlikely that all conditions at OR-SPLIT nodes can be predictively resolved. For these
areas that cannot be estimated as conditions cannot be resolved predictively, AGENTWORK shifts to
reactive adaptation.

6.5.4 Control Flow Path Estimation during Predictive Adaptations
What remains is to describe how the estimation of control flow paths is used during predictive
adaptation, in particular how to determine that workflow part PVT of a workflow instance I that is
assumed to be executed during the valid time interval VT of a triggered control action ca. This can
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now be described in a compact manner:
• First, for every node from the failure node set FNSI, ca, all control flow paths are determined that

may be executed.
• Second, for each of these paths its execution duration is estimated by average case estimation.

In particular, at OR-SPLIT nodes it is tried to resolve conditions of the path predictively. The
estimation of a path is terminated when VT is “consumed“ by the path (i.e., when it can be
assumed that further nodes will not be executed anymore during VT), or when due to unresolv-
able conditions at OR-SPLIT nodes it cannot be derived for further nodes of the path whether
they will be executed during VT or not. 

• PVT then consists of all node and edge executions that can be assumed to take place during VT
due to the above path estimations. This part PVT then is adapted predictively to satisfy the con-
trol action ca.

• All nodes for which it cannot be derived whether they will be executed during VT or not are
handled reactively.

6.6 Related Work
Workflow estimation has been recently addressed by several authors, in particular to handle tempo-
ral constraints assigned to workflows (e.g., [SON & KIM 2001, DADAM ET AL. 20005, EDER ET AL.
1999 A]). We first discuss the network planning technique [EISELT & FRAJER 1977], as many work-
flow estimation approaches are based on this general technique. Second, we discuss representative
and specific estimation approaches from the field of workflow management.

Network Planning Technique: The network planning technique (NPT) is a method originating
from the field of operations research [TAHA 1982]. It is based on graph theory and supports the
definition, analysis, and control of projects and processes, whereby time, cost, resources, and other
influential factors can be taken into consideration. For example, NPT allows to define the order of
project activities and their durations and to analyze project definitions w.r.t. the question whether
deadlines can be met. Two principal classes can be defined: In deterministic network planning
[TAHA 1982] both the activity duration and the activity structure are considered as determinable. In
stochastic network planning [DADUNA 2001, TOMII ET AL. 1999] it is assumed that a parameter
such as an activity duration cannot be uniquely specified, but has to be handled as an independent
random variable based on some probability distribution. In this thesis, we do not consider such
stochastic planning techniques further, as AGENTWORK addresses applications where it can be
assumed that execution durations are determinable, either by duration estimations at definition time
or by duration measurements at execution time.

5. The estimation approach of the ADEPTFLEX system [DADAM ET AL. 2000] which is used to determine
the effects a dynamic adaptation might have for temporal constraints assigned to a workflow has been
already discussed in Chapter 2 (Related Work) in Section 2.4.1.
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Concerning deterministic network planning, a broad range of variants exist. For example, the criti-
cal path method (CPM) is an algorithm for finding the longest (i.e., “critical“) path(s) through a
network [PHILIPOSE 1986, WIEST & LEVY 1977]. It calculates early start and early finish times for
each activity in a forward pass through the network, while late start times, late finish times, and
slack values are calculated in a backward pass. These times are matched to detect paths being crit-
ical for a timely project success. However, CPM has some limitations. For example, to model all
the precedence relations among the activities of a project network, numerous dummy activities typ-
ically have to be introduced. Furthermore, only minimal time lags between activities can be mod-
eled. In the AGENTWORK context, especially the latter limitation is not acceptable, as for example it
must be possible to specify the maximal lag between two chemotherapy activities. To overcome the
limitations of CPM, the so-called metra-potential method (MPM) has been developed [NEUMANN
& MORLOCK 1993]. It uses two types of relations between the starting points of two activities, one
for the minimal time lag and one for the maximal time lag. Furthermore, MPM considers limited
renewable resources (e.g., machines) and overlapping operations. However, a limitation of MPM is
that already for simple resource-constrained scheduling problems with arbitrary time lags the ques-
tion whether or not a feasible schedule exists is NP-complete [BRUCKER ET AL. 1999]. 

Workflow Estimation Approaches: Several authors have recently dealt with workflows
estimation [SON ET AL. 2001, SON & KIM 2001, DADAM ET AL. 2000, EDER ET AL. 1999 A,
MARJANOVIC & ORLOWSKA 1999, KAFEZA & KARLAPALEM 1999, ADAM ET AL. 1998]. For
example, [EDER ET AL. 1999 A] allow to assign explicit time constraints to a workflow at workflow
definition time, such as that the invitation for a meeting has to be mailed to the participants at least
one week before, or that a final patent filing has to be done within a certain time period after the
preliminary filing. Furthermore, it is assumed that for every activity a deterministic duration has
been assigned. On the basis of the above-mentioned CPM, it is then checked at workflow definition
time whether for a given workflow definition there exists an execution schedule that does not
violate any time constraints. The result is a so-called timed activity graph that includes deadline
ranges for each activity. At workflow instantiation time, this timed activity graph is extended by
including the deadlines and date characteristics given when the workflow is started. At workflow
execution time, the timed graph is dynamically recomputed for the remaining activities to derive
the activity completion times of the remaining workflow part and thus to monitor that the
remaining time constraints are satisfied.
In [SON ET AL. 2001, SON & KIM 2001] the authors present a method to find out the critical path
with the longest average execution time in a workflow. For this, an extension of CPM is provided
which is called the innermost control structure first method (ICSF). This method first determines a
sub-critical path with the longest average execution time in each control block, and then combines
these sub-critical paths. When a sub-critical path is determined for each control block, the longest
execution path is selected from the innermost control structure to the outermost control structure.
Because the critical path directly affects the overall execution time of a workflow, additional work-
flow processing capacities (i.e., workflow servers) can be dynamically allocated to maximize the
number of workflow instances that satisfy specified deadlines.
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Based on MPM, [MARJANOVIC & ORLOWSKA 1999] allow to assign a minimal and maximal dura-
tion to every activity, and provide algorithms based on the shortest path partitioning algorithm
[EVANS & EDWARD 1992] to estimate the shortest and longest duration of concurrent, conditional,
and synchronized control flow structures.

However, beside the general limitations of CPM and MPM mentioned above, there are several
specific limitations of these workflow estimation approaches:
• First, only duration estimations obtained at workflow definition time are supported. In particu-

lar, measurements at execution time are not considered to obtain more realistic estimation val-
ues than it typically will be possible at workflow definition time. Furthermore, the authors do
not provide any mechanisms to group estimation values by several dimensions such as user
types or programs, or by day times. As the quality of the estimation values is the major precon-
dition for high quality workflow estimation, this must be viewed as not sufficient.

• Second, the duration of data flow edges is neglected. As discussed in 6.2.2, it has to be assumed
that the executions of external data flow edges (i.e., edges accessing some external data
sources) not always have a negligible duration. This holds especially for edges requesting data
from a workflow user, e.g., edges requesting data needed for a condition evaluation.

• Third, no attempt is made to predictively resolve conditions at a conditional branching or in a
loop. We have described in Section 6.4.3 that under the circumstance that the data needed for
the condition evaluation is already available, this may be possible and would increase the qual-
ity of workflow estimation significantly.

For further recent related work, which does not specifically address temporal aspects for workflow
management but more generally for project management and job scheduling, we refer to [KERZNER
2001, BLAZEWICZ ET AL. 2001, NAYLOR 1995].

6.7 Summary and Discussion
In this chapter, we described how AGENTWORK estimates the execution duration of workflows. For
this, we first described how the durations of edge resp. node executions are estimated. One charac-
teristic has been that AGENTWORK supports two principal possibilities to obtain estimation values,
namely duration estimations at definition time and duration measurements at execution time. By
combining these two possibilities, realistic estimation values for edges and node can be obtained
and thus a high estimation quality can be achieved. For example, one can use duration estimations
specified at workflow definition time for the first phase of an AGENTWORK installation and then
can continuously refine them by temporal measurements performed during the operational phase of
the system. Furthermore, to achieve fine-grained context-dependent estimations, estimates can be
grouped by different dimensions such as the activity types or the needed user types and programs.
Then, we have described how more complex workflow parts such as sequences of activity and
communication nodes, workflow blocks, and arbitrary control flow paths can be estimated. A
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major characteristic of this has been that AGENTWORK provides mechanisms to predictively
resolve conditional branching to better predict which workflow parts will be executed during which
temporal interval. Finally, for all estimations AGENTWORK provides different strategies, namely
worst case estimation, best case estimation, and average case estimation. The strategy of average
case estimation is the default strategy used by AGENTWORK during predictive adaptation, as this
strategy keeps the situations where further adaptations have to made to satisfy a control action in
balance with those situations where adaptations have to be taken back. As we will see in Chapter 10
(Handling Control Flow Failures for Cooperating Workflows), the other two strategies will be used
to derive what an adaptation means in the best and the worst case for the temporal agreements spec-
ified between two cooperation partners.
There are several limitations and disadvantages that have to be considered. First of all, duration
measurements at execution time typically will provide realistic estimation values only after work-
flow execution durations have been measured for quite a long time, e.g., for several months. Thus,
during the first phase of an installation and operational usage of a workflow application based on
AGENTWORK, only estimation values obtained during workflow definition time can be used. As
such a first phase is the most critical one concerning user acceptance, this means that like for other
approaches [DADAM ET AL. 2000, EDER ET AL. 1999 A, MARJANOVIC & ORLOWSKA 1999], the
success of AGENTWORK significantly depends on high-quality estimation values obtained at work-
flow definition time. This may be critical, as for some workflow applications it may be not easy to
specify realistic estimation values obtained at workflow definition time.
Furthermore, the attempt to predictively resolve a condition increases the complexity of a work-
flow monitoring that has to be performed when the estimated (and adapted) workflow is continued.
This is because it cannot be excluded that branching conditions are predicted wrong, so that differ-
ent paths are executed than originally assumed. Thus, a monitoring does not only have to compare
the actual execution durations of nodes and edges with the estimated durations (as already sketched
in Section 3.4.5), but also has to compare the predicted results of a condition evaluation with the
actual evaluation results.
Last not least, only an evaluation of the described estimation algorithms under real-world condi-
tions, such as with workflows and patients of the HEMATOWORK system, will allow for a final deci-
sion about the quality of the AGENTWORK estimation approach. As the technical and organizational
preconditions for such a real-world evaluation have not been established for HEMATOWORK when
this thesis has been completed, the author did not yet had the possibility to perform such a real-
world evaluation. Rather, only a few “laboratory” tests with medical workflows running for ficti-
tious patients have been done to evaluate the estimation algorithms [GREINER 2000]. Nevertheless,
these tests have shown that under “laboratory” conditions the estimation algorithms are working
well.
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 CHAPTER 7 CONTROL ACTIONS

This chapter describes the control actions that are provided by AGENTWORK to handle control flow
failures. As already sketched in Chapter 3, AGENTWORK uses two main classification criteria for
control actions: Global control actions deal with a workflow as a whole, while local control actions
deal only with some activities of a workflow. Orthogonal to this, a control action may be case-
related or resource-related. Case-related control actions are triggered when an event occurs to a
case. They state what has to be done with a workflow or some of its activities from the case point
of view. Resource-related control actions are triggered when an event occurs to a resource. They
state what has to be done with a workflow or some of its activities from the resource point of view.
The chapter is organized as follows: Sections 7.1 and 7.2 list the global resp. local control actions
supported by AGENTWORK. Section 7.3 introduces some useful conventions concerning a control
action’s valid time. These conventions are made to facilitate the failure handling process in the fol-
lowing chapters. Section 7.4 describes how triggered control actions are processed further. In par-
ticular, this section describes how it is determined which workflows or activities are affected by
triggered control actions. In Section 7.5, we discuss integrity aspects of rules containing control
actions. Section 7.6 describes how AGENTWORK copes with dynamic control action dependencies
that may occur when several control actions are triggered simultaneously. The chapter concludes
with a summary and discussion in Section 7.7.
The following notational conventions will be frequently used in the subsequent sections: C will
denote an object of class Case,r234 and R will be of type Obj-Patt<Resource>, i.e., a resource pattern
(according to 4.2.1.5). If new data for a case or a resource is inserted into an extension, and if new
references this new data, then Cnew resp. Rnew denotes the Case resp. Resource instance described by

Discuss criteria to decide between iterative and one-shot predictive adaptation (see 3.4.1)? At the moment it seems to be enough what has been discussed in (see 3.4.1).

Abgleich 7.2.3.1 mit 7.4.3.1 WICHTIG!!!

drop Alte Condition 2 in Definition 7.1 

„At least one of the direct predecessor nodes of n is in state Committed.“
(The “at least” subcondition in condition 2 is necessary as n may not be an activity node but for example an OR-JOIN or AND-JOIN node, and thus may have more than one predecessor 
node. )

vermutlich nicht ganz sauber (die at least Bedingung ist kritisch, möglicherweise müssen es doch alle sein, die nicht unreachable sind .

replace
postpone
review
change-value
drop-activities-of
postpone-activities-of
add
add-repetitively
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this data. For example, if infection-findings is an extension for objects of class Infection-Finding,
then Cnew refers to the patient whose infection is described by a new Infection-Finding object
inserted into infection-findings. VT always will denote the valid time of a control action.

7.1 Global Control Actions
Table 7-1 lists the global case- and resource-related control actions supported by AGENTWORK.
Case-related global control actions are only allowed for workflows which are executed for only one
case during their life span (and for which this case consequently has to be known already at work-
flow initialization time). This restriction is necessary, as it would not make much sense to abort or
suspend a workflow executing activities also for other cases than the one to which the failure trig-
gering event happened. In contrast to this, resource-related global control actions can be used for
any workflow regardless for how many cases it is executed or how many other resources are
needed to execute it. This is because they express that because of an event occurring to a resource
a workflow needing this resource cannot be continued, regardless for how many cases this work-
flow is executed. For example, when an important diagnostic device gets broken and no substitu-
tion device is available, it does not make sense to continue a diagnostic workflow using this device.
If only some activities shall be removed from the workflow due to some resource event, local
resource-related control actions have to be used (see 7.2).

 

Global Control Action
(with valid time VT) Meaning

Case-Related:r237

abort(W,C) Abort any workflow based on W and running (exclusively) for case C.r239

VT has to be a single point in time specifying when the workflow W
shall be aborted.

suspend(W,C) For the time interval specified by VT, suspend any workflow based on
W and running for case C. Any node of the remaining control flow
must not be executed before the time specified by VT has elapsed. VT
always has to be a valid time interval.r239

Resource-Related:
abort-workflows-of(R) Abort any workflow for which a resource described by R is needed for

the remaining control flow. The restrictions concerning VT are the
same as for abort.

suspend-workflows-of(R) For the time interval specified by VT, suspend any workflow for which
a resource described by R is needed for the remaining control flow.
The remarks concerning VT are the same as for suspend(W,C).

Legend  W := workflow definition according to 5.3.9

Table 7-1:  Global control actions.
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We give two failure rule examples using global control actions:

1. Let W be some cancer chemotherapy workflow definition such as the one in Figure 1-1. Let fur-
thermore infection-findings be an extension for objects of class Infection-Finding with a string
attribute type and an float attribute fever. Then the rule

WHEN INSERT ON infection-findings (i)
WITH new.type = “Infection of Upper Respiratory Tract“ AND new.fever > 39°
THEN suspend(W, Cnew) VALID-TIME [now, now + (2, week)]

states that whenever a patient (referenced by Cnew) has an infection of the upper respiratory tract
with fever higher than 39 Celsius degree, any chemotherapy workflow based on W and running for
Cnew has to be suspended for two weeks (assuming that the patient will recover from this infection
during this time). Alternatively, the valid time of suspend in (i) could also be conditional in the
sense “until infection is over“.

2. Let W be some workflow definition for a nuclear spin tomography examination, and let
R := Computer-Tomograph[] be a resource pattern. Then the rule

WHEN instances-not-available(R)1

THEN abort-workflows-of(R) VALID-TIME now

states that when there is no nuclear spin tomograph available, workflows for which a computer
tomograph is needed have to be aborted immediately.

7.2 Local Control Actions
Local control actions mean that a workflow in principle can be continued but has to be adapted
locally due to a failure event. In addition to the distinction between case- and resource-related con-
trol actions, AGENTWORK uses another classification criteria for local control actions which is use-
ful for control action processing. So-called non-additive control actions refer to activities that are
already existent in a workflow and may have to be dropped, replaced, or postponed. They are called
non-additive as they do not add new activity nodes to a workflow. In contrast to this, additive con-
trol actions insert new activity nodes to a workflow. The reason for distinguishing these two classes
is the following: Non-additive control actions “only“ require that currently executed workflows are
scanned whether they contain activities in their remaining control flow that either 
• first match the activity pattern of the control action and second are executed for the case refer-

enced by the control action (for case-related control actions), or that 
• match the resource pattern of the control action (for resource-related control actions).

1. Please recall from 4.2.2.1 that the predicate instances-not-available(R) returns TRUE when no
Resource instance exists that matches R.
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In contrast to this, additive control actions require that first a workflow into which new activity
nodes can be inserted has to be identified or generated. Second, they require that an appropriate
insertion point within such a workflow is determined.
In the following, A and B denote activity patterns according to 4.2.1.5. Parameter d is a temporal
distance which is conform to the used temporal frame (4.3.3). As in Chapter 3, we call a node for
which the assigned activity definition matches an activity pattern A an A-node. Analogously, we
call a node for which execution a resource described by R is needed a R-node.

7.2.1 Non-Additive Local Control Actions
Table 7-2 lists the non-additive control actions supported by AGENTWORK. We give two failure rule
examples using this type of control actions:

1. An example for a rule with a case-related non-additive control action is the following. For 

A := Drug-Administration[drug = “ERYTHROMYCIN”] and 
B := Drug-Administration[drug = “DOXYCYCLIN”] 

Local Control Actionr248

(with valid time VT) Meaning

Case-Related:
drop(A,C) During VT, any A-node execution for C has to be dropped.
replace(A,B,C) During VT, any A-node execution for C has to be replaced by a B-node

execution.
postpone(A,d,C) During VT, any A-node execution for C has to be postponed by dis-

tance d (relative to its control flow position at the point in time the con-
trol action has been triggered).

review(A,C) During VT, any A-node execution for C has to be reviewed by an
authorized user.

change-value(A, p, f, C)
r243

During VT, for any A-node execution for C the value of p shall be
changed according to the function f. Parameter p is an object path of A
(e.g., an attribute of A), and f a function defined over the domain of p.

Resource-Related:
drop-activities-of(R) Any R-node execution during VT has to be dropped.
postpone-activities-of(R,d) Any R-node execution during VT has to be postponed by distance d

(relative to its control flow position at the point in time when the con-
trol action has been triggered).

Table 7-2:  Non-additive local control actions.
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the rule

WHEN INSERT ON hemato-findings (ii)
WITH new.parameter = Leukocyte-Count AND new.value < 1000
THEN replace(A, B, Cnew) VALID-TIME [now, now + (1, week)]

states that whenever a patient has a leukocyte count less than 1000, all ERYTHROMYCIN administra-
tions have to be replaced by DOXYCYCLIN administrations during the next week.

2. An example for a rule with a resource-related non-additive control action is (for
X := Physician[degree = Senior, speciality = “Oncology”]):

WHEN instances-not-available(X) VALID-TIME [now, now + (n, day)] (iii)
THEN drop-activities-of(X) VALID-TIME [now, now + (n, day)]

This rule states that when there is no senior specialist available for the next n days (e.g., due to ill-
ness or absence), all nodes for which such a senior specialist is needed have to be dropped during
these n days.
We now describe specific aspects of control actions listed in Table 7-2:

Control actions postpone(A,d,C) and postpone-activities-of(R,d):
The motivation for these two control actions is that it sometimes is sufficient not to suspend a
whole workflow by the global control action suspend(W,C), but to postpone only some of its activ-
ities. For example, concerning the case-related control action postpone(A,d,C), imaging a workflow
supporting the treatment of a patient. It then may be sufficient to postpone only the patient’s drug
administrations while the diagnostic activities for this patient can be executed according to the orig-
inal workflow definition. Analogous examples can be found for the resource-related control action
postpone-activities-of(R,d). For example, difficult medical activities requiring the presence of the
senior physician may have to be postponed when no senior physician is available − as shown in rule
(iii) −, while other activities of a workflow only requiring an assistant physician may still be exe-
cuted.
A principal question is whether it should be allowed that subsequent adaptations influence an activ-
ity postponement which has been induced by postpone(A,d,C) or postpone-activities-of(R,d). For
example, let us assume that the execution of an A-node 1 shall be postponed by 8 hours
(Figure 7-1). If the estimated execution duration of the two successor nodes 2 and 3 is 8 hours, then
this could be realized by re-ordering the node sequence, i.e., to insert node 1 behind node 3. How-
ever, then a subsequent adaptation such as inserting a node between 2 and 3 may have the conse-
quence that the A-node will be postponed significantly more than 8 hours. It is the assumption of
AGENTWORK that such side-effects of subsequent adaptations should be avoided, i.e., that the rela-
tive temporal distance between the old and the new position of a postponed activity node may not
be changed by subsequent adaptations (distance stability). For example, if a physician postpones
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drug administrations this usually means that additional diagnostic activities should not delay the
postponed drug administrations additionally. In contrast to this, adaptations that do not change the
relative distance between the old and the new position of an postponed activity should be allowed.
This distance stability constraint of postpone(A,d,C) and postpone-activities-of(R,d) will influence
the design of a control flow operator transforming a node postponement into structural workflow
adaptations significantly as we will see in Chapter 8 (Structural Adaptation Operators).
Furthermore, it could be asked why AGENTWORK does not support a control action that “brings for-
ward” an activity node to achieve an earlier execution of the node. The reason is that such a “bring
forward“ control action is difficult to realize with a reactive adaptation strategy: A node n that
would be affected by such a control action would have to be handled not later than the point in time
t’ with t’’ - d, where t’’ is the point in time for which n originally has been scheduled for execution,
and d the duration by which n shall be executed earlier. This means that starting from node n those
predecessor nodes have to be determined that are executed earlier than n by distance d, to move n
to this predecessor nodes. For this, temporal estimation is needed, or − in other words − only pre-
dictive adaptation is possible. However, as temporal estimation may not always be possible, this
means that there may be constellations where no adaptation strategy is applicable. To avoid this,
such a “bring forward“ control action is not supported.r245

Control action review(A,C):
A review(A,C) control action is used when there is not enough knowledge available to automati-
cally decide whether an A-node is adequate or not for case C. For example, a laboratory value may
be within a range for which it is not clear whether a drug such as ETOPOSID should be dropped or
not (as ETOPOSID may influence the laboratory value in a negative way). Thus, the ETOPOSID
administration has to be reviewed. When a review(A,C) control action is triggered, the user is
requested to specify for each A-node whether it still shall be executed according to the workflow
definition, or whether it for example shall be dropped, replaced, or postponed.r245

Control action change-value(A, p, f, C):
The change-value(A, p, f, C) control action has been introduced as sometimes it is sufficient to

32... ......2 31 (A)... 1 (A)

(8, hour)

postpone(..., (8, hour), [...]) postpone 
by re-ordering 

Subsequent adaptations (e.g., node insertion between
2 and 3) may delay execution of A-node additionally

(8, hour)Figure 7-1:  Violated distance stabil-
ity of postpone(A,d,C) and post-
pone-activities-of(R,d) if realized by
re-ordering.



Local Control Actions

183

dynamically change component values of an activity node (in particular attribute values) instead of
dropping or replacing the whole activity node. A typical medical example is the dosage reduction
due to some critical, however not severe drug toxicity. A rule example using this control action
could be the following: For 
• A := Drug-Administration[drug = “ETOPOSID”], 
• f(x) := x * 0.5, 
• P being an object of class Patient, and 
• critical-hemato-finding(P) being the predicate introduced in Section 4.2.2, 

we can define the rule

WHEN critical-hemato-finding(P) VALID-TIME [now − (1, week), now] (iv)
THEN change-value(A, A.dosage, f, P)VALID-TIME [now, now + (2, week)]

which states that whenever a patient has a critical hematological finding for at least one week, the
dosage of all ETOPOSID administrations should be reduced by 50 percent for the next two weeks.

7.2.2 Additive Local Control Actions
Table 7-3 lists the additive local control actions supported by AGENTWORK. In contrast to non-
additive control actions, AGENTWORK does support only case-related additive control actions, but
no resource-related additive control actions. This is because it is difficult to find relevant examples
where the absence of a staff member or the damage of a piece of equipment induces additional
activities for the affected workflow.2 
An example for a rule with an add control action is the following:r250 For 

A := Sonography[focus = “Heart”] and

2. For a workflow supporting the repair of a broken piece of equipment this piece of equipment is not
anymore a resource for this workflow but would play the role of a case for which the activities of this
repair workflow are executed.

Control Action
(with valid time VT)r251

Meaning

add(A,C) One additional A-node for C has to be executed during VT.r53 
add-repetitively(A,d,C) Additional A-nodes executions have to be performed repetitively for C dur-

ing VT. The duration between two A-node executions is specified by d.

Table 7-3:  Additive local control actions.
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cardiological-findings being and extension for objects of the class 
Cardiological-Finding[type: String, degree: Enum{SEVERE, CRITICAL, NORMAL}]

we can define the rule

WHEN INSERT ON cardiological-findings (v)
WITH new.type = “Inflammation of heart muscle“ AND new.degree = SEVERE
THEN add(A, Cnew) VALID-TIME [now, now + (2, day)].

This rule states that when a patient shows some severe inflammation of the heart muscle, a heart
sonography should additionally be executed during the next two days. Alternatively, by using

THEN add-repetitively(A, (3, day), Cnew) VALID-TIME [now, (2, week)] (vi)

in rule (v) it can be specified that a heart sonography should be done every three days for the next
two weeks.
We make the following remarks:r246

• Obviously, an add-repetitively(A,d,C) control action could also be expressed by a combination
of several add(A,C) control actions. However, as the repetitive execution of activities occurs
frequently at least in medical domains an extra control action has been introduced for this.

• For an add(A,C) control action, the end of VT cannot be described by a termination condition
such as Until normal-hemato-status(C). This is because it then would be unclear when a new
activity node should be inserted into the control flow, as the point in time when the condition
becomes true and therefore the end of VT is not known beforehand. In contrast to this, for an
add-repetitively(A,d,C) control action the end of VT may also be specified by a termination con-
dition. This is possible as the execution points in time of the new repetitive activity nodes are
specified by the period d, and as the termination condition then simply states when this repeti-
tive execution shall terminate. 

7.2.3 Further Aspects
We now discuss some aspects being relevant for all local control actions. This includes the discus-
sion whether local control actions shall postulate that affected nodes are executed entirely or only
started during the valid time interval (7.2.3.1). Furthermore, we discuss why case patterns are not
allowed in control actions (7.2.3.2), how so-called deadline events can be handled by control
actions (7.2.3.3), and how the user may interact (7.2.3.4).

7.2.3.1 Entire Execution versus Execution Start during Valid Time Intervals
An open question is whether the term “execution during a valid time“ used in Table 7-2 and Table
7-3 means that an activity node has to executed entirely during the valid time or only has to be
started (i.e., set to state Active) during the valid time. Concerning this question, AGENTWORK only
postulates that the start of the execution of a node n has to occur during a valid time VT, if n shall
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be affected by a non-additive control action, or shall be executed additionally due to an additive
control action. It is not required that n is entirely executed during VT. The reason for this is that a
reactive adaptation would not be possible if one would postulate that n is entirely executed during
VT. For example, if a drop(A,C) has been triggered, the question whether an A-node is executed
entirely during VT and thus is affected by drop(A,C) cannot be determined before the A-node has
been set to state Committed. However, then it is too late to drop the node execution as the activity
assigned to it has already been performed.
Typically, the fact that AGENTWORK only postulates the execution start during the valid time inter-
val, affects only activity node executions at the “right end“ of the interval, as valid time intervals
usually are much longer than activity durations.

7.2.3.2 Case Instances and Resource Patterns
As events may affect both cases and resources, we have introduced case-related and resource-
related control actions. However, one may ask why the case parameter C in a control action has to
be a concrete Case instance (e.g., patient John Miller), while it may be a resource pattern for the
parameter R. The answer is the following: While already an event affecting a single Case instance
may cause a control flow failure, events occurring to resources typically cause control flow failures
only when they affect all resource instances meeting some pattern, such as all instances of a com-
puter tomograph. This is because then no proxy is available anymore so that activity nodes for
which such a resource is needed cannot be executed. This has also been reflected by the instances-
not-available predicate used for example in rule (iii).
Of course, one could argue that using Case patterns instead of Case instances in control actions
would give more flexibility to failure handling. For example, let us assume that the knowledge
becomes available that for some disease D a drug should not be used anymore in general, as this
drug appears to be too dangerous for treating D. Then, one could think of a drop control action ver-
sion that states that activity nodes administering this drug and executed for any patient suffering
from D should be dropped. However, as indicated by this example, this is more a matter of adapting
workflow definitions at built time (e.g., workflow definitions dealing with disease D), instead of
adapting workflow instances at run time. This is because not a single case instance but a case col-
lection is affected by the event that a drug appears to be too dangerous. Thus, using case patterns
would mix up the problems of adapting workflow definitions (being a matter of schema evolution;
see 2.4.1), and of adapting workflow instances. Therefore, AGENTWORK does not support case pat-
terns in failure handling rules.

7.2.3.3 Control Actions and Deadline Events
In this section we show that the event and control action model of AGENTWORK is also able to han-
dle so-called deadline events that play an important role in many workflow application. Principally,
a deadline event occurs if it becomes clear that some given deadline cannot be met anymore (such
as a deadline for producing a product for some customer). In workflow terms, this typically means
that a workflow (part) which has been assumed to be finished until this deadline cannot be com-
pleted anymore until the deadline. As a consequence, dynamic adaptations may have to be per-
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formed to meet the deadline, such as dropping activity nodes not being mandatory. This can be
expressed by rules such as follows (W denotes some workflow definition supporting the prepara-
tion of a product, C the customer for whom this product has to be produced, and dlC the deadline
point in time that has to be met for C):

WHEN left-time-to(dlC) ≤ (n, day) AND needed-time-to-complete-workflow(W) > (n, day)
THEN drop(A,C) VALID-TIME [now, dlC]

This rules states that whenever the time left until the deadline is only n days anymore (or less), but
the time needed to execute the remaining workflow is more than n days, all A-nodes have to be
dropped from the workflow from now until the deadline. The function needed-time-to-complete-
workflow(W) evaluates the duration needed to complete the workflow. The estimation algorithms
needed for this have been described in Chapter 6.

7.2.3.4 User Interaction
Triggered control actions may have massive effects on a workflow, such as dropping drug adminis-
tration nodes for a patient. Thus, there should be human interaction checking whether the triggered
control actions are really appropriate to handle a control flow failure. Therefore, in AGENTWORK
an authorized user has the possibility for any triggered control action to reject it, or to change its
parameter values or its valid time interval, or to refine it by subclassing the used activity, resource
or case classes. For example, let us assume that an add(A,C) control action has been triggered with 

A := Drug-Administration[drug = “DOXYCYCLIN”, dosage = 200, unit = mg, (vii)
type = tablet]

specifying that the antibiotic drug DOXYCYCLIN should be given orally with a dosage of 200 mg.
Then, the physician may want change A to A’ as follows

A’ := Drug-Administration[drug = “DOXYCYCLIN”, dosage = 200, unit = mg, (viii)
type = infusion]

to specify that DOXYCYCLIN dosage that shall be given as infusion instead orally.r247

The question which users are “authorized“ and which not depends on the particular workflow
application, and therefore is considered as a matter of implementation (see Chapter 11). Thus, it is
not discussed in detail in this chapter.

7.3 Valid Time Conventions for Control Actions
We now discuss some useful conventions concerning the valid times of control actions in active
rules. As a prerequisite, we unify the notation of valid times by using the VALID-TIME keyword for
fixed and conditional valid times, e.g., by writing

THEN drop(ETOPOSID, P) VALID-TIME [now, Unless normal-hemato-status(P)]
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instead of

THEN drop(ETOPOSID, P) Unless normal-hemato-status(P)

in the following. By this we can avoid syntactical case distinctions when specifying failure rules.
In ACTIVETFL, the following two conventions concerning the structure of a control action’s valid
time interval are made:

 Restriction 1: Beginning at now. The valid time always has to start now, i.e., the point in time the
failure rule has been triggered. In particular, this implies that the valid time of
abort(W,C) and abort-workflows-of(R) always has to be the point in time now.

 Restriction 2: Coherence. The valid time must not consist of several unconnected parts. For
example, a valid time such as 

[now, now + (3, day)] ∪ [now + (5, day), now + (7, day)] 

is not allowed.
These two conventions facilitate failure handling significantly. This is mainly because workflow
estimation and adaptation then only have to cope with a workflow part which starts at the nodes
that are currently executed or prepared for execution at the point in time of the failure (convention
1), and which is connected (convention 2).r142

However, as we have to assume that in many domains there will be failure rules which do not fulfill
these conventions, we show how AGENTWORK transforms rules with arbitrary control action valid
time intervals into rules meeting conventions 1 and 2. In the following, E describes some event trig-
gering a failure rule, tE the point in time when E occurred, ca some control action, and d1, d2, d3
some temporal durations. The WITH part is omitted in the following examples as it is irrelevant.
First, let as assume that convention 1 is not met, i.e.

R: WHEN E THEN ca VALID-TIME [now + d1, now + d2] (ix)

with 0 < d1 < d2. This rule can be transformed into a rule meeting convention 1 (Figure 7-2):

R*: WHEN time-point-after(E, d1) THEN ca VALID-TIME [now, now + d2 − d1], (x)

where time-point-after(E, d) is defined as the predicate that is true exactly at the point in time
in case E occurred, and false otherwise. Note that the point in time to which now refers

is different in (ix) and (x), as now refers to the point in time when the particular rule is triggered.
The transformation of valid time intervals where convention 1 is not fulfilled and where the end is
specified conditionally via Until or Unless is done analogously. A rule where convention 1 is not
met because the beginning of the control action valid time is conditional can easily be transformed
to a rule meeting convention 1 by moving the beginning condition to the THEN-WITH part of the
rule.

t’ tE d+=
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Second, let us assume that convention 2 is not met. For this we assume that the valid time of a con-
trol action is split up into two intervals (the handling of more than two intervals is analogously), i.e.

R: WHEN E THEN ca VALID-TIME [now, now + d1] ∪ [now + d2, now + d3] (xi)

with 0 < d1 < d2 < d3. Such a rule can be transformed into the two following rules (Figure 7-3):

R1: WHEN E THEN ca VALID-TIME [now, now + d1]
R2: WHEN time-point-after(E, d2) THEN ca VALID-TIME [now, now + d3 − d2].

R1 is triggered when E occurs (i.e., at tE), rule R2 is triggered at tE + d2 (if E occurred). The situation
that the end of the right interval in (xi) is not defined via now + d3, but via Until or Unless is han-
dled analogously (i.e., instead of using now + d3 − d2 the valid time in R2 is terminated via Until or
Unless.r253 
Due to these two transformation mechanisms, we will assume only rules meeting conventions 1
and 2 for the following.

7.4 Control Action Processing
We now describe how triggered control actions are further processed. First, we introduce a useful
definition, namely the failure node set which describes the execution stage of a workflow at the
point in time of a control flow failure (7.4.1). Second, we describe how global control actions are
processed (7.4.2). Third, we describe how local control actions are processed (7.4.3). 

Figure 7-3:  Rule transformation for convention 2.
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7.4.1 Failure Node Set
The failure node set describes at which execution stage a workflow is affected by a control flow
failure.

Condition 1 means that n belongs to the remaining control flow that has still to be executed. Condi-
tion 2 means that n is currently executed (i.e., is in state Active), or will be executed next3. Thus, the
failure node set FNSI, ca describes the execution “focus“ of I at the point in time of a control flow
failure. In particular, for local control actions that are handled by predictive adaptation, the failure
node set serves as a description of the beginning of the workflow part that has to be estimated. If the
triggering control action ca or the workflow instance I is clear from the context, we may omit the
resp. index, i.e., we may write FNSI, FNSca, or FNS.

