
I. IntroductIon

Advances in signal processing techniques have fueled 
interest in analyzing and interpreting biological signals, 
including electrocardiogram (ECG) signals [1]. The ECG 
signal is a recording of the electrical properties of heartbeats 
that have become essential instruments in identifying 
cardiac problems or heart diseases [2]. Bundle branch 
block (BBB) is a ventricular conduction abnormality that 
leads to ventricular dyssynchrony and heart failure (HF). 
Because BBB and HF share the exact causes, it’s common 
to detect abnormal ventricular conduction with HF [3]. 
About one-third of patients with this comorbidity has a 
BBB diagnosed by the signal complexity criteria.

In most cases, there was a left bundle branch block 
(LBBB) related [4]. LBBB is a frequent ECG abnormality 

when the His-Purkinje system’s normal heart conductivity 
down both the anterior and posterior left fascicles is 
disrupted [5]. Signal complexity analysis of LBBB is an 
important predisposing factor for systolic heart failure 
and atrial fibrillation (AF) [6-8]. AF is a supraventricular, 
hemodialysis, uncoordinated electrical activation of 
the atria and an irregular [9]. LBBB and AF are among 
the most common heart failures and have similar ECG 
characteristics, so that they are difficult to distinguish 
when observed visually. 

Signal complexity analysis is thought to be able to 
provide discriminant features for the classification of ECG 
signals. Therefore in this study, we propose a method 
for automatic classification of ECG signals into normal, 
LBBB, and AF using a signal complexity approach. Sharma  
et.al  [10] has recently resumed work on developing 
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Abstrak—Penyakit jantung merupakan salah satu penyebab utama kematian di dunia. Deteksi dini beserta terapi 
merupakan salah satu upaya untuk menurunkan angka kematian penyakit ini. Salah satu instrumen medis yang 
paling umum digunakan untuk mendiagnosis gangguan jantung adalah elektrokardiogram (EKG). Bentuk sinyal 
EKG mewakili kondisi jantung normal maupun tidak normal. Beberapa cacat jantung yang paling umum adalah 
atrial fibrillation dan left bundle branch block. Deteksi atau klasifikasi sangat sulit apabila dilakukan secara visual. 
Oleh karena itu dalam penelitian ini, mengusulkan metode untuk klasifikasi otomatis sinyal EKG. Metode ini terdiri 
dari ekstraksi ciri dan klasifikasi. Metoda ekstraksi ciri yang digunakan berbasis teori informasi yaitu Fuzzy entropy 
dan Shannon entropy yang dihitung pada sinyal yang telah didekomposisi. Sinyal EKG yang disimulasikan terdiri 
dari tiga jenis: normal sinus rhythm, atrial fibrillation, dan left bundle branch block. Algoritma Support Vector 
Machine dan k-Nearest Neighbor digunakan untuk proses validasi dari metode yang diusulkan. Dari hasil pengujian 
diperoleh akurasi tertinggi yaitu 81,1%. dengan spesifisitas dan sensitivitas masing-masing 79,4% dan 89,8%. 
Dengan metode yang diusulkan ini, diharapkan dapat dikembangkan lebih lanjut untuk membantu diagnosis klinis.
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empirical mode decomposition (EMD)-based algorithms 
for the analysis and classification of ECG signals. One of 
them obtained high detection in identifying ECG signals 
complexity both sensitivity (99.96%) and specificity 
(99.81%) [11]. Entropy is another way of detecting and 
extracting ECG signal properties. Entropy measures have 
been successfully validated for evaluating short, sparse, 
and noisy time series data. In this study, we proposed 
Fuzzy entropy and Shannon entropy. The Fuzzy entropy 
is used to measure the subjective value of information 
under uncertainty and is applied to the seal assumption 
problem[12][13], then we compare its performance with 
Shannon entropy.

In the last stage,  we explored two popular machine 
learning models [14-18], Support Vector Machine (SVM) 
and K-Nearest Neighbours (KNN), to classify the normal, 
LBBB, and AF from the ECG signals. This work proposes 
an ECG classification algorithm based on the SVM that 
is widely used for the classification of feature extracted 
ECG [19][20] because of its simplicity, robustness, and 
effectiveness [21-23] which will be compared with the 
KNN method. The KNN method is often used to study 
ECG authentication [24-26]. 

As reminder, the paper organized as follow. In Section 
II, the overview of ECG dataset, EMD method, entropy 
methods, and classifier method. We move on with result 
and discussion in Section III. Conclusion, limitation, and 
future study are presented in Section IV.

II. MaterIal and Methods

The proposed classification method is depicted in 
Fig. 1. In the first stage, the raw ECG signal consisting 
of normal, AF, and LBBB is decomposed into five levels. 
Furthermore, measurements of Shannon and Fuzzy 
entropy were carried out on the decomposition signal. 
This process then generates a feature vector. The last 
stage is validation of the proposed system performance. 
The details of the proposed method are explained in the 
following sub-section.

