6,465 research outputs found

    Synergy of Physics-based Reasoning and Machine Learning in Biomedical Applications: Towards Unlimited Deep Learning with Limited Data

    Get PDF
    Technological advancements enable collecting vast data, i.e., Big Data, in science and industry including biomedical field. Increased computational power allows expedient analysis of collected data using statistical and machine-learning approaches. Historical data incompleteness problem and curse of dimensionality diminish practical value of pure data-driven approaches, especially in biomedicine. Advancements in deep learning (DL) frameworks based on deep neural networks (DNN) improved accuracy in image recognition, natural language processing, and other applications yet severe data limitations and/or absence of transfer-learning-relevant problems drastically reduce advantages of DNN-based DL. Our earlier works demonstrate that hierarchical data representation can be alternatively implemented without NN, using boosting-like algorithms for utilization of existing domain knowledge, tolerating significant data incompleteness, and boosting accuracy of low-complexity models within the classifier ensemble, as illustrated in physiological-data analysis. Beyond obvious use in initial-factor selection, existing simplified models are effectively employed for generation of realistic synthetic data for later DNN pre-training. We review existing machine learning approaches, focusing on limitations caused by training-data incompleteness. We outline our hybrid framework that leverages existing domain-expert models/knowledge, boosting-like model combination, DNN-based DL and other machine learning algorithms for drastic reduction of training-data requirements. Applying this framework is illustrated in context of analyzing physiological data

    Abnormal ECG Classification using Empirical Mode Decomposition and Entropy

    Get PDF
    Heart disease is one of the leading causes of death in the world. Early detection followed by therapy is one of the efforts to reduce the mortality rate of this disease. One of the leading medical instruments for diagnosing heart disorders is the electrocardiogram (ECG). The shape of the ECG signal represents normal or abnormal heart conditions. Some of the most common heart defects are atrial fibrillation and left bundle branch block. Detection or classification can be difficult if performed visually. Therefore in this study, we propose a method for the automatic classification of ECG signals. This method generally consists of feature extraction and classification. The feature extraction used is based on information theory, namely Fuzzy entropy and Shannon entropy, which is calculated on the decomposed signal. The simulated ECG signals are of three types: normal sinus rhythm, atrial fibrillation, and left bundle branch block. Support vector machine and k-Nearest Neighbor algorithms were employed for the validation performance of the proposed method. From the test results obtained, the highest accuracy is 81.1%. With specificity and sensitivity of 79.4% and 89.8%, respectively. It is hoped that this proposed method can be further developed to assist clinical diagnosis

    Signal Processing Using Non-invasive Physiological Sensors

    Get PDF
    Non-invasive biomedical sensors for monitoring physiological parameters from the human body for potential future therapies and healthcare solutions. Today, a critical factor in providing a cost-effective healthcare system is improving patients' quality of life and mobility, which can be achieved by developing non-invasive sensor systems, which can then be deployed in point of care, used at home or integrated into wearable devices for long-term data collection. Another factor that plays an integral part in a cost-effective healthcare system is the signal processing of the data recorded with non-invasive biomedical sensors. In this book, we aimed to attract researchers who are interested in the application of signal processing methods to different biomedical signals, such as an electroencephalogram (EEG), electromyogram (EMG), functional near-infrared spectroscopy (fNIRS), electrocardiogram (ECG), galvanic skin response, pulse oximetry, photoplethysmogram (PPG), etc. We encouraged new signal processing methods or the use of existing signal processing methods for its novel application in physiological signals to help healthcare providers make better decisions
    • …
    corecore