7.4.2 Processing of Global Control Actions

7.4.2.1 Processing of abort(W,C) and abort-workflows-of(R)
If an abort(W,C) control action has been triggered, every workflow instance I based on the work-
flow definition W and executed exclusively for case C is aborted as described in 5.4.5 (i.e., the state
transition sequence Active → Rolling-Back → Aborted is performed for I). Analogously, if an
abort-workflows-of(R) control action has been triggered, every workflow instance I for which at
least one activity node of the remaining control flow needs a Resource instance matching the pat-
tern R is aborted. Note that AGENTWORK does not support a partial rollback for aborting control
actions. This would require that the aborting control actions could specify which workflow part
should be rolled back, which is not supported at the moment. 

7.4.2.2 Processing of suspend(W,C) and suspend-workflows-of(R)
If a suspend(W,C) control action has been triggered, every workflow instance I based on the work-
flow definition W and executed exclusively for case C is suspended. Analogously, if an sus-
pend-workflows-of(R) control action has been triggered, every workflow instance I is suspended for

Definition 7.1:   Failure Node Set
Let ca be an arbitrary control action, and let I be a currently executed workflow instance.
Then, we define as the failure node set FNSI, ca the set of nodes for which each member n
fulfills the following two conditions at the point in time when ca has been triggered:

1. n is not in state Committed or Unreachable. 

2. All direct predecessor nodes of n not being in state Unreachable are in state Committed.

3. The “unreachable“ subcondition in condition 2 is necessary as n may not be an activity node but an
OR-JOIN node, for which not all predecessor node have to be executed.
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which at least one activity node of the remaining control flow needs a Resource instance matching
the pattern R. For both control actions, this means that I is set from state Active to state Suspended,
and that I remains in the latter state for the whole valid time assigned to the control action. When
the valid time has elapsed, the workflow is continued, i.e., is set back to state Active.
However, the problem remains how to cope with activity nodes that are in state Active at the point
in time when suspend(W,C) or suspend-workflows-of(R) has been triggered, such as nodes 3 and 6
in Figure 7-4. Principally, it is difficult to find general criteria to decide whether such currently
active node shall have the possibility to commit, or shall be aborted before the workflow instance is
suspended. For example, let us assume that a chemotherapy workflow has to be suspended because
the patient has got a hematological toxicity and therefore has to recover for one week before the
chemotherapy can be continued. Then, if some diagnostic activity node is currently active, there is
no reason why this node should not commit before the workflow is suspended. However, if the cur-
rently active node supports the administration of a drug being responsible for the toxicity trigger-
ing the suspension, then this activity node should be aborted immediately.
As it is difficult to automatically decide how to deal with such active nodes, AGENTWORK requests
an authorized user how to cope with such nodes. This means, that for an instance I that has to be
suspended, the user is requested for every node n of the failure node set FNSI, ca being in state
Active, whether n shall commit or shall be aborted. As the question whether to commit or abort is a
matter of single nodes, it may happen that for a workflow instance I one currently active path may
commit w.r.t. its currently active node, while another path has to be rolled back to the last commit-
ted node. For example, let us assume that the workflow in Figure 7-4 supports a chemotherapy and
has to be suspended due to some toxicity. Let us furthermore assume that the currently executed
node 3 may administer a drug responsible for the toxicity and therefore has to be aborted immedi-
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ately. Therefore, the path node 3 belongs to is rolled back to the already committed node 2. In par-
ticular, node 3 is set from state Active to state Untouched (via state Control-Flow-Failed; see
5.4.24). In contrast to this, node 6 may execute an uncritical activity (e.g., a diagnostical examina-
tion) and therefore may be allowed to commit (node transition Active → Committed) before its path
is suspended.
In particular, this means that a workflow instance I may temporarily be in the two states Active and
Rolling-Back simultaneously. After the rollback respective the commit of the currently executed
nodes, I is set to state Suspended. Additionally, the user has to specify whether the time that is
needed to commit or abort currently active nodes has to be subtracted from the time the instance
has to be suspended, or not.

7.4.3 Processing of Local Control Actions
The principal way of processing local control actions has already been described in Chapter 3. In
particular, the criteria for selection reactive or predictive selection have been described there. Thus,
we can now concentrate on more specific details: For non-additive local control actions, we can
now define formally on the base of the workflow execution model of Chapter 5 when a node is
affected by a control action and when not (7.4.3.1). As an important subproblem, we furthermore
have to specify what has to be done if a currently executed node (i.e., a node in state Active of the
failure node set) is affected by such a non-additive control action (7.4.3.2). For local additive con-
trol actions, we have to describe how AGENTWORK decides into which workflow an additional
node should be inserted (7.4.3.3). 
Note that we do not yet describe the structural adaptation of a workflow on the node and edge
level, such as dropping or adding nodes. This is a matter of Chapter 8 (Structural Adaptation Oper-
ators). Rather, in this chapter we describe “only“ the step between control action triggering and the
final structural workflow adaptation. In particular, in this section we concentrate only on a single
control action. Possible dependencies between control actions that have overlapping valid time
intervals are discussed later in Section 7.6.

7.4.3.1 Processing of Non-Additive Local Control Actions
Non-additive local control actions affect activity nodes which are already contained in a workflow
definition. To describe their processing, we introduce the following notations: 
• ca(A, C) resp. ca(R) denotes an arbitrary non-additive case-related resp. resource-related con-

trol action from Table 7-2. Parameter A denotes the activity pattern of the control action, param-
eter C the case instance, and R the resource pattern. Additional parameters − such as the d-
parameter of postpone(A,d,C) − are irrelevant for this section, so that we can omit them here.

• VT denotes the fixed or conditional valid time of ca(A,C) resp. ca(R).

4. Recall from this section that the node state Control-Flow-Failed expresses an activity node “abortion“
due to some control flow failure.
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• If n is an activity node, then ni denotes the i-th execution of n (i = 1, 2, ...) during the execution
of the workflow instance to which n belongs. Parameter i may be larger than 1 if n is located in
a loop, or when n is executed twice due to some partial rollback.

Then, (*) states under which conditions an activity node execution is affected by a control action.

Based on this, we can now precisely formulate the selection criteria for predictive and reactive
adaptation as follows:
Predictive adaptation is selected for a node execution ni under the following conditions: 
• VT is fixed (condition 1 of 3.4.1).
• For a node execution ni it can be determined at the point in time when ca(A,C) resp. ca(R) has

been triggered, that ni is affected by ca(A,C) resp. ca(R) according to (*). This is the precise for-
mulation of condition 2 in 3.4.1.

In particular, this requires that the workflow can be estimated (starting at the failure node set) to
determine whether the execution ni will take place during VT. If this estimation is possible and the
conditions listed in (*) hold, control flow operators can be invoked predictively to adapt the control
flow, e.g., to drop or postpone the execution ni (by dropping or postponing node n in the control
flow).
Reactive adaptation is selected when it cannot be determined predictively whether a node execu-
tion ni meets the conditions listed in (*) or not. Then, two principal mechanisms exist when to

Affected Activity Node Execution (*)  
An activity node execution ni is affected by a non-additive local control action ca(A,C)
resp. ca(R) if the following conditions hold:

1. ni is started during VT. This means that for the i-th execution of n it holds that n is set
to state Active during VT, i.e., that entry-of-node-state(ni, Active) ∈ VT

If the control action is case-related, it holds:
2. n is an A-node. Formally, this means that the pattern defined in the activity entry of

NAM(n) matches A.
3. The Case instance C is identical with the Case instance assigned to ni. Formally, this

means that it holds: C = case(ni)

If the control action is resource-related, it holds:
2’. At least one resource instance assigned to ni matches pattern R. Formally, it holds that

it exists r ∈ resources(ni) with r matching R.
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determine reactively whether ni meets the conditions of (*) or not:
• On-demand check

This straightforward mechanism checks the conditions of (*) when n is set to state Active (w.r.t.
its i-th execution). This makes sense, as at this moment the case and the resources already have
been assigned to n (see 5.4.3.5), and as at this moment it is definitely known by definition
whether n has been set to state Active during VT or not. If the conditions of (*) are met, the exe-
cution of n is directly terminated and then handled according to the affecting control action
(e.g., n is dropped in case of a drop control action). However, this mechanism has two disad-
vantages: First, activity executions that already have been presented in the user worklist and for
which the user has confirmed that they shall be started, suddenly may be declared as failed
activities (as they are affected by a control action). This may confuse workflow users. Second,
as the node execution is checked after n has been set to state Data-Activated, the input data
already have been provided at this moment. If this data have been obtained by user input and if
for instance n is affected by a drop or replace control action, this would mean that the user has
typed in the data for nothing. 

• Advanced check
This mechanism already reacts when n is set to state Control-Activated (w.r.t. its i-th execution).
At this moment, at least the case- resp. resource-related conditions of (*) can be checked.r259 Con-
cerning the question whether n will be to state Active during VT or not, this mechanism assumes
that

entry-of-node-state(ni, Control-Activated) ∈ VT ⇒ entry-of-node-state(ni, Active) ∈ VT (xii)

This assumption makes sense as valid time intervals typically cover days or even weeks, while
the durations of node state transitions on the average are much smaller, i.e., only take minutes
or hours. This mechanism avoids the disadvantages of the on-demand check, in particular use-
less data input can be avoided. However, it has the disadvantage that assumption (xii) may not
hold for some particular node execution. Thus, workflow monitoring is required when the
workflow is continued. 

The question which of the two mechanisms is the better one depends on the particular workflow
application. For example, if a workflow application is characterized by interactive data input for
many activity types, one may prefer the advanced check. If it cannot be assumed that assumption
(xii) holds very often, one may prefer on-demand check. Therefore, the used mechanism has to be
specified when AGENTWORK is installed for a particular workflow application. 
Independently from the particular check mechanism, the same control flow operators as for predic-
tive adaptation are invoked for example to drop or postpone the execution ni (see Chapter 8).

The way AGENTWORK selects its adaptation strategy also shows that predictive or reactive
adaptation is a matter of single activity node execution, and not of the execution of whole workflow
parts. In other words, for a workflow part some nodes may be handled predictively, as the necessary
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conditions can be checked at the point in time of control action triggering, while other nodes of the
same workflow part have to be handled reactively.

7.4.3.2 Processing of Currently Executed Activity Nodes
An open problem is how to handle an activity node n which already is in state Active at the point in
time a non-additive control action has been triggered, and which is affected by this control action
according to (*). Analogously to workflow suspension, it is difficult to find a general mechanism
how to deal with such active nodes. For example, imagine that replace(A,B,C) has been triggered
and that A and B are some drug administration patterns including a dosage specification. If a cur-
rently executed A-node has been started only several minutes before control action triggering, there
may be no problem to directly abort the A-node, and to administer the new drug with the dosage
specified by B. However, if the execution of the A-node already has started some time ago so that
already a significant part of the dosage has been administered to the patient identified by C, it may
be more appropriate to give only a part of the dosage specified by B to avoid toxicity effects for the
patient. As it cannot be automatically decided which particular mechanism is more appropriate,
AGENTWORK therefore requests an authorized user whenever an active node is affected by a non-
additive control action. This user then has to state whether the control action affecting n shall be
realized as specified in the triggering failure rule, or whether it for instance shall be modified for
this particular node. For example, for the replace(A,B,C) scenario described above the physician
could reduce the dosage specified by B significantly to avoid toxicity effects for the patient. 

7.4.3.3 Processing of Additive Local Control Actions
The additive control actions add(A,C) and add-repetitively(A,d,C) state that A-nodes have to be
executed additionally. In this section, we discuss how to identify an appropriate workflow W into
which a new A-node for case C can be inserted. The question where within W a new A-node shall be
inserted depends on the structure of W in the neighborhood of the failure node set, and is a matter
of operators which adapt the control flow. This will be described in Chapter 8 (Structural Adapta-
tion Operators).
Concerning the selection of an appropriate workflow, it principally should be avoided to insert
activity nodes into workflows executing “unrelated“ activities. For example, in the medical domain
a radiological workflow usually is not an appropriate candidate to execute additional drug adminis-
trations as then one workflow would involve more than one medical department or would at least
confuse the medical staff. To determine an appropriate workflow for a new A-node, AGENTWORK
provides two principal mechanisms, namely manual selection with case-based ordering and work-
flow scope labeling.

Manual selection with case-based ordering
This straightforward mechanism generates a user request when an add(A,C) or add-repeti-
tively(A,d,C) control action has been triggered. All currently executed workflows are presented to
an authorized user who has to decide to which workflow a new A-node shall be added. The way the
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list of currently executed workflows is presented to the user is as follows:
The first sublist of the list presented consists of all workflows executed exclusively for case C. This
is because it is viewed as reasonable to insert a new A-node for case C into a workflow executing its
other activities for C as well, and not for another case C’. Thus, AGENTWORK presents the work-
flows of this sublist first to the user.
The second sublist of the list consists of all workflows for which it is known − at the point in time
when add(A,C) or add-repetitively(A,d,C) has been triggered − that some of its activity nodes are
executed for case C. The user can insert a new A-node into a workflow of this second sublist, if
there are no workflows running exclusively for case C, or when the user for some reason views
none of the workflow running exclusively for case C as appropriate.
The last sublist of the list consists of the remaining currently executed workflows. The user inserts
a new A-node into a workflow of this last sublist, if sublists 1 and 2 above are empty, or when the
user for some reason views none of the workflow of sublists 1 or 2 as appropriate.

Workflow scope labeling
To reduce the number of candidates during workflow selection, AGENTWORK also allows to label
workflow definitions with an “activity scope“. The labels that are used for this are directly derived
from the Activity subclasses of the global data schema (see 4.2.1) as follows: For every Activity
subclass X, the label X-Workflow is provided (e.g., for the class Therapeutic-Activity the label Ther-
apeutic-Activity-Workflow is provided). At workflow definition time, the user then can assign such
an X-Workflow label to a workflow definition if “most“ of the used activity definitions are derived
from class X, or, more formally, if it holds for “most“ activity definitions assigned to activity nodes
that the activity entry is of type Obj-Patt<X>; see 5.3.1). The question what “most“ means (e.g., 80
or 90 percent) is left up to the user. In particular, it is not required that the activity entry of all activ-
ity definitions of the workflow definition is of type Obj-Patt<X>. This is because as it still makes
sense to label a workflow definition which uses for example 12 different activity definitions as
Therapeutic-Activity-Workflow, even if only 9 or 10 activity definitions have an activity entry of
type Obj-Patt<Therapeutic-Activity>.
Then, when an A-node has to be added at workflow execution time because of an add(A,C) or add-
repetitively(A,d,C) control action, AGENTWORK suggests only those currently executed workflows
which have a label X-Workflow for which A matches X, or, precisely, for which it holds: 

Y IS-A X, if A is of type Obj-Patt<Y>. (xiii)

This means that the activity pattern A of the new node fits into the workflow activity scope
described by X.
The list of workflows fulfilling constraint (xiii) is then presented to the user for further selection,
and is ordered the same way as it is done for manual selection with case-based ordering. If the list
of workflows fulfilling constraint (xiii) is empty, AGENTWORK shifts to the manual selection with
case-based ordering mechanism.
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If there is no currently executed workflow at all, or if no currently executed workflow for some rea-
son is viewed as appropriate for executing an additional A-node, AGENTWORK generates a new
workflow instance which contains only a START and END node. Into this “empty“ workflow the
control flow operators of Chapter 8 can insert the required new A-nodes. However, this mechanism
is viewed only as an “emergency solution“ as such artificial workflows with only one activity type
should be avoided.

Concerning the selection of predictive or reactive adaptation, the following criteria are used for
additive control actions:
For add(A,C), predictive adaptation is used by default. Recall from Section 7.2.2, that the end of a
valid time interval VT assigned to an add(A,C) control action cannot be specified by a termination
condition, so that the “knock-out“ criterion for predictive adaptation does not exist for add(A,C).
Predictive adaptation for add(A,C) means, that the workflow part corresponding to the valid time
VT assigned to add(A,C) is estimated, and that the control flow adaptation operators insert the new
A-node into this part. If such an estimation is not possible for some reason, reactive adaptation is
selected. This means that the new A-node is inserted as “close as possible“ to a member of the fail-
ure node set. By this, it is achieved that the execution of a new A-node can be started as soon as pos-
sible after the adapted workflow path is continued, so that the constraint that the execution of a new
A-node has to be started during VT can be met. The conflict situation that the execution of a new A-
node cannot be started anymore during VT due to some unexpected delays is handled by workflow
monitoring.
The control action add-repetitively(A,d,C) is always handled by a specific subtype of predictive
adaptation, even if the valid time VT assigned to add-repetitively(A,d,C) is terminated condition-
ally. Predictive adaptation for add-repetitively(A,d,C) is realized by inserting a loop of A-nodes
with period d into the selected workflow. The termination condition of the loop is exactly the expi-
ration of the valid time VT, i.e., the loop terminates when VT terminates. This is a form of predictive
adaptation as all execution of A-activities specified by add-repetitively(A,d,C) are inserted predic-
tively at the point in time when add-repetitively(A,d,C) has been triggered. For the generation and
insertion of such a loop on the node and edge level we again refer to Chapter 8. 
The alternative to generating a loop would be to insert several sequential A-nodes into the work-
flow is not viewed as appropriate. For example, imagine that 

add-repetitively(A, (1, week), C) VALID-TIME [now, now + (6, week)] 

has been triggered to express that an A-node has to executed weekly during the next 6 weeks. With-
out using loops, one would have to estimate which part of the remaining workflow corresponds to
week 1, which to week 2 and so one, and to insert a new A-node into each of these parts. It is
unlikely that such an estimation will have a sufficient precision so that AGENTWORK does not make
use of this possibility.
r255
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7.5 Integrity of Failure Rules
The problem of rule integrity is a topic of ongoing research in the fields of databases and artificial
intelligence [BARALIS 1999, PERRAJU & PRASAD 2000, ROANES-LOZANO ET AL. 2000]r256, and can-
not be addressed in general in this thesis. However, as we have introduced some significant restric-
tions and simplification conventions concerning failure rule definitions, we can handle at least the
most important types of rule integrity for AGENTWORK. We recall from 4.4.2 that the main rule
restriction is that the THEN part (without the valid time) contains only one control action5, and no
additional elements such as data manipulation statements or procedure calls. Furthermore, to facil-
itate failure handling we have introduced two conventions for the valid time interval of a control
action, namely the beginning at now and coherence (Section 7.3). In the following, we discuss sev-
eral aspects of rule integrity, in particular rule redundancy (7.5.1), rule incompatibility (7.5.2), and
rule termination (7.5.3).

7.5.1 Rule Redundancy
As an important prerequisite for rule integrity, it is desirable to avoid redundant rules to reduce the
number of rules and thus to facilitate the maintenance, analysis and processing of rules. For exam-
ple, this is important for a domain such as hemato-oncology where several hundred failure rules
exist in the medical text books for treatment adaptation. Due to the bipartite event-action structure
of ACTIVETFL failure rules, we distinguish two basic redundancy types, namely event redundancy
and action redundancy. In this section we discuss only static redundancy, i.e., redundancy that can
be already identified at rule definition time. Dynamic redundancy that occurs at rule execution time
is discussed later in Section 7.6 (Dynamic Control Action Dependencies).

7.5.1.1 Event Redundancy
Let us assume two rules R1 and R2 with identical THEN part (i.e., the triggered control actions, their
parameters and their valid times are identicalr261). Then R2 is said to be event-redundant w.r.t. R1, if
any event that triggers R2 also triggers R1. An example is

R1: WHEN INSERT ON hemato-findings (xiv)
WITH new.parameter = Leukocyte-Count AND new.value < 1000
THEN drop(A,Cnew)

R2: WHEN INSERT ON hemato-findings (xv)
WITH new.parameter = Leukocyte-Count AND new.value < 500
THEN drop(A,Cnew ).

5. A control action may also appear in the valid time, e.g., THEN add-repetitively(A,d,C) VALID-TIME
[now, drop(D,C)]. However, this is irrelevant for our considerations concerning rule integrity.
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R2 is event-redundant w.r.t. R1, as any leukocyte count triggering R2 also triggers R1. Thus, R2 can be
dropped from the rule base. The general mechanism to identify such event redundant rules is as
follows:

• First, identify all rule pairs R1, R2 with identical THEN part.
• Second, check whether the event triggering R1 subsumes the event triggering R2. This is given,

if both WHEN parts refer to the same extension and extension operation (e.g., hemato-findings
and INSERT ON in R1 and R2), and if the pattern in the WITH part of R1 subsumes the pattern in
the WITH part of R2 according to Section 4.2.1.6 (Pattern Subsumption and Pattern Matching).

7.5.1.2 Action Redundancy
We first describe action redundancy for non-additive local control actions, and second for additive
local control actions. Action redundancy for global control actions cannot occur as an abort(W,C)
cannot imply a suspend(W,C) and vice versa. The same holds for the pair abort-workflows-of(R)
and suspend-workflows-of(R).r263 
For all rule pairs R1 and R2 used in this section we assume identical WHEN and WITH parts. 

Action redundancy for non-additive local control actions: 
We first consider case-related non-additive control actions. For this, let

ca1(A1, [B1, d1, p1, f1,] C1) VALID-TIME VT1r264 and 

ca2(A2, [B2, d2, p2, f2,] C2) VALID-TIME VT2r264

denote the case-related non-additive control actions of the THEN part of two rules R1 and R2 (the
parameters Bi, di, pi and fi are only needed for cai = replace, postpone or change-value). Then R2 is
said to be action-redundant w.r.t. R1, if the following conditions hold:

1. ca1 = ca2, C1 = C2, and if 
cai = replace: B1 = B2 
cai = postpone: d1 = d2
cai = change-value: p1 = p2 and f1 = f2

2. A2 matches A1, or − equivalent to this − A1 subsumes A2 (according to 4.2.1.6), and VT2 is con-
tained in VT1.r267

If conditions 1 and 2 hold, we also say that the control action ca2 is redundant w.r.t. ca1. An
example is the following: If we have

A1 := Drug-Administration[drug = “ETOPOSID”]

A2 := Drug-Administration[drug = “ETOPOSID”, dosage > 150, unit = mg]



Integrity of Failure Rules

199

and the two rules (by omitting the identical WITH parts)

R1: WHEN E (xvi)
THEN drop(A1, P) VALID-TIME [now, now + (3, day)]

R2: WHEN E (xvii)
THEN drop(A2, P) VALID-TIME [now, now + (2, day)],

then rule R2 is action-redundant w.r.t R1 , as any dropping of an ETOPOSID administration during the
next three days implicitly means also a dropping of any ETOPOSID administration with more than
150 mg during the next two days. Thus, R2 can be dropped from the rule base.
A special type of redundancy for case-related non-additive control actions is given if we do not
have ca1 = ca2 in condition 1, but ca1 = replace and ca2 = drop. Then a replace(A1, X, C1) control
action would make a drop(A2, C2) control action superfluous, as replacing A1-activities in particular
implies that A2-activities are not executed anymore (given that A2 matches A1 due to condition 2),
i.e., that they are dropped.
For resource-related non-additive control actions, redundancy is defined analogously. For this, let

ca1(R1, [d1]) VALID-TIME VT1r264 and 

ca2(R2, [d2]) VALID-TIME VT2r264

denote the resource-related non-additive control actions of the THEN part of two rules R1 and R2
(the parameter di is only needed for cai = postpone-activities-of). Then R2 is said to be action-redun-
dant w.r.t. R1, if the following conditions hold:

1. ca1 = ca2, and if 
cai = postpone-activities: d1 = d2

2. R2 matches R1, or − equivalent to this − R1 subsumes R2 (according to 4.2.1.6), and VT2 is con-
tained in VT1.r267

Action redundancy for additive local control actions: Let

ca1(A1, [d1,] C1) VALID-TIME VT1r264 and 

ca2(A2, [d2,] C2) VALID-TIME VT2r264

denote the additive control actions of the THEN part of two rules R1 and R2 (the parameter di is only
needed for cai = add-repetitively). Then R2 is said to be action-redundant w.r.t. R1, if the following
conditions hold:

1. ca1 = ca2, C1 = C2, and if
cai = add-repetitively: d1 = d2
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2. A1 matches A2, or − equivalent to this − A2 subsumes A1 (according to 4.2.1.6), and VT2 is con-
tained in VT1.

Note that concerning the matching relationship of the used activity patterns, condition 2 is just the
opposite direction if compared with condition 2 for non-additive case-related control actions. This
is because adding the more specific activity (i.e., A1 in condition 2) also implies that the more
general activity (i.e., A2 in condition 2) is added. For example, if we have 

A1 := Drug-Administration[drug = “ETOPOSID”, dosage > 150, unit = mg]

A2 := Drug-Administration[drug = “ETOPOSID”, dosage > 100, unit = mg]

(i.e., A2 subsumes A1) and the two rules

R1: WHEN E (xviii)
THEN add(A1, P) VALID-TIME [now, now + (3, day)]

R2: WHEN E (xix)
THEN add(A2, P) VALID-TIME [now, now + (2, day)],

then rule R2 is action-redundant w.r.t R1 as adding an ETOPOSID administration with more than
150 mg for the next three days (R1) implicitly means that an ETOPOSID administration with more
than 100 mg is added for the next two days (R2). Thus, rule R2 can be dropped from the rule base.

A special type of redundancy for case-related additive control actions is given if we do not have
ca1 = ca2 in condition 1, but ca1 = add-repetitively and ca2 = add, for example if we use add-
repetitively(A1, d1, P) in (xviii) instead of add(A1, P). Then, an add-repetitively(A1, d1, C1) control
action during a valid time VT1 implicitly means that (at least) one A2-activity is added during VT2
(as VT1 contains VT2) so that the rule with the add(A2, d2, C2) control action is superfluous.r265 
As the definitions for event and action redundancy show, the redundancy of a rule R2 w.r.t R1 is a
non-symmetric relationship, i.e., if R2 is redundant w.r.t R1 and thus can be dropped form the rule
base, R1 of course if not redundant w.r.t R2.

7.5.1.3 Other Event/Action Redundancy Constellations
In Section 7.5.1.1 and Section 7.5.1.2, we assumed that either the THEN parts of two rules are iden-
tical (for considering event redundancy), or that the WHEN / WITH parts of two rules are identical
(for considering action redundancy). Of course, there may be redundancy effects for two rules also
if these assumptions do not hold. The most obvious constellation in this context is the following:
Let us assume two following two rules with non-additive control actions:

R1: WHEN E1 (xx)
THEN ca1
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R2: WHEN E2 (xxi)
THEN ca2

where E1 subsumes E2, and where the control actions ca1 and ca2 meet the conditions listed for
action redundancy w.r.t. non-additive local control actions in Section 7.5.1.2. Then, rule R1 is
event- and action-redundant w.r.t R2 and therefore can be dropped from the rule base. For additive
local control actions, simultaneous event- and action-redundancy is defined analogously.
Other constellations concerning the subsumption of events and actions are difficult to interpret in
terms of redundancy, so that they are not handled automatically by AGENTWORK. In particular, if
the end of some valid times VT1 or VT2 in two rules is defined conditionally via Until or Unless, it
is difficult at rule definition time to determine whether VT1 covers VT2 or vice versa. Furthermore,
partial redundancy is also difficult to handle. For example, let us assume that the valid time of R1 at
(xvi) would be 2 days (instead of 3 days), and that of R1 at (xvii) 3 days (instead of 2 days). This
would state that during the first two days all ETOPOSID administrations shall be dropped, and dur-
ing the third day only those with a dosage higher than 150 mg. Thus, R2 would be action-redundant
w.r.t. R1 for the first two days of the valid time, but not for the third day. However, such a partial
redundancy may be intended by the rule modeler. As such partial redundancy may become arbi-
trarily complex and because rule consistency is not the focus of this thesis, we do not address this
topic here.

7.5.2 Rule Incompatibility
In general, the term rule incompatibility refers to the situation that two rules trigger incompatible
statements at the same point in time. In our specific context, this means that two failure rules trigger
incompatible control actions with overlapping valid time intervals. For example, if two rules trig-
ger a drop(A,C) and an add(A,C) control action with the same activity pattern A for the same case C
with overlapping valid time intervals for the same event, this does not make sense and thus has to
be avoided. In this section we concentrate on static incompatibility which can be detected at rule
definition time. Dynamic incompatibility which occurs at rule execution time is discussed in Sec-
tion 7.6 (Dynamic Control Action Dependencies).
We first define rule incompatibility for global control actions. Second, we define rule incompatibil-
ity for rule pairs where both rules consist of case-related local control actions. Third, we define rule
incompatibility for rule pairs where both rules consist of resource-related local control actions.
Whenever such an incompatibility is detected at rule definition time, the rule modeler manually has
to resolve the incompatibility by dropping or editing the respective rules.
Incompatibilities between rules where one rule consists of a case-related local control action and
the other of a resource-related control action can only be identified at rule execution time and thus
are discussed in Section 7.6.
In the following, we assume for all considered rule pairs R1 , R2 that they have overlapping event
patterns, i.e., that an object insert or update may trigger both rules simultaneously.
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7.5.2.1 Incompatibility between Global Control Actions
Two rules with global control actions and overlapping event patterns are statically incompatible, if
one rule triggers an abort(W,C), and the other a suspend(W,C) referring to the same workflow defi-
nition and the same case. This is because it does not make much sense that the same object insertion
or update may trigger the abortion and the suspension of the same workflow instance. Furthermore,
two rules are also statically incompatible if one rule triggers an abort-workflows-of(R), and the
other a suspend-workflows-of(R) referring to the same resource pattern.

7.5.2.2 Incompatibility between Case-Related Control Actions
Let

ca1(A1, [B1, d1, p1, f1,] C1) VALID-TIME VT1r264 and 

ca2(A2, [B2, d2, p2, f2,] C2) VALID-TIME VT2r264

denote the case-related control actions of the THEN part of two rules R1 and R2 with overlapping
event patterns (the parameters Bi, di, pi and fi are only needed for cai = replace, postpone, change-
value or add-repetitively). Then R2 is said to be statically incompatible with R1 (w.r.t. VT1 ∩ VT2 ),
if the following conditions hold:

1. C1 and C2 refer to the same case, and the valid time intervals VT1 and VT2 overlapr267.

2. A1 subsumes A2

3. The control actions ca1 and ca2 are incompatible according to Table 7-4. 

For selected control action pairs in Table 7-4, we explain why they are viewed as incompatible or
compatible (for the other pairs analogous arguments hold). In the following, for a pair (i,j), i refers
to the row, and j to the column of Table 7-4. Furthermore, to avoid an overlapping of the different
cells of Table 7-4, we agree on the convention that for any cell above the grey diagonal the equality
of the patterns A1 and A2 is allowed, but forbidden for any other cell (i.e., the equality case for A1
and A2 is covered by the cells above the grey diagonal). Note further, that the matrix of Table 7-4 is
not symmetrical due to the subsumption relationship between A1 and A2 (i.e., in general A1 and A2
are not identical patterns).

Pair (1,3) drop(A1), postpone(A2, d2): This pair is viewed as incompatible, as on one side it is
specified that A2-activities shall be postponed, but on the other side shall be dropped due to
drop(A1) (as A1 subsumes A2).

Pair (3,1) postpone(A1, d1), drop(A2): This pair is viewed as compatible as on one side it is speci-
fied that A1-activities shall be postponed, but that only some of them (i.e., the A2-activities) shall
be dropped. For example, let us assume
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A1 := Drug-Administration[drug = “ETOPOSID”]
A2 := Drug-Administration[drug = “ETOPOSID”, dosage > 150, unit = mg].

Then, postpone(A1,d1) and drop(A2) mean that the ETOPSID administrations principally have to
be postponed but that some of them (i.e., those with a dosage higher than 150 mg) have to be
dropped. From the medical point of view, such a combination makes sense and thus should not
generally be viewed as incompatibility. Therefore, AGENTWORK searches for such combina-
tions and informs the rule modeler about them, but does not forces the rule modeler to re-edit
such rules.

Pair (3,5) postpone(A1,d1), add(A2): This pair is viewed as compatible, as an A2-activity can be
added to A1-activities that shall be postponed. However, if this pair is triggered the order in
which both control actions shall be processed has to be determined at execution time, i.e.,
whether the A2-activity shall be added first and then postponed with all A1-activities, or whether
the A2-activity shall be added after the A1-activities have been postponed.

 

1 2 3 4 5 6

ca2
ca1

drop(A2) replace(A2,B) post-
pone(A2,d2)

change-
value(A2, p2, f2)

add(A2) add-repetitively(A2,d2)

1 drop(A1) CP CP*r272 
(ICP if A1 ⊃ B**)

ICPr272 ICPr270 ICPr271 ICPr271

2 replace(A1,B) CP CP ICPr276 ICPr274 ICPr275 ICPr275

3 postpone(A1, d1) CP CP CP 
(ICP only 
for d1 ≠ d2)

CP CP*** CP***

4 change-
value(A1, p1, f1)

CP CP CP CP CP CP

5 add(A1) CP CP CP CPr278 CP CPr279

6 add-
repetitively(A1,d1)

CP CP CP CPr278 CP CP 
(ICP only for d1 ≠ d2)

ICP = Incompatible, CP = Compatible.

Table 7-4:  Incompatibility table for case-related control actions (with A1 subsuming A2).
The Ci-parameters have been omitted as due to condition 1 all control actions refer to the same case (e.g.,
the same patient). The review control action is not listed as it has to be manually transformed to one of the
other case-related control actions. 

* It is not viewed as incompatible that a subset of the A1-activities to be dropped (namely the A2-activities) shall
be replaced by B-activities.

** As the new B-activities would directly have to be dropped due to drop(A1).
*** Order to be determined (manually) at execution time.r277



Integrity of Failure Rules

204

Pair (1,5) drop(A1), add(A2): This pair is viewed as incompatible, as on one side it is specified that
an A2-activity shall be added, but on the other side also shall be dropped due to drop(A1) (as A1
subsumes A2). 

Pair (5,1) add(A1), drop(A2): This pair is viewed as compatible as adding a more general activity
(i.e., an A1-activity) does not exclude that more specific activities are dropped from a workflow.
For example, if we have

A1 := Radiodiagnostic-Activity[focus = “Liver”] and (xxii)
A2 := MRT-Examination[focus = “Liver”]6 (xxiii)

this would mean that a radiodiagnostic activity shall be added (e.g., a computer tomography
examination), but that any mrt examination shall be dropped. The only incompatibility that may
occur is that at control action triggering time A1 is changed or refined manually (see Section
7.2.3.4), e.g., becomes

A1 := MRT-Examination[focus = “Liver”]. (xxiv)

This is also detected by AGENTWORK, as the equality of A1 and A2 caused by the refinement of
A1 as shown in (xxiv) is not covered anymore by pair (5,1), but by pair (1,5) (as the equality of
patterns A1 and A2 in Table 7-4 is only allowed in the cells above the grey diagonal).

7.5.2.3 Incompatibility between Resource-Related Control Actions
Two rules with overlapping event patterns and resource-related control actions are viewed as
incompatible, if one rules triggers a drop-activities-of(R) control action, and the other one a post-
pone-activities-of(R,d) control action for the same resource.

7.5.3 Rule Termination
Generally, for a rule base it should be guaranteed that for any data constellation rule processing
cannot continue forever, i.e., that rules cannot activate each other indefinitely. Though our failure
rules have a very restricted structure (e.g., only one control action in the THEN part), the problem
of rule termination also has to be considered for our rule base of failure rules. This is because con-
trol actions may also appear in the WHEN part of a rule, as they formally are predicates and thus F-
Logic formulas (see Section 4.2.3 and 4.2.5). Thus, cycles principally can occur. For example, if we
have

A1 := Drug-Administration[drug = “ETOPOSID”]

A2 := Drug-Administration[drug = “DOXYCYCLIN”]

there may be the rule

6. Recall from Section 4.2.1 that MRT-Examination is a subclass of Radiodiagnostic-Activity.
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R: WHEN drop(A1, C) VALID-TIME [now, now + (n, day)] (xxv)
THEN drop(A2, C) VALID-TIME [now, now + (n, day)]

stating that whenever the drug ETOPOSID is dropped for n days, the drug DOXYCYCLIN can also be
dropped for the same time. The rationale for this is that often an antibiotic drug is given in parallel
to immunsupressive drugs such as ETOPOSID to prevent bacterial infections. Thus, when the
immunsupressive drug is dropped the antibiotic drug can also be dropped. If a rule triggered by
(xxv) then would trigger a drop(A1,C), this would lead to a cycle which should be avoided.
As the control flow failures introduced in this thesis do not add any additional complexity to rule
processing as known from active databases and temporal logics, and as this thesis does not focus on
rule processing, we refer to the literature for rule termination analysis. In particular, [BARALIS
1999] provides a comprehensive overview on termination analysis in active databases, and [GAB-
BAY ET AL. 1998] for the same topic for logical languages.

