494 research outputs found

    On-site forest fire smoke detection by low-power autonomous vision sensor

    Get PDF
    Early detection plays a crucial role to prevent forest fires from spreading. Wireless vision sensor networks deployed throughout high-risk areas can perform fine-grained surveillance and thereby very early detection and precise location of forest fires. One of the fundamental requirements that need to be met at the network nodes is reliable low-power on-site image processing. It greatly simplifies the communication infrastructure of the network as only alarm signals instead of complete images are transmitted, anticipating thus a very competitive cost. As a first approximation to fulfill such a requirement, this paper reports the results achieved from field tests carried out in collaboration with the Andalusian Fire-Fighting Service (INFOCA). Two controlled burns of forest debris were realized (www.youtube.com/user/vmoteProject). Smoke was successfully detected on-site by the EyeRISTM v1.2, a general-purpose autonomous vision system, built by AnaFocus Ltd., in which a vision algorithm was programmed. No false alarm was triggered despite the significant motion other than smoke present in the scene. Finally, as a further step, we describe the preliminary laboratory results obtained from a prototype vision chip which implements, at very low energy cost, some image processing primitives oriented to environmental monitoring.Ministerio de Ciencia e Innovación 2006-TIC-2352, TEC2009-1181

    An Internet of Things approach for managing smart services provided by wearable devices.

    Get PDF
    The Internet of Things (IoT) is growing at a fast pace with new devices getting connected all the time. A new emerging group of these devices are the wearable devices, and Wireless Sensor Networks are a good way to integrate them in the IoT concept and bring new experiences to the daily life activities. In this paper we present an everyday life application involving a WSN as the base of a novel context-awareness sports scenario where physiological parameters are measured and sent to the WSN by wearable devices. Applications with several hardware components introduce the problem of heterogeneity in the network. In order to integrate different hardware platforms and to introduce a service-oriented semantic middleware solution into a single application, we propose the use of an Enterprise Service Bus (ESB) as a bridge for guaranteeing interoperability and integration of the different environments, thus introducing a semantic added value needed in the world of IoT-based systems. This approach places all the data acquired (e.g., via Internet data access) at application developers disposal, opening the system to new user applications. The user can then access the data through a wide variety of devices (smartphones, tablets, computers) and Operating Systems (Android, iOS, Windows, Linux, etc.)

    Software Platforms for Smart Cities: Concepts, Requirements, Challenges, and a Unified Reference Architecture

    Full text link
    Making cities smarter help improve city services and increase citizens' quality of life. Information and communication technologies (ICT) are fundamental for progressing towards smarter city environments. Smart City software platforms potentially support the development and integration of Smart City applications. However, the ICT community must overcome current significant technological and scientific challenges before these platforms can be widely used. This paper surveys the state-of-the-art in software platforms for Smart Cities. We analyzed 23 projects with respect to the most used enabling technologies, as well as functional and non-functional requirements, classifying them into four categories: Cyber-Physical Systems, Internet of Things, Big Data, and Cloud Computing. Based on these results, we derived a reference architecture to guide the development of next-generation software platforms for Smart Cities. Finally, we enumerated the most frequently cited open research challenges, and discussed future opportunities. This survey gives important references for helping application developers, city managers, system operators, end-users, and Smart City researchers to make project, investment, and research decisions.Comment: Accepted for publication in ACM Computing Survey

    Rapid prototyping for multi-application sensor networking

    Full text link
    Jorge Portilla, Teresa Riesgo, Ana Abril, and Angel De Castro, “Rapid prototyping for multi-application sensor networking,” Spie Newsroom, Spie, (2007). Copyright © 2015 SPIE Society of Photo‑Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.Developing integrated hardware interfaces for different actuators allows rapid and easy integration into existing wireless network

    Low cost indoor ultrasonic positioning implemented in FPGA

    Full text link
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. A. Sánchez, S. Elvira, Á. de Castro, G. Gonzalez-de-Rivera, R. Ribalda, J. Garrido, "Low cost indoor ultrasonic positioning implemented in FPGA", 35th Annual Conference of IEEEIndustrial Electronics, 2009. IECON '09, Porto (Portugal), 2009, pp. 2709 - 2714This paper presents a low cost indoor ultrasonic-based positioning system. This system allows the mobile nodes of a Wireless Sensor Network to know their location using radiofrequency and ultrasonics. To achieve this goal, a matrix of transmitting anchor points is installed whereas the mobile nodes receive these transmitted signals and estimate the time-of-flight of the ultrasonic signals. Using two time-of-flight measurements and trilateration equations, the location of the mobile nodes can be inferred in a 2-D space.This work has been partially supported by the CCG08-UAM/TIC-4258 project of the Comunidad de Madrid and UAM

    Wireless Intelligent Sensors Management Application Protocol-WISMAP

    Get PDF
    Although many recent studies have focused on the development of new applications for wireless sensor networks, less attention has been paid to knowledge-based sensor nodes. The objective of this work is the development in a real network of a new distributed system in which every sensor node can execute a set of applications, such as fuzzy ruled-base systems, measures, and actions. The sensor software is based on a multi-agent structure that is composed of three components: management, application control, and communication agents; a service interface, which provides applications the abstraction of sensor hardware and other components; and an application layer protocol. The results show the effectiveness of the communication protocol and that the proposed system is suitable for a wide range of applications. As real world applications, this work presents an example of a fuzzy rule-based system and a noise pollution monitoring application that obtains a fuzzy noise indicator
    corecore