A. ECG Dataset

The signals used in this study were obtained from the 
open database of ECG signals by Pławiak [27]. This dataset 
was collected from http://www.physionet.org PhysioNet 
[28] from the MIT-BIH Arrhythmia database [29]. ECG 
signals were recorded from forty-five patients using 200 
[adu/mV] amplification with a sampling frequency of 360 
Hz. Signals are recorded from one lead. This database 
consists of 17 classes: normal, pacemaker rhythm, and 15 
abnormal ECG classes. All signals have a length of 3600 

samples (10-seconds). In this study, the ECG signals used 
consisted of normal sinus rhythm (NSR), atrial fibrillation 
(AF), and left bundle branch block (LBBB) classes with 
the number of fragments 283, 135, and 103, respectively. 
Fig. 2 shows the ECG signal which is simulated in this 
study. At first glance, these signals have similarities so that 
they can be difficult to detect manually.

B. Empirical Mode Decomposition (EMD)

For nonlinear and non-stationary signal analysis, EMD 
is an adaptive, data-dependent decomposition method 
[30]. The intrinsic mode functions (IMFs) approach 
decomposes a signal into a finite collection of oscillatory 
components [10]. The original x (t) signal can be expressed 
as the sum of total K number of extracted IMFs from i=1  
and the final residual R(t) as seen in Eq. 1 [31].
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C. Fuzzy Entropy

Fuzzy entropy is a sample entropy derivative 
demonstrated to produce superior outcomes in some cases 
than sample entropy. In comparison to sample entropy, 
fuzzy entropy has a higher relative consistency and is less 
dependent on data length [32]. The fuzzy entropy using the 
logarithm function (H), is given by Eq. 2, where K =1/n 
is constanta, mk is the total number of signal, and mi is the 
membership function [33][34].
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D. Shannon Entropy

The entropy is the average information from all of the 
events. If it relates to the classical information entropy, 
Shannon entropy is given by Eq. 3 [35].

( )
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(3),
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k kH X P logP
=

= −∑

where H(X) is Shannon entropy that influenced by X as a 
random variables of signals, and Pk=(P1, P2 ,P3, ...., Pn) is 
a dimensional probabilities variable of  X.

E. Support Vector Machine (SVM)

The SVM concept creates a hyperplane that divides all 
training data into two groups or classes. Several designs 
are shown as members of two groups or classes in Fig. 3. 
Line-1 and Line 2 are two examples of different selectivity 

Fig. 1. The proposed method
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borders that can be used to find the optimal hyperplane 
[26].

The equation of line- linear SVM (f(x)) in Fig. 2 were 
given by Eq. 4 and Eq. 5 [36] [37]:
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The key idea of SVM is, given a set of n labelled 
examples N= {(x1, y1), …, (xn, yn)}, where αi is Lagrange 
multiplier, xi represents a dimensional vector of an image, 
yi ∈  {1,-1} is the label to find a hyperplane, and b is a 

hyperplane’s scalar threshold.
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where K(x, xi ) is polynomial kernel, x denotes a point on 
the hyperplane, σ is a positive real number [38].

F.  K-Nearest Neighbor (KNN)

Another well-known supervised learning strategy is 
KNN, which assigns a classification to a data point based 
on the proportion of its neighbors [39][40]. It chooses 

Fig. 3. The determination of hyperplane in SVM [26]

Fig. 2. Sample ECG signal from each class
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k samples from the training set that are closest to them, 
then approaches their class for a majority of votes, with k 
being an odd number to avoid ambiguity [41][42]. It uses 
distance measurements such as “Euclidean distance” to 
locate the neighbor [43][44].

III. results and dIscussIon

In this study, the signal was decomposed using EMD 

before feature extraction. The decomposition results of 
IMF-1 to IMF-5 signals are shown in Fig. 4 and Fig. 5. 
Fuzzy Entropy and Shannon entropy are then calculated 
on the decomposed signal. From this calculation, 10 
feature values are generated, consisting of 5 fuzzy entropy 
features and 5 Shannon entropy features. Fig.3 and Fig.4 
show the mean and p-value for each feature. For the all 
entropy-IMF, the mean of each method illustrates the 
disparities between classes, with overlapping standard 

IMF-1

IMF-3

IMF-5

IMF-4

IMF-2

Fig. 4. Average Fuzzy entropy of IMF-1 to IMF-5
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deviations. For both Fuzzy entropy and Shannon entropy, 
the difference with the lowest significance was found in 
IMF-2 (p<0.05).

Meanwhile, the most significant difference was found 
in the Shannon entropy IMF-4 with an F-value of 92.335 
and p<0.000, but still had overlapping standard deviations. 
From this observation, it is indicated that a higher IMF 
level tends to generate a higher significance difference. 
By observing these characteristics, it is possible that the 

accuracy does not reach 100%. The selection of specific 
features is not carried out in this study because all features 
generate the best accuracy.