7.6 Dynamic Control Action Dependencies
We now discuss dynamic dependencies between control actions, i.e., dependencies between control
actions that can only be determined at rule execution time. We first discuss dependencies between
global control actions (7.6.1), second between global and local control actions (7.6.2), and third
between local control actions (7.6.3). In particular, for local control actions dynamic redundancy
and dynamic incompatibility effects are discussed.

7.6.1 Dynamic Dependencies between Global Control Actions
The only situation that has to be considered is that an abort(W,C) or abort-workflows-of(R) control
action is triggered during the valid time of a suspend(W,C) or suspend-workflows-of(R) control
action, and that both triggered control actions affect the same workflow instance. For example, if an
abort-workflows-of(R) is triggered during the valid time of a suspend(W,C) control action, then a
workflow instance that needs a Resource instance matching pattern R is affected by abort-work-
flows-of(R). Coincidentally, this instance may also be based on the workflow definition W and exe-
cuted for case C, so that it is also affected by suspend(W,C).
The handling of such a situation is straightforward: AGENTWORK assumes that a control action stat-
ing the abortion of a workflow always has a higher priority than a control action stating the suspen-
sion of a workflow. This is because AGENTWORK assumes that an abort(W,C) or
abort-workflows-of(R) is only triggered when events have occurred that make the continuation of a
workflow impossible. Thus, whenever an abort(W,C) or abort-workflows-of(R) control action is
triggered during the valid time of a suspend(W,C) or suspend-workflows-of(R) control action, and
both triggered control actions affect the same workflow instance, this workflow instance is aborted.

7.6.2 Dynamic Dependencies between Global and Local Control Actions
As a single workflow may be affected both by a global control action and a local control action,
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several dependencies between both may occur that have to be considered.
A trivial dependency is given if an instance has to be aborted because of abort(W,C) or abort-work-
flows-of(R). Then, local control actions affecting activity nodes of the same instance become obso-
lete and thus do not have to be considered anymore w.r.t. this aborted workflow.
A more complex dependency is given if a workflow instance I is affected both by a suspend(W,C)
or suspend-workflows-of(R) control action with valid time VT on one side, and a local control
action ca with valid time VT* on the other side. We distinguish the following two situations:

1. The suspend(W,C) or suspend-workflows-of(R) control action is triggered during the valid time
of ca. This situation constitutes an unexpected delay of the workflow instance I adapted according
to ca and has to be handled by workflow monitoring (see Chapter 9)
2. The local control action ca is triggered during the suspension of I (Figure 7-5). If ca is handled
by reactive adaptation for I, nothing has to be done as one has to simply wait until the control flow
reaches an activity node and to check whether it is affected by ca according to Section 7.4.3.r258r259 How-
ever, if ca is handled by predictive adaptation for I, we have to transform

ca VALID-TIME VT* to

Time axis

suspending control action
VALID-TIME VT

VT

4

1

5

2

...

VT*

VT** = [end(VT), end(VT*)]

Workflow instance  I  based on definition W:

ca
VALID-TIME VT*

AND-
SPLIT

AND-
JOIN

t1 t2

ca
VALID-TIME VT**

7

Transform to

Suspension of I Continuation of I

3

6

FNSI, ca...

Figure 7-5:  Handling of a local control action ca triggered during a workflow suspension. 
t1 and t2 are the points in time when suspend(W,C) or suspend-workflows-of(R) resp. ca have been triggered.
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ca VALID-TIME VT** with VT** := [end(VT), end(VT*)] (xxvi)

for I, i.e., the remaining time of the suspension is subtracted from the “left” side of the valid time
VT* of ca. This is necessary because otherwise predictive adaptation would estimate that workflow
part PVT* starting at the failure node set FNSI, ca (e.g., at nodes 2 and 5 in Figure 7-5) and corre-
sponding to the valid time VT*. Thus, nodes such as node 7 in Figure 7-5 would also be considered
though they will not be reached anymore during VT* due to the suspension. This has to be avoided,
as the valid time VT* assigned to ca only states that the adaptation shall be applied for an interval
starting at the point in time when ca has been triggered until the end of VT*.
Note that the valid time VT** in (xxvi) may not fulfill the conventions 1 and 2 listed in 7.3. In par-
ticular, if the end of VT is conditional (i.e., specified by Unless or Until), the begin of VT** also is
conditional. However, this convention violation affects only a control action that has already been
triggered, and furthermore affects only the suspended workflow instance. It does not affect a failure
rule in the rule base for which these conventions have been defined. If the begin of VT** is condi-
tional, AGENTWORK only has to keep track of the point in time when the condition is met to start
the adaptation process as for any other local control action that is handled by predictive adaptation. 
Furthermore, if the end of VT* and therefore the begin of VT** is explicitly specified by a date or
duration and thus is known beforehand (e.g., is already known at t2 in Figure 7-5), the adaptation of
I could already be performed during the suspension of I. For example, if ca is a drop(A,C) control
action and node 3 an A-node, then this node could be dropped from the control flow already during
the suspension.
If VT covers VT* totally and VT** = [end(VT), end(VT*)] therefore is the empty interval, ca does
not affect I at all. In particular, if ca = add(A,C) then of course I cannot be considered as a candidate
for executing the additional A-node.

7.6.3 Dynamic Dependencies between Local Control Actions
At execution time, also several dependencies and incompatibilities between local control actions
may occur that cannot be detected at rule definition time. Similar to the situation at rule definition
time described in Section 7.5, we distinguish dynamic redundancy and dynamic incompatibility.

7.6.3.1 Dynamic Redundancy
Any action redundancy described in 7.5.1.2 can also occur at execution time if two rules R1, R2 first
are triggered simultaneously by non-overlapping events (i.e., are triggered independently by differ-
ent data), and if second the control actions of R1, R2 fulfill the redundancy criteria listed in 7.5.1.2.
Thus, the control action being redundant w.r.t. the other can be dropped from the set of currently
valid control actions. It could be argued that such dynamic action redundancies could be detected
already at rule definition time by checking for all rules pairs R1, R2 whether they would trigger
redundant control actions in case they would be triggered simultaneously. However, this does not
bring much benefit as a rule pair R1, R2 possibly leading to dynamic action redundancy should be
allowed in the rule base. For example, for the two activity definitions 
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A1 := Drug-Administration[] and A2 := Drug-Administration[drug = “ETOPOSID”]  

let us assume two rules

R1: WHEN serious-renal-disorder(P)
THEN drop(A1, P) VALID-TIME [now, now + (7, day)]

R2: WHEN serious-neuropathy(P)
THEN drop(A2, P) VALID-TIME [now, now + (4, day)]. 

R1 states that all drug administrations have to be dropped for the next seven days when the patient
suffers from a serious renal disorder, independently from the particular drug or drug dosage. R2
states that only ETOPOSID administrations have to be dropped for the next four days when the
patient suffers from a serious neuropathy. Thus, when R1 and R2 are triggered simultaneously the
control action of R2 is redundant w.r.t. the control action of R1 and can be dropped. As in clinical
practice both events do not occur simultaneously very often, it should be allowed to have these two
rules together in a rule base. Rather, it is more appropriate to drop such a redundant control action
at execution time, if the seldom situation occurs that a patient suffers both from a serious renal
disorder and a serious neuropathy.
Note that the action redundancy definition of 7.5.1.2 also covers the situation that for example R2 is
triggered later than R1 (e.g., two days later), but that its control action valid time still is entirely cov-
ered by the control action valid time of R1. In contrast to this, dynamic partial redundancy is not
addressed by AGENTWORK (see 7.5.1.2), as it can become arbitrarily complex, and as the focus of
this thesis is not on rule execution. Furthermore, note that event redundancy is entirely determined
at rule definition time so that it has not to be discussed in the context of dynamic dependenies.

7.6.3.2 Dynamic Control Action Incompatibility 
Any action incompatibility described in 7.5.2 can also occur at execution time if two rules R1, R2
first are triggered simultaneously by non-overlapping events (i.e., are triggered independently by
different data), and if second the control actions of R1, R2 fulfill the incompatibility constraints
listed in 7.5.2. For example, for the activity definition 

A := Drug-Administration[drug = “DOXYCYCLIN”] 

let us assume two rules

R1: WHEN serious-renal-disorder(P)
THEN drop(A, P) VALID-TIME [now, Until (NOT serious-renal-disorder(P))]

R2: WHEN bacterial-infection(P)
THEN add-repetitively(A, (1, day), P) VALID-TIME [now, now + (2, week)]
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As usually a serious renal disorder and a bacterial infection do not occur together, it should be
allowed to have these two rules together in a rule base. However, in case that a patient
simultaneously shows a serious renal disorder and a bacterial infection it would be triggered to
drop DOXYCYCLIN until the renal disorder is over and to administer it daily for the next two weeks.
As both valid time intervals intersects as long as it holds NOT serious-renal-disorder(P), these two
control actions are incompatible. Thus, when rules with such incompatible control actions are
triggered simultaneously, the user has to be informed and has to resolve the situation manually. In
case of our sample rules R1 and R2, the user could decide to administer some antibiotic having less
renal side-effects than DOXYCYCLIN.
Note that at first glance dynamic incompatibilities could be avoided by extending the WHEN parts
of the rules in a way that incompatible control actions with overlapping valid time intervals cannot
be triggered simultaneously. For example, one could extend the WHEN part of R2 as follows 

R2: WHEN bacterial-infection(P) AND NOT serious-renal-disorder(P)
THEN add-repetitively(A, (1, day), P) VALID-TIME [now, now + (2, week)]

Then, the control actions of R1 and R2 cannot be triggered with overlapping valid time intervals, so
that a dynamic incompatibility is avoided. However, this mechanism requires that all constellations
in which a rule shall not be triggered have to be explicitly specified, and furthermore depends on
the control actions of other rules. Thus, it is more suitable to manually resolve such
incompatibilities at rule execution time as described above.
Another type of dynamic incompatibility may occur between case-related control actions on one
side, and resource-related control actions on the other side. This is because both control action
types finally affect activity nodes, so that incompatibilities may occur that cannot be foreseen at
rule definition time. For example, imagine that the following two control actions are triggered with
overlapping valid time intervalsr259:

drop-activities-of(R) and  add(A2,C). (xxvii)

If R describes a resource that is needed to execute an A2-node that is executed for case C, then the
control action constellation of (xxvii) has to be viewed as dynamically incompatible as it states that
an A2-activity that has to be added for C but also has to be dropped. 
The detection of such dynamic incompatibilities between case-related control actions and resource-
related control actions can directly be derived from that between case-related control actions
described in Section 7.5.2: When it is known for the resource-related control action which activity
nodes with which activity definitions are affected, it is checked on the basis of Table 7-4 whether
this results in incompatibility or not. For example, when it is known that drop-activities-of(R) in
(xxvii) affects an A1-node and A1 subsumes A2, this corresponds to pair (1,5) in Table 7-4 and thus
means incompatibility. Analogously to dynamic incompatibilities between case-related control
actions, this has to be resolved manually, e.g., be removing one of the two control actions.
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7.7 Summary and Discussion
In this chapter, we described the global and local control actions supported by AGENTWORK. These
control actions cover a broad range of control flow failures. In particular, they allow to abort or sus-
pend entire workflows, or to drop, replace, postpone or add activities w.r.t. a running workflow.
Triggering events may be case-related or resource-related events. From the experiences of the
author made with medical domains such as hemato-oncology, the set of supported control actions
can be viewed as sufficient, as it covers most of the relevant actions needed for treatment adapta-
tion. It is the assumption, that the set of supported control actions is also sufficient for many non-
medical domains such as banking or insurance business, as medical domains typically are more
complex than most business domains. One particular strength of the control action approach
described is the usage of activity or resource patterns which are based on an object-oriented data
schema. By using such patterns, control actions can be defined on a high level of abstraction. In
particular, control actions do not have to refer to the exact activity or resource definitions of activity
nodes. Rather, an activity node is affected by a control action if its activity or resource definition
matches the pattern of the control action. This gives the failure handling approach much flexibility
when specifying which events induce which sort of workflow adaptation.
Of course, one could think of further useful control actions, such as a control action adding a con-
ditional branching to a running workflow. For example, let us assume a cancer patient that periodi-
cally gets heart arrhythmia, and thus may not get heart-toxic drugs during such an arrhythmia
phase. Then, it could make sense for workflows running for this patient to dynamically add a con-
ditional branching “If heart arrhythmia / If no heart arrhythmia“ before a chemotherapy. The “If
no heart arrhythmia“ path could consist of the heart-toxic drug administrations, the “If heart
arrhythmia“ path of alternative drug administrations. However, to keep failure handling controlla-
ble, this dynamic insertion of conditional elements is not supported. In particular, the handling of
conditional elements such as OR-SPLIT or LOOP-END nodes has been identified as one of the
central problems of workflow duration estimation (see Chapter 6), so that control actions them-
selves should not insert further conditional elements into a workflow. Furthermore, situations such
as the heart arrhythmia can often also be handled by the supported control actions. For example, the
usage of a drug not attacking the heart instead of a heart-toxic drug could also be handled by a
replace control action triggered whenever the patient has such a heart arrhythmia.
Concerning rule integrity and dynamic control action dependencies, we have described mecha-
nisms to cover at least the most important types of redundancy and incompatibility. Of course, this
does not cover the broad range of more complex aspects, such as partial redundancy effects that
may occur between rules (as sketched in 7.5.1). However, as the handling of these advanced rule
integrity aspects has been largely addressed in the fields of active databases and artificial intelli-
gence [BARALIS 1999, GABBAY ET AL. 1998, SMITH & KANDEL 1993], we do not discuss these
aspects in detail in this thesis.
The following two chapters of this thesis will describe how the control actions introduced in this
chapter will be transformed into structural workflow adaptation on the node and edge level (Chap-
ter 8 and Chapter 9).
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 CHAPTER 8 Structural Adaptation Operators

This chapter describes the adaptation operators that translate the local control actions of Chapter 7
into structural workflow adaptations, i.e., into adaptations of a workflow’s node and edge set.
These adaptation operators, which are used by the adaptation agent, are relevant both for reactive
and predictive adaptation. The specific problems of predictive adaptation, namely the order in
which adaptation operators shall be invoked if multiple control actions affect the same workflow,
will be discussed in Chapter 9 (Predictive Control Flow Adaptation).
Chapter 8 is organized as follows: Section 8.1 introduces the specific design goals, basic assump-
tions, and definitions of the AGENTWORK adaptation operators. In Section 8.2 we describe the con-
trol flow adaptation operators which translate local control actions into structural control flow
adaptations. Section 8.3 describes how the data flow is adapted after a control flow adaptation. The
chapter concludes with a summary and discussion in Section 8.4.

8.1 Design Goals, Basic Assumptions, and Definitions
In this section we describe the design goals and basic assumptions of the structural adaptation oper-
ators in AGENTWORK (8.1.1-8.1.2). Furthermore, we introduce some useful definitions (8.1.3).

8.1.1 Design Goals
Beside the overall goal of translating local control actions into structural workflow changes in a
way preserving the semantics of these control actions, structural adaptation in AGENTWORK is
motivated by the following specific goals:

Operators:

cfop-drop-node

cfop-change-value

cfop-gen-empty-parallel-path

cfop-add-node

cfop-add-node-loop

cfop-replace-act-def

cfop-postpone-node

dfop-gen-data-flow-edge
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1. Structural Consistency of Adaptations
A structural adaptation operator such as an operator deleting or inserting a node has to meet the
control and data flow constraints introduced in 5.3.5.3 and 5.3.6.4. This is of particular impor-
tance, as after an adaptation a workflow may be affected by subsequent control flow failures
which may require further temporal estimations. As the estimation algorithms introduced in
Chapter 6 assume that the estimated workflow meets all control and data flow constraints, it has
to be guaranteed that no structural adaptation operator violates them.

2. Logical Consistency of Adaptations
In addition to structural consistency, an adaptation operator should not violate the “logical”
consistency of a workflow. Logical consistency is typically expressed by logical constraints
expressing object characteristics and relationships that have to be satisfied from the application
point of view [BREWKA 1996]. As this thesis cannot aim at solving the problem of constraint
satisfaction [JONSSON & LIBERATORE 1999] in general, we only introduce one type of work-
flow-oriented logical constraints, namely that of logical sequences. Such logical sequences
define logical units of works that should not be split up by adaptations (see 8.1.3.1).

3. Minimization of Execution Delay
The adaptation of a workflow should delay the execution of a workflow as little as possible. In
particular, replaced or added nodes should not delay the execution more than necessary. For
example, the insertion of new nodes due to additive control actions should not result in an
“unbalanced” AND-SPLIT/AND-JOIN block where the execution of one path takes signifi-
cantly longer than the other path. As the nodes after the AND-JOIN node cannot be executed
before both paths have been executed, such unbalanced parallel paths would delay the execu-
tion of the nodes after the AND-JOIN node more than necessary.

4. Controlling Pull-In and Push-Out Effects
Finally, it should be possible to control pull-in and push-out effects. We recall from 3.4.4
(Adaptation Side-Effects), that for a workflow part PVT that is assumed to be executed during a
valid time interval VT, pull-in effects denote effects where a structural workflow adaptation
causes that nodes so far not belonging to PVT become a member of PVT (i.e., they are “pulled
into“ PVT). In this context, those pull-in effects have to be carefully controlled where nodes that
originally would have been executed beyond VT now are affected by a control action valid dur-
ing VT after having been pulled into PVT.
Analogously, push-out effects denote effects where a structural workflow adaptation causes that
nodes so far belonging to PVT are not anymore a member of PVT (i.e., they are “pushed out“ from
PVT). Analogously to pull-in effects, structural workflow adaptation should carefully control
those push-out effects where a node n is affected by a control action ca valid during VT but is
pushed out from PVT by another control action before ca could have been applied to n.
As we will see in this chapter, the control flow operators themselves have only limited possibil-
ities to support this goal, as only push-out effects can be minimized to a certain degree. A more
general support of this goal is only possible by predictive adaptation which will be described in
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Chapter 9.r289

Obviously, the listed goals show some dependencies or have a contrasting nature. For example, if
goal 3 is supported this automatically means to reduce push-out effects (goal 4), as execution
delays that may induce push-out effects are avoided. In contrast to this, the consideration of logical
sequence constraints (goal 2) may induce push-out effects as logical sequences forbid to outsource
a node from a sequence to a parallel path which would help to avoid push-out effects (goal 4).
Therefore, a compromise between such contrasting goals has to be found. 

8.1.2 Basic Assumptions
Beside the goals that shall be achieved, the design of the AGENTWORK structural adaptation opera-
tors is based on two central assumptions, namely first a limited number of simultaneously triggered
control actions and second resource availability:

1. Limited Number of Simultaneously Triggered Control Actions
AGENTWORK assumes that “on the average“ a single workflow will not be affected by “many“
(i.e., more than 2 or 3) control actions simultaneously. Though a violation of this assumption
does not mean that the adaptation operators described in this chapter become incorrect, it justi-
fies the complexity of these adaptation operators, as they will not be needed “too often“. Thus,
this assumption reduces the possibility of uncontrollable side-effects during workflow adapta-
tion.
This assumption of a limited number of simultaneously triggered control actions is at least con-
sistent with the author’s experiences made in the medical workflow application HEMATOWORK,
but is assumed to be valid for many other workflow applications, too. The main rationale for it
is an indirect argument: If this assumption would not hold for a particular application, this
would mean that workflows are affected by control actions very often, and thus that workflow
definitions have to be changed very often. However, this would be a general argument against
the usage of workflow management for this application. Rather, other approaches such as rule-
based or constraint-based treatment systems may be more suitable in this case.

2. Resource Availability
AGENTWORK assumes that whenever a workflow is adapted, the necessary resources (e.g.,
users, programs etc.) to execute the adapted workflow without delay are available (if compared
with the workflow before the adaptation, and if the control flow allows this). In particular, it is
assumed that when a new activity node is added into a new parallel path of an AND-SPLIT/
AND-JOIN block, all the resources are available to execute the new AND-SPLIT/AND-JOIN
block in a time being not longer than the execution duration of the old block without the new
parallel path. This assumption is of particular importance as AGENTWORK generates new paral-
lel paths for many control actions to avoid violations of goal 3 and thus to minimize push-out
effects.
The rationale for this resource availability assumption is, that control flow failures typically are
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caused by “alert“ situation, such as that a medical drug has to be administered additionally to
get an emerging medical crisis under control. Thus, AGENTWORK assumes that in such an alert
situation also additional resources are provided to execute the adapted workflow without delay.
If this assumption does not hold for a particular workflow and adaptation situation, this does not
lead to any inconsistent state of the workflow and not to a failure of the adaptation operators
themselves. Rather, it means that temporal estimations may have to reevaluated, as for example
the paths of an AND-SPLIT/AND-JOIN block cannot be executed in parallel due to resource
limitations, and thus implicitly have to be “serialized“ during execution. Thus, the resource
availability assumption should be seen as a “working hypothesis“ that motivates some of the
design decision concerning structural adaptation operators.

3. Usage of Average Case Estimation
For the sake of simplicity, we assume that for all workflow estimations of this chapter average
case estimation is used (as defined in 6.1.1). If an other estimation strategy is used, the defini-
tions and algorithms in this chapter can be easily adapted in a straightforward manner.

8.1.3 Definitions
In this section we introduce some useful definitions, namely logical sequences, null nodes, and
non-adaptable edges.

8.1.3.1 Logical Sequences
Logical sequences express activity node sequences that form logical units of work and therefore
should not be violated by structural workflow adaptation, e.g., by dropping nodes from them or by
inserting new nodes into them. For example, in a medical domain a logical sequence could consist
of a cytostatic drug administration, a preceding examination checking whether there are any con-
tra-indications concerning this drug, and a post examination checking whether there are any short-
term toxicity effects caused by this drug. For this sequence, it should neither be allowed to drop one
of the three activities, as then the sequence would be incomplete, nor to add other activities some-
where between these three activities, as this would split up the specific medical semantics of this
sequence.
Formally, a sequence A1 → A2 → ...→ Am of activity definitions (Ai ∈ Activity-Defs) is called logi-
cal sequence if for any sequence of activity nodes S = n1 → n2 → ...→ nm with NAM(ni) = Ai it
holds that neither a node ni may be dropped from S, nor a new activity node, OR-SPLIT or LOOP-
END node may be added to S (as by adding conditional elements such as OR-SPLIT or LOOP-
END nodes it cannot be guaranteed anymore that the full sequence will be executed). AND-SPLIT,
AND-JOIN, LOOP-START or communication nodes may be added as then the sequence S is still
executed entirely.
Of course, for any logical sequence one may find activities that may be inserted into it without vio-
lating the application logics of this sequence. For example, concerning the drug administration
sequence an additional pre-examination activity could be inserted after the already existing pre-
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examination activity. Thus, AGENTWORK views logical sequences as “soft“ constraints, and not as
“hard“ constraints. This means that whenever a logical sequence may be violated by an adaptation,
the user is requested and can allow the violation of the logical sequence.

8.1.3.2 NULL Nodes
For synchronization purposes, some of the control flow operators introduced in Section 8.2 will
insert so-called NULL-nodes into a workflow. Such a NULL node has the followings semantics:
• It has no activity semantics, i.e., no activity definition is assigned to it.
• It has duration zero. Thus, it can be ignored by the workflow estimation algorithms described in

Chapter 6. If a NULL node is the source of a synchronization edge, it is handled like any other
node which is a source of a synchronization edge. Therefore, we do not have to extend our
workflow execution and estimation model described so far.r290

8.1.3.3 Non-Adaptable Edges
Some of the control flow operators of Section 8.2 will assign waiting conditions to control flow
edges to express temporal constraints, e.g., to postpone node executions. Thus, it has to be avoided
that subsequent adaptation operators for instance insert new nodes in a way violating these tempo-
ral constraints. For this, AGENTWORK allows to assign the label Non-Adaptable to a control flow
edge. This label means that neither attributes of this edge may be changed anymore (such as the
waiting condition), nor that a node may be “inserted“ into this edge.

8.2 Control Flow Operators
In this section, we describe the control flow operators needed to translate control actions into struc-
tural workflow adaptations. For this, we first introduce two operators that drop nodes and change
attribute values (8.2.1−8.2.2). Then, we describe an auxiliary operator which is able to generate
new parallel paths (8.2.3). It is rather complex but provides an important functionality frequently
used by the following operators, and allows to describe these following operators in a compact
manner. After this, we introduce the operators that are able to add nodes, to replace activity defini-
tions, and to postpone nodes (8.2.4−8.2.7). Many of these operators are based on the adaptation
operators introduced in [REICHERT 2000]. However, they significantly enhance Reichert’s opera-
tors, e.g., by integrating temporal estimations to support goals 3 and 4.
Generally, a control flow operator is described in six steps: First, it is described how the operator
changes the control flow without considering loops, synchronization edges and edges with waiting
conditions (Section Effect on Control Flow without Loops, Synchronization and Waiting Edges).
Second, it is discussed how to deal with nodes that are located in a loop (Section Handling of
Loops). Third, we discuss how the operator deals with synchronization edges and edges with wait-
ing conditions (Section Handling of Synchronization and Waiting Edges). Fourth, we briefly dis-
cuss the effects the operator may have on the data flow (Section Side-Effects on Data Flow). Fifth,
as a control flow operator adapts running workflows, we describe the adaptations of the node and
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edge states that may become necessary (Section State Adaptations). Sixth, if necessary we discuss
further relevant aspects of the particular operator (Section Further Aspects).
Note that for reactive adaptation, the control flow operators described in this section are directly
invoked whenever a node is affected by the corresponding control action. For predictive adaptation,
a higher-level algorithm decides in which order these operators have to be invoked to control pull-
in and push-out effects. This algorithm will be described in Chapter 9.

8.2.1 Operator for Node Dropping
For node dropping, AGENTWORK provides the control flow operator

cfop-drop-node(n: Integer)1.

This operator takes as input the identifier n of an activity node to be dropped. It is invoked when a
node n is affected by a drop(A,C) or drop-activities-of(R) control action according to 7.4.3. 
The precondition for this operator is that n is not an element of a logical sequence. If this precondi-
tion is violated, the user manually has to specify whether
• n shall not be dropped,
• n shall be dropped nevertheless, or
• n and all nodes of the logical sequence shall be dropped. 

The latter alternative is suitable, if the other nodes of the logical sequence do not make much sense
anymore if n is dropped. For example, if n represents a surgical intervention and the other nodes of
the sequence represent pre- and post-examinations, it does not make much sense to execute only
the examinations but not the surgical intervention.

8.2.1.1 Effect on Control Flow without Loops, Synchronization and Waiting Edges
The effect of this operator depends on the particular structure of the workflow part to which an
affected node n belongs to. We distinguish the following cases (Figure 8-1):

a) If n is located in a sequence of activity or communication nodes, n is simply removed from the
control flow, and its predecessor and successor node are connected by a control flow edge
(Figure 8-1 a).

b) If n is the only node of a path p within an AND-SPLIT/AND-JOIN block, p is removed. If
there is only one remaining path after p has been removed, the AND-SPLIT and the AND-
JOIN node are removed as well, as they are not needed anymore (Figure 8-1 b).

c) If n is the target node of an edge with branching condition, this branching condition has to be

1. The prefix cfop stands for “control flow operator“
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assigned to the edge connecting the direct predecessor and direct successor node of n
(Figure 8-1 c). Note that n cannot be the source of an edge with branching condition, as this is
only possible for OR-SPLIT or LOOP-END nodes (and as n is an activity node).

d) If in c) n is the only node of a path p within an OR-SPLIT/OR-JOIN block, n is removed, but p
is left within the block as empty path. This is necessary to keep the conditional semantics of
the affected workflow part (Figure 8-1 d).

Figure 8-1:  Application of control flow operator cfop-drop-node.
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Note that because parameter n always refers to an activity node, the application of cfop-drop-node
never can drop single control flow nodes. Rather, only control flow node pairs may be dropped as
shown in Figure 8-1 b). Thus, control flow constraint 3 (symmetrical blocks) introduced in Chapter
5 cannot be violated by this operator.

8.2.1.2 Handling of Loops
We now discuss how cfop-drop-node handles a node that belongs to a loop. This is a problem, as
the semantics of a drop(A,C) or drop-activities-of(R) control action is that the execution of an
affected node n shall be dropped only during the valid time VT assigned to the control action. As
there may be loop iterations that occur outside VT we have to avoid that an execution of n is
dropped for a loop iteration occurring beyond VT. There are two principal possibilities to deal with
this problem:

1. Node n is removed from the loop sequence, and after the valid time has been elapsed, it is rein-
serted. However, this mechanism has the disadvantage that during the loop execution during VT
it is not visible in the workflow that a node n will be executed when VT has expired. This may
confuse users, as then suddenly a node is executed within the loop sequence which has not been
executed and visible in former loop iterations.

2. An OR-SPLIT/OR-JOIN block with two conditional paths is inserted (Figure 8-2). One path is
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Figure 8-2:  Control flow
operator cfop-drop-node
and loops.
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empty and is executed for the loop iterations during VT. The other path contains only n and is
executed for the loop iterations beyond VT. This has the advantage that already during VT the
user is aware of the fact that for loop iterations beyond VT node n will be executed (again). It
has the disadvantage that it inserts an additional conditional branching that reduces readability
of the workflow. 

AGENTWORK favors the second mechanism as it shows the entire structure of the workflow to be
executed, and does not temporarily “hide“ nodes from the user. We omit a formal notation of the
conditions BC(e1) = “After VT” and BC(e2) = “During VT” in Figure 8-2 as these are only
technical terms comparing the system time with the end of VT for each loop iteration.
It could be argued that dropping a node by such a conditional branching as shown in Figure 8-2
could be used for all nodes to be dropped, not only for those belonging to a loop. This would also
achieve that an affected node is not executed during VT, but is executed beyond VT. In particular,
this would make complex predictive adaptation superfluous. However, this is not appropriate as
such a mechanism is likely to produce unreadable workflows, as for every affected node a condi-
tional branching would have to be inserted. If restricted to nodes in loops, it can be assumed that on
the average this does not reduce readability too much.

8.2.1.3 Handling of Synchronization and Waiting Edges
We now describe how cfop-drop-node operates if the node n to be dropped is a source or target
node of synchronization edges or edges with waiting conditions (Figure 8-3). Generally, AGENT-
WORK assumes that synchronization edges leading to or from n or waiting conditions on incoming
or outgoing edges of n become superfluous when n is dropped. This is because a synchronization

Figure 8-3:  Dropping a node with synchronization edges or edges with waiting conditions.
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edge or an edge with a waiting condition can be viewed as a matter only of the nodes directly con-
nected by such an edge, and not of their successor or predecessor nodes. However, as this assump-
tion does not need to be right for all workflow applications, AGENTWORK provides the
configuration parameter

REMOVE-SYNC-AND-WAIT-EDGES-AFTER-NODE-DROPPING {YES, NO}

to specify the behavior of cfop-drop-node concerning synchronization edges or edges with waiting
conditions. If this parameter is set YES, this means that for any dropped node all incoming or out-
going synchronization edges, and all waiting conditions of incoming or outgoing edges have to be
dropped as well. If it is set NO, this means that for any dropped node, an authorized user has to be
requested whether an incoming or outgoing synchronization edge has to be dropped or adjusted.
For example, the user could specify that the outgoing synchronization edge e5 in Figure 8-3 could
start at the former predecessor node 1 of the dropped node 2. Furthermore, the user has to specify
whether a waiting condition of an incoming or outgoing edge has to be dropped or has to be
adjusted concerning the min or max values of the waiting conditions.r291 

8.2.1.4 Side-Effects on Data Flow
After a node n has been dropped, all its incoming and outgoing data flow edges are dropped from
the workflow as well. This may cause that an input object needed by another activity node or
branching condition cannot be initialized anymore. The data flow adaptation that may become nec-
essary then are described in 8.3.

8.2.1.5 State Adaptations
The state adaptations cfop-drop-node has to perform are shown in Figure 8-4. The “P“ and “R“
entries indicate whether a particular state constellation can occur for predictive (P) or reactive (R)
adaptation. For example, a node in state Untouched can only be dropped through predictive adapta-
tion as reactive adaptation by definition can only affect nodes which are at least in Control-Acti-
vated (see 7.4.3.1).
The matrices in Figure 8-4 have to be read as follows: The rows of the left state matrix show the
possible states of the node to be dropped and its direct predecessor and direct successor node (and
the connecting edges) before cfop-drop-node is invoked. The corresponding row of the right matrix
shows the states of the direct predecessor and direct successor node after cfop-drop-node has been
invoked (including the edge connecting them). For example, row 5 specifies that if node 2 in
Figure 8-4 is in state Data-Activated and then dropped, the edge e3 connecting the remaining nodes
1 and 3 has to be set to state Control-Activated (as this is the first control flow element of this path
that has to be executed after the adaptation).r292 Note that in row 3 the constellation that e1 is in state
Committed and node 2 in state Untouched (instead of Control-Activated) may occur if node 2 is the
target of a synchronization edge and has not been set to state Control-Activated as this synchroniza-
tion edge has not committed so far.
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8.2.2 Operator for Changing Attribute Values
For changing attribute values, AGENTWORK provides the control flow operator

cfop-change-value(n: Integer, p: Object-Path, f: Function).

The first input parameter is the identifier n of a node affected by a change-value(A, p, f, C) control
action. The second and third parameter specify the object path (e.g., attribute) value to be changed
according to the function f. As this operator is trivial as is does not change the node or edge set of a
workflow, there are no further details to be discussed.

8.2.3 Auxiliary Operator for New Parallel Paths
To minimize the temporal execution delay when adding, replacing, or postponing nodes, AGENT-
WORK frequently uses the technique of generating new parallel paths, which has first been intro-
duced by [REICHERT & DADAM 1998]. For example, when a new node shall be added to a
workflow due to an add(A,C) control action, one possibility to do this is to generate a new AND-
SPLIT/AND-JOIN block with two paths. One path consists of the new node to be added, while the
other path consists of a subsequence that already has been a part of the workflow before the
add(A,C) control action has been triggered. Often, this has less temporal influence on a workflow
than simply inserting the new node into an existing sequence. Another reason for generating a new
AND-SPLIT/AND-JOIN block is that it then may not be necessary to split up logical sequences.

Figure 8-4:  State adaptations of control flow operator cfop-drop-node.
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However, to avoid an execution delay by the new AND-SPLIT/AND-JOIN block itself, one has to
take care that the execution duration of the new parallel path is not longer than the execution dura-
tion of those nodes of the other parallel path that still have to be executed. Otherwise, the new
AND-SPLIT/AND-JOIN block itself would delay the execution of successor nodes more than nec-
essary. For example, in Figure 8-5 a) a new parallel path with an A-node has been added, due to an
add(A,C) control action. However, the average duration of this A-node is 7 hours while the average
duration of node 1 and 2 together is only 4 hours. Thus, the execution of the A-node delays the
duration of node 3 by 3 hours, if compared with the original sequence before the adaptation. This
can be avoided by adding nodes to the shorter path, e.g., by also adding node 3 to the lower path in
Figure 8-5 b). More generally, we can state the following criterion:

Criterion 8.1:   Temporally optimal new AND-SPLIT/AND-JOIN blocks
A (new) AND-SPLIT/AND-JOIN block is called temporally optimal if the assumed average
execution duration for the path of already existing nodes that still have to be executed (e.g.,
nodes 1, 2, and 3 in Figure 8-5 b) is at least as long as the average execution duration needed
for the other parallel path generated to satisfy the triggering control action (e.g., for the path
for the new A-node 5 in Figure 8-5 b).
The average execution duration needed for the path generated to satisfy the triggering control
action is also called the minimal average execution duration of each path of the new AND-
SPLIT/AND-JOIN block (e.g., in Figure 8-5 the minimal average execution duration for each
path is 7 hours, which is only fulfilled for Figure 8-5 b).
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Figure 8-5:  Generation of a parallel path.



Control Flow Operators

223

Besides considering this temporal optimization aspect, the generation of a new AND-SPLIT/AND-
JOIN block of course has to meet the control flow constraints described in 5.3.5.3 (Control Flow
Constraints). In particular, due to control flow constraint 3 (symmetrical blocks) it is not allowed to
add AND-SPLIT or AND-JOIN nodes at every position.

To generate such an AND-SPLIT/AND-JOIN block with two paths being temporally “balanced” in
the sense of Criterion 8.1, AGENTWORK provides the control flow operator

cfop-gen-empty-parallel-path(n: Integer, d: Duration): {FALSE, TRUE}.

This operator takes as first input the identifier n of the noder293 before which the AND-SPLIT node
needed for the new parallel path shall be inserted.r294 For example, n may be a node for which an
added node shall be executed in parallel, so that the AND-SPLIT node has to be inserted before n
(e.g., in Figure 8-5 it is n = 1). The second input d describes the minimal average execution dura-
tion according to Criterion 8.1. For example, in Figure 8-5 cfop-gen-empty-parallel-path would be
invoked with d = (7, hour). The return value FALSE or TRUE indicates whether cfop-gen-empty-
parallel-path has been able to generate the required new parallel path.
As preliminary remarks, two points are important to note:
• First, cfop-gen-empty-parallel-path obviously has to perform temporal estimations to check

whether the temporal optimization criterion of Criterion 8.1 can be satisfied. This is not incon-
sistent to our remark at the beginning of this chapter, that all operators described are relevant
both for predictive and reactive adaptation. This is because though reactive adaptation does not
estimate which workflow part corresponds to the valid time of a control action, this adaptation
strategy does not principally exclude that path durations are estimated as the missing of dura-
tion information or the existence of unresolvable conditions are only two of several possible
reasons for using reactive adaptation. Other reasons for using reactive adaptation may include
that the valid time interval of a triggering control action is conditional as described in Chapter 3
and Chapter 7, so that temporal estimations of path executions nevertheless may be possible.

• Second, due to the incorporated temporal estimations, cfop-gen-empty-parallel-path is a rather
complex operator. However, once it has been defined, the operators that are able to add nodes,
to replace activity definitions, and to postpone nodes can be introduced much more easily.

8.2.3.1 Effect on Control Flow without Loops, Synchronization and Waiting Edges
The operator cfop-gen-empty-parallel-path recursively searches for the minimal blockr295(see 5.3.5.4)
that allows to insert a new parallel path with a minimal average execution duration d of the result-
ing AND-SPLIT/AND-JOIN block. Table 8-1 contains the specification of the underlying algo-
rithm. Illustrating examples are given in Figure 8-6. We make the following remarks:

1. The further adaptation of the new AND-SPLIT/AND-JOIN block is subject of the other control
flow operators that invoke cfop-gen-empty-parallel-path. For example, if a new node has to be
added to the workflow due to some additive control action, this node will be inserted into the
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Algorithm cfop-gen-empty-parallel-path Examples (from Figure 8-6)

Input: n: Integer, d: Duration;
Input: none
Local variables:

o, c, as, aj: Integer,  // Node identifiers
mb: (Integer, Integer), // Tuple identifying mini-

// mal block of a node
d*: Duration;

n = 7
d = d1 d = d2

1. o = n;
2. Determine minimal block mb of n; mb = (4, 10)
3. Set c to closing node of mb; c = 10
4. Estimate d* = dur-av[e1(Control-Activated) → e2(Committed)];

(with e1 being the incoming edge of n and e2 being the incoming 
edge of c w.r.t. the path to which n belongs. The duration estima-
tion has to start at e1 and not at n, as e1 may contain a waiting con-
dition)

Estimate average time needed to reach 
node 10, i.e., until edge e2 = (9,10) com-
mits after edge e1 = (6,7) has been set to 
state Control-Activated

5. IF estimation not possible {
RETURN FALSE; }

6. IF d* ≥ d OR c = END node { // sufficient time within mb or 
 // end of workflow definition

True for d = d1 False for d = d2

For d = d1 (Figure 8-6 b): 
7. Insert new AND-SPLIT node as directly before o; Insert AND-SPLIT node as = 19 before 

7
8. Insert new AND-JOIN node aj directly before c; Insert AND-JOIN node aj = 20 before 

10
9. Insert empty path (i.e., new empty control flow edge) between

as and aj;
Insert edge (19,20)

10. Exit; } Exit
11. ELSE d* < d { // no sufficient time within mb False for d = d1 True for d = d2

12. Set o to opening node of mb; o = 4
13. Set mb to minimal block of mb;* mb = (1,13)
14. Go to step 3; } // next recursion step

Recall from 5.3.5.4 that by definition the minimal block of a min-
imal block mb is not mb itself. 

For d = d2 (Figure 8-6 c): Going to step 
3 means:
Insert AND-SPLIT node as = 19 before 
node 4; Insert AND-JOIN aj = 20 before 
node 13; Generate empty path between 
19 and 20

Table 8-1:  Algorithm for generating an AND-SPLIT/AND-JOIN block with minimal average execution duration d.
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Figure 8-6:  Application of control flow operator cfop-gen-empty-parallel-path.

6 7 98

... 

4
(AND-
SPLIT)

4
(AND-
SPLIT)

15 17 181614

5

10
(AND-
JOIN)

10
(AND-
JOIN)

1132

d1

d2d2

12

19
(AND-
SPLIT)

19
(AND-
SPLIT)

20
(AND-
JOIN)

20
(AND-
JOIN)

c) Inserting new AND-SPLIT/AND-JOIN 
block into enclosing minimal block (for d2)

1
(OR-

SPLIT)

1
(OR-

SPLIT)

...

d* := dur-av[ (6,7)(Control-Activated) → (9,10)(Committed) ]

7 98

... 

4
(AND-
SPLIT)

4
(AND-
SPLIT)

15 17 181614

5

10
(AND-
JOIN)

10
(AND-
JOIN)

1132 12

1
(OR-

SPLIT)

1
(OR-

SPLIT)

b) Inserting new AND-SPLIT/AND-JOIN 
block into minimal block (for d1)

a) Workflow before inserting new 
AND-SPLIT/AND-JOIN block

7 98

... 

4
(AND-
SPLIT)

4
(AND-
SPLIT)

15 17 181614

5

10
(AND-
JOIN)

10
(AND-
JOIN)

1132 12

1
(OR-

SPLIT)

1
(OR-

SPLIT)

19
(AND-
SPLIT)

19
(AND-
SPLIT)

20
(AND-
JOIN)

20
(AND-
JOIN)

6

d1

6

d2

cfop-gen-empty-parallel-path(7, di) (i = 1,2)

...

...

13
(OR-

JOIN)
... 

13
(OR-

JOIN)

13
(OR-

JOIN)
... 

13
(OR-

JOIN)
... 

13
(OR-

JOIN)

13
(OR-

JOIN)
... 

13
(OR-

JOIN)
... 

13
(OR-

JOIN)

13
(OR-

JOIN)
... 

Empty path (further handling 
depends on  invoking operator)

Empty path (further handling 
depends on  invoking operator)



Control Flow Operators

226

generated empty parallel path (i.e., “into“ the control flow edge between the AND-SPLIT and
the AND-JOIN node).r296 r297

2. If the end of the workflow is reached (i.e., c = END node in line 6 of Table 8-1), the new AND-
SPLIT/AND-JOIN block is then finally inserted, i.e., the AND-JOIN node is directly inserted
before the END node. In this case the AND-SPLIT/AND-JOIN block may not be optimal in the
sense of the temporal optimization Criterion 8.1. However, for c = END node this is irrelevant
as then the END node is the only node that may be delayed.

3. Note that the new AND-SPLIT node may be located in a workflow part that already has been
executed, independently from the question whether cfop-gen-empty-parallel-path is invoked
during reactive or predictive adaptation. At first glance, this may be irritating. However, it only
requires that the workflow engine is able to notice and start parallel paths that dynamically have
been added, even if the AND-SPLIT node has been inserted into a part already executed. The
particular state setting of the new AND-SPLIT and its outgoing edges is described in 8.2.3.5
(State Adaptations).

4. If a branching condition BC has been assigned to the edge (l,m) with l, m being the two nodes
between which the new AND-SPLIT is inserted (e.g., this would be the case if node 3 in
Figure 8-6 c) would be an OR-SPLIT node)2, BC is simply assigned to the edge (l, AND-
SPLIT) while to the edge (AND-SPLIT, m) no branching condition is assigned. This is appro-
priate, as the new AND-SPLIT node can simply be viewed as another node (without duration)
of the sequence to which l and m belong.

8.2.3.2 Handling of Loops
The algorithm of Table 8-1 also works if loops are contained in the workflow, as loops are only spe-
cial blocks. For example, let us assume that the workflow of Figure 8-6 contains an additional loop
(nodes 3 and 11 in Figure 8-7), and that cfop-gen-empty-parallel-path is invoked with the parame-
ter d2 from Figure 8-6. Then, an additional recursion step would be needed as it is not possible to
find a path within mb = (3,11) that fulfills the duration condition in line 6 in Table 8-1. Thus, the
new AND-SPLIT/AND-JOIN block is generated “around” this loop. The question whether an
insertion of a new AND-SPLIT/AND-JOIN block within a loop is valid for all loop iterations or
only for some of them is a matter of the operator invoking cfop-gen-empty-parallel-path, in partic-
ular of the valid time of the triggering control action.

8.2.3.3 Handling of Synchronization and Waiting Edges
Let l and m be the two nodes between which the new AND-SPLIT resp. AND-JOIN node is

2. Note that the new AND-JOIN node always is directly inserted before a closing block node, i.e., an
already existing AND-JOIN or OR-JOIN node (see line 8 in Table 8-1). Thus, the two nodes between
which the new AND-JOIN node is inserted can never be connected by a conditional edge, according
to the workflow definition model of Chapter 5. 
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inserted. If l or m are the source or target of synchronization edges, these are kept without change.
A waiting condition that has been assigned to the former control flow edge (l,m) is handled analo-
gously to a branching condition (8.2.3.1), i.e., it is assigned to the edge (l, AND-SPLIT) resp.
(l, AND-JOIN). For example, if a waiting condition would have been assigned to edge (3,4) in
Figure 8-6 c), this waiting condition would be assigned to the edge (3,19).

8.2.3.4 Side Effects on Data Flow
The operator cfop-gen-empty-parallel-path has no effects on the data flow as it only inserts a new
AND-SPLIT/AND-JOIN block and thus does not add or drop activity nodes.

8.2.3.5 State Adaptations
The state adaptations cfop-gen-empty-parallel-path has to perform are shown in Figure 8-8. For
example, row 1 specifies that if node 1 is in state Control-Activated, Data-Activated, or Active, and
if edges e1, e2 and node 2 are in state Untouched, that then the new AND-SPLIT node and the new
edges e3, e4 have to be set to state Untouched. The new AND-JOIN node is omitted in Figure 8-8,
as this node is always inserted into a workflow part not reached by the control flow at the moment
of the insertion, so that this node is always set to state Untouched.r66

8.2.3.6 Further Aspects
Note that cfop-gen-empty-parallel-path always generates a new AND-SPLIT/AND-JOIN block,
and does not check whether it could use already existing AND-SPLIT/AND-JOIN blocks to which
only another parallel path has to be added. Such superfluous AND-SPLIT/AND-JOIN blocks can
be merged together by reduction operators such as those introduced in [REICHERT 2000] to increase
readability. Thus, we do not describe this sort of “syntactical optimization“ here.

Figure 8-7:  Control flow operator cfop-gen-empty-parallel-path and loops.
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8.2.4 Operator for Single Node Adding
In this section, we describe the operator that adds a single node to a workflow if an add(A,C) con-
trol action has been triggered (the operator that handles an add-repetitively(A,d,C) control action
will be described in 8.2.5). Note that it has already been discussed in 7.4.3.3 how AGENTWORK
determines an appropriate workflow to which such a new node can be added.
To add a single node, AGENTWORK provides the control flow operator

cfop-add-node(A: Activity-Def, c: Case, n: Integer).

This operator takes as first parameter the activity definition A that shall be assigned to the new
node. The second parameter c identifies the Case object for which the new activity node shall be
executed. The third parameter is the identifier n of a workflow node and describes the “area“ into
which the new node shall be inserted by default, i.e., the semantics of n is that the new A-node shall
be inserted either directly afterr66 n or parallel to n, if possible. Note that this insertion point only is a
“soft“ constraint, i.e., as long as the new node A-node will be executed during the valid time
interval of the triggering add(A,C) control action, it can be inserted elsewhere into the workflow if
an insertion directly after n or parallel to n is not appropriate for some reason. The question which
nodes of a workflow may be used as values for n depends on the adaptation strategy:
• If cfop-add-node is invoked during reactive adaptation, n may be any node of the failure node

set of the triggering add(A,C) control action (see 7.4.3.3). This achieves that the new node is
executed as soon as possible and thus is executed during the valid time of the triggering control
action.
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• If cfop-add-node is invoked during predictive adaptation, n may be any node of the workflow
part PVT corresponding to the valid time VT assigned to the triggering add(A,C) control action.
The question which node n within this workflow part PVT shall be selected is a matter of a
higher-level algorithm and will be discussed in Chapter 9.

8.2.4.1 Effect on Control Flow without Loops, Synchronization and Waiting Edges
Concerning the effect on the control flow, we distinguish two principal mechanisms of cfop-add-
node to add a single A-node, namely sequential and parallel add.
Sequential add: The straightforward way to insert the
new A-node is to insert it directly behind the node speci-
fied by the n-parameter (Figure 8-9).r69 
The only problematic constellation for sequential add − if
invoked during reactive adaptation − is that n is an OR-
SPLIT node for which it is not known yet which of the
conditional paths will be executed3. In this situation, it
either has to be estimated which of the conditional paths
will be executed (if possible), or it has to be waited until
the conditional branching is executed and thus until it is
known which conditional paths of n are executed defi-
nitely (so that the new A-node can be inserted into such a
path as the first node).r69 r70

A necessary condition for sequential add is that the insertion of a new A-node after node n does not
violate a logical sequence (see 8.1.3.1). If a logical sequence is violated, an authorized user has to
specify an alternative insertion point, i.e., a new value for n. AGENTWORK then checks whether the
new value of n corresponds to a node of the failure node set (for reactive adaptation) or of PVT (for
predictive adaptation), and whether a sequential add at this new insertion area would violate any
other logical sequence.
However, the main disadvantage of sequential add is that it may delay the execution of successor
nodes of n (e.g., node 2 in Figure 8-9) more than necessary and thus may violate goal 3 (Minimiza-
tion of Execution Delay). Therefore, cfop-add-node does not use sequential add as default strategy,
but parallel add which is described now.

Parallel add: To avoid execution delays of successor nodes of n, cfop-add-node by default tries to
insert the new node into a new parallel path. For this, cfop-add-node invokes cfop-gen-empty-
parallel-path described in 8.2.3 to generate an AND-SPLIT/AND-JOIN block with an empty path
to which the new node can be added. The parametrization of cfop-gen-empty-parallel-path is as
follows:

3. Note that a failure node set may consist of only such an OR-SPLIT node so that we have to consider
this constellation.

Figure 8-9:  Sequential add.
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• The first parameter of cfop-gen-empty-parallel-path is set to n. For example, in Figure 8-10
cfop-add-node has been invoked with n = 6 so that cfop-gen-empty-parallel-path is invoked
with n = 6, too. 

• The second parameter d of cfop-gen-empty-parallel-path is set to the average duration of A, i.e.,

Figure 8-10:  Parallel add.
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d = dur-av(A), e.g., d = d1 (Figure 8-10 b) or d2 in (Figure 8-10 c). 

If cfop-gen-empty-parallel-path is able to generate a new AND-SPLIT/AND-JOIN block with a
new empty parallel path, cfop-add-node generates an A-node and inserts it into the new empty path.
The edge between the new AND-SPLIT node and the new A-node is labeled as Non-Adaptable (see
8.1.3.3). This is done to avoid that for example further nodes are inserted between the new AND-
SPLIT node and the new A-node, as this could cause that the A-node is not executed anymore
during the valid time of the triggering control action.
In the example of Figure 8-10 b), the new A-node 17 is inserted into the empty path between the
new AND-SPLIT 15 and the new AND-JOIN node 16. In the example of Figure 8-10 c), cfop-gen-
empty-parallel-path has not been able to insert the new AND-SPLIT/AND-JOIN block into the
minimal block of node n = 6, but only into the next surrounding minimal block. 
Note that depending on the workflow execution stage, the new AND-SPLIT node may be inserted
before a node which has already committed, e.g., if node 4 in Figure 8-10 c) has already committed
before the adaptation. This is no problem. It only requires that cfop-add-node assigns the right
states to the new A-node (i.e., assigns the state Untouched to the A-node) and to its incoming and
outgoing edges to achieve a consistent execution semantics of the affected workflow part after the
structural adaptation (see 8.2.4.5 for details on state adaptations). Furthermore, it requires that the
AGENTWORK workflow engine can cope with this state constellation.
However, as a side-effect of inserting the new AND-SPLIT node before a node already committed,
the new A-node may be executed earlier than node n, in particular it may not be executed in parallel
anymore to node n. This is because due to the state adaptation matrix of Figure 8-8, the new AND-
SPLIT node would be set to state Committed, and the edge between this new AND-SPLIT node and
the new A-node would be set to state Control-Activated so that the new A-node may be executed
directly after this. For example, in Figure 8-10 c) the new AND-SPLIT node 15 would be set to
state Committed, and the edge (15,17) to state Control-Activated. Thus, A-node 17 may be started
before node 6, e.g., if node 5 still is executed. However, there is no need to suppress this side-effect:
The insertion area specified by node n = 6 is only a soft constraint and an earlier execution of the
A-node never can violate the constraint that the A-node has to be executed during the valid time of
the triggering control action.
If cfop-gen-empty-parallel-path is not able to generate a new AND-SPLIT/AND-JOIN block (i.e.,
returns FALSE in line 5 in Table 8-1), cfop-add-node performs a sequential add.

8.2.4.2 Handling of Loops
We now discuss what shall happen if cfop-add-node has inserted the new A-node into a loop. This
is a problem, as the semantics of an add(A,C) control action is that an additional A-node shall be
executed exactly once for case C during the valid time VT of the add(A,C) control action. If the new
A-node has been inserted into a loop, it may be that the loop and thus the A-node is executed several
times during VT which would violate the semantics of add(A,C).
Analogously to cfop-drop-node, cfop-add-node handles this by inserting two conditional paths. The
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first path contains the nodes of the loop sequence together with the additional A-node. The branch-
ing condition for this path is defined in a manner achieving that this path is executed only for the
first loop iteration after the adaptation (we omit technical details here). The second path is executed
for the remaining loop executions.

8.2.4.3 Handling of Synchronization and Waiting Edges
If sequential add is performed, the direct predecessor and successor node of the new A-node may
be the source or target of synchronization edges or edges with waiting conditions4. In case of syn-
chronization edges, these are kept without change. In case that the new A-node n shall be inserted
between two nodes l and m with a waiting condition WC((l,m)) = (min, max), AGENTWORK
assumes that the waiting semantics of WC((l,m)) between l and m should be kept when n is inserted
between l and m. For example, if l and m support drug administrations, a waiting condition taking
into account some metabolism dependencies between them should not be violated when inserting a
new node between l and m. This is handled by splitting WC((l,m)) up into two waiting conditions as
follows (Figure 8-11): One waiting condition is assigned to the incoming edge of n, the other wait-
ing condition is assigned to the outgoing edge of n. The min and max values of these two new wait-
ing conditions are shown in Figure 8-11. Note that the average duration of n also has to be taken
into account to achieve that the two new waiting conditions − together with the average duration of
n − in the sum have the same waiting effect as the old waiting condition.

8.2.4.4 Side Effects on Data Flow
The operator cfop-add-node has no effects on existing data flow edges as it does not affect nodes
already existing in the workflow, but only adds new nodes to a workflow. Nevertheless, due to the
node adding, input objects that have not yet been considered by the data flow now have to be pro-
vided. The question how these required input objects can be provided is described in 8.3.

8.2.4.5 State Adaptations
The states that have to be assigned to the affected nodes by cfop-add-node are shown in

4. Note that parallel add inserts the new node into a newly generated path without synchronization
edges or edges with waiting conditions.
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Figure 8-11:  Inserting a new
node between two nodes con-
nected by an edge with wait-
ing condition.
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Figure 8-12. For sequential add, the necessary state adaptations are shown in Figure 8-12 a). For
parallel add, it has already been described in 8.2.3.5 which states have to be assigned to the new
AND-SPLIT resp. AND-JOIN node, and the preliminary control flow edge e4 connecting them.
Thus, in Figure 8-12 b) we only have to specify the state that has to be assigned to the new A-node
in dependency on the state of e4 (if we view e4 as the edge connecting the new AND-SPLIT node
with the new A-node after cfop-add-node has been invoked). Recall that the new AND-JOIN node
is always set to state Untouched, so that we do not have to consider the states of this node further.

8.2.4.6 Further Aspects
As cfop-add-node is triggered by an add(A,C) control action, we finally have to assign the case
described by the control action parameter C to the new A-node. From the operational view, this is
simply done by setting the return value of the function case(x) (5.4.3.5) to C (assuming that the new
A-node has the node identifier x).

Figure 8-12:  State adaptations of control flow operator cfop-add-node.
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8.2.5 Operator for Repetitive Node Adding
To add nodes for repetitive activity executions, AGENTWORK provides the control flow operator 

cfop-add-node-loop(A: Activity-Def, p: Duration, cond: Condition, C: Case).

The first parameter specifies the activity definition of the node to be executed repetitively. The sec-
ond parameter specifies the period of the loop, i.e., the duration between two subsequent executions
of the A-node. The third parameter specifies the termination condition of the loop. The fourth
parameter specifies the Case object for which the new activity node shall be executed. The operator
has no preconditions. It is triggered by an add-repetitively(A,d,C) control action.

8.2.5.1 Effect on Control Flow without Loops, Synchronization and Waiting Edges
Principally, cfop-add-node-loop realizes the repetitive execution of an A-node by inserting a loop
with an A-node and a termination cond into the workflow. However, in contrast to cfop-add-node,
cfop-add-node-loop does not try to add this loop into a new AND-SPLIT/AND-JOIN block being
temporally optimized according to Criterion 8.1. This is because for a temporally optimized AND-
SPLIT/AND-JOIN it would be necessary to estimate the execution of this loop. As already dis-
cussed in 6.4.4, the estimation of a loop’s execution duration generally will be very imprecise, in
particular when the loop is terminated by a qualitative termination condition such as “until leuko-
cyte count higher than 2500“ (in contrast to this, for cfop-add-node only the duration corresponding
to a single A-node execution has to be estimated). Therefore, the easiest way to insert the loop into
the workflow without causing any temporal delay is to instruct cfop-gen-empty-parallel-path to
generate a “maximal“ AND-SPLIT/AND-JOIN node, i.e., to insert the new AND-SPLIT node
directly after the START node and the new AND-JOIN node directly before the END node, as
shown in Figure 8-13. After this, cfop-add-node-loop generates a loop of the structure 

LOOP-START → A-node → LOOP-END

and inserts it into the new empty path. The period of the loop specified by p is translated into a
waiting condition with min = max = p which is assigned to the edge between the LOOP-END node
and the LOOP-START node. The termination condition specified by parameter cond is assigned to
the edge between the LOOP-END node and the new AND-JOIN node. The edge between the new
AND-SPLIT node and the new LOOP-START node is labeled as Non-Adaptable. The reason for
this is the same as for cfop-add-node.r71

This way of inserting the loop with the new A-node never can cause a push-out effect as the only
node that may be delayed is the END node which is irrelevant.

8.2.5.2 Handling of Loops
As cfop-add-node-loop always inserts the new AND-SPLIT directly after the START node and the
new AND-JOIN directly before the END node, the new loop never can be a part of a higher-level
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loop. Therefore, we do not have to discuss this problem for cfop-add-node-loop.

8.2.5.3 State Adaptations
The state adaptations that have to be performed by cfop-add-node-loop are analogously to that per-
formed by cfop-add-node for parallel add. Thus, in Figure 8-12 b) the A-node has to be replaced by
the loop LOOP-START → A-node → LOOP-END. To all three nodes of this loop, the state
Untouched is assigned for row 1 and 2 in Figure 8-12 b).

8.2.5.4 Further Aspects
For further aspects − such as the side-effects on data flow and the case assignment − the statements
made for cfop-add-node in the context of parallel add hold analogously for cfop-add-node-loop.

8.2.6 Operator for Replacing Activity Definitions
For replacing activity definitions, AGENTWORK provides the control flow operator

cfop-replace-act-def(n: Integer, B: Activity-Def),

which is invoked if a replace(A,B,C) control action has been triggered. This operator takes as its
first input parameter the identifier n of the A-node for which the activity definition shall be replaced
(in the following, A will always denote the old activity definition assigned to n).r72 The second input
parameter B is the new activity definition.

Figure 8-13:  Parallel add of loop.
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The precondition for this operator is that n is not an element of a logical sequence which would be
violated by replacing the activity definition of n. If this precondition is violated, an authorized user
has to specify whether the logical sequence may be violated (by replacing the activity definition of
n) or not. If the latter possibility is selected, cfop-replace-act-def is not applied to n.

8.2.6.1 Effect on Control Flow without Loops, Synchronization and Waiting Edges
The effect of this operator on the control flow depends on the relationship between the durations of
A and B. This duration relationship has to be considered to avoid that the replacing of an activity
definition leads to a significant delay of the affected workflow and thus to a violation of goal 3
(minimization of execution delay). We distinguish between sequential and parallel replace.
Sequential replace: This type of replace is performed if the
duration of a B-node is not significantly longer than the dura-
tion of an A-node. Then, cfop-replace-act-def simply per-
forms a switch of the activity definition of n, i.e., NAM(n) is
set to B, with NAM(n) being the function assigning an activ-
ity definition to an activity node (5.3.9). The position of n
within the control flow is left unchanged (Figure 8-14).
Parallel replace: This type of replace is performed if the
duration of a B-node is significant longer than the duration of
an A-node. Thus, a sequential replace as shown in
Figure 8-14 may lead to a significantly delay of the affected
path. Therefore,r73 cfop-gen-empty-parallel-path is instructed
to generate a new AND-SPLIT/AND-JOIN block with an
empty path to which n with its new activity definition B can be moved to. The parametrization of
cfop-gen-empty-parallel-path is as follows:
• The first parameter is set to the successor node of the node n by which cfop-replace-act-def has

been invoked5. For example, in Figure 8-15 cfop-replace-act-def is invoked with node 7 so that
cfop-gen-empty-parallel-path has to be invoked with node 8. We have to take the successor
node as in order to achieve a temporally optimal AND-SPLIT/AND-JOIN block according to
Criterion 8.1, cfop-gen-empty-parallel-path has to estimate the execution duration of the path
starting at the old position of n but without the execution duration of node n (as n is sourced out
from this path by parallel replace). 

• The second parameter d is set to the average duration of B, i.e, d = dur-av(B).r74 r75

If cfop-gen-empty-parallel-path is able to generate the new AND-SPLIT/AND-JOIN block, node n
with its new activity definition B is sourced out to the new parallel path. In particular, cfop-drop-
node is invoked to drop node n from its original path. For example, in Figure 8-15 b) node 7 with its

5. As n is an activity node, it always has a non-ambiguous successor node.

Figure 8-14:  Sequential replace. 
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new activity definition B is dropped from its original sequence and added to the new path parallel to
nodes 8 and 9. In the example of Figure 8-15 c), cfop-gen-empty-parallel-path has not been able to
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insert the new AND-SPLIT/AND-JOIN block into the minimal block of node 8, but only into the
next surrounding minimal block.
Note that depending on the workflow execution stage, the new AND-SPLIT node may be inserted
before a node which has already committed, e.g., if node 4 in Figure 8-15 c) has already committed
before the adaptation. Analogously to parallel add described in 8.2.4.1, this may have the conse-
quence that n may be executed significantly earlier after the activity replacement (if compared with
the situation before the activity replacement). While this side-effect of an earlier execution has been
viewed as acceptable for added nodes (as there are no temporal relationships with already existing
nodes that would have to be considered), the question is whether this side-effect should be allowed
for activity replacement. For example, if the type of a diagnostic examination is replaced, it usually
will be uncritical to execute the new examination earlier than the original one before the activity
definition replacement. However, if for example the activity definition means that a different drug
is applied, an uncontrolled earlier execution of the new drug may be fatal as implicit temporal rela-
tionships may be violated. Thus, as it is difficult to decide in general whether an earlier execution
of n should be allowed or not, AGENTWORK requests the user. If the user wants to avoid that the
node n for which the activity definition has been replaced is executed earlier, n is synchronized
with its former position. Note that it is not suitable to simply synchronize n with an already existing
activity node m (e.g., to synchronize node 7 with node 6 in Figure 8-15 c), as m may be affected
(e.g., dropped) by subsequent adaptations. Therefore, a NULL node (see 8.1.3.2) is inserted at the
former position of n, and n is synchronized with this NULL node by inserting the synchronization
edge

( (NULL node, Committed), (n, Control-Activated) ) (i)

to the workflow. For example, in Figure 8-15 c) a NULL node 21 is inserted between node 6 and 8,
and node 7 is synchronized with it by an synchronization edge of form (i). 
If the user agrees that the node for which the activity definition has been replaced is executed ear-
lier, the control flow is left unchanged after node n has been sourced out to the parallel path, i.e., no
NULL node and no synchronization edge is inserted.r76

If cfop-gen-empty-parallel-path is not able to generate a new AND-SPLIT/AND-JOIN block, cfop-
replace-act-def performs a sequential replace as shown in Figure 8-14.r76

8.2.6.2 Handling of Loops
We now discuss what shall happen if the node n for which the activity definition has to be replaced
belongs to a loop. Two problems have to be considered:
Problem 1: First of all, if parallel replace is performed the new AND-SPLIT/AND-JOIN block
must not be inserted outside the loop. Otherwise, the node n would be executed more than once
before the activity definition replacement, but only once after the activity definition replacement
(Figure 8-16 a). Of course, this has to be avoided. Therefore, if n belongs to a loop cfop-gen-empty-
parallel-path has to terminate its control flow exploration when detecting a LOOP-START node,
and has to insert the AND-SPLIT and AND-JOIN node into this loop block.6 
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6. We omitted this special case in the description of cfop-gen-empty-parallel-path in Table 8-1 to con-
centrate on the core structure of the algorithm. Nevertheless, cfop-gen-empty-parallel-path can be
easily extended to cope with this loop case if invoked by cfop-replace-act-def.

Figure 8-16:  Control flow operator cfop-replace-act-def and loops.
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Problem 2: Furthermore, we have to avoid that the activity definition is replaced for a loop itera-
tion that is executed after the valid time VT of the triggering control action. Analogously to node
dropping, this is handled by adding a conditional branching that checks whether VT has expired or
not. The arguments for this are the same as given for cfop-drop-node in 8.2.1.2. This conditional
branching is done for sequential replace (Figure 8-16 b) and for parallel replace (Figure 8-16 c).

8.2.6.3 Handling of Synchronization and Waiting Edges
We now discuss how cfop-replace-act-def shall behave if the node n of which the activity definition
is replaced is a source or target node of synchronization edges or edges with waiting conditions.
There is no general solution for synchronization edges and edges with waiting conditions. For
example, if one drug is replaced by a similar drug of the same substance group, it may be suitable
to maintain all synchronization edges or waiting conditions as the temporal dependencies to other
nodes are still the same. However, if one drug is replaced by a drug with the same indication but a
totally different metabolism behavior, it may be that the temporal dependencies may change signif-
icantly. Therefore, AGENTWORK provides the configuration parameter

KEEP-SYN-AND-WAIT-EDGES-AFTER-ACT-DEF-REPLACE {YES, NO}

to specify the operator’s behavior concerning synchronization edges or edges with waiting condi-
tions. If it is set YES, this means that for any node for which the activity definition is changed, all
incoming or outgoing synchronization edges, and all waiting conditions of incoming or outgoing
edges are kept. If it is set NO, this means that for any node for which the activity definition is
replaced, a user has to be requested whether an incoming or outgoing synchronization edge has to
be dropped or kept, and whether a waiting condition of an incoming or outgoing edge has to be
dropped, kept, or adjusted concerning the min or max values of the waiting condition. r81

8.2.6.4 Side-Effects on Data Flow
As the replacement of an activity definition means that also the input and output objects change, all
incoming and outgoing data flow edges of the node with the replaced activity definition are also
dropped. On one side, this may cause that an input object needed by another activity node or
branching condition cannot be initialized anymore. On the other side, due to the new activity defi-
nition of the node, input objects that have not yet been considered by the data flow now have to be
provided. The data flow adaptation that therefore may become necessary are described in 8.3.

8.2.6.5 State Adaptations
We now describe the state adaptations that have to be performed for a node n for which the activity
definition has been replaced. For sequential replace, the relevant state adaptations are shown in
Figure 8-17. Note that in general it is not possible to set n to the same state it has been in before the
sequential replace. For example, during reactive adaptation the node n for which the activity defi-
nition has to be changed may already be in state Data-Activated (see 7.4.3.1). As the input object
patterns may change because of the activity definition replacement, n has to be set back to state
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Control-Activated, so that the new data can be retrieved by the data flow.
For parallel replace, the necessary state adaptations can be derived from those performed by the
operators cfop-gen-empty-parallel-path, cfop-drop-node, and cfop-add-node: The state adaptations
that have be to performed after the generation of the new AND-SPLIT/AND-JOIN block (little
rectangle in Figure 8-16 b) have already been described in 8.2.3.5. The state adaptations that
become necessary after n has been dropped by cfop-drop-node from its old location are described
in 8.2.1.5. The state adaptations that become necessary after n has been inserted into the new path
and after a NULL node has been inserted are described in 8.2.4.5.r76 r78 The synchronization edge
between the NULL node and n always is set to state Untouched.

8.2.7 Operator for Node Postponement
For node postponement, AGENTWORK provides the control flow operator 

cfop-postpone-node(n: Integer, d: Distance).

The first input parameter n identifies the node to be postponed, and the second one d the temporal
distance d > 0 by which n shall be postponed. This operator is invoked when a node n is affected by
a postpone(A,d,C) or postpone-activities-of(R,d) control action.

8.2.7.1 Effect on Control Flow without Loops, Synchronization and Waiting Edges
As described in Chapter 7, the semantics of postpone(A,d,C) and postpone-activities-of(R,d) is that

Figure 8-17:  State adaptations for sequential replace.
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and after the activity definition replacement.
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the temporal distance d between the old and the new relative position of a postponed activity exe-
cution may not be changed by subsequent adaptations. Therefore, cfop-postpone-node does not try
to postpone n by reordering the sequence to which n belongs, as the nodes between the old and new
position may be subject of further adaptations. Rather, it provides different mechanisms to post-
pone the execution of n. Analogously to sequential and parallel add resp. replace, we distinguish
between sequential and parallel postpone.
Sequential postpone: The straightforward way to post-
pone the execution of n is to simply add a waiting condi-
tion min = max = d between n and its successor node,
and to mark the respective edge as Non-Adaptable.
(Figure 8-18).r85 However, the disadvantage of sequential
postpone is that it may postpone successor nodes of n as
well (e.g., node 3 in Figure 8-18). Thus, goal 3 (Minimi-
zation of Execution Delay) would be violated. Therefore,
cfop-postpone-node does not use sequential postpone as
default strategy, but parallel postpone which is described
now.
Parallel postpone: To avoid execution delays of other
nodes than the node to be postponed, cfop-postpone-node by default tries to source n out to an own
path within a new AND-SPLIT/AND-JOIN block (Figure 8-19). For this, cfop-postpone-node
invokes cfop-gen-empty-parallel-path with the following parametrization:
• Analogously to cfop-replace-act-def, the first parameter of cfop-gen-empty-parallel-path is set

to the successor node of the node n by which cfop-postpone-node has been invoked.
• The second parameter is set to d + dur-av(A) with A = NAM(n) (i.e., A is the activity definition

assigned to n). This is necessary as the execution duration of the path to which n shall be
sourced out consists first of the postponement duration (i.e., d) and second of the assumed exe-
cution duration of n (i.e., dur-av(A) ).