From the statistical analysis, it is known that the 
proposed method provides discriminatory parameters 
among classes. Furthermore, the performance validation 
of the proposed method is carried out using the SVM 
and k-NN algorithms. The total number of predictors is 
10 predictors as input classifier. There are three scenarios 

IMF-1

IMF-3

IMF-5

IMF-4

IMF-2

Fig. 5. Average Shannon entropy of IMF-1 to IMF-5
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in this test: (1) Fuzzy entropy as a predictor, (2) Shannon 
entropy as a predictor, and (3) all values as predictors. 
Cross validation with k = 10 was employed for iteration 
of training data and test data. The test results for each 
scenario are presented in Table 1.

From this test, the best performance was obtained in 
scenario-3 with an accuracy of 81.1%, sensitivity of 79.4%, 
and Specificity of 89.8%. In the scenario with the highest 
accuracy, all entropy values are used as predictors. From 
this test, it is known that k-NN generates higher accuracy 
than SVM in all scenarios and kernel types. k-NN with the 
number of k = 7 produces better performance than k = 5 
although the increase in accuracy is not significant. From 
this test, it is also known that Shannon entropy produces 
higher accuracy than Fuzzy entropy, it can be interpreted 
that Shannon entropy provides better discriminatory 
features than Fuzzy entropy. This confirms the finding of 
the most significant difference in Shannon entropy IMF-4 
as mentioned above. 

Table 2 shows the confusion matrix from the scenario 
that produces the highest accuracy. The highest true 
detection was found in normal ECG and lowest in atrial 
fibrillation. Misclassification in Atrial fibrillation is most 
often detected as a normal ECG. Based on Fig. 4 and Fig. 
5, the mean and standard deviation of Fuzzy entropy and 
Shannon entropy in IMF-2 for atrial fibrillation and normal 
ECG groups have very similar features, also marked by a 
low significance F value. Therefore, the false detection of 
atrial fibrillation is higher than the others. To confirm it, two 
class classification simulations were performed: normal 
vs atrial fibrillation and normal vs LBBB. The simulation 
results are shown in Table 3. From this simulation it is 
also seen that normal vs atrial fibrillation cases have lower 
accuracy than normal vs LBBB cases. 

From this study, it is known that the proposed method 

can provide discriminatory features between normal, atrial 
fibrillation, and left bundle branch block ECG signals. The 
resulting detection accuracy is > 80% with high specificity 
although in the case of atrial fibrillation it still produces 
a fairly low accuracy. The accuracy of this study is not 
higher than that of the study [45], [46], however, this 
study simulates a case of ECG abnormality that is different 
from the previous study and this study still has a great 
opportunity to be explored further. The proposed method 
in this study can be considered for further exploration e.g. 
IMF selection or analysis using more IMF or combined 
with other feature extraction methods so as to generate 
higher detection accuracy. In addition, scenarios are 
needed to overcome data imbalances, for example by 
oversampling or down sampling.

IV. conclusIon

In this study, we propose a method for the automatic 
classification of ECG signals. The simulated ECG signals 
are of three types: normal sinus rhythm, atrial fibrillation 
and LBBB, and AF. The feature extraction used is based 
on empirical mode decomposition and information theory, 
namely Fuzzy entropy and Shannon entropy. Support 
vector machine and K-Nearest Neighbor algorithms were 
employed for the validation performance of the proposed 
method. From the test results obtained, the highest accuracy 
is 81.1%, with specificity and sensitivity of 79.4% and 
89.8%, respectively.  An important issue that becomes the 
limitation of this study is data imbalance, which may be 
overcome by oversampling or down-sampling. In future 
works, the study is still wide open for exploration, for 
example the use of other entropy methods, selection of 
IMF, and other classifiers. In addition, simulations are also 
needed for classification cases with more classes.

Predictor
SVM k-NN

Linear Polynomial k = 5 k = 7

Scenario-1 62.8 57.2 72.7 73

Scenario-2 60.5 62.2 78 78.8

Scenario-3 64.6 73 80.3 81.1

Predicted

AFIB LBBB Normal

A
ct

ua
l

AFIB (64.4%) 101 (11.1%) 12 (8.4%) 22

LBBB (9.9%) 15 (76.9%) 83 (1.9%) 5

Normal (23.7%) 36 (12.0%) 13 (89.7%) 234

Predicted

AFIB Normal

A
ct

ua
l AFIB 79.3% 20.7%

Normal 14.5% 85.5%

Predicted

LBBB Normal

A
ct

ua
l LBBB 89.3% 10.7%

Normal 6.7% 93.3%

Table 1. Classification test results based on scenarios

(a) (b)

Table 2. Confusion matrix of the highest accuracy for each scenario

Table 3. Confusion matrix of two classes classification. (a) for AFIB class and normal class, (b) for LBBB class and normal class
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