If cfop-gen-empty-parallel-path is able to generate a new AND-SPLIT/AND-JOIN block, node n is
moved to the new parallel path. In particular, cfop-drop-node is invoked to drop node n from its
original path. For example, in Figure 8-19 b) node 7 is dropped from its original sequence and
added to the new path parallel to nodes 8 and 9. Furthermore, a waiting condition with duration
min = max = d1 is assigned to the edge between the new AND-SPLIT node 19 and the moved node
7. Finally, the edge with the waiting condition is marked as Non-Adaptable. By such a parallel
postpone, it is achieved that the execution of node 7 is delayed by duration d1 without delaying the
former successor nodes of node 7 (e.g., nodes 8 and 9).r82 
However, a problem remains if cfop-gen-empty-parallel-path has not been able to insert the new
AND-SPLIT node directly at the old position of n but somewhere before (as shown in Figure 8-19
c). Then it does not make much sense to assign a waiting condition of duration d to the edge
between the new AND-SPLIT node and n (e.g., between node 19 and node 7 in Figure 8-19 c) as

Figure 8-18:  Sequential postpone.
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this would not anymore be a postponement w.r.t. the old position of n. It also does not make much
sense to add the duration of the path between the new AND-SPLIT node and the old position of n
to the waiting condition, e.g., to add the duration of path 4→5→6, as this path may be changed by
further adaptations and thus may change its duration. Therefore, cfop-postpone-node inserts a
NULL node (see 8.1.3.2) at the former position of n, synchronizes n with this NULL node by
inserting the synchronization edge

( (NULL node, Committed), (n, Control-Activated) ) (ii)

to the workflow, and assigns a waiting condition with min = max = d to this synchronization edge
to achieve the node postponement. For example, in Figure 8-19 c) the NULL node 21 is inserted
between node 6 and 8 (i.e., the old position of node 7), and node 7 is synchronized with it by an
synchronization edge of form (ii) to which a waiting condition of duration d2 is assigned.
If node n cannot be sourced out to a parallel path as it for example belongs to a logical sequence
that would be violated, or if cfop-gen-empty-parallel-path is not able to generate a new AND-
SPLIT/AND-JOIN block (e.g., returns FALSE), cfop-postpone-node performs a sequential post-
ponement.

8.2.7.2 Handling of Loops
Concerning the handling of loops, the statements made for cfop-replace-act-def (8.2.6.2) hold anal-
ogously for cfop-postpone-node. This is because the only structural difference between the opera-
tors cfop-replace-act-def and cfop-postpone-node is that the first changes an activity definition of
an existing node, while the latter adds a waiting condition to an incoming control flow or synchro-
nization edge of an existing node.

8.2.7.3 Handling of Synchronization and Waiting Edges
If a node n which has to be postponed is the source or target of synchronization edges or edges with
waiting conditions, AGENTWORK principally assumes that these synchronization edges or edges
with waiting conditions should be maintained. This is because postponing n means that the activity
semantics of n is kept (in contrast for example to an activity definition replacement). Thus, tempo-
ral dependencies of n to other nodes are kept, as shown in Figure 8-20. In particular, if n is post-
poned sequentially and is the target of an edge with waiting condition (Figure 8-20 b), the
postponement duration d has to be added to the already existing waiting condition.
However, an exception is that n is the source of an edge with waiting condition (e.g., node 2 in
Figure 8-20 a) and is postponed by parallel postpone (Figure 8-20 c): On one side, maintaining the
edge with the waiting condition − e.g., assigning the waiting condition WC(e2) = (min2, max2) to
the edge (2,3) in Figure 8-20 c) − would mean that the main motivation for parallel postpone would
be counteracted, namely the avoidance of execution delays w.r.t. former successor nodes of n. On
the other side, assigning the waiting condition to the edge between the inserted AND-SPLIT or
NULL node and the former successor node of n (e.g., between nodes 6 and 3 in Figure 8-20 c) often
will not make much sense, as the temporal constraint expressed by the waiting condition typically
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depends on the activity definitions of the connected nodes. Thus, if one of the both nodes does not
“carry“ the activity definition for which the waiting condition has been defined (e.g., node 6 in
Figure 8-20 c), this waiting condition often will become obsolete. Summarizing, we can state that
an automated handling of this constellation of parallel postpone is difficult, so that the user has to
be requested: If he wants to maintain the waiting condition between n and its former successor
node, a sequential postpone is performed instead of a parallel postpone (as the latter then does not
make any sense). Alternatively, the user can either decide to drop the waiting condition entirely, or
to assign it to the edge between the AND-SPLIT resp. NULL node and the former successor node
of n (e.g., between node 6 and 3 in Figure 8-20 c).
Another conflict situation that may occur is that n is the target or source of a synchronization edge
e (e.g., of edge e1 resp. e2 in Figure 8-21), and that e also contains a waiting condition. Then, inde-
pendently from whether a sequential or parallel postpone is performed for n, the following two sit-

Figure 8-20:  Postponing a node with synchronization edges or edges with waiting conditions.
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uations may occur:

Situation 1: If n is the target of e = ((m,s), (n,t) ) (e.g., e = e1 in Figure 8-21), the max entry of
WC(e) may be not satisfiable anymore due to the later execution of n. Recall from 5.4.2.1 that
the max entry of WC(e) = (min, max) has the semantics that a necessary precondition to set n to
state t is that since m has been set to state s at most the time specified by max must have
elapsed. At first glance, an appropriate way to cope with this seems to be to add d to the min
and max entry of the waiting condition (as shown in Figure 8-21), as this reestablishes the tem-
poral consistency of the workflow. However, this may not always be appropriate. For example,
if n and m support drug applications with a strict waiting condition between them because of the
metabolism behavior of the drugs, an automated adding of d would be inappropriate or even
fatal from the medical point of view.r83 As this cannot be determined automatically, the only way
to cope with this is to request the user who can decide to add d to the min and max entry or to
adjust min and max differently, to remove the synchronization edge, or to reject the node post-
ponement at all if he weights the synchronization edge stronger than the node postponement.

Situation 2: If n is the source of e = ((n,s), (m,t) ) (e.g., e = e2 in Figure 8-21), the point in time
when m can be set to state t may be significantly delayed after n has been postponed. Similar to
situation 1, it may appropriate to adjust the min and max entry of WC(e) as

min = maximum(0, min - d),
max = maximum(0, max - d),

to remove the synchronization edge or to reject the node postponement at all. As this cannot be

Figure 8-21:  Handling of synchronization edges with waiting conditions during node postponement.
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determined automatically, the user has to decide.

What remains is the question how situation 1 and situation 2 can be detected at all. This can be done
in a straightforward manner by the estimation algorithms introduced in Chapter 6 by comparing the
execution durations of the workflow before and after the node postponement. Thus, we omit details
here.

8.2.7.4 Side-Effects on Data Flow
As cfop-postpone-node only moves a node n without changing its activity definition, this operator
has no direct effect on existing data flow edges. However, if the postponed node n provides output
objects that are needed by other nodes or for condition evaluations, the postponement of n may
imply a substantial data flow-induced delay of these dependent nodes because internal data flow
edges between n and these nodes or conditions have the effect of synchronization edges (which has
been already a problem for workflow estimation as described in Chapter 6). Thus, it may be neces-
sary to remove such delaying data flow edges and to insert an alternative data flow edge which does
not cause such an execution delay. This will be described in 8.3.

8.2.7.5 State Adaptations
The state adaptations that have to be performed by cfop-replace-act-def (8.2.6.5) hold analogously
for cfop-postpone-node. The only difference is that if the node to be postponed already is in state
Data-Activated, this state can be kept also for the postponed node (see row 1 in Figure 8-17), given
that no time constraints of its input object patterns (see 5.2.2) are violated by the postponement.

8.3 Data Flow Adaptation
We now describe how AGENTWORK adapts the data flow after a control flow adaptation. For this,
we first describe the conditions under which such a data flow adaptation becomes necessary
(8.3.1). Second, we describe the principal strategies of data flow adaptation (8.3.2). Third, we
describe an operator that adapts the data flow (8.3.3).r84

8.3.1 Conditions for Data Flow Adaptation
The different effects the control flow operators of Section 8.2 might have on a workflow’s data
flow have already been sketched informally in the resp. section Side-Effects on Data Flow. We now
give a precise description under which conditions a data flow adaptation becomes necessary. Please
recall from 5.3.6 (Data Flow Definitions), that we assume workflow-wide unique names for all
input, output, and communication objects. 
A control flow adaptation requires a data flow adaptation if it exists an activity node, a branching
condition, or a COMM-OUT node x, for which one of the following two conditions holds:

a) Incomplete Input: It exists p ∈ inputx (if x is an activity node or branching condition) resp.
p ∈ comm-objsx (if x is a COMM-OUT node) with:
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There is no data flow edge (o, p) ∈ Internal-Data-Flow ∪ External-Data-Flow.

b) Data Flow-Induced Execution Delay: It exists p ∈ inputx resp. comm-objsx and a data flow
edge (o, p) ∈ Internal-Data-Flow ∪ External-Data-Flow with

entry-of-edge-state((o, p), Committed) ≤ entry-of-node-state(x, Control-Activated) (iii)

before the control flow adaptation but 

entry-of-edge-state((o, p), Committed) > entry-of-node-state(x, Control-Activated) (iv)

after the control flow adaptation. According to 6.1.3.1 (Significance of Durations), the “>“ operator
in (iv) has to be understood in the sense of “significantly” later.
Condition a) means that at least one object needed by an activity node, a branching condition, or a
COMM-OUT node is neither provided by the internal nor by the external data flow. Thus, data flow
constraint 1 (input completeness) is violated. Condition a) may become true when the control flow
operators cfop-drop-node, cfop-add-node, cfop-add-node-loop, or cfop-replace-act-def are applied
to a workflow.
Concerning condition b), (iv) means that after an adaptation some data flow edge (o, p) can only
perform its object mapping from o to p after the point in time at which x has been set to state
Control-Activated (and thus needs p). In contrast to this, before the adaptation (o, p) has been able
to map its data before the point in time at which x has been set to state Control-Activated (iii).
Condition b) may become true when the control flow operators cfop-postpone-node, cfop-add-
node, or cfop-replace-act-def are applied to a workflow as they all may induce execution delays of
the affected node itself or of its successor nodes7.
Independently from whether condition a) or b) holds, we have the situation that for an activity
node, a branching condition, or a COMM-OUT node x an input resp. communication object p
exists for which no appropriate data flow edge (o, p) exists to fill p. Its the task of the operator
introduced in 8.3.3 to generate such an edge (o, p) and to suggest it to the user.

8.3.2 Data Flow Adaptation Strategies
Before we describe the concrete structural data flow adaptations in 8.3.3, we first sketch the two
principal strategies that can be identified for data flow adaptation, namely reactive and predictive
data flow adaptation (analogously to reactive or predictive adaptation of a workflow’s control
flow). To describe these two strategies, we again assume that x is an activity node, a branching con-
dition, or a COMM-OUT node, i.e., a workflow element needing data objects for its execution.

7. Note that an add-repetitively control action cannot induce an execution delay (if resource availability
holds), as it is always translated into a loop parallel to the rest of the workflow which cannot delay
other node or edge executions (except the END node).
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8.3.2.1 Reactive Data Flow Adaptation
This strategy means that conditions a) and b) are checked directly before x needs its data objects,
i.e., when x is set to state Control-Activated. If one of these two conditions holds, the data flow is
adapted. Obviously, this data flow adaptation strategy can be combined both with reactive and pre-
dictive control flow adaptation (the latter case means that the control flow is handled predictively,
but the necessary data flow adaptations are performed “on demand”).
The reactive data flow adaptation strategy has the advantage that the need of temporal estimations
can is reduced: On one side less temporal estimations may be necessary to evaluate the inequations
(iii) and (iv), as the point in time when x is set to state Control-Activated − i.e.,
entry-of-node-state(x, Control-Activated) − is definitely known. Note that at least for the left side of
(iv) a temporal estimation may still be necessary as this is a point in time of the future w.r.t.
entry-of-node-state(x, Control-Activated).8

Analogously to reactive control flow adaptation, the disadvantage of reactive data flow adaptation
is that it may be too late. For example, if a new therapeutic node is added to a medical workflow,
and if this new node needs an x-ray finding as input, it may turn out during reactive data flow adap-
tation that such an x-ray finding is not available at all for the respective patient, so that an x-ray-
examination first has to be executed. This costs time so that the execution of the therapeutic node is
delayed. It could be argued that at least for the combination of reactive data flow adaptation with
predictive control flow adaptation, such required data-producing nodes (e.g., the x-ray examination
node) could be added automatically to the workflow by predictive control flow adaptation (by
extending the respective failure rules) so that the sketched problem cannot occur. However, this
would require that all activity types of an organization are represented electronically within the
workflow system. This must be viewed as unrealistic especially w.r.t. the first phases of bringing a
workflow system into practice.

8.3.2.2 Predictive Data Flow Adaptation
This strategy means that conditions a) and b) are checked for x directly after the control flow adap-
tation. If one of these two conditions holds, the data flow is adapted predictively, i.e., while x still is
in state Untouched. At first glance, this data flow adaptation strategy seems to be usable only after
predictive control flow adaptation. However, note that also for a reactive control flow adaptation
such as reactively dropping a node n, a successor node or conditional successor edge x of n that is
still in state Untouched may meet condition a) or b). Thus, it is principally possible to predictively
adapt the data flow though the control flow is adapted reactively.
Concerning advantages and disadvantages of predictive data flow adaptation, the situation is dia-
metrical to reactive data flow adaptation: The advantage is that data flow adaptations that require
new data-producing activity nodes (such as the x-ray examination node of the example sketched in

8. Again, note that the usage of reactive control flow adaptation does not principally exclude that path
durations are estimated (as the missing of duration information or the existence of unresolvable con-
ditions are only two of several possible reasons for using reactive adaptation).
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8.3.2.1) are done in time. The disadvantage is that to evaluate the inequations (iii) and (iv) for x,
much more temporal estimations are needed as for reactive data flow adaptation. This is because
the right sides of (iii) and (iv) are points in time of the future, as x is still in state Untouched. Fur-
thermore, for the data flow adaptation itself temporal estimations will be needed.

8.3.2.3 Strategy Selection for Data Flow Adaptation
The question remains when to use which data flow adaptation strategy. For AGENTWORK the
answer is simple: Predictive data flow adaptation is used whenever possible, i.e., when the tempo-
ral estimations needed are possible. This is because the disadvantage of reactive data flow adapta-
tion, i.e., that necessary data flow adaptation may be performed too late, is weighted stronger than
the disadvantage of predictive data flow adaptation, i.e., the increased number of necessary tempo-
ral estimations.

8.3.3 Operator for Adding Data Flow Edges
The generation and suggestion of an appropriate data flow edge needed to overcome the situations
described by conditions a) resp. b) in Section 8.3.1 is performed by the data flow operator

dfop-gen-data-flow-edge(x: Integer, p: Time-Constr-Named-Obj-Patt).9

This operator takes as its first input parameter an identifier x of a node or a branching condition for
which an appropriate data flow edge has to be generated.r91 The second input parameter p is the input
object needed by x, i.e., p ∈ inputx resp. comm-objsx (more precisely, p is the time-constrained
named object pattern specifying the object needed as input).
For a compact presentation of dfop-gen-data-flow-edge, we assume that x is an activity node for
which a data flow edge has to be generated, and that the workflow to which it belongs does not con-
tain COMM-IN nodes (which could serve as potential data sources for x as well). For x being a
communication node or an edge with branching condition, and for workflows containing COMM-
IN as potential data sources for x, data flow adaptation is handled analogously.
The principal way dfop-gen-data-flow-edge works is as follows: First, dfop-gen-data-flow-edge
explores the “relevant” temporal neighborhood of x and checks whether there is any output object
o of an activity node n that matches the pattern and time constraint that p has to fulfill (Steps 1 and
2). If this is the case, an internal data flow edge is generated that maps o to p (Step 3). If the local
temporal neighborhood does not provide such an object o, dfop-gen-data-flow-edge generates an F-
Logic query q to an object extensions and constructs an external data flow edge that maps the
object retrieved by q to p (Step 4). Finally, the generated internal or external data flow edge is pre-
sented to the user, which may confirm, reject, or adapt it manually (Step 5).
We explain these steps now in more detail. To illustrate this, we assume that due to the application
of cfop-add-node an activity node x supporting an ETOPOSID administration has been added to a

9. dfop stands for “data flow operator“
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workflow (Figure 8-22) and that for x an input object p is required that fulfills the pattern

p: Hemato-Finding [parameter = Thrombocyte-Count] NOT-OLDER-THAN  (2, day) (v)

i.e., a Hemato-Finding object named p is needed which stores a thrombocyte count and which may
not be older than 2 days when x is executed.r92

Step 1: Determination of “Relevant“ Temporal Neighborhood
The relevant local neighborhood of x is the set of those activity nodes that are set to state Commit-
ted 

a) not significantly earlier than the point in time when x is set to state Control-Activated minus
the distance specified by the NOT-OLDER-THAN constraint of p, and 

b) not significantly later than the point in time when x is set to state Control-Activated.

Formally, this is the set

Figure 8-22:  Data flow adaptation.
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Nx,d = {n | n activity node with: 
entry-of-node-state(n, Committed) ∈ 

[entry-of-node-state(x, Control-Activated) − d,
 entry-of-node-state(x, Control-Activated)] }, (vi)

where d denotes the temporal distance specified in the NOT-OLDER-THAN constraint of p. In the
example of Figure 8-22, the node n supporting the hematological examination belongs to Nx,d.
The definition of Nx,d makes sense as in state Committed a node n can provide all its output objects,
and as in state Control-Activated x needs the missing object p. Note that it is not required that n is a
predecessor node of x, as also nodes executed parallel to x are candidates for providing output
objects for x.
If x is still in state Untouched and depending on the workflow constellation around x, temporal esti-
mations as described in Chapter 6 (Workflow Duration Estimation) may be necessary to determine
Nx,d. Of course, if the data flow adaptation is performed after a predictive control flow adaptation,
some of the necessary estimations may already have been performed when determining the work-
flow part PVT corresponding to a valid time VT of a control action,r93 and thus can be reused.r94

Step 2: Object Pattern Matching
After the set Nx,d has been determined, dfop-gen-data-flow-edge checks whether any member of
this set provides an appropriate output object w.r.t. p. Formally, this means that for every n ∈ Nx,d
and every o ∈ outputn the following conditions have to be checked:

a) Concerning the cases case(n) and case(x) (5.4.3.5) for which n resp. x are executed, it holds:

case(n) and case(x) are already known, and (vii)

case(n) = case(x). (viii)

This means that both nodes n and x are executed for the same case and thus that any output
object provided by n is for (i.e., represents data concerning) exactly that Case instance for
which p is needed. For the example in Figure 8-22, let us assume that nodes n and x are exe-
cuted both for the same patient, so that both the output object o of n and p represent data of the
same patient.

b) It holds

o matches p according to 4.2.1.7. (ix)

For example, in Figure 8-22 the output object o meets the pattern p, as o is a Hemato-Finding
object representing a thrombocyte count, too.
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Note that for reactive data flow adaptation (vii) is always fulfilled. This is first because for this
strategy an affected node x is handled not before it has been set to state Control-Activated (7.4.3.1)
and as according to our execution model of Chapter 5 a case must have been assigned to x so far (as
otherwise x could not be executed). Second, due to the definition in (vi) a node n in Nx,d has
committed not later than x is set to state Control-Activated, so that for reactive data flow adaptation
the case assigned to n is already known, too. In contrast to this, (vii) must not always be fulfilled if
predictive data flow adaptation has been selected. For example, case(n) may be unknown if the
case is assigned dynamically to n and if n has not been executed at the moment of the data flow
adaptation. As a consequence, such a node n with yet unknown case cannot qualify as source for an
internal data flow edge.

Step 3: Generation of Internal Data Flow
If there exists an n ∈ Nx,d and an o ∈ outputn that fulfills (vii) − (ix), the internal data flow edge
(o, p) is inserted into the set of internal data flow edges Internal-Data-Flow. For example, in
Figure 8-22 the edge (o, p) is inserted between n and x to transfer the thrombocyte count informa-
tion between these two nodes.
If there is more than one pair (n, o) fulfilling the required conditions, the most “current“ n is
selected, i.e., that n with the smallest temporal distance w.r.t. x: 

entry-of-node-state(n, Committed) − entry-of-node-state(x, Control-Activated) = 
min { entry-of-node-state(n’, Committed) −

entry-of-node-state(x, Control-Activated), n’ ∈ Nx,d } (x)

If at least two n fulfill equation (x) (i.e., have the same minimal temporal distance to x), then one n
is selected at random. If the selected n has two objects o, o’ fulfilling the pattern condition (ix), then
one is selected at random, too.

Step 4: Generation of External Data Flow
If Nx,d cannot be determined at all (as the necessary estimations are not possible), or if there is no
n ∈ Nx,d that fulfills (vii) − (ix), dfop-gen-data-flow-edge generates an F-Logic query to retrieve an
object o meeting the pattern and time constraint specified by p. This query is generated on the base
of the template shown in Table 8-2 (left and middle column). In this table, the function 

insertion-or-last-update(o: Object): T (xii)

used in the time-constr row of Table 8-2 returns the point in time when o was inserted or last
updated into its extension. The condition (xi) in this row corresponds to condition (vi) needed for
the definition of Nx,d in step 1 (i.e., instead of the point in time when o is provided as output object
of an activity node, we have to take the point in time when o is inserted or last updated in its exten-
sion).r94 
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For the workflow in Figure 8-22, the query q shown in Table 8-2 (right column) has been gener-
ated. This query q is then part of an external data flow edge (q, p) which is inserted into the set of
external data flow edges External-Data-Flow and executed when x is executed. 

Step 5: User Request
It cannot be guaranteed in general that generated data flow edges really do provide the right data.
One reason for this may be underspecified object patterns. For example, imagine that a node n
needs some Radiodiagnostic-Activity object as input, but that the focus of this activity (e.g., lung,
head etc.) has not been specified via the focus attribute of Radiodiagnostic-Activity class. Then,
according to steps 1-3, AGENTWORK would search for Radiodiagnostic-Activity output objects in
the appropriate temporal neighborhood without considering the focus attribute. If we then assume
that two Radiodiagnostic-Activity output objects o1, o2 are in the relevant temporal neighborhood,
the more current Radiodiagnostic-Activity output object would be selected (e.g., o1). However, this

Template 
Part

Meaning Example 
(Figure 8-22)

?- Query operator ?-

o ΙΝ Object to retrieve o ΙΝ

extension The extension to be queried (Note that we 
assume a 1:1 relationship between F-Logic 
classes and extensions; see 4.2.1.8).

hemato-findings

AND AND

case-filter The case to which o has to refer, i.e., case(x) o.of = case(x) 
(o.of refers to the Case instance to 
which o belongs to; see 3.2.1, 4.2.1.2).

AND AND

obj-pattern The pattern that o has to fulfill, i.e., p (without 
NOT-OLDER-THAN constraint)

o.parameter = Thrombocyte-Count

AND AND

time-constr The time constraint o has to fulfill concerning 
its currentness, i.e.,

insertion-or-last-update(o) ∈ (xi)
[entry-of-node-state(x, Control-Activated) − d, 
entry-of-node-state(x, Control-Activated)]

insertion-or-last-update(o) ∈ 
[entry-of-node-state(x, Control-
Activated) − d, entry-of-node-state(x, 
Control-Activated)]

Table 8-2:  Template and example for F-Logic query generation.
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may be exactly the wrong one, if n would require a Radiodiagnostic-Activity object with
focus = “Lung“, but if it would be o1.focus = “Head“ and o2.focus = “Lung“. 
As such constellations caused by underspecified input patterns cannot be excluded, the last step of
data flow generation has to consist of presenting the generated data flow edge to the user and to
request whether it is appropriate w.r.t. the workflow semantics. The user can confirm, adapt, or
reject it. In the latter case, the system then suggests other data flow edges according to steps 1-4. If
there are no other data flow edges meeting the required conditions, or if the user rejects all of them,
he can enter the needed data manually (5.4.3.2).
Recall from the discussion in 5.3.6.4, that due to conditional branching even a generated and con-
firmed (internal) data flow edge e does not necessarily mean the needed data are present at execu-
tion time (as the source node of e may not have been executed at all). In this case, the user is also
requested to type in the missing data manually.r176r177

Summarizing, it can be stated that though required data flow edges cannot be generated in an
entirely automated manner, the described approach significantly reduces the effort of data flow
adaptation due to its comprehensive suggestions based on temporal estimation and pattern
matching.

8.4 Summary and Discussion
In this chapter we have described the adaptation operators that translate the local control actions of
Chapter 7 into structural workflow adaptations, i.e., into adaptations of a workflow’s node and edge
set. In particular, we have described the control flow adaptation operators which translate local con-
trol actions into structural control flow adaptations. The main characteristic of these control flow
operators has been that whenever possible they use the technique of generating new parallel paths
in order to add new nodes or to outsource existing nodes to such new parallel paths (parallel add,
parallel replace, and parallel postpone). This is done first to minimize execution delays caused by
workflow adaptations and thus to reduce push-out effects, and second to avoid splitting up logical
sequences. Concerning the minimization of execution delays, it is important to note that the control
flow operators achieve this independently from the question whether predictive or reactive (control
flow) adaptation is used, though reactive adaptation has no notion of the workflow part correspond-
ing to the valid time of a control action. 
As a control flow adaptation may require that the data flow is adapted as well, we have also intro-
duced mechanisms and in particular a data flow adaptation operator for the generation of required
data flow edges after a control flow adaptation. In particular, we have seen that analogously to reac-
tive and predictive control flow adaptation the data flow can be adapted reactively or predictively
too, and that both reactive and predictive control flow adaptation can be combined with reactive or
predictive data flow adaptation.
Several points of criticism can be made concerning the introduced adaptation operators and in par-
ticular the “parallel“ versions of the control flow operators:
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1. The complexity of structural workflow adaptation and in particular of parallel add, parallel
replace, and parallel postpone is high and therefore hard to manage. This holds especially if
multiple control actions affect a workflow simultaneously. In particular, if the affected work-
flow part contains loops the adaptations may become very complex as then further conditional
branchings may have to be added to the workflow. As then quite a lot of user interactions may
be necessary, the user may be overcharged. This will decrease the acceptance of the system.

2. An AND-SPLIT/AND-JOIN block generated by parallel add, parallel replace, or parallel post-
pone may be affected by further adaptations. Thus, estimations that have been performed to sat-
isfy the temporal optimization Criterion 8.1 may become invalid so that the intended avoidance
of execution delays and push-out effects is not achieved anymore.

3. The generation of AND-SPLIT/AND-JOIN blocks and the achieved avoidance of execution
delays is justified by the assumption of resource availability (8.1.2) as this assumption allows to
execute the paths of an AND-SPLIT/AND-JOIN block in parallel in-fact (without any implicit
serialization). However, if this assumption does not hold for a particular workflow, the com-
plexity that parallel add, parallel replace, and parallel postpone bring into this workflow is not
justified anymore.

The main counter-argument concerning points 1 and 2 of criticism is that due to assumption 1
(Limited Number of Simultaneously Triggered Control Actions) introduced in 8.1.2, we do not
expect too many control actions (i.e., more than 2 or 3) affecting one workflow simultaneously on
the average. Thus, it can be assumed that the complexity remains manageable as subsequent
adaptations do not occur too often. As in many applications only “expert“ staff members (e.g.,
physicians, not nurses) should have the competence to adapt workflows, it can be assumed that
these experts are able to deal with the complexity of required user interactions. If it turns out for
some applications that the complexity of user interactions overcharges even these “expert“ users,
there would still be the possibility to program enhanced user interfaces that allow operations on a
high-level of abstraction and hide as many as possible syntactical details.
Furthermore, the complexity of parallel add, parallel replace, and parallel postpone is justified due
to the avoidance of execution delays. Concerning point 3 it can be argued that even when this exe-
cution delay cannot be avoided as the resource availability assumption does not hold for a particu-
lar workflow, parallel add, parallel replace, and parallel postpone first do not produce more
execution delay than their sequential counterparts, and second on the average produce less execu-
tion delay than their sequential counterparts.
Nevertheless, it must be stated that though the control flow operators of this chapter minimize exe-
cution delays and thus push-out effects by generating new parallel paths, they of course cannot
always avoid execution delays and thus push-out effects, namely when the sequential versions (i.e.,
sequential add, sequential replace and sequential postpone) have to be performed. This has the con-
sequence that if these control flow operators are invoked during reactive control flow adaptation,
push-out effects may occur but are not even noticed and thus cannot be controlled at all (e.g., by
requesting the user to decide how to cope such a push-out effect). This of course is not really a
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point of criticism affecting the control flow operators themselves but one affecting reactive control
flow adaptation, as this strategy has no notion of the workflow part corresponding to the valid time
of a control action, and thus cannot control all push-out effects.
Furthermore, one may wonder that on one side the control flow operators provide mechanisms to
minimize execution delays and thus push-out effects but that on the other side no mechanisms are
provided by them to minimize pull-in effects. Concerning this problem, one could argue an appro-
priate mechanism to minimize pull-in effects could be to add waiting conditions to an adapted
workflow whenever nodes are dropped or whenever an activity definition is replaced by one having
a shorter execution duration (e.g., to assign in Figure 8-23 a waiting condition with the duration of
the activity definition of the dropped node 2 to the edge (1,3) after the adaptation). Then, successor
nodes cannot be executed earlier and thus cannot be pulled into a valid time interval of a control
action. In addition to this, the waiting time could be viewed as a sort of a free temporal slot into
which further nodes could be inserted during subsequent adaptations to minimize push-out effects.
By this mechanism of adding waiting conditions, pull-in effects could be avoided also when the
control flow adaptation operators are invoked during reactive adaptation. However, there are two
reasons why the control flow operators try to minimize execution delays and thus push-out effects,
but not pull-in effects:
• First, push-out effects are viewed as more worse then pull-in effects. This is because a push-out

effect always means an execution delay of nodes, and thus that a workflow may violate time
tables and deadlines. This negative side-effect is independent from the question whether a node
pushed out is affected by a control action or not. In contrast to this, pull-in effects generally
have a positive effect, namely that a workflow may be executed faster. We recall from 3.4.4
(Adaptation Side-Effects), that a pull-in effect is a problem only if a node that originally would
have been executed beyond the valid time interval VT of a control action ca is affected by a con-
trol action valid during VT after having been pulled into PVT. This will only be the case for a
minority of nodes. Thus, pull-in effects should not generally be avoided by inserting waiting
conditions to a workflow as shown in Figure 8-23.

...... AND-
SPLIT

AND-
JOIN

2 (A) 31

5 6 (B)4

... AND-
SPLIT

AND-
JOIN

31

54

WC  with
min = max = dur-av(A)

Legend WC: Waiting condition

cfop-drop-node(2)

cfop-drop-node(6)

WC  with
min = max = dur-av(B)

Figure 8-23:  Adding a waiting condition to
avoid pull-in effects after a node dropping.
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• Second, if the control flow operators would insert waiting conditions to avoid pull-in effects
and to obtain free temporal slots to avoid push-out effects w.r.t. further adaptations, these free
temporal slots nevertheless generally could not be used for further adaptations if reactive con-
trol flow adaptation is used. This is because typically such a free temporal slot will already have
been consumed when reactive control flow adaptation would notice that it could have made use
of the free temporal slot. For example, imagine that in Figure 8-23 the activity definition of
node 3 would have to be replaced by an activity definition with a much longer duration. Then,
the free temporal slot between node 1 and 3 could be used to avoid an execution delay by start-
ing node 3 with its new activity definition earlier, or − more precisely − by reducing the waiting
condition between node 1 and 3 by that duration that additionally is needed for the execution of
node 3 with its new activity definition. However, due to the definition of reactive adaptation,
the need for such a free temporal slot would be noticed not before node 3 is set to state Control-
Activated, and thus when the free temporal slot is not available anymore as the edge (1,3) has
already been executed. The only constellation where a usage of such a free temporal slot may
be possible for reactive adaptation would be if there is a free temporal slot available in a paral-
lel path, such as the free temporal slot between node 5 and the AND-JOIN node in Figure 8-23.
Then, node 3 with its new activity definition could be moved to this lower path. However, this
will be a very seldom constellation which does not justify the general generation of waiting
conditions.

These two arguments show that in contrast to push-out effects it does not make very much sense to
enhance the introduced control flow operators by mechanisms that are able to avoid pull-in effects
independently from the adaptation strategy during which the operators are invoked. Rather, pull-in
effects can only be handled in a controlled manner by predictive control flow adaptation as this
adaptation strategy has an explicit notion of the workflow part PVT corresponding to the valid time
VT of a triggered control action (in contrast to the control flow operators introduced in this
chapter). Not surprisingly, predictive control flow adaptation also has more possibilities to avoid
push-out effects than offered by the control flow operators themselves. These aspects will now be
described in Chapter 9 where we describe predictive control flow adaptation in detail.
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 CHAPTER 9 Predictive Control Flow 
Adaptation

In this chapter, we describe predictive control flow adaptation. As discussed in 1.3, the main advan-
tage of this strategy is that it gives workflow users more time to prepare themselves w.r.t changed
control flow definitions than reactive adaptation. Furthermore, due to the limitations of the control
flow operators of Chapter 8, reactive control flow adaptation cannot minimize and control pull-in
effects, and provides only limited mechanisms to minimize and control push-out effects. In partic-
ular, if multiple control actions affect one workflow simultaneously and are handled by reactive
adaptation, there is no way to think about suitable orders of processing them in order to minimize
pull-in and push-out effects. This is because for reactive adaptation the order in which control
actions are translated to structural workflow adaptations is determined by the node execution order,
and not by any higher-level algorithm. The consequence is that pull-in and push-out effects cannot
be controlled.r96 In contrast to this, predictive adaptation with its explicit notion of the workflow part
corresponding to a control action’s valid time interval has much more possibilities to minimize and
control such pull-in and push-out effects. This will be described in this chapter.r97

The chapter is organized as follows: In Section 9.1, we introduce some interval transformation to
reduce the complexity of the problem. These transformations allow us to assume that different con-
trol actions triggered simultaneously have the same valid time interval. In Section 9.2, we describe
the algorithm for predictive control flow adaptation. In particular, we describe in which order
AGENTWORK invokes the different control flow operators to minimize and control pull-in and
push-out effects. Section 9.3 shows how a workflow that has predictively been adapted is moni-
tored after its continuation, and how an adaptation is corrected if the adaptation assumptions do not
match the execution reality. The chapter concludes with a summary and discussion in Section 9.4.

of Non-Pushing Control Action Applications (without Allowing Pull-In Effects)

Processing of Pushing Control Action Applications

Processing of Pull-In Effects

of Dropping Control Actions

of Non-Pushing Postponing Control Action Applications

of Non-Pushing Replacing Control Action Applications

of Non-Pushing Adding Control Action Applications
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9.1 Transformation of Valid Time Intervals
Generally, different control actions affecting one workflow may have different valid time intervals
VTi. We recall from 7.3 (Valid Time Conventions for Control Actions) that a valid time interval
assigned to a control action first always starts at now, i.e., the moment at which the (local) control
flow failure occurred, and second always is coherent, i.e., does not consist of several unconnected
parts. Thus, we can write

VTi = [now, end(VTi)] for i = 1, 2, ... (i)

which we order w.r.t. their duration (with VT1 being the interval with the smallest duration).
AGENTWORK then transforms these VTi to valid time intervals VTi* which do not overlap but which
together cover the same time. This is done by setting

VT1* = [now, end(VT1)] and (ii)

VTi* = [end(VTi-1), end(VTi)] for i = 2, 3, ... (iii)

(Figure 9-1). The control actions are assigned to these new valid time intervals VTi* in a way that
the union of a control action’s valid time intervals is exactly the original valid time interval in (i).
For example, the control actions of Figure 9-1 are assigned to the new valid time intervals as fol-
lows: 

VT1* := [now, end(VT1)]

VT2* := [end(VT1* ), end(VT2)]

VT3* := [end(VT2* ), end(VT3)]

VT1 (ca1)

VT2 (ca2, ca3)

VT3 (ca4)

Legend VTi (cai):     Control action cai  has valid time VTi

Figure 9-1:  Transformation of
three valid time intervals VT1,
VT2 and VT3 assigned to four
control actions to non-overlap-
ping intervals VT1*, VT2* and
VT3* covering the same time.
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To fulfill that a valid time interval always has to start at now, AGENTWORK first only considers the
control actions with valid time interval VT1* (second column in table above), as the two other inter-
vals VT2* and VT3* do not start at now. The control actions with valid time interval VTi* (i = 2,3,...)
interval are considered after VT(i-1)* has elapsed, i.e., when now has the value end(VT(i-1)* ).
By these transformations, we can assume in the following that different control actions triggered
simultaneously have the same valid time interval VT.r98

9.2 Algorithm for Predictive Control Flow Adaptation
We now describe the principal algorithm that is performed to translate multiple control actionsr99 

cai VALID-TIME VT

with the same valid time interval VT into a structural control flow adaptation. For this, we first
describe the goals and principles of the algorithm (9.2.1). Second, we explain details and give an
illustrating example (9.2.2).

9.2.1 Goals and Principles
The overall goal of this algorithm is to reduce push-out effects to a minimum (in order to minimize
execution delays), to identify and control unavoidable push-out effects, and to control pull-in
effects. 
The main steps of the algorithm are described now. Note that this algorithm is the same for the dif-
ferent versions of predictive adaptation, i.e., for 1. “one-shot“ predictive adaptation, 2. iterative
predictive adaptation with sub-intervals, and 3. conditional iterative predictive adaptation (3.4.1).
The only difference is that for iterative predictive adaptation with sub-intervals the considered
valid time typically is significantly shorter than for “one-shot“ predictive adaptation, and that for
conditional iterative predictive adaptation untouched conditional paths are excluded from PVT . All
execution durations mentioned in the following are assumed to be average execution durations,
according to the default average case estimation strategy of AGENTWORK. 

Main Step 1: Processing of Non-Pushing Control Action Applications (without Allowing
Pull-In Effects)

In this main step, those control actions are processed for those nodes for which the corresponding

Interval
Control action

VT1* VT2* VT3*

ca1 YES NO NO

ca2 YES YES NO

ca3 YES YES NO

ca4 YES YES YES
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control flow operator can be performed in a non-pushing way. By this it is avoided that nodes so far
belonging to PVT are not anymore a member of PVT (i.e., that they are “pushed out“ from PVT). In
particular, by this the side-effect is avoided that a node n is affected by a control action ca valid dur-
ing VT but is pushed out from PVT by another control action before ca could have been applied to n. 
As the non-pushing application of a control flow operator may cause pull-in effects, the following
mechanism is used to suppress these pull-in effects during this main step: Whenever the execution
duration of a path within PVT is decreased due to some non-pushing application of a control flow
operator, AGENTWORK assigns a temporary virtual duration to the path. This virtual duration con-
sists of the remaining in-fact execution duration plus the free temporal slot obtained by the non-
pushing operator application. For example, if a node with the execution duration of 6 hours is
dropped from a path with execution duration of 24 hours (including the execution duration of the
node to be dropped), then AGENTWORK would assign to this path the virtual duration of 24 hours,
consisting of 

(18, hour) // remaining execution duration of path after node dropping
+
(6, hour) // free temporal slot obtained by node dropping.

On one side, this virtual duration avoids that at this stage nodes originally located beyond PVT are
executed during PVT, i.e., are pulled into PVT . On the other side, this virtual duration assigned to an
affected path “reserves“ free temporal slots, and thus increases the possibilities for further control
flow operators to be applied in a non-pushing way.

Main Step 2: Controlled Processing of Pushing Control Action Applications
The next main step consists of processing those control actions for those nodes for which push-out
effects occur. These push-out effects are controlled as follows: For any node that would be pushed
out but has been affected by other control actions before the push-out, the user is requested whether
such a control action shall still be applied to this node or not.r100

Main Step 3: Controlled Processing of Pull-In Effects
This main step deals with those paths for which free temporal slots are still available after main step
2, i.e., for which the virtual duration is different from the estimated in-fact duration. These paths
have to be considered as after the processing of the control actions no path should consist of any
free temporal slot anymore. This is because the reason for these free temporal slots only has been
first to avoid pull-in effect during main step 1 and second to insertion intervals for time-consuming
control actions such as add(A,C) in order to minimize push-out effects during main step 2. Thus,
after main step 2 these free temporal slots have to be consumed by

a) either pulling nodes into PVT or

b) by translating the free temporal slots to waiting conditions assigned to control flow edges if
pull-in effects shall be avoided.



Algorithm for Predictive Control Flow Adaptation

263

The decision criteria are the following: For every node n that would be pulled in if the free temporal
slots would be deleted, it is checked whether n is affected by any control action ca valid during VT.
If this is not the case, n is pulled into PVT without user interaction as there is no reason why n should
not be executed earlier. If this is the case, the user is requested whether n shall be pulled in. If the
user agrees, n is pulled into PVT and ca is applied to n. Alternatively, the user can also decide that n
is pulled into PVT , but that ca is not applied to n. If the user disagrees to pull in n, waiting
conditions are generated to avoid that n is pulled in, i.e., to achieve that n will be executed beyond
VT.r100

9.2.2 Details and Illustrating Example 
We now describe the detailed structure of the algorithm, in particular in which order the particular
non-pushing and pushing control action applications are processed. For this, we use the following
example (assuming the same valid time interval for all control actions according to 9.1):
• First, for valid time VT = [now, now + (24, hour)] the control actions 

drop(S, C) with dur-av(S) = (4, hour)
postpone(W, (6, hour), C) with dur-av(W) = (5, hour)
postpone(T, (16, hour), C) with dur-av(T) = (6, hour)
replace(X, Z, C) with dur-av(X) = (8, hour), dur-av(Z) = (4, hour)
add(B, C) with dur-av(B) = (5, hour) 

have been triggered simultaneously.
• Second, AGENTWORK has identified the workflow shown in Figure 9-2 a) as being affected by

these control actions (according to 7.4.3). In particular, it has been estimated that the 9 nodes
shown in the dashed rectangle (PVT in Figure 9-2 a) will be executed during VT. Furthermore,
we assume that the nodes 3 and 9 (i.e., the nodes of the failure node set) are in state Untouched.

• Third, we assume that R → T → U is a logical sequence according to 8.1.3.1.

We emphasize that this an extreme example to illustrate that the algorithm for predictive adaptation
can cope with multiple control actions that affect the same workflow part simultaneously.
According to assumption 1 (Limited Number of Simultaneously Triggered Control Actions)
described in 8.1.2, we expect that in real-world applications it will not occur very often that a
workflow part consisting only of 9 nodes will be affected by so many control actions
simultaneously. Thus, this example should be viewed as a sort of a “worst case“ example. 
As a preliminary remark, we state that this algorithm uses the control flow operators described in
Chapter 8 (Structural Adaptation Operators) not as monolithic blocks, but often uses only sub-
functionality of them which we assume to be available as sub-operators etc.r101 Furthermore, we omit
the change-value control action as it cannot cause push-out or pull in effects and thus does not add
any relevant complexity to the problem.
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Main Step 1: Processing of Non-Pushing Control Action Applications (without Allowing
Pull-In Effects)

Step 1.1: Processing of Dropping Control Actions
First, the dropping control actions drop and drop-activities-of are processed. The simple reason for
processing these control actions first is that they reduce the complexity for the following steps as
they remove nodes from the workflow. In particular, the application of the corresponding control
flow operator cfop-drop-node never can cause push-out effects.
For the example of Figure 9-2 this means, that first the control action drop(S, C) is processed, i.e.,
S-node 3 is dropped from the control flow by cfop-drop-node (Figure 9-2 b). Then, the virtual dura-
tion of the affected path 1 is set to 24 hours, namely 

(20, hour) // execution duration of path 1 after node dropping
+
(4, hour) // free temporal slot obtained by node dropping

After having processed dropping control actions, those non-additive control actions are processed
during the next steps that affect already existing nodes in a non-pushing manner, but do not add
additional activity nodes to a workflow, i.e., postponing and replacing control actions. The
algorithm starts with postponing control actions (step 1.2) and then processes replacing control
actions (step 1.3). The opposite order (i.e., replacing control actions and then postponing control
actions) would be possible as well.

Step 1.2: Processing of Non-Pushing Postponing Control Action Applications 
At this step, those postpone and postpone-activities-of control actions are processed for those nodes
for which this can be done in a non-pushing way. This is possible under the following conditions:

1. The postponement duration is not longer than the sum of the free temporal slots of the path to
which the affected node belongs to. Thus, a non-pushing sequential postponement can be per-
formed by cfop-postpone-node.

2. A non-pushing parallel postpone can be performed by cfop-postpone-node. 

For the W-node 10 affected by postpone(W, (6, hour), C) in Figure 9-2 b), condition 1 is not given
as there is no free temporal slot for path 2. Thus, it is checked whether a non-pushing parallel
postpone can be performed for node 10 which is temporally optimal according to Definition 8.1.
This is possible for node 10, as the sum of its duration of 5 hours plus the postponement duration of
6 hours is not longer than the duration of the other parallel path starting at node 11 and ending at
node 14 (i.e., not longer than the duration of 17 hours). Thus, node 10 is sourced out to the new
parallel path between a new AND-SPLIT node 15 and a new AND-JOIN node 16 (path 3 in



Algorithm for Predictive Control Flow Adaptation

265

Figure 9-2:  Algorithm for predictive adaptation (steps 1.1 and 1.2 of main step 1).
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Figure 9-2 c). To realize the postponement of node 10, a waiting condition of duration (6, hour) is
assigned to the new edge (15,10). Furthermore, edge (15,10) is marked as Non-Adaptable (see
8.1.3.3). This is to avoid that the postponement duration is increased by inserting additional nodes
between node 15 and node 10 during subsequent adaptations. 
Finally, the virtual duration of the affected path 2 is set to 24 hours, namely

(19, hour) // execution duration of path 2 after parallel postpone
+
(5, hour) // free temporal slot obtained by parallel postpone

For the other postponing control action postpone(T, (16, hour), C), a non-pushing processing of the
affected T-node 5 is not possible. This is because first a non-pushing sequential postponement is
not possible as for path 1 the duration of the free slot of 4 hours is less than the postponement
duration of 16 hours. Thus, if a sequential postponement would be performed, the execution of the
successor nodes of node 5 would be delayed by 16 minus 4 hours, i.e., by 12 hours (if the free
temporal slot is consumed). In particular, X-node 7 would be pushed out from PVT what shall be
avoided at this step because this X-node is affected by the control action replace(X, Z, C).
Second, parallel postponement cannot be performed as R → T → U is a logical sequence. Thus,
T-node 5 cannot be sourced out to a new parallel path as it has been done for the W-node 10 (assum-
ing that the requested user wants to maintain the logical sequence R → T → U for this workflow).
Therefore, the processing of postpone(T, (16, hour), C) is not done during this step, but deferred
until main step 2 (Controlled Processing of Pushing Control Action Applications).

Step 1.3: Processing of Non-Pushing Replacing Control Action Applications
At this step, those replace control actions are processed for those nodes for which this can be done
in a non-pushing way. This is possible under three conditions (let A denote the old, B the new activ-
ity definition):

1. dur-av(B) is not longer than dur-av(A), so that a non-pushing sequential replace can be per-
formed by cfop-replace-act-def.

2. dur-av(B) is longer than dur-av(A), but the sum of free temporal slots is larger than dur-av(B) −
dur-av(A). Thus, a non-pushing sequential replace can be performed as well.

3. A non-pushing parallel replace can be performed by cfop-replace-act-def.

In Figure 9-3 d) the control action replace(X, Z, C) can be processed in a non-pushing way for
X-node 11, as for this node condition 1 holds. This is because dur-av(Z) = (4, hour) is shorter than
dur-av(X). Thus, cfop-replace-act-def is instructed to perform a sequential replace, i.e., for node 11
the activity definition is switched from X to Z. In particular, this increases the free temporal slot of
path 2 from 5 hours to 9 hours (while the virtual duration of path 2 in PVT is still 24 hours).
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Figure 9-3:  Algorithm for predictive adaptation (steps 1.3 and 1.4, main step 2).
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Concerning X-node 7, the decision is deferred as it is not year clear whether this node will be
pushed out by the deferred postponing control action postpone(T, (16, hour), C) affecting T-node 5.

Step 1.4: Processing of Non-Pushing Adding Control Action Applications
Fourth, those add and add-repetitively control actions are processed for which this can be in a non-
pushing way. For add-repetitively, this always holds as the activity node that shall be executed
repetitively is inserted into a new parallel path between the START and END node of the workflow
(see 8.2.5). Thus, it cannot push out any node from PVT.1 
For add, a non-pushing processing is possible under the following conditions (let A denote the
activity definition of the node to be inserted):

1. For at least one path in PVT, the sum of free temporal slots is larger than dur-av(A), and within
this path there is at least one insertion point that does not violate an existing logical sequence (or
a logical sequence is violated but the user allows to insert the new node nevertheless). Thus, a
non-pushing sequential add can be performed by cfop-add-node. 

2. A non-pushing parallel add can be performed by cfop-add-node.

For example, in Figure 9-3 e), add(B, C) can be processed in a non-pushing way, as
dur-av(B) = (5, hour), and as the free temporal slot of path 2 is 9 hours. Thus, a new B-node 17 can
be inserted into this path. Assuming that path 2 is not affected by any logical sequence, the new
B-node can be inserted anywhere between node 8 and node 13. Starting from the insertion position
between node 8 and 9, AGENTWORK subsequently offers all insertion points in path 2 within PVT to
the user. In our example, the user has selected the position between node 15 and node 11. Thus,
cfop-add-node(B, C, 15) is instructed to sequentially insert the B-node at this position.

Main Step 2: Controlled Processing of Pushing Control Action Applications
After steps 1.1 to 1.4, those control actions have been processed for those nodes for which no push-
out effects occurred. As sketched in 9.2.1, the next main step (main step 2) then is to process those
control actions for those nodes for which push-out effects occur, and to control these push-out
effects by requesting the user for any affected node.
For the example in Figure 9-3, this means to process postpone(T, (16, hour), C) for T-node 5 by a
sequential postpone, as a parallel postpone is not possible (see step 1.2). Thus, first T-node 5 is
postponed by 16 hours by assigning a waiting condition of duration (16, hour) to the edge (4,5)
(Figure 9-3 f). This pushes node U-node 6 and X-node 7 out from PVT. The push-out of U-node 6 is
uncritical as node 6 is not affected by any control action valid during VT. However, the push-out is
critical for node 7 as this node has been affected by replace(X, Z, C) when being a member of PVT.
Thus, the user is requested whether the replace(X, Z, C) control action shall be applied to node 7 or

1. Therefore, add-repetitively also could be processed at any step of the algorithm, e.g., at the end of it.
However, due to its additive semantics it is processed together with add.
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not. In this example, the user has decided that this shall not be the case, so that node 7 keeps activity
definition X when pushed out from PVT. 
As a consequence of the push-outs performed during this main step, the temporal free slots are con-
sumed for those paths for which nodes have been pushed out (otherwise there would not have been
any push-out). For example, due to the push-out of nodes 6 and 7 in path 1, this path does not have
any free temporal slots anymore in PVT . Consequently, the virtual duration of such a path then is the
same as the execution duration.

Main Step 3: Controlled Processing of Pull-In Effects
After the push-outs have been processed in a controlled manner by main step 2, main step 3 deals
with the remaining paths for which free temporal slots are still available.
In our example (Figure 9-4), path 2 has to be considered, as this path consists of a free temporal slot
of 4 hours. Thus, the user is requested whether S-node 13 shall be pulled into PVT, with the conse-
quence that it would have to be dropped due to the drop(S, C) control action valid during VT. For
this example, we assume that the user does not want node 7 to be pulled into PVT . Thus, to avoid
this a waiting condition of duration (4, hour) has to be inserted between node 12 and node 13.
Additionally, edge (12,13) is marked as Non-Adaptable. As a consequence, the virtual duration of
this path then is the same as the execution duration.r102

9.3 Workflow Monitoring after Predictive Control Flow Adaptation
Predictive control flow adaptation inherently requires that the affected workflow is monitored after
the adaptation to check whether the temporal estimations on which the predictive adaptation is
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based match the actual execution of the adapted workflow2. In 3.4.5 we have identified two princi-
pal situations that are relevant for workflow monitoring, namely that a workflow is executed faster
than estimated (temporal acceleration), or that it is executed slower than estimated (temporal
delay). Now, we want to cover all constellations that are relevant for workflow monitoring, in par-
ticular those where temporal acceleration and temporal delay overlap, as for example in an AND-
SPLIT/AND-JOIN block one executed path is faster and another one slower than estimated. Thus,
we formulate the workflow monitoring problem now on a more abstract level, and discuss the spe-
cific consequences for the different types of control actions. As we will see, the workflow monitor-
ing problem closely correlates to the problem of pull-in and push-out effects (3.4.4), so that the
mechanisms described in 9.2 to handle such effects can also be used for workflow monitoring. 
We first formalize the task of workflow monitoring and characterize the meta information required
for this task (9.3.1). Then, we describe workflow monitoring for non-additive control actions
(9.3.2) and for additive control actions (9.3.3). In the following, ca will denote a control action
valid during an interval VT. To illustrate the AGENTWORK monitoring approach, we use the result-
ing workflow of the sample adaptation of 9.2, i.e., the workflow shown in Figure 9-4. As a prelim-
inary remark, we state that all steps described below are subject to user control.

9.3.1 Monitoring Task and Required Meta Information

9.3.1.1 Monitoring Task
Let PVT, est denote the workflow part that has been estimated to be executed during a valid time VT
after the adaptation (i.e., PVT, est corresponds to the so far used PVT after the completion of an adap-
tation), and let PVT, in-fact denote that workflow part that is in-fact executed during VT. Obviously, the
(optimistic) assumption of predictive adaptation is that it holds 

PVT, est = PVT, in-fact (iv)

Then, we can define

2. For reactive adaptation, monitoring is only required for the advanced check mode (7.4.3.1) as then a
node is handled already after it has been set to state Control-Activated so that it may happen that it is
set to state Active beyond the valid time interval of the control action. The monitoring that is required
for this is covered by the monitoring for predictive adaptation, so that we do not discuss it further.r103

Definition 9.1:   Monitoring Task
The task of workflow monitoring is to identify as soon as possible whether the following
two conditions hold during workflow execution:

a) PVT, est ≠ PVT, in-fact in the sense that there is at least one activity node n for which the num-
ber of executions is different in PVT, est and PVT, in-fact.

b) The executions of n are affected at least by one control action ca valid during VT.
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Possible reasons for PVT, est ≠ PVT, in-fact are:

1. A node or edge from PVT, est is executed faster or slower than estimated.

2. A predictive condition resolution (6.4.3) turns out to be wrong.

3. For a loop the assumed number of loop iterations (6.4.4) turns out to be wrong.

4. Due to subsequent control actions triggered after the adaptation, further nodes are added,
dropped, postponed, or change their activity definitions.

9.3.1.2 Meta Information for Workflow Monitoring
An important prerequisite for workflow monitoring is that the structure of a workflow before its
adaptation is still known, as adaptations may have to be taken back. AGENTWORK manages this by
maintaining the following meta information for a workflow that has been adapted: First, NULL-
nodes are inserted at the former positions of dropped or postponed nodes (e.g., by inserting NULL-
nodes 3before and 10before for the dropped S-node 3 and the postponed W-node 10 in Figure 9-5).
Analogously, such a NULL-node is also inserted in case of a parallel replace to indicate the former
position of the node of which the activity definition has been replaced.r104 Second, any node affected
by a control action (e.g., any node postponed) is labelled (graphically by thick borders as shown in
Figure 9-5), and the information of the respective control action is kept.

Figure 9-5:  Meta information for workflow monitoring.
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As indicated in the example of Figure 9-5, nbefore and nafter denote the node identifiers at the position
before and after an adaptation. For dropped nodes, only nbefore has to be used (as there is no new
position for such a node). For nodes that are handled by sequential replace or for which only some
attribute values have been changed due to a change-value control action, nbefore and nafter always are
at the same position so that we may use only n as identifier (i.e., n = nbefore = nafter). Note that for
sequential postponement we have to distinguish between nbefore and nafter to express the temporal
“movement” of the postponed node (e.g., see node positions 5before and 5after in Figure 9-5).

9.3.2 Monitoring for Non-Additive Control Actions
For non-additive control actions, we have to distinguish two principal situations:

Situation 1: nbefore ∉ PVT, est but nbefore ∈ PVT, in-fact and n affected by ca3.
This means that during workflow monitoring it is detected that the estimation that a node n will not
be executed during VT (i.e., nbefore ∉ PVT, est) and thus will not be affected by ca has been wrong (as
nbefore ∈ PVT, in-fact ). In other words, it turns out that a node n that has not predictively been dropped,
postponed etc. is in fact affected by ca as n will be executed during VT (i.e., n is “dynamically”
pulled into PVT, in-fact). Thus, an additional structural adaptation for n may have to be done to satisfy
ca. For example, situation 1 may occur if node 13 is pulled into PVT, in-fact due to a faster execution of
the sequence 17after→11after→12. As a consequence, node 13 is affected by drop(S,C) and therefore
may have to be dropped as well.

Situation 2: nbefore ∈ PVT, est and affected by ca, but nbefore ∉ PVT, in-fact.
This means that during workflow monitoring it is detected that the estimation that a node n will be
executed during VT (nbefore ∈ PVT, est) and thus will be affected by ca has been wrong (as
nbefore ∉ PVT, in-fact). In other words, it turns out that a node n that has predictively been dropped, post-
poned etc. according to ca is in fact not affected by ca as it is executed beyond VT (i.e., n is
“dynamically” pushed out from PVT, in-fact). Thus, the structural adaptation may have to be taken
back. For example, situation 2 would occur if node 11after would be set to state Active more than 13
hours later than assumed by the estimation on which PVT, est is based (which has estimated that node
11after will be executed after 11 hours (starting from node 9), as this is the average duration needed
to execute the predecessor nodes). A reason for this may be that the execution of path
9→15after→10before→17after unexpectedly takes 25 hours instead of 11 hours, so that node 11 is exe-
cuted 14 hours later than assumed and thus is not anymore a member of PVT, in-fact.
To handle these two situations, one could argue that it is appropriate to automatically perform fur-
ther adaptations operations to satisfy ca in case of situation 1 (e.g., to automatically drop S-node 13
from the workflow), resp. to take back the adaptation in case of situation 2 (e.g., to automatically
reassign the old activity definition X to node 11). However, as these situations can be viewed as

3. Strictly seen we do not have to take the particular node, but the particular node execution, according
to 7.4.3 (affected activity node execution). To avoid a technical overhead, we omit this distinction
which is only relevant in case of loops or rollbacks.
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some sort of “dynamic” pull-in and push-out effects (i.e., pull-in and push-out effects during work-
flow execution), the problems discussed for “static” pull-in and push-out effects (i.e., pull-in and
push-out effects during workflow adaptation) in 3.4.4 hold analogously. In particular, there it has
been discussed that it highly depends on the particular workflow whether such a pull-in or push-out
should be allowed or not so that a user should be requested for this. This was also reflected in the
main steps 2 (controlled processing of pushing control action applications) and 3 (controlled pro-
cessing of pull-in effects) of the algorithm for predictive control flow adaptation, where a user is
requested to decide whether a push-out resp. a pull-in shall be performed or not.
The dynamic pull-in or push-out effects of situation 1 resp. situation 2 during workflow monitoring
are handled analogously, i.e., the user is requested whether the dynamic pull-in (and thus further
adaptation operations to satisfy ca) resp. the dynamic push-out (and thus the taking back of adapta-
tion operations) shall be allowed and performed. Because of the assumption of a limited number of
simultaneously triggered control actions (8.1.2) this user interaction can be viewed as acceptable.
If the user allows the pull-in or push-out (e.g., allows to pull in node 13 in Figure 9-5), the control
flow operators described in Chapter 8 are used to perform further adaptation operations being nec-
essary to satisfy ca resp. to take back adaptation operations.r105

9.3.3 Monitoring for Additive Control Actions
For additive control actions, workflow monitoring is easier. First of all, workflow monitoring does
not have to consider an add-repetitively(A,d,C) control action at all. This is because such a control
action is always translated into a loop which is parallel to the rest of the workflow and consists only
of an A-node which is executed iteratively with period d during VT (8.2.5). In particular, for trans-
lating an add-repetitively(A,d,C) control action into structural workflow adaptations no estimation
is required. Therefore, the possible reasons 1-4 listed in 9.3.1.1 that may lead to PVT, est ≠ PVT, in-fact
cannot affect the generated loop itself.r106 
Second, for an add control action the only relevant situation is that for a new node nafter (e.g., the
new B-node 17after in Figure 9-5) it holds 

nafter ∈ PVT, est but nafter ∉ PVT, in-fact. (v)

This means that though it has been estimated that the new node nafter will be executed during VT, it
turns out that nafter will be executed beyond VT. In the example of Figure 9-5, this may occur if the
execution of node 9 unexpectedly takes more than 24 hours, so that 17after would not be executed
anymore during VT.
The specific problem with situation (v) is that it is not sufficient to simply wait until the new node
is executed. This is because it then may be detected too late that the new node will not be started
(i.e., set to state Active) during VT anymore. For example, if workflow monitoring simply would
wait until the nodes 9 and 15after have been executed, and if the execution of node 9 would take
more than 24 hours, then it would be detected too late that the control action 

add(B,C) VALID TIME [now, now + (24, hour)]
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is violated, as B-node 17after is not started anymore during VT4. This is handled as follows: 
Let dur-av1(nafter) denote the estimated average duration of the data activation phase of the new
node nafter (according to 6.3.2.1). Then AGENTWORK waits until the interval

VT’ = [begin(VT), end(VT) - dur-av1(nafter)]

has expired. If nafter then has not yet been set to state Control-Activated, this means that the new
node runs into danger not to be set into state Active during VT from that moment on (as it has to be
assumed that the remaining time is needed for the data activation phase). Thus, AGENTWORK first
tries to move the new node to a parallel path where the node can be set to state Control-Activated
immediately.5 If such a repositioning is not possible as for example no parallel paths exist, an
authorized user has to be informed that the new node may not be started anymore during VT.

9.4 Summary and Discussion
In this chapter, we have described predictive control flow adaptation. In particular, we described in
which order control actions are processed to minimize and control pull-in and push-out effects
much more than this is possible for reactive adaptation. Furthermore, we have described how a
workflow that has predictively been adapted is monitored after its continuation, and how an adap-
tation is corrected if the adaptation assumptions do not match the execution reality.
The central point of criticism that can be made is that predictive adaptation is very complex, and
thus may produce uncontrollable adaptation scenarios, in particular when a large number of control
actions affects one workflow. In particular, if estimations turn out to be wrong during workflow
monitoring and thus adaptations may have to be taken back or have to be performed additionally,
the complexity may become overwhelming.
The main counter-argument w.r.t. this point is one already made for the control flow operators of
Chapter 8: Due to assumption 1 (Limited Number of Simultaneously Triggered Control Actions)
introduced in 8.1.2, we do not expect too many control actions (i.e., more than 2 or 3) affecting one
workflow simultaneously on the average. Thus, it can be assumed that the complexity remains
manageable. Furthermore, as the user is always requested to decide whether nodes affected by con-
trol actions may be pulled in or pushed out, one can avoid that adaptations lead to undesirable con-
trol flow semantics. Finally, we should emphasize that it is better to support adaptations in a semi-
automated manner as provided in this thesis (and to accept the inherent complexity), rather than to
disallow such adaptations with the consequence that a workflow system cannot cope with control
flow failures at all.

4. Recall from 7.2.3.1 that to satisfy the valid time constraint of a control action is it sufficient that the
start of the node execution (i.e., when it is set to state Active) occurs during the valid time.

5. Note that this parallel path for example may exist due to former adaptations. Note further that at this
step AGENTWORK does not try to insert a new parallel path for nafter as this would have already been
done for the initial insertion of nafter if possible (according to 8.2.4).
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 CHAPTER 10 Handling Control Flow Failures 
for Cooperating Workflows

As mentioned in Chapter 1, the abortion, suspension or dynamic adaptation of a workflow may
affect other workflows cooperating with this workflow. Thus, after having described workflow
cooperation in Chapter 5, and workflow abortion, suspension and adaptation in Chapter 7 to Chap-
ter 9, we can now address this problem in detail.
The chapter is organized as follows: In Section 10.1, we introduce different types of constraints that
can be specified between cooperating workflows and that have to be considered when a control
flow failure occurs to one of the cooperation partners. In Section 10.2 and Section 10.3, we
describe how it is determined whether a global resp. local control flow failure violates any con-
straint specified between cooperation partners. In Section 10.4 we describe how a cooperation part-
ner then can cope with the situation that one of its partners cannot meet some specified constraint
anymore. The chapter concludes with a summary and discussion in Section 10.5.
Before going into the details, we refer to the example from the domain of cooperative care that has
already been sketched in Section 1.3. In this example, a workflow running at the department of
internal medicine supports the cancer chemotherapy of a patient (Figure 10-1). The inter-workflow
communication definition (see 5.3.10.2) at the COMM-OUT node after the Check Laboratory
Findings activity specifies that a chemotherapy report (entry c: Chemo-Report[]) of a patient refer-
enced by imd-pat shall be sent to the cooperating workflow system at the radiological department
(entry ws-rd) after the inspection of laboratory findings. Such a report documents the administered
chemotherapy and the current tumor state and is an important base for the treatment at the radiolog-
ical department. Recall from 5.3.10.2 that c: Chemo-Report[] is called a communication object as
this is the information that has to be communicated.
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Vice versa, the cooperating workflow at the radiological department contains a COMM-IN node
after the Check Radiotherapy Preconditions activity with an inter-workflow communication defini-
tion. The latter states that at this execution step a chemotherapy report (entry c: Chemo-Report[])
for the patient referenced by rd-pat is expected from a cooperating workflow system at the depart-
ment of internal medicine (entry ws-imd). A Chemo-Report object received from ws-imd by the

Figure 10-1:  Workflow cooperation in the domain of cancer therapy.
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communication and integration layer at ws-rd then has to be forwarded to this COMM-IN node if it
holds imd-pat = rd-pat (for this example, we assume hospital-wide patient identifiers which is
common practice in most hospitals). The usage of two separate workflow systems is motivated by
the typically high autonomy requirements of the departments of larger hospitals.
Let us now assume that the workflow at the department of internal medicine is affected by a control
flow failure which induces an adaptation, such as that the CYCLOPHOSPHAMID activity is dropped
due to some toxicity event, and that an activity supporting the administration of antibiotics is added
dynamically to get an infection under control (Figure 10-1). The question now is how this may
affect the cooperating workflow at the radiological department. Two principal implication types
can be identified:
• Temporal implications: Often, a control flow failure will imply that results expected by a coop-

eration partner cannot be provided anymore in the time frame that originally has been specified
between the collaboration partners. In Figure 10-1, the additional antibiotics activity of the
workflow at ws-imd may cause that the chemotherapy report is delivered later than originally
specified. This has the consequence that the radiotherapy activities after the COMM-IN node of
the workflow at ws-rd may be started later, too. To express such time frames, we will introduce
temporal constraints in Section 10.1.1.

• Qualitative implications: A cooperation partner usually expects that a result will not only arrive
in time but also will meet specific quality criteria. In our medical example, the dynamic drop-
ping of the CYCLOPHOSPHAMID activity may impact the radiotherapy workflow in the sense that
an additional radiological unit may become necessary to compensate the cancellation of this
drug and to insure tumor remission. Thus, the deletion of activities from one workflow can
make it necessary to insert additional activities into a cooperating workflow. In order to express
qualitative agreements between cooperation partners, we will introduce qualitative constraints
in Section 10.1.2.

It should be emphasized that AGENTWORK does not provide an entirely automated handling for all
inter-workflow implications of control flow failures. Especially w.r.t. qualitative implications the
situation may become arbitrarily complex. Thus, AGENTWORK intends to identify and handle at
least the most important types of temporal and qualitative inter-workflow implications.
Note that we address temporal and qualitative implications of control flow failures only in the inter-
workflow context, as intra-workflow implications either have been already addressed by other
authors (e.g., by [DADAM ET AL. 2000] for temporal implications and deadline management), or are
assumed to be directly evident for workflow users. For example, w.r.t. our example of Figure 10-1
it can be assumed that the quality-related consequences of dropping an important drug is evident
for physicians (but not for the remote radiological colleagues), so that reporting the intra-workflow
implications of the drug dropping to the physicians can be viewed as superfluous. However, is this
assumption does not hold, the approach described in the following can be easily extended with
deriving and reporting the temporal and qualitative implications of control flow failures in an intra-
workflow manner.
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10.1 Temporal and Qualitative Workflow Constraints
A control flow failure of a workflow has inter-workflow implications if it violates any agreements
between the cooperation partners. To express such agreements, AGENTWORK allows to assign tem-
poral and qualitative constraints manually to workflows. In the following two subsections, we
describe how these types of constraints can be assigned to COMM-OUT nodes to specify in which
time frames and which quality range results have to be sent to cooperation partners at this
COMM-OUT nodes. Analogously, such constraints can also be assigned to COMM-IN nodes so
that a cooperation partner knows what it expects from other partners. However, for the problem of
inter-workflow implications of control flow failures only constraints assigned to COMM-OUT
nodes are relevant so that we concentrate on these.

10.1.1 Temporal Constraints
In AGENTWORK, temporal constraints consist of deadlines and acceleration resp. delay thresholds
that can be assigned to a COMM-OUT node. 
A deadline consists of an absolute (calendar) point in time of the used time axis (see 4.3.1) which
is assigned to a COMM-OUT node at workflow start time or during execution. Relative points in
time can also be assigned to a COMM-OUT node at workflow execution time (e.g., node n should
be reached 3 weeks after workflow start), but are directly converted to absolute points in time by
the system. The possibility to assign relative points in time at workflow definition time to express
for example that a node should always be reached 3 weeks after workflow start is not supported.
This is because AGENTWORK assumes that deadlines are specific for a workflow instance and thus
should be assigned individually to workflow instances.
Furthermore, to a COMM-OUT node two thresholds acc-threshold (acc for acceleration) and
delay-threshold of the duration type (see 4.3.2) can be assigned. If acc-threshold and delay-thresh-
old are not specified by the user, acc-threshold by default is set to ∞, and delay-threshold to zero
(i.e., any acceleration and no delay is accepted). The semantics of these thresholds is as follows:
• If an absolute point in time apt (such as 20 Jul 2001, 6 pm) has been assigned to the COMM-

OUT node as deadline, acc-threshold and delay-threshold specify that the workflow containing
this COMM-OUT node should send its information within the interval

[apt - acc-threshold, apt + delay-threshold], (i)

e.g., within [20 Jul 2001 - (2, day), 20 Jul 2001 + (3, day)]. Whenever a control flow failure
implies that this will not be possible anymore, the cooperation partner has to be informed.

• If no absolute point in time has been assigned to the COMM-OUT node, acc-threshold and
delay-threshold refer to the relative change in the execution time due to a control flow failure.
Let dbefore denote the execution time that would have been needed to reach the COMM-OUT
before the control flow failure, and dafter the execution time that will be needed to reach the
COMM-OUT after the control flow failure. The cooperation partner then has to be informed if:
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dbefore - dafter > acc-threshold (workflow accelerated by more than acc-threshold), or (ii)
dafter - dbefore > delay-threshold (workflow delayed by more than delay-threshold). (iii)

The mechanisms that check whether (i)-(iii) are violated by some control flow failure are described
in Section 10.2 and Section 10.3.
We emphasize that the described semantics of these deadlines and thresholds serve the specific pur-
poses of control flow failure handling and their inter-workflow implications. For handling dead-
lines and temporal thresholds for “normal” workflow execution (i.e., execution not disturbed by
control flow failures) we refer to [DADAM ET AL. 2000, EDER ET AL. 1999 A, KAFEZA & KARLA-
PALEM 1999, PANAGOS & RABINOVICH 1996]. In particular, these authors describe approaches that
allow to assign deadlines and thresholds to arbitrary node types (e.g., activity nodes), and that ver-
ify by workflow estimations whether a deadline can be met at all w.r.t. the underlying workflow
definition. 

10.1.2 Qualitative Constraints
To a communication object o of a COMM-OUT node n, quality constraints can be assigned. For-
mally, such a quality constraint is a F-Logic formula (see 4.2.3) on o that has to be true when work-
flow execution reaches n. For example, let us assume that the chemotherapy report object c of
Figure 10-1 may have different subsections for the applied drugs, for clinical findings and for lab-
oratory findings. Then, by assigning a quality constraint to c such as

c.subsection-for-applied-drugs ≠ nil AND 
c.subsection-for-laboratory-findings ≠ nil,

both cooperation partners could fix the agreement that in the report at least the subsections for the
applied drugs and the laboratory findings may not be empty (i.e., may not be nil) as otherwise the
radiotherapy workflow cannot continue because important patient data are missing.
Additionally, in many domains the quality of a result can be expressed by a numerical threshold
value. For example, the weighted sum of the report’s drug dosages describes the quality of the che-
motherapy as it closely correlates to the degree of tumor remission1. The cooperation partners then
could also assign a quality constraint such as 

c.weighted-sum-of-drug-dosages > 100 mg (iv)

to the transferred report c. If this constraint is violated because some drugs had to be dynamically
dropped from the chemotherapy workflow, the radiological department has to be informed as it
may be necessary to dynamically add some radiotherapy units to compensate the reduced chemo-
therapy (as shown in Figure 10-1). Generally, we will call an object that is used to measure the
quality of a result as in (iv) a so-called quality-measuring object. Another medical example for a
quality-measuring object is the weighted sum w.r.t. the degree of negative side-effects2, which are

1. The sum is weighted as the different drugs have a different strength w.r.t. tumor remission.
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documented in such a chemotherapy report as well. Non-medical examples for quality-measuring
objects and constraints on them could be price ranges for e-business interactions or credit limits for
banking applications.
Determining how control flow may influence such a quality-measuring object requires additional
quality-related knowledge w.r.t. workflow activities. Therefore, in AGENTWORK so-called quality
transformation rules can be assigned to an activity definition A stating how A-activities transform a
quality-measuring object. For example, to the activity definition 

A = Drug-Infusion[drug-name = VINCRISTIN, dosage = 2 mg]

quality transformation rule

c.weighted-sum-of-drug-dosages += 2 mg (v)

can be assigned to account for the respective drug dosage increase. At the moment, AGENTWORK
supports only constants (e.g., 2 mg) in transformations such as (v), and not for example queries.
Based on this knowledge, qualitative implications of control flow failures can then be determined
as we show in Section 10.3. 

10.2 Handling Global Control Flow Failures for Cooperating Workflows
We now describe how global control flow failures, i.e., workflow abortions and suspensions, are
handled for cooperating workflows. 

10.2.1 Handling Workflow Abortions for Cooperating Workflows
In case of a workflow abortion, for every inter-workflow communication definition
(ws; o1, o2, ..., on ; c) of a COMM-OUT node in the remaining control flow a message of the struc-
ture

(s1, s2, ..., sn; c; temp-info) (vi)

is sent to ws. The entries s1, s2, ..., sn describe the states of the objects o1, o2, ..., on that have already
been reached when the abortion occurred. For example, if o1 is an expert review needed by the
cooperation partner, then s1 could describe − on an arbitrary granularity level − which topics have
already been investigated and which not. The cooperation partner then can decide whether it wants
to obtain these already available parts of an object oi or not. The value of the entry c is the same as
in the inter-workflow communication definition and identifies the case. The entry temp-info con-
tains the information when the abortion occurred, e.g., 

2. For example, the WORLD HEALTH ORGANIZATION provides standardized tables to classify negative
side-effects of drug administrations. To each side-effect class a numerical degree is assigned. These
tables are used by many hospitals for documentation purposes.
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temp-info = abortion of workflow at 27 Jul 2001, 10.00 am. (vii)

10.2.2 Handling Workflow Suspensions for Cooperating Workflows
In case of a workflow suspension, two situations have to be distinguished w.r.t. the valid time inter-
val VT of the triggering control action, namely that VT is conditional or fixed (see 4.3.4).

10.2.2.1 Conditional Valid Time
If the end of VT is specified by a condition such as Unless normal-hemato-status(P), AGENTWORK
cannot inform cooperating workflows for how long the suspension of the workflow will hold (in
terms of durations). Thus, nothing more can be done than to send for every inter-workflow commu-
nication definition node in the remaining control flow a message of the same structure as in (vi) to
the cooperating workflow system. The entry temp-info then consists either of the termination con-
dition itself (if this is meaningful for the cooperation partner) or of a heuristic estimation of an
authorized user stating for how long the workflow is assumed to be suspended.

10.2.2.2 Fixed Valid Time
If VT is fixed such as VT = [now, now + (7, day)], it is checked for every COMM-OUT node of the
remaining control flow whether any temporal constraint is violated by the suspension. This is done 

1. by estimating the execution duration of the remaining control flow leading to the COMM-OUT
node (i.e., dbefore as defined in 10.1.1 is estimated),

2. by adding the suspension duration (i.e., the duration of VT) to this duration (to obtain dafter), 

3. by checking whether any constraint of the structure (i)-(iii) listed in 10.1.1 is violated, and

4. by informing the cooperation partner if such a constraint is violated.

Note that this mechanism does only determine temporal implications of workflow suspensions. As
a suspension does not change the activity set of a workflow, it cannot have qualitative implications,
so that we do not have to consider this type of implication.r110

However, one problem remains: A COMM-OUT node may be very far away from the failure node
set (7.4.1) of the suspending control action, so that the estimation performed in step 1 above may
become inherently imprecise. The question how to deal with this problem cannot be answered in
general, as the answer depends first on the quality of temporal knowledge about activity and edge
execution durations, and second on the average duration and complexity of workflows. Neverthe-
less, two principal strategies can be identified to deal with this problem:
• First, for every COMM-OUT node the steps 1-4 are performed, and imprecise estimations are

detected by workflow monitoring. This strategy has the advantage that it handles all COMM-
OUT nodes in a uniform manner. However, it has the disadvantage that due to increasingly
imprecise estimations for COMM-OUT nodes far away from the failure node set, messages
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about constraint violations sent to cooperation partner often may turn out to be wrong and thus
may have to be corrected.

• Second, steps 1-4 are only performed for COMM-OUT for which the temporal distance from
the failure node set does not exceed some temporal threshold. For example, for the medical
workflow application HEMATOWORK (1.5) it makes sense to consider only COMM-OUT nodes
that will be executed not later than two weeks (according to an estimation) after the moment
when the suspending control action has been triggered. This is because it has been identified
that for this time frame estimations are quite precise for this medical application, while estima-
tions exceeding this time frame often are imprecise. Generally, an appropriate value for such a
“maximal estimation” threshold is application-specific and has to be determined heuristically.
The advantages and disadvantages of this strategy are diametrical to the other strategy.

The question which of the two strategies is more appropriate depends on the workflow application
and can only be answered empirically.

10.3 Handling Local Control Flow Failures for Cooperating Workflows
When a structural workflow adaptation has been performed due to a local control flow failure, it
has to be checked whether the affected workflow contains any COMM-OUT nodes in its remaining
control flow. If this is the case, it has to be checked whether the applied adaptation affects any
cooperation partner. We distinguish between temporal and qualitative implications. 

10.3.1 Determining Temporal Implications
The determination of temporal implications is done in the following steps (Figure 10-2):

1. For every COMM-OUT node of the remaining control flow, the execution duration dafter needed
to reach this COMM-OUT node is estimated.

2. If an absolute calendar point in time apt is assigned to the COMM-OUT node, it is then checked
whether this COMM-OUT node can still be reached until this deadline (under consideration of
the delay and acceleration thresholds). If the deadline cannot be met anymore due to the adapta-
tion, the cooperation partners are informed (left branch of Figure 10-2). 

3. If no absolute point in time is assigned to the COMM-OUT node, the duration dbefore that would
have been needed to reach the COMM-OUT node before the adaptation is estimated as well.
Then, it is checked whether there is a mismatch between the durations dafter and dbefore violating
any temporal threshold of the COMM-OUT node. If this is the case, the cooperation partners are
informed as well (right branch of Figure 10-2).

Note that analogously to the situation discussed for workflow suspension, a COMM-OUT node
may be very far away from the failure node set of the control action triggering the adaptation, so
that the estimation performed in step 1 above may become inherently imprecise. Analogously to
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the discussion for workflow suspension, this has to be handled either by workflow monitoring to
detect imprecise estimations retrospectively, or by limiting estimations to some maximal temporal
interval to minimize the number of imprecise estimations.

10.3.2 Determining Qualitative Implications
For qualitative implications, a modification of the temporal algorithm of Figure 10-2 is used.
Instead of estimating the durations of workflow parts, AGENTWORK determines the qualitative
effects of the activities by using the quality transformation rules introduced in Section 10.1.2. Then,
AGENTWORK checks whether the derived quality w.r.t. the adapted workflow violates any quality
constraints (instead of temporal) assigned to communication objects of the COMM-OUT nodes. If

If apt assigned to COMM-OUT node:

 Inform cooperation partners

 Estimate dbefore of P

If no apt assigned to COMM-OUT node:

 Inform cooperation partners 

IF   now + dafter  > apt + delay-threshold
OR now + dafter  < apt -  acc-threshold

  Completion of workflow adaptation (moment “now”)

For each COMM-OUT node of remaining control flow:

IF   dafter - dbefore  > delay-threshold
OR dbefore - dafter  > acc-threshold

 Estimate dafter of P

 Determine workflow part P
 leading to COMM-OUT node

apt:   Absolute point in time           dbefore/after:    Estimated execution duration before resp. after adaptationLegend

Figure 10-2:  Algorithm checking temporal implications for cooperating workflows.
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no qualitative implications can be determined because of missing quality transformation rules, the
cooperation partners are at least informed which activities have been dropped or added due to the
dynamic adaptation. However, as this requires that the activities performed by one workflow are
meaningful for the cooperation partner, AGENTWORK views this only as an “emergency solution”.

10.4 Handling of Constraint Violations by Affected Cooperation Partners
The question remains how a cooperation partner p can react when it is informed that a specified
constraint is violated.
As for p the violation of a specified constraint itself can be viewed as a control flow failure accord-
ing to Definition 1.1, we assume that p has failure rules stating how to cope with such constraint
violations. For example, the workflow system at the radiological department in Figure 10-1 may
have a failure rule stating that whenever the chemotherapy dosage applied by the cooperation part-
ner at the department of internal medicine falls below a specified threshold, that then an additional
radiotherapy unit has to be inserted into the radiotherapy workflow of the affected patient. Alterna-
tively, an authorized user manually has to decide how to react on a constraint violation.

10.5 Summary and Discussion
In this chapter, we have introduced an approach to deal with control flow failures for cooperating
workflows. The approach allows to assign temporal and qualitative constraints to communication
nodes so that cooperation partners can fix in which time frame and quality range results should be
provided. If a workflow is aborted, suspended or dynamically adapted, it is checked by workflow
estimations and the application of quality transformation rules, whether agreed-on temporal and
qualitative constraints are violated by the control flow failure. If this is the case, such constraint
violations are immediately communicated to affected cooperating workflow systems. The affected
cooperation partner then can handle such a constraint violation manually or by failure handling
rules stating how to abort, suspend, or adapt its own workflows to cope with the new situation. By
this approach, the frequency of failure situations inducing workflow abortion, suspension or work-
flow adaptations but not reported timely to affected cooperation partners can be reduced.
The main limitation of the described approach is that it requires a lot of meta knowledge. Not only
temporal knowledge about activity and edge execution durations is needed, but also quality related
knowledge such as quality-measuring objects and quality transformation rules. One may argue that
such quality-related knowledge often will not be available. The counter-argument is that in many
domains quality management guidelines are increasingly used which specify how to measure the
quality of products or services. In particular, in many real-world cooperation scenarios there will be
at least one object (such as a document) containing information which in some way measures the
quality of products or results provided by the cooperation partners. Beside the medical domain, this
holds especially for banking domains (credit metrics [SAUNDERS 1999, CAOUETTE 1998]) and
insurance business ([ABROMOVITZ & ABROMOVITZ 1997]). Thus, it can be assumed that quality-
related knowledge is available for many workflow applications.
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 CHAPTER 11 Implementation Issues

During the work on this thesis, large parts of AGENTWORK have been implemented prototypically
by the author and several graduate students [NEUBERT 1999, BÖHME 2000, DIETZSCH 2000,
GREINER 2000]. In particular, the workflow definition and execution layer and the layer for han-
dling control flow failures (except the inter-workflow agent) have been implemented. Concerning
the communication and integration layer, the principal implementation problems have been solved
but the implementation still has to be completed in future project phases.
This chapter which describes the AGENTWORK prototype is organized as follows: In Section 11.1,
we list the principles on which our implementation is based. In Section 11.2, we describe aspects of
the implementation of the workflow definition and execution layer, such as how workflow
instances are represented and executed by the workflow engine. In Section 11.3, we describe the
CORBA-based implementation approach of the communication and integration layer. In Section
11.4, we describe implementation issues of the layer for handling control flow failures. The chapter
concludes with a summary in Section 11.5.
We do not describe the implementation of the application project HEMATOWORK, as this is beyond
the scope. For this, we refer to [MÜLLER ET AL. 1998, MÜLLER & HELLER 1998] and several
diploma theses which have implemented parts of HEMATOWORK [BRÜMMER 1997, JÖDECKE 1997,
FIEBIG 1999]. The entire implementation of HEMATOWORK is subject of a research project cur-
rently performed by the University of Leipzig and funded by the German Research Association
(DFG). Nevertheless, we sometimes will refer to HEMATOWORK examples to illustrate some
implementation aspects of AGENTWORK, such as how the communication and integration layer
manages the connection between AGENTWORK and application databases.

Checken ob 
Hemato-Finding&xe;
sowie Aufruf virtual void push (Event& e) {
in line 4 respective line  in den beiden Code-Tabellen in Table 11-2 korrekt sind. 

The Grautöne in Figure 11-1 sehen auf dem Bildschirm schlimm aus, lassen sich aber über fm-Ausdruck auf dali gut ausdrucken

adaptation area
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11.1 Implementation Principles
The implementation of AGENTWORK is based on the following principles:

1. Implementation of a Workflow Management System “from Scratch“
The adaptation approach introduced in the preceding chapters requires a broad range of specific
functionality for the workflow management system. For example, the workflow editor has to
allow for the specification of estimation values for activity and edge execution durations. At
workflow execution time, the internal representation of workflow instances has to support their
dynamic adaptation and consistent continuation after the adaptation. As discussed in Chapter 2
(Related Work), no commercial workflow management system provides sufficient support for
these requirements. In particular, requests to different workflow vendors to obtain such compo-
nents and to achieve an opening of their interfaces failed. Thus, for the workflow definition and
execution layer an own, adaptation-oriented workflow editor and workflow engine had to be
implemented “from scratch“. To keep the implementation realizable, several components that
do not play a central role for handling control flow failures (e.g., worklist handler or organiza-
tion modeler) have been implemented only in a rudimentary way.

2. Mapping of ACTIVETFL to Low-Level Programming Languages
As described in Chapter 4 (Data and Rule Definition with ActiveTFL), the AGENTWORK speci-
fication language ACTIVETFL is an extension of the object-oriented F-Logic with temporal and
active elements. The analysis of available F-Logic implementations (e.g., FLORID [FROHN ET
AL. 1997], FLORA-2 [YANG & KIFER 2001], TFL [CARSI ET AL 1998]) showed that none of
them can be used for an ACTIVETFL implementation. The main limitation of all of these imple-
mentations is that they do not provide sufficient API (Application Programming Interface)
capabilities. For example, FLORID only allows to export the final rule processing results into
files. Thus, for AGENTWORK components it is not possible to intervene during rule processing
(e.g., for user confirmations). Furthermore, control actions derived after rule processing would
have to be communicated via file transfers.
Thus, due to these limitations of available F-Logic implementations, ACTIVETFL constructs are
mapped to general-purpose programming languages. In particular, the object-oriented core
(e.g., class definitions, objects, and object extensions) of ACTIVETFL is mapped to C++, while
predicates and rules are mapped to CLIPS [GIARRATANO & RILEY 1993], which is a rule-based
programming environment for C/C++.

3. Middleware-Based Approach for Integration into Distributed and Heterogeneous Environments
As described in Chapter 3 (AgentWork Overview), it is the task of the communication and inte-
gration layer to mediate between the high-level logic-oriented ACTIVETFL view of the work-
flow definition and execution layer and the layer for handling control flow failures on one side,
and a distributed and heterogeneous environment on the other side. As already identified by
workflow vendors (e.g., IBM MQSERIES WORKFLOW [IBM 2002 C], HEWLETT PACKARD
WORKFLOW [SHAN ET AL. 1997]) and research groups (e.g., [MILLER ET AL. 1998, OMG 1998,
SCHULZE 1999, WESKE 1999 A]), the usage of a middleware such as CORBA or DCOM1 is of
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great usage for the integration of a workflow system into distributed and heterogeneous envi-
ronments. This is because the location and physical organization of data sources, application
programs and other network components can be made transparent for application programming.
Thus, it has been decided to use such a middleware, namely CORBA, to implement the commu-
nication and integration layer. The specific reasons why CORBA and not some other middleware
has been used are given in the respective Section 11.3.

11.2 Workflow Definition and Execution Layer
In this section, we describe implementation aspects of the workflow definition and execution layer,
in particular of the workflow editor (11.2.1) and the workflow engine (11.2.2). All components of
the workflow definition and execution layer have been implemented in MS VISUAL C++ (version
6.0), for data storage such as the storage of workflow definitions DB2 (version 6.1) has been used.

11.2.1 Workflow Editor
With this component, workflow definitions can be specified in a graphical manner. For example, a
workflow’s control flow can be specified by drawing control flow edges between activity nodes.
The workflow editor consists of two subcomponents, namely the class and activity editor, and the
workflow control and data flow editor (Figure 11-1). 

11.2.1.1 Class and Activity Editor
This subcomponent is used to specify first the classes of the global ACTIVETFL data schema intro-
duced in 4.2.1, and second to specify activity definitions on the basis of these classes. For example,
in the screenshot shown in Figure 11-1 (1), the user has specified the activity definition of a com-
puter tomography (CT) examination, which needs a radiological report as input, focuses on the ana-
tomical area described by this input report, and provides a CT report as output. Furthermore, it has
been specified that the application program CT-Controller supports this activity (2).2 According to
Chapter 6, for every activity definition the assumed average, maximal, and minimal execution
duration can be specified for workflow estimation purposes, as shown in Figure 11-1 (3).

11.2.1.2 Workflow Control and Data Flow Editor
Based on the class and activity specifications provided by the class and activity editor, the work-
flow control and data flow editor allows to connect activity definitions by control and data flow
edges, as shown in Figure 11-1 (4). In particular, a verification component (5) checks whether the
definition constraints introduced in Chapter 5 (Workflow Definition and Execution) − such as the
block-oriented control flow structure − are met.

1. Distributed Component Object Model
2. Note that CT-Controller is a logical reference to an application program (5.3.3.2). The connection to

the physical program (e.g., the “.exe“ file) is maintained by the communication and integration layer.
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More details about the workflow editor can be found in [BÖHME 2000].

11.2.2 Workflow Engine
We now discuss selected implementation issues of the workflow engine, namely the way workflow
instances are internally represented (11.2.2.1) and the architecture to execute such workflow
instances (11.2.2.2).

11.2.2.1 Internal Representation of Workflow Instances
To support dynamic workflow adaptation, a workflow instance is internally represented as an inter-
preted structure. This means that a workflow graph such as the one shown in Figure 11-1 (4) is
translated into an equivalent internal graph representation and interpreted at workflow execution
time. In addition to the elements of the workflow definition, the corresponding internal representa-

Figure 11-1:  Screen shot of workflow editor.
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tion is enhanced with additional information such as activity execution states or the current values
of activity input and output objects. 
The alternatives to compile a workflow definition into a set of executable programs [MILLER ET AL.
1998] or to decompose it into a set of interacting rules [BARBARÁ ET AL. 1996] are not suitable.
This is because it then would be necessary for an adaptation to reconstruct the control and data flow
from interacting programs respective rules.
For a more detailed discussion of these and further instance representation approaches such as
using (migrating) data objects [IABG 2002], we refer to [REICHERT 2000].r300

11.2.2.2 Execution Architecture
Our implementation of the workflow engine is based on [LEYMANN & ROLLER 2000]. The main
components of the workflow engine are the administration server, the authorization server, a num-
ber of execution servers, the duration monitor and an execution database (Figure 11-2).
The administration server takes as input requests to start, abort or suspend workflows. For exam-
ple, if a workflow has to be started, the administration server generates a workflow instance on the

Figure 11-2:  Execution architecture of workflow engine.
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basis of the respective workflow definition and assigns a unique identifier to it. 
In order to execute a generated workflow instance as an interpreted structure according to 11.2.2.1,
a hierarchy of execution server instances is created: First, a root execution server instance is created
(by the administration server) and started to execute the control and data flow of the workflow
instance. For each additional parallel path that has to be executed due to AND-SPLIT or OR-SPLIT
nodes, a separate execution server instance is generated by the root execution server. If the paths
are joined again, their execution servers are terminated, and the root execution server proceeds with
the execution. Depending on the nesting structure of the workflow blocks, this is done recursively,
i.e., an execution server executing a parallel path may itself create execution server instances if for
example the path contains a nested parallel block.
The execution server instances directly communicate with the worklist handler to update the
worklists for the users, and with the communication and integration layer to access data sources
and application programs.
Each execution server instance is controlled and maintained within an operating system thread
[TANENBAUM & WOODHULL 1997]. The alternative to control and maintain each execution server
by an own process is not appropriate as a large number of active operating system processes would
result with a high administration effort. In contrast to this, a thread-based implementation is much
more efficient as the execution server instances can use the same address space.
According to Chapter 6, the duration monitor measures the execution duration of activities and
edges to obtain better duration estimation values than it is possible by specifications at workflow
definition time.
All relevant information, such as workflow instance state information or measured activity execu-
tions, are stored in a DB2-based execution database.
The interaction of the workflow engine components with the agents of the layer for handling con-
trol flow failures is as follows: In case of a global control flow failure, the control agent instructs
the administration server to abort or suspend a workflow instance. In case of a local control flow
failure, the adaptation agent directly requests the control and data flow definition of the affected
workflow instance from the respective execution server instances. Then, the adaptation agent
adapts the control and data flow definition which is then further executed by the execution servers
instances. In case temporal estimations are necessary, the adaptation agent requests duration infor-
mation from the duration monitor. The workflow monitoring agent and the inter-workflow agent
directly communicate with the execution servers instances as well, in order to monitor workflow
instances respective to derive inter-workflow implications of adaptations.
For any operation that shall be performed on a workflow instance, the authorization server checks
whether the requesting user or agent is authorized to request a particular workflow operation. To
decide this it uses an authorization table. An excerpt of the authorization table for the HEMATO-
WORK application is shown in Table 11-1. In this excerpt, it is specified that any staff member
instance that fulfills the pattern in the topmost row (i.e., a staff member being a senior oncologist)
is allowed to perform any global operation (i.e., start, abortion, or suspend) and any local operation
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such as dropping or adding activities. In contrast to this, an assistant oncologist is only allowed to
perform local operations such as the adding or removing of single drug activities while the abortion
or suspension of entire chemotherapies should be left up to an experienced senior oncologist.
More details about the workflow engine can be found in [DIETZSCH 2000].

11.3  Communication and Integration Layer
In this section we describe the middleware-based implementation of the AGENTWORK communica-
tion and integration layer. On the market, a broad range of middleware approaches exist, such as
DCOM/COM+ [SESSIONS 1998, EDDON 1999], CORBA [BAKER 1997], ENTERPRISE JAVABEANS
[MONSON-HAEFEL 2000], and XML-based approaches such as BIZTALK [KOBIELUS 2000]. Among
these, CORBA has been selected for our implementation of the communication and integration
layer. This is because CORBA is more appropriate for large-scale environments than DCOM
[THOMPSON & WATKINS 1997], and provides more appropriate services and infrastructure compo-
nents for the specific purposes of control flow failure handling than for instance ENTERPRISE JAV-
ABEANS or BIZTALK [FEILER 2000]. For example, CORBA provides a so-called event servicer301 that
allows to register and propagate events. This is of great use for the event monitoring agent which
has to detect events that constitute control flow failures of running workflows (see 11.4.1). From
the available CORBA implementations, IONA ORBIX (version 3.3) [IONA 2002] has been selected, as
this product offers one of the most comprehensive CORBA implementations.
This section is organized as follows: First, we sketch the principal structure of CORBA in 11.3.1. In
11.3.2, we describe the CORBA-based implementation approach of the communication and integra-
tion layer. Concerning the connection to application databases and programs, we will use examples
from the HEMATOWORK project. Note that our implementation approach is a straightforward one as
the research focus of this thesis is on semi-automated control flow failure handling rather than on
interoperability aspects. For enhanced middleware-based workflow system implementations con-
sidering additional aspects such as performance we refer to [DOGAC ET AL. 1998, SCHULZE 1999].

Staff Member Pattern 
(Obj-Patt<Staff-Member> according to 4.2.1.5) Allowed operations

Physician[degree = Senior; speciality = “Oncology”]; Global: All (start, suspend, abort)

Local: All from Chapter 8, 
i.e., cfop-drop-node, cfop-change-value etc.

Physician[degree = Assistant; speciality = “Oncology”]; Global: None

Local: As for senior physicians

Table 11-1:  Excerpt from authorization table for HEMATOWORK application.
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11.3.1 Principal Structure of CORBA
CORBA (Figure 11-3) has been designed to support interoperability between objects in a heteroge-
neous and distributed environment. It is based on the OMG object model [SOLEY & KENT 1995]
which defines a common meta model for specifying the externally visible characteristics of objects
in a standardized and implementation-independent way. In this model, clients request services from
objects (which will also be called servers) through a well-defined interface. This interface is speci-
fied in the so-called interface definition language (IDL), e.g.,

interface example_server_object{
attribute string s;

  void my_operation(in long a, out long b, inout boolean b);
}.

This specification defines a server object which has a string attribute called s and on which a client
can invoke the operation (or method) my_operation with three parameters (the in/out/inout entries
specify whether the parameter value will be passed from client to server respective from server to
client respective in both directions). 
An IDL specification is then processed by an IDL compiler which generates client stubs and server
skeletons in an implementation language such as C++ or JAVA, which are then included in the cli-
ent's respective the server’s program. IDL specifications can be stored in the so-called interface
repository, so that the interface structure of objects can be inspected at execution time. To the server
skeletons, application-specific code has to be added so that the server object can provide the neces-
sary functionality.
A client accesses an object by issuing a request to this object. The request consists of the operation
to be performed, the object reference, and actual parameters (if any). The object reference is a log-

Figure 11-3:  Structure of CORBA (according to [ORFALI ET AL. 1995]).
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ical object name that identifies an object reliably. For this, CORBA provides a naming service that
allows to assign system-wide logical names to objects.
The central component of CORBA is the object request broker (ORB) which provides the commu-
nication infrastructure. The basic ORB functionality consists of passing the requests from clients to
the server objects. In order to make a request the client can communicate with the ORB through the
client stub (generated by the IDL compiler) or through the dynamic invocation interface. The latter
allows the client to specify requests to objects whose definition and interface are unknown at the
client's compile time. In order to use the dynamic invocation interface, the client has to dynami-
cally compose a request. The needed information about objects and their attributes and operations
is retrieved from the interface repository.
The communication between the object implementation and the ORB core is handled by the object
adapter. It provides services such as the registration of implementations, implementation activation
and deactivation, generation and interpretation of object references, and operation invocation.
There exist many different special-purpose object adapters to fulfill the needs of specific systems
such as databases [SELLENTIN 1999]. The information the object adapter needs for its tasks, such as
an object's location and the operating environment, is stored in the so-called implementation repos-
itory.
The main advantage of the CORBA approach is first that programming is significantly facilitated as
CORBA provides a lot of services which cover general-purpose functionality, such as the object
request broker or the naming service mentioned above. In particular, client programming does not
have to make any assumptions about the location of server objects, their internal organization, the
operating systems on which they run, and many other details. Second, extensibility is very good, as
new objects can easily be plugged into the system [ORFALI ET AL. 1995]. The main disadvantage of
CORBA, i.e., the limited performance [SELLENTIN 1999], does not play such a central role for the
addressed application classes as it would be the case for “real-time“ applications such as intensive
medicine. For example, in the HEMATOWORK application it is not necessary for most patient data
that they are communicated within the next few seconds or minutes. Rather, it is sufficient if they
are reported within the next one or two hours. 
For a more detailed discussion of CORBA we refer to [SELLENTIN 1999, SCHULZE 1999]. Further-
more, when we say CORBA/C++ objects in the following, we mean objects that are defined in IDL,
registered and controlled by CORBA, and implemented in C++. 

11.3.2 CORBA-based Implementation of Communication and Integration Layer
We now describe our CORBA implementation approach of the AGENTOWORK communication and
integration layer by using examples from HEMATOWORK. The implementation is based on the fol-
lowing principles (Figure 11-4): First ACTIVETFL classes are mapped to IDL interfaces. Second, in
the implementations assigned to these interfaces, the connections to the HEMATOWORK data
sources and application programs are encoded in C++. Third, at execution time, any access to an
ACTIVETFL object is then translated to an access of the corresponding CORBA/C++ object.
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1. Mapping from ACTIVETFL to IDL
For every ACTIVETFL class defined by the workflow editor, a corresponding IDL interface is gen-
erated providing the same attributes, relationships and methods. For example, for the ACTIVETFL
class

Hemato-Finding[parameter: Enum{Leukocyte-Count, ...}, value: Float, (i)
unit: Enum{#/mm3, mg/mm3, ...}],

Hemato-Finding IS-A Laboratory-Finding

the corresponding IDL interface

Figure 11-4:  CORBA implementation of the communication and integration layer.
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interface Hemato-Finding : Laboratory-Finding { (ii)
enum paraType {Leukocyte-Count, ...};
enum unitType {#/mm3, mg/mm3, ...};
attribute paraType parameter;
attribute float value; 
attribute unitType unit;}

is generated (number (1) in Figure 11-4) and stored in the CORBA interface repository. The task of
generating these IDL interfaces and of maintaining the relationships between the ACTIVETFL
classes and their IDL counterparts is performed by the so-called Schema Mapper. The generated
IDL interfaces are then processed by the IDL compiler which produces the client stub code and the
object skeleton code. Note that for an attribute a reading operation is automatically generated for
the stub by the IDL compiler, so that it does not have to be declared in the interfacer302. For example,
to read the value of the attribute unit declared in (ii), the generated stub contains the code

class Hemato-Finding: public virtual Laboratory-Finding {r304 (iii)
public: virtual float value() ... 

2. Connections to HEMATOWORK Data Sources and Application Programs
Within the C++ implementation assigned to an interface, it is encoded which database or applica-
tion program has to be accessed when an object operation is invoked (number (2) in Figure 11-4).
For example, in HEMATOWORK the C++ implementation assigned to the IDL interface in (ii) con-
tains embedded SQL statements accessing the ORACLE-based patient database when the attribute
values of a Hemato-Finding object have to be retrieved (by the respective reading operations). The
connection between the interfaces and the implementation is handled by the CORBA object request
broker as described in 11.3.1.

3. Mapping of ACTIVETFL Objects to CORBA/C++ Objects
At workflow execution time, the mapping between the ACTIVETFL object specifications of the
workflow definitions and the CORBA objects is performed by the so-called object mapper (number
(3) in Figure 11-4). For example, if the engine detects in the workflow definition that an object of
the ACTIVETFL class Hemato-Finding as defined in (i) is needed as input object for an activity exe-
cution, it instructs the object mapper to retrieve the corresponding CORBA/C++ object. The object
mapper then inspects whether the respective object already exists (as it for example has already
been generated as an output object of a preceding activity execution), or generates a new one.
These CORBA/C++ objects are then used further during the activity execution (e.g., sent to the
application program supporting the activity execution). Furthermore, the object mapper manages
every operation invocation on these CORBA/C++ objects.r305

Details about this “Mapping to CORBA“ approach are described in [NEUBERT 1999]3.
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11.4 Layer for Handling Control Flow Failures
We now describe the implementation of the layer for handling control flow failures. For this, we
concentrate on the event monitoring agent (11.4.1) and the adaptation agent (11.4.2), as these two
agents are the most complex ones. This is because the event monitoring agent closely has to inter-
act with the entire workflow environment to register all relevant events, and as the adaptation agent
has to estimate and to adapt running workflow instances. In particular, due to the complexity and
importance of the adaptation agent, a simulation environment has been implemented for this agent
to perform at least a minimal evaluation. The other agents such as the control agent and the work-
flow monitoring agent are not as complex as that and have been implemented in a straightforward
manner, so that we omit details about their implementation. All agents have been implemented
mostly in MS VISUAL C++. 

11.4.1 Event Monitoring Agent
As described in Chapter 3 (AgentWork Over-
view), the task of the event monitoring agent is to
decide which application events occurring some-
where in the AGENTWORK environment raise
control actions. The main implementation deci-
sion in this context has been that all applications
events are stored and processed centrally by this
agent, with the consequence that all events first
have to be registered and collected from the local
application components (i.e., the data sources
and application programs) where they are gener-
ated. The alternative that already the local appli-
cation components themselves derive whether an
event constitutes a control flow failure (e.g., by
database triggers) is not suitable: First, control
over the critical process of deriving control
actions would be scattered over the local applica-
tion components. Second, software maintenance
would be complicated. For example, one would
have to cope with different database trigger for-
mats in case of different databases. Furthermore,
any change of the control action structures would
have to be implemented for every event-generating application component.

3. Though this master thesis describes a schema and object mapper not from ACTIVETFL to CORBA, but
from the FLOWMARK DEFINITION LANGUAGE (FDL) of IBM FLOWMARK to CORBA, the implementa-
tion principles are the same (as only the source formats − FDL respective ACTIVETFL − are different).

Figure 11-5:  Event monitoring agent.
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To achieve the task of a centralized event storage and processing, the event monitoring agent pro-
vides an event perception interface to receive events, an event database to store them, and an event
processing component (Figure 11-5) to derive control actions which then are passed to the control
agent for further processing. These components are now described in more detail.

11.4.1.1 Event Perception Interface
With the event perception interface, the event monitoring agent registers relevant events of the
AGENTWORK environment, such as the event of inserting a new laboratory value into a patient data-
base. The event perception interface has been implemented with ORBIXEVENTS [IONA 2002] which
is the IONA implementation of the CORBA event service [OMG 2002 A]. ORBIXEVENTS provides
the following functionality (Figure 11-6):
• By importing predefined ORBIXEVENTS modules, any CORBA object can become a so-called

event supplier that generates and reports events. For example, in the HEMATOWORK application
the most important event supplier is the CORBA object encapsulating the patient database. This
is because many control flow failures in HEMATOWORK are raised by events in this database,
such as by the insertion of new hematological data indicating a severe blood toxicity.

• Analogously, any CORBA object can play the role of a so-called event consumer that receives
and processes events. For example, in AGENTWORK the event perception interface itself is
encapsulated as a CORBA object that − in the HEMATOWORK application − “consumes“ events
of the patient database.

• Event communication is handled by so-called event channels which manage the transfer of
events between suppliers and consumers. An event channel allows consumers to register inter-
est in events of particular types, stores this registration information, accepts incoming events
from suppliers, and forwards these events to registered consumers. In particular, an event chan-
nel provides so-called proxy consumers and proxy suppliers to which the event suppliers
respective consumers connect to communicate their events and which hide the internal structure
of the channel. Any number of suppliers can issue events to any number of consumers using a
single event channel, and new suppliers and consumers can be easily plugged into the system.
In addition, any supplier or consumer can connect to more than one event channel.

• For event transfer, it can be selected between the push or pull model. In the push model, the
supplier initiates the transfer of events by sending events to consumers without request. In the
pull model, the consumer initiates the transfer of events by requesting events from suppliers.

Figure 11-6:  CORBA event ser-
vice (ORBIXEVENTS).
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For the event perception interface, the push model has been selected as default to achieve a high
currentness of the event situation (assuming that every event supplier communicates its events
directly4). The alternative pull model where the event perception interface actively requests
events from the relevant event suppliers is principally inadequate as in this case important and
time-critical control flow failures perhaps may be detected too late. The pull model is only
used, if for a new event the past temporal context of this event has to be known as well, and if
the events constituting this past context are not already stored in the event database.

The main advantage of using the CORBA event service is that communication partners do not have
to make any assumptions about one another (such as about the number and internal structure of
their partners), and that an infrastructure for the event transfer is provided.
Table 11-2 shows two simplified sample code fragments (e.g., without exception handling) of the
event perception interface implementation. In this example, the insertion of new hematological
data in the patient database (A) triggers the generation of a CORBA/C++ Hemato-Finding object
representing this event and its pushing to the event perception interface:
• The supplier code fragment (B) contains code of the CORBA/C++ object encapsulating the

patient database. During initialization, an event channel is opened (line 1), and a channel
administration object (line 2) and a proxy consumer object (line 3) are obtained for the supplier.
The operation create_and_push_hemato-finding (line 4) is invoked by a database triggerr307 when
an insert occurs on the table for the hematological data. This operation first creates and fills a
Hemato-Finding object with the event data (line 5)5. Then, it pushes this object to the consumer
proxy (line 6). Internally, the proxy then passes this object through the channel and the push
operation is automatically invoked on all consumer objects that are interested in this event type.

• The consumer code fragment (C) contains code of the CORBA/C++ object encapsulating the
event perception interface. During initialization, an event channel is opened (line ), and a chan-
nel administration object (line ) and a proxy supplier object (line ) are obtained for the supplier.
Event perception and further processing is done by the application-specific implementation of
the push operation (line ). First, the received event is stored persistently in the event database
(line ; see 11.4.1.2 as well). Second, the event processing component is launched to see whether
this new event constitutes any control flow failure (line ; see 11.4.1.3 as well).

11.4.1.2 Event Database
Events received by the event perception interface above are stored in the event database. To
achieve a high autonomy and to reduce communication costs, this event database is a full replica-
tion of all received events. In particular, this is of advantage as the workflow-related implications
of a new event often can only be determined in the temporal context of other, prior events (e.g., in

4. For example, for relational databases this can be achieved by triggers.
5. patId is a parameter used to initialize the of attribute which is declared in the Event super class of

Hemato-Finding, and which refers to the case (i.e., patient) to whom the event occurred.
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Supplier code fragment (B) ↓ r306

CosEventChannelAdmin::EventChannel_varxxecVar;
CosEventChannelAdmin::SupplierAdmin_varxxsaVar;
CosEventChannelAdmin::ProxyPushConsumer_varxxppcVar;

//
//
//
//

Declarations for:
Event channel 
Event channel administration
Consumer proxy

/************ Initialization ************/
1. ecVar = EventChannel::_bind ("hemato-events", "medHost"); // Get event channel reference
2. saVar = ecVar->for_suppliers (); // Get supplier admin. object
3. ppcVar = saVar->obtain_push_consumer (); // Get proxy push consumer

/************ Event generation and event pushing ************/
4. void create_and_push_hemato-finding

(short patId, paraType parameter, float value, unitType unit {
Hemato-Findingx*e;

//
//
//

Operation that creates new
Hemato-Finding object and pushes
it through the event channel

5. e = new Hemato-Finding(patId, parameter, value, unit); // Create Hemato-Finding object 
6. ppcVar->push (*e); ...} // Push it to event channel

Consumer code fragment (C) ↓ 

CosEventChannelAdmin::EventChannel_varxxecVar;
CosEventChannelAdmin::ConsumerAdmin_varxxcaVar;
CosEventChannelAdmin::ProxyPushSupplier_varxxppsVar;

//
//
//
//

Declarations for:
Event channel 
Event channel administration
Supplier proxy

/************ Initialization ************/
ecVar = EventChannel::_bind ("hemato-events", "medHost"); // Get event channel reference
caVar = ecVar->for_consumers (); // Get consumer admin. object
ppsVar = caVar->obtain_push_supplier (); // Get proxy push supplier

/************ Event perception and further processing ************/
virtual void push (Event& e) { // Consumer implementation of push

store-in-event-database(e); // Store new event in database
launch-event-processing-component();...} // Check for control flow failures

Patient Database (Oracle)

TABLE   HEMATO-FINDINGS

PAT-ID PARAMETER VALUE UNIT

xrsd622 Thrombocyte-
Count

60000 #/mm3

gbfh922 Leukocyte-
Count

900 #/mm3

... ... ... ...

CREATE TRIGGER PUSH-NEW-HEMATO-EVENT
AFTER INSERT OR UPDATE
ON HEMATO-FINDINGS

CALL create_and_push_hemato-finding
(:new.PAT-ID, :new.PARAMETER,
 :new.VALUE, :new.UNIT)

(A)

Table 11-2:  Implementation of event perception interface.
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case of time series events). Without the replication of the whole event history, the event monitoring
agent often would have to request the original physical data sources when reasoning about events.
If such a source would not be available at the moment of the request, event processing could be
delayed with the consequence that perhaps important control flow failures would be detected too
late. Event updates in the original physical data sources can also be specified as relevant events
inducing event pushing so that a high currentness of the replicated event database can be achieved.
Depending on the application, events being older than an application-specific temporal threshold
may be deleted from the event database if it can be assumed that they are not needed anymore. For
example, in HEMATOWORK laboratory events older than 6 months can be dropped from the event
database of the event monitoring agent as they usually are not relevant anymore for control flow
failure handling. Nevertheless, in HEMATOWORK they still remain in the patient database because
of legal requirements, so that they always can be “pulled into“ the event database again.
For the implementation of the event database, the object-oriented database system O2 [DEUX 1991]
(version 5.0.2) has been used as it supports the ODMG6 object model [CATTELL ET AL. 2000]
which itself fits well into the CORBA/C++ object model. In addition, the O2CORBA component [O2
1998] supports the connection of an O2 database to CORBA by providing, for instance, the auto-
matic generation of IDL interfaces from an O2 database schema.

11.4.1.3 Event Processing Component
The task of this component is to process events on the basis of the ACTIVETFL failure rules as they
have been introduced in Chapter 4. The ACTIVETFL failure rules have been implemented with the
rule-based programming environment CLIPS7 (version 6.1) [GIARRATANO & RILEY 1993] (while
VISUAL C++ is used for the higher-level procedures). CLIPS has been selected because of the fol-
lowing reasons:

1. Support of Forward Chaining Rule Processing
In contrast to other rule-based programming environments such as PROLOG, CLIPS supports a
forward chaining (or data-driven) rule processing mode [BUCHANAN & SHORTLIFFE 1984].
This processing mode means that whenever new data becomes available it is checked for every
available rule whether the WHEN/WITH part of the rule becomes true. If this is the case, the
rule is triggered and new data (such as a control action) is generated by the THEN part. In con-
trast to this, PROLOG and most other rule-based programming environments support backward
chaining (or hypothesis-driven) rule processing. This processing mode means that first a
hypothesis is generated (such as the hypothesis that some control action holds for some activity
pattern and case). Second, it is checked whether there is any data and rule constellation that can
verify this hypothesis [SCHÖNING 1989].
Forward chaining is appropriate for so-called monitoring problems [SHAHAR & MUSEN 1996,
MOSTERMAN & BISWAS 1997, LARSSON & HAYES-ROTH 1998] where large amounts of data

6. Object Data Management Group
7. C-Language Integrated Production System



301

continuously have to be scanned w.r.t. any possible implications, and where the number of such
possible implications (i.e., hypotheses) is too large to work with backward chaining. In contrast
to this, backward chaining can efficiently solve problems where the number of relevant hypoth-
eses can be limited (e.g., by user input), and where the amount of data is not too large. As con-
trol flow failure handling can be viewed as a monitoring problem − a lot of events have to be
monitored whether they constitute any control flow failures − forward chaining is the more
appropriate processing mode for AGENTWORK.

2. Object-Oriented Data Model
CLIPS supports a full object-oriented data model through its part COOL (CLIPS Object-Oriented
Language) which is compatible to C++. Thus, the CORBA/C++ event objects that are registered
and maintained by the event monitoring agent can easily be mapped to CLIPS objects which are
then processed by CLIPS rules.

3. Powerful C/C++ APIs
Furthermore, CLIPS provides a powerful C/C++ API. Thus, for the high-level procedures of the
event monitoring agent which have to control rule processing and which are written in C++, the
availability of such a C/C++ API is of great usage. For example, by this API is it possible dur-
ing rule processing to add routines for user interaction or to handle dynamic dependencies
between control actions according to 7.6.

Table 11-2 shows the CLIPS notation of the Hemato-Finding class of 11.3.2 and a simplified CLIPS
rule deriving a drop control action when a leukocyte count is less than 1000 #/mm3. Rules such as
the one shown in Table 11-2 operate on the CORBA/C++ event objects received by the event
perception interface and process them in the above-mentioned forward chaining mode. The control
actions derived by such rules are then passed to the control agent, which performs workflow
abortions or suspensions in case of global control actions, or instructs the adaptation agent to adapt
a workflow dynamically in case of local control actions.r310

11.4.2 Adaptation Agent
In this section we describe implementation issues concerning the adaptation agent. First, we
describe the internal structure of the adaptation agent (11.4.2.1). Second, we describe how the
adaptation agent internally marks a workflow to indicate for which area which control actions hold
and which adaptation strategy is performed for this area (11.4.2.2). Third, we describe a simulation
environment to support the evaluation of workflow adaptations (11.4.2.3).

11.4.2.1 Internal Structure
The adaptation agent is organized as follows (Figure 11-7): A DB2-based adaptation database
stores all adaptation-related information, such as the local control actions that have been passed on
by the user interface or the control agent. The temporal estimation manager performs the duration
estimations specified in Chapter 6. It has been implemented as an own submodule as its functional-
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ity is frequently used by the inter-workflow agent as well, which has to compare the durations of a
workflow before and after an adaptation. The adaptation operator library implements the struc-
tural adaptation operators that have been introduced in Chapter 8.

CLIPS examples Comments

Notation
of class Hemato-
Finding

(defclass Hemato-Finding (is-a Laboratory-Finding)
(slot parameter

(type SYMBOL)
(allowed-values Leukocyte-Count, ...))

(slot value 
(type FLOAT))

(slot unit
(type SYMBOL)
(allowed-values #/mm3, mg/mm3, ...))

)

defclass = define class
slot = attribute
SYMBOL = any sequence of 
printable ASCII characters (used 
for enumeration types)

Class to repre-
sent drop con-
trol actions

(defclass Drop-Control-Action (is-a Control-Action)
(slot activity-to-be-dropped

(type Activity))
(slot valid-time-start

(type DATE))
(slot valid-time-end

(type DATE))
)

Simplified CLIPS class to repre-
sent drop control actions (only 
for fixed valid time). Control-
Action is a superclass storing the 
case for which the control action 
holds. Activity is a CLIPS base 
class corresponding to the 
ACTIVETFL base class Activity 
(introduced in 4.2.1.1)

Rule generat-
ing a control 
action

(defrule severe-hemato-status 
(object (is-a Hemato-Finding)

(parameter Leukocyte-Count)
(value ?v&:(< ?v 1000))r303

(unit #/mm3)
)

defrule = define rule

Defines a rule with the following 
meaning: 
If there is a leukocyte count 
being less than 1000 #/mm3,

=> then

(make-instance of Drop-Control-Action
(activity-to-be-dropped 

(make-instance of Drug-Administration
(drug “Etoposid“)))

(valid-time-start now)
(valid-time-end 7/8/2001))

)

generate instance of class Drop-
Control-Action which has as a 
subcomponent an instance of 
class Drug-Administration (sub-
class of Activity) where slot drug 
is set to the string “Etoposid“

Table 11-2:  CLIPS examples.
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11.4.2.2 Internal Representation of Adaptation Areas
On the conceptual level described in the chapters before, we have restricted our considerations to a
few important adaptation cases such as that all control actions holding simultaneously for a work-
flow have the same valid time interval. This has been reasonable as the general case could have
been derived from these special cases. However, on the implementation level we have to consider
that different control actions with different valid time intervals hold simultaneously for the same
workflowr311 and that they furthermore are handled by different adaptation strategies. Thus, it has to
be stored precisely which parts of the workflow are affected by which control action and handled
by which adaptation strategy is not only important for the adaptation agent itself, but for the work-
flow monitoring and the inter-workflow agent.
To cope with this, the adaptation agent inserts so-called adaptation area nodes to mark those parts
of the workflow handled reactively or predictively for a control action. Such adaptation area nodes
form a further type of control nodes with an execution duration being zero. When the workflow
engine detects one of them, it simply ignores it and continues with the execution of the successor
nodes. Thus, the execution model of Chapter 5 does not have to be extended. We distinguish two
types of adaptation area nodes (Figure 11-8):
• So-called PRED-END nodes mark the end of the workflow part that has been predictively

adapted due to some control action being valid during the interval VT. The information for
which control action(s) such a PRED-END node holds and when it should be reached according
to the estimation is stored in a table ADAPTATION-AREAS in the adaptation database. For

Figure 11-7:  Internal
structure of adaptation
agent.
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example, in Figure 11-8 it is stored that PRED-END nodes 5 and 9 close the workflow part that
has been adapted because of a drop(A, C) control action, and that according to the estimation
these nodes should be reached on 20th September 2001 at 8 pm as then the valid time interval
terminates. Such a termination calendar point in time is derived by adding the duration of the
control action’s valid time to the point in time when the control action has been triggered.
Note that nodes to mark the beginning of an adaptation area are not necessary. This is because
due to the valid time conventions for control actions introduced in 7.3, a valid time interval
always starts at the point in time when the control action has been triggered. Thus, it cannot
occur that a not yet executed predecessor node of the PRED-END node does not belong to the
adaptation area closed by the PRED-END node.

• So-called REACTIVE-START nodes mark the beginning of areas that could not have been esti-
mated by the adaptation agent and thus have to be handled reactively. In the example of

9
(PRED-
END)

...112

15
(REACTIVE-

START)
14 ...17

4
5

(PRED-
END)

20

12
(PRED-
END)

7

AND-
SPLIT

13

1

18

8

6

...

3
(AND-
SPLIT)

16
(LOOP-
START)

10
(AND-
JOIN)

19
(LOOP-

END)

22
(REACTIVE-

START)
2321 ...

Condition COND_7_22:
(object
(is-a Hemato-Finding)
(parameter Leukocyte-Count)
(value ?v&:(>= ?v 1000))
(unit #/mm3)
(of C)
)

Workflow instance with WF-ID = 7

TABLE ADAPTATION-AREAS

WF-ID NODE-
ID

TYPE CONTROL-
ACTION

TERMINATION-
DATE

TERMINATION-
CONDITION

7 5 PRED-END drop(A, C) 20 Sep 2001: 8.0 pm NULL

7 9 PRED-END drop(A, C) 20 Sep 2001: 8.0 pm NULL

7 12 PRED-END replace(X, Y, C) 21 Sep 2001: 12.0 am NULL

7 15 REACTIVE-START drop(Z, C) 28 Sep 2001: 2.0 am NULL

7 22 REACTIVE-START drop(T, C) NULL COND_7_22

Figure 11-8:  Representation of adaptation areas.
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Figure 11-8, it is shown that from REACTIVE-START node 15 on the workflow has to be
adapted reactively (as the loop could not have been estimated). REACTIVE-START node 22
marks the beginning of an adaptation part that cannot be estimated not because of missing tem-
poral information but because of a conditional end of the associated valid time interval. For this
node, the respective condition in CLIPS notation stating that the leukocyte count has to be at
least 1000 #/mm3 is shown in the TERMINATION-CONDITION entry in the last row in the
table of Figure 11-8 (again, the of slot in the Hemato-Finding object is inherited from a super-
class Event and refers to the case for whom this condition has to hold).
Note that nodes to mark the end of the area to which reactive adaptation is applied make no
sense, as this end is not known (otherwise reactive adaptation would not have been selected).

Note that the location of different PRED-END and REACTIVE-START nodes may not be as
“path-balanced“ as shown in Figure 11-8. For example, node 2 in the upper path could be a REAC-
TIVE-START node as well, indicating that from this node on the workflow has to be adapted reac-
tively for some control action different from the control actions assigned to the PRED-END nodes
5, 9, and 12.
The information stored in the table ADAPTATION-AREAS is then directly used by the workflow
monitoring to check whether the estimations of the adaptation agent meet the execution reality.

11.4.2.3 Simulation Environment
The adaptation of a workflow instance and especially its predictive adaptation has to be viewed as
a complex task so that an evaluation of the temporal estimation algorithms and the operators adapt-
ing a workflow instance is necessary. However, a real-world evaluation such as one in a medical
environment has not been possible due to the incomplete implementation of the HEMATOWORK
application. Therefore, a simulation environment has been implemented to achieve at least some
minimal evaluation. This simulation environment provides the following functionality:

1. Generation of Workflow Definitions
At random, arbitrary workflow definitions can be generated on the basis of the block-oriented
workflow definition model described in 5.3. To avoid that unrealistic workflows are generated,
the maximal number of nodes and loops and the maximal nesting order for blocks can be speci-
fied. In the performed evaluations, the maximal number of nodes, loops and block nestings has
been restricted to 50 nodes respective 2 loops respective 3 block nestings per each workflow.

2. Generation of Local Control Actions
An arbitrary number of local control actions including their valid time intervals can be gener-
ated at random to simulate a control flow failure. For this, the maximal number of simulta-
neously generated local control actions can be specified (e.g., 4 in the performed evaluations).

3. Generation of Workflow Instances
To simulate a running workflow instance being affected by the generated control actions, exe-
cution states are assigned at random to the nodes and edges on the basis of the workflow execu-
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tion model described in 5.4. In particular, a failure node set (7.4.1) is selected at random to
simulate the execution focus (i.e., nodes that are currently executed or will be executed next) of
the workflow instance at the point in time of control action triggering.r313

These simulated workflow instances are then estimated and adapted by the adaptation agent. As the
data environment is not simulated in the current version, branching conditions at OR-SPLIT or
LOOP-END cannot be resolved predictively. To compensate this, the conditional paths that are
executed respective the number of loop iterations are determined at random as well.
On the basis of this simulation environment, a representative number (about 50) of generated work-
flows has been adapted. The adapted workflows have been inspected manually to check whether
the adaptation agent has worked properly for these test workflows.r314More details about the adapta-
tion agent can be found in [GREINER 2000].

11.5 Summary
In this chapter, we have described the implementation of the AGENTWORK prototype. First, we
have sketched the implementation of an adaptation-oriented workflow management system that
allows to define and execute ACTIVETFL-based workflows. In particular, it has been described that
workflows are executed as interpreted structures by a multi-threaded workflow engine. Second, we
described the implementation approach of the communication and integration layer. For the pur-
poses of distribution and heterogeneity transparency and scalability, this layer has been imple-
mented by encapsulating the data sources and application programs of the AGENTWORK
environment within CORBA/C++ objects, and by translating all data and program requests gener-
ated at workflow execution time to operator invocations on such CORBA/C++ objects. Third, we
described implementation issues of the layer for handling control flow failures. In particular, we
described how the CORBA event service has been used to implement the registration and transfer of
events, and how failure rules deriving control actions have been implemented with the rule lan-
guage CLIPS. Furthermore, we described the simulation environment of the adaptation agent that
supports the evaluation of workflow adaptations.r315

In the future, the described implementation has to be completed. For example, the current evalua-
tion of generated test workflows in the described simulation environment can be only viewed as a
first step of evaluation. One limitation of the simulation environment is that it does not simulate the
data flow and the continuation of a workflow after the adaptation. Thus, the predictive resolving of
conditions and workflow monitoring could not have been tested so far. Furthermore, the implemen-
tation of the workflow definition and execution layer so far has neglected components not abso-
lutely necessary (such as the worklist handler), and therefore has to be enhanced. Recent
encouraging results of our database group concerning the usage of the ADEPTFLEX workflow man-
agement system [REICHERT 2000, HENSINGER ET AL. 2000] have been obtained after the comple-
tion of the AGENTWORK implementation described in this thesis, so that they could not have been
considered anymore. The possibility to use the ADEPTFLEX system for a new version of AGENTWORK
is discussed in Chapter 12 (Summary and Future Work).
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 CHAPTER 12 Summary and Future Work
Aktuelle Rechtschreibprüfung: YES

The overall goal of this thesis has been to support the semi-automated handling of so-called control
flow failures, and thus to make workflow management more flexible w.r.t. application events. After
we have described our failure handling approach in detail, this chapter completes the thesis by sum-
marizing the results in Section 12.1, and by describing future work in Section 12.2.

12.1 Summary
In this section, we summarize the contributions of AGENTWORK to adaptive workflow manage-
ment. Table 12-1 repeats the requirements that have been identified for adaptive workflow manage-
ment systems in Chapter 2 (Related Work), and shows to what degree AGENTWORK fulfills them.
In Chapter 1 (Introduction and Problem Description), we have introduced control flow failures as
an important failure type which is caused by application events and characterized by an inadequacy
of control flow. We have motivated that for many workflow application classes such as medicine or
insurance business the handling of this failure type cannot be neglected. In Chapter 2 (Related
Work), we showed that existing approaches from the fields of commercial workflow management
systems, advanced transaction models, exception handling in programming languages, adaptive
and collaborative workflow management, and artificial intelligence do not support the automated
handling of control flow failures sufficiently. In particular, we have seen that especially the tempo-
ral structure of control actions (requirement 1.3), the support of predictive adaptation (requirement
2.3), and the handling of inter-workflow implications of control flow failures (requirement 3) (see
Table 12-1) are not supported sufficiently by current approaches. The main motivation for consid-
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Central Requirements Subrequirements
Sup-
port

Supporting Approaches
and Remarks

1. Representation of 
Failure Events and 
Control Actions

1.1  High Semantic Level of 
Event and Control Action 
Representation

Yes

} ECA rules for control flow failures 
on the basis of temporal object-ori-
ented logic ACTIVETFL
(Chapter 4 and Chapter 7)

1.2  Temporal Structure of Events Yes
1.3  Temporal Structure of Con-

trol Actions
Yes

1.4  Integrity of Failure Rules Yes
1.5  Authorization of Control 

Actions
Yes

2. Translation of Con-
trol Actions into 
Workflow Execution 
Operations and 
Structural Adapta-
tions

2.1  Workflow Abortion and Sus-
pension

Yes

}
Control and data flow constraints, 
state-based workflow execution 
model (Chapter 5)
Algorithms for workflow estimation 
(Chapter 6)
Library of control and data flow 
adaptation operators (Chapter 8)
Control action ordering in case of 
simultaneous control actions, work-
flow monitoring (Chapter 9)

2.2  Support of Reactive Adapta-
tion

Yes

2.3  Support of Predictive Adap-
tation

Yes

2.4  Consideration of Data Flow 
Implications

Yes
(partially)

2.5  Consistency of Adapted 
Workflows

Yes
(partially)

2.6  Efficiency of Adaptation (No) Not specifically supported, but negligible 
as real-time applications are not 
addressed by AGENTWORK.

3. Handling of Inter-
Workflow Implica-
tions of Control 
Flow Failures

3.1  Determination of Temporal 
Implications

Yes

}
Temporal and qualitative constraints 
between cooperation partners
Workflow estimations and applica-
tion of quality transformation rules to 
check whether agreed-on temporal 
and qualitative constraints are vio-
lated by control flow failure
Report of constraint violations to 
cooperation partner
(Chapter 10)

3.2  Determination of Qualitative 
Implications

Yes

Table 12-1:  Support of requirements by AGENTWORK.



309

ering the temporal structure of control actions has been that such control actions often do not only
hold for “a moment“ or “for ever“, but for a clearly specified time such as the next seven days. The
main motivation for the support of predictive adaptation and the handling of inter-workflow impli-
cations has been that workflow users and cooperation partners have more time to prepare them-
selves w.r.t adapted workflows. Thus, this thesis focussed especially on these requirements 1.3, 2.3,
and 3.
To meet these requirements without neglecting the other ones, this thesis has provided the follow-
ing approaches:

1. Logic-Based ECA Rules for Control Flow Failures (for central requirement 1 in Table 12-1)
To express which application events induce which actions for workflows (e.g., abort or suspend) or
activities (e.g., drop or add), ECA rules for control flow failures have been introduced. These ECA
rules are specified with ACTIVETFL, which is a temporal object-oriented logic that has been
designed for the purposes of this thesis. It combines a high expressiveness with a formal basement.
The ECA rules allow us to specify control flow failures on a high semantic level meaningful for
users such as physicians, without making any assumptions about the physical representation of
events and actions (requirement 1.1). In particular, on the event-side, these rules allow not only to
express single events such as the insertion of a new laboratory value into a database, but also com-
posite events with a complex temporal structure such as time series events (requirement 1.2). On
the action side, global and local control actions can be specified and provided with fixed or condi-
tional valid times, to specify for which time frame they hold (requirement 1.3). Furthermore, this
thesis has provided mechanisms to achieve the integrity of failure rules in terms of rule redun-
dancy, rule incompatibility, and rule termination (requirement 1.4). Additionally, an authorization
concept on the basis of staff member patterns has been implemented to restrict the application of
control actions to staff members that are qualified for this task (requirement 1.5).
Summarizing, the ECA failure rules provided by this thesis allow us to cover a broad range of con-
trol flow failures. This has been shown at least for the medical case. As medicine can be viewed as
one of the most complex application classes, it can be assumed that the provided rule approach is
suitable for many other application classes as well.

2. Strategies and Operators for Workflow Adaptations (for central requirement 2 in Table 12-1)
For the translation of control actions into workflow execution operations and structural adaptations,
several strategies and operator libraries have been implemented. In case of global control actions,
workflow abortion or suspension can be performed (requirement 2.1). In case of local control
actions, two different strategies are provided, namely predictive and reactive adaptation (require-
ments 2.2 and 2.3). The strategy of predictive adaptation is selected
• if a fixed valid time (such as for the next seven days) is assigned to the local control action so

that AGENTWORK can estimate which workflow part will be executed during the valid time, and 
• if it is known at the moment of the failure event w.r.t. which cases or resources those activity

nodes will be executed that match the activity pattern of the control action.
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If these conditions hold, the workflow part that is assumed to be executed during the assigned fixed
valid time is adapted predictively by applying structural adaptation operators to it. The needed
temporal estimations are performed on the basis of duration values that either have been specified
at workflow definition time or have been obtained by execution time measurements. A particular
strength of the estimation approach is that the duration of data flow processes such as requesting
data from a user interface is considered, and that the duration values are grouped along several
dimensions, such as the activity type, the staff member (group) or the application programs
executing the activity, and the day time. Furthermore, if multiple control actions affect one
workflow simultaneously, AGENTWORK determines a suitable order in which these control actions
should be processed to minimize and control so-called pull-in and push-out effects. When a
workflow has been adapted predictively, it is monitored after its continuation to check whether the
estimations match the execution reality. If necessary, the adaptations are corrected.
The strategy of reactive adaptation is selected whenever the conditions for predictive adaptation are
not met. For example, if a conditional valid time has been assigned to a control action it is impos-
sible to predict for how long the control action will hold. Another reason may be that though a fixed
valid time has been assigned, a temporal estimation is not possible because of unresolvable OR-
SPLIT nodes or missing execution duration values. Reactive adaptation checks a node directly
before it shall be executed, e.g., for a drop(A,C) control action it is checked for every node n that is
reached by the control flow during the valid time interval assigned to drop(A,C), whether n is based
on activity definition A and shall be executed for case C. If this is fulfilled, n is dropped from the
control flow.r57

Both strategies use a library of adaptation operators that perform the necessary adaptations on the
structural level by inserting or dropping single nodes, edges, or blocks.
For both adaptation strategies, the data flow implications are considered as well (requirement 2.4).
For example, if a node is dropped that should have provided its output objects for one of its succes-
sor nodes, a new data flow edge is generated to compensate the missing of these output objects.
This is done first by exploring the temporal neighborhood of the affected nodes or edges to check
whether there are any existing nodes that could provide the needed output objects. Then, new inter-
nal data flow edges are generated that map these output objects to the nodes or edges needing them.
If the local temporal neighborhood does not provide the needed objects, an F-Logic query is gener-
ated and assigned to an external data flow edge to retrieve the needed objects from an external data
source. However, limitations of the described data flow approach include that an intensive user
interaction may be needed (depending on the workflow structure), and that the complexity of gen-
erated F-Logic query expressions is limited, e.g., joins over different object extensions are not yet
possible.
Furthermore, the consistency of adapted workflows is supported (requirement 2.5). This has been
achieved by the introduction of several control and data flow constraints, such as that a conditional
branching has to be closed properly by a corresponding joining node, or that the input of an activity
node has to be completely provided by the data flow. By implementing the structural adaptation
operators in a way enforcing these constraints, and by not allowing any adaptation not using these
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operators, violations of these control and data flow constraints can be avoided. Furthermore, by
clearly specifying the workflow execution model on the basis of edge and node execution states
and by precisely stating for every adaptation operator how the execution states may have to be
adapted for affected nodes, unclear and inconsistent execution semantics of adapted workflows are
avoided.
For the efficiency of adaptations (requirement 2.6), no specific approach has been provided which
however can be neglected as AGENTWORK does not address real-time applications where this
would be a critical point.
Summarizing, the strategies and adaptation operators provided by this thesis allow to translate con-
trol actions into structural adaptations on the edge and node level in a way preserving the control
action’s semantics and the consistency of the workflow. In particular, whenever possible predictive
adaptation is selected as this gives the staff more opportunity to prepare itself w.r.t. new situations.

3. Mechanisms for Handling Inter-Workflow Implications of Control Flow Failures (for central
requirement 3 in Table 12-1)

Furthermore, an approach to deal with control flow failures for cooperating workflows has been
introduced. This approach allows to determine the temporal and qualitative implications a work-
flow abortion, suspension, or dynamic adaptation may have for cooperation partners (requirements
3.1 and 3.2). Temporal and qualitative constraints can be assigned to communication nodes so that
cooperation partners can specify in which time frame and quality range results should be provided.
If a workflow is aborted, suspended or dynamically adapted, it is checked by workflow estimations
and the application of quality transformation rules whether agreed-on temporal and qualitative con-
straints are violated. If this is the case, such constraint violations are immediately communicated to
affected cooperating workflow systems. The affected cooperation partner then can handle such a
constraint violation manually or by failure handling rules stating how to abort, suspend, or adapt its
own workflows to cope with the new situation. By this approach, the frequency of failure situations
inducing a workflow abortion, suspension, or dynamic adaptation but not reported timely to
affected cooperation partners can be reduced.

4. Prototypical Implementation
Finally, a prototypical implementation of the AGENTWORK system has been described. This imple-
mentation consists of an adaptation-oriented workflow management system that allows to define
ACTIVETFL-based workflows and to execute, abort, or suspend them. The internal representation
of workflow instances supports their dynamic adaptation. As its main contribution, the implemen-
tation consists of agent prototypes of the layer for handling control flow failures. In particular, an
implementation of the event monitoring agent is provided which uses the CORBA event service to
register events and which derives control actions from these events by CLIPS rules. Furthermore, a
simulation environment of the adaptation agent to evaluate workflow adaptations is provided.
Additionally, the implementation supports the integration into distributed and heterogeneous envi-
ronments by encapsulating the data sources and application programs of the AGENTWORK environ-
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ment within CORBA/C++ objects, and by translating all data and program requests generated at
workflow execution time to operator invocations on such CORBA/C++ objects.r317

12.2 Future Work
In the future, we plan to work on the following topics:

1. Implementation
An encouraging perspective is to use the ADEPTFLEX workflow management system [REICHERT
2000, HENSINGER ET AL. 2000] as core system for AGENTWORK. The ADEPTFLEX system has kindly
been provided by the database section (Head: Prof. Dr. Peter Dadam) of the Department of Com-
puter Science, University of Ulm, Germany, to check whether it can be integrated into the AGENT-
WORK system.
From the AGENTWORK perspective, the key advantage of ADEPTFLEX is that it provides a compre-
hensive set of adaptation operators (as described in 2.4.1) and that it provides a JAVA API to access
these adaptation operators by external programs. Thus, we will investigate 
• first whether we can replace the current AGENTWORK workflow definition and execution layer

by that of ADEPTFLEX, and
• second whether the adaptation agent can use the ADEPTFLEX adaptation operators to adapt work-

flow instances. 
Additionally, we will investigate whether other ADEPTFLEX components may be usable for AGENT-
WORK as well, such as its powerful organization modeler or its distribution layer which supports
the migration of workflow instances between different workflow engines.

2. Additional Control Actionsr318

In addition to the control actions introduced in this thesis, we want to investigate whether there are
further useful control actions that should be implemented, such as control actions that are able to
adapt not only activity nodes but branching conditions as well. For example, let us assume a cancer
patient who is very predisposed for infections. Let us furthermore assume that a workflow defini-
tion contains the conditional branching that some immunsuppressive cytostatic drug is only given
if the leukocyte count is higher then 1000 (otherwise, an alternative, less immunsuppressive drug is
administered). Then, for this infection patient it may be suitable to adapt this conditional branching
in the sense that the immunsuppressive drug is only applied when the leukocyte count is higher
then 1500 (instead of 1000), to avoid that his immune system is burdened too much.

3. Usage of Failure Rules to Construct Workflows
Another topic to investigate is not only to adapt existing workflows, but to dynamically construct
entire workflows to deal properly with unexpected situations. For example, in medical disciplines
such as intensive medicine some alert situations such as shocks require very patient-specific treat-
ment workflows which cannot be predefined as the order in which activities have to be executed
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can only be determined at execution time when all patient data is available. 
The construction of workflows could be done in a rule-based manner as follows: For every excep-
tional situation rules exist that describe how to behave in this situation (step (1) in Figure 12-1).
When an exceptional situation occurs, the respective rules are triggered which results in a set of
activities that should be executed. By using ordering heuristics such as that manual diagnostic
activities (e.g., checking blood pressure) can be executed in parallel to drug administrations (2),
this set of activities is then assembled to a control flow (3). By mechanisms described in Chapter 8,
data flow elements then can be added to the workflow. 
By this, the flexibility of rule-based systems can be combined with the strong operational support
of workflow systems.

Figure 12-1:  Dynamic construction of workflows.
A formal notation of the activities, ordering heuristics, and conditions has been omitted.

Check Blood
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AND-
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WHEN 
INSERT ON clinical-findings
WITH   new.type = “Anaphylactic Shock“
THEN add-repetitively(“Check Blood Pressure”, (5, min), Cnew) VALID-TIME [now, (4, hour)]
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END
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4. Deadline Management
So far, AGENTWORK does not address “intra-workflow“ deadline management in the sense that first
points in time can be assigned as deadlines to any activity node, and that second it is checked at
workflow definition or execution time whether these deadlines can be met. In AGENTWORK, such
deadlines can only be assigned to COMM-OUT/COMM-IN nodes to specify inter-workflow con-
straints for workflow collaboration scenarios (as described in Chapter 10). Intra-workflow deadline
management has been omitted in this thesis, as this topic has already been investigated by other
authors (e.g., [DADAM ET AL. 2000, BLAZEWICZ ET AL. 2001, EDER ET AL. 1999 A]).
However, for the practical usage of AGENTWORK such an intra-workflow deadline management is
required as this functionality is needed for many application classes. Therefore, we plan to add it to
AGENTWORK. As the estimation algorithms introduced in this thesis can be directly used to check
whether the execution of a workflow part can still be finished within a given time frame, the effort
to add such an intra-workflow deadline management can be viewed as manageable. Furthermore,
we plan to investigate methods to automatically adapt a workflow instance if deadlines cannot be
met anymore. For example, at workflow definition time some activity nodes could be marked as
optional and could be automatically dropped in case deadlines may be violated.

5. XML-Integrationr318

Due to the increasing importance of XML as a data interchange format, we plan to enable the
AGENTWORK communication and integration layer to communicate its data in XML format, espe-
cially for inter-workflow communication. For example, we will investigate to couple CORBA with
XML [VERMEULEN ET AL. 2000], or to replace CORBA by XML-based communication infrastruc-
tures such as BIZTALK [KOBIELUS 2000].

6. Enhanced Inter-Workflow Cooperation
As the AGENTWORK inter-workflow model obviously is simple, future work also has to concentrate
on more elaborated inter-workflow cooperation. For example, based on [HEINLEIN 2001], dynamic
dependencies resulting from general dependency constraints have to be considered as AGENTWORK
at the moment only allows to specify static dependencies at workflow definition time.

7. Empirical Evaluation
The simulation environment described in Chapter 11 can be only a first step of evaluation. There-
fore, we plan to integrate the AGENTWORK prototype into the HEMATOWORK project and to evalu-
ate it empirically under real-world conditions. In particular, this means that duration values and
workflow definitions have to be defined by physicians themselves (with the support of computer
scientists), and that dynamic adaptations of workflow instances have to be reviewed by experi-
enced physicians. Furthermore, it has to be checked whether measurements of activity and edge
executions improve the temporal estimations of the system.
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