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The propagation approach of a botnet largely dictates its formation, establishing a foundation of bots for future exploitation. The
chosen propagation method determines the attack surface and, consequently, the degree of network penetration, as well as the
overall size and the eventual attack potency. It is therefore essential to understand propagation behaviours and influential factors
in order to better secure vulnerable systems. Whilst botnet propagation is generally well studied, newer technologies like IoT have
unique characteristics which are yet to be thoroughly explored. In this paper, we apply the principles of epidemic modelling to IoT
networks consisting of wireless sensor nodes. We build IoT-SIS, a novel propagation model which considers the impact of IoT-
specific characteristics like limited processing power, energy restrictions, and node density on the formation of a botnet. Focusing
on worm-based propagation, this model is used to explore the dynamics of spread using numerical simulations and the Monte
Carlo method to discuss the real-life implications of our findings.

1. Introduction

IoT networks are increasingly becoming a feature of our digi-
tal landscape. These networks consist of devices with sensing
capabilities designed to collect data on the environment,
which is then forwarded via sink nodes to be processed. This
data can then be used to learn about customers, improve
efficiency, or supplement services. IoT sensor networks are
characteristically different to conventional networks. Sensor
devices are low powered and often use batteries as their
primary source of energy. Therefore, energy efficiency is a
priority. These power restrictions mean that devices have
limited processing capabilities, which often results in poor
security. Sensor networks also tend to be dense. This is due
to the requirements of data collection (i.e., the types of data
desired and the coverage needed). These unique characteris-
tics have an influence on the propagation of malware and the
development of potential botnet threats.

In 2016-17, the Mirai botnet was able to gain traction and,
as a result, grabbed public attention with a series of high-
profile, large-scale DDoS attacks [1]. Using a relatively simple
propagation approach, Mirai was able to quietly spread to

many devices, estimated to be around 600,000 at its peak [2].
This provided a large pool of bots to draw from, resulting in
DDoS attacks with a huge force of 620 Gbps against a security
blog [1, 3] and 1.1 Tbps against a French Internet provider
[1], both in 2016. The events around Mirai demonstrate the
prominent threat of botnets in the IoT space. Tomakematters
worse, Mirai’s source code was made public, and multiple
spinoffs and copycats have already been reported including
Persirai [1], BrickerBot [1], and HideNSeek [4].

Propagation is typically a difficult process to detect and
to observe. This is because different vulnerabilities emerge
across different technologies, various services or functions
can serve as propagation vectors, and we collectively lack
experience with widespread implementation of new tech-
nologies like IoT or IPv6. Consequently, the initial propa-
gation process tends to be revealed in hindsight, only after
an existing infection has been identified. Therefore, we use
modelling approaches based on our understanding of the
technology and experience with historic attacks to predict
propagation dynamics and to explore influential factors.

We apply this approach by building IoT-SIS, a model
of botnet propagation through IoT-based wireless sensor
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networks, focusing on the unique characteristics of IoT that
differentiates it from other types of network. IoT-SIS itself
is based on epidemiological concepts and uses the SIS (Sus-
ceptible, Infected, Susceptible) paradigm as its foundation. In
conducting this research, we hope to better understand how
botmasters may approach IoT networks and what factors are
most influential from a defensive perspective. This includes
a consideration of the botmasters requirements, such as the
need to balance the acquisition of new bots with the need to
sustain the existing bot population. This topic is not currently
well studied, and we hope to address this with the following
contributions:

(i) A novel SIS-based model, called IoT-SIS, of IoT-
based worm propagation and botnet formation

(ii) An in-depth exploration of the relationships between
various factors (such as bot activity, node hardware,
and deployment scheme) via simulations

(iii) An analysis of the model using the Monte-Carlo
simulation method

The paper is organised as follows: Section 2 provides a
background on epidemiological modelling, IoT, and known
IoT-based botnets. Section 3 defines the model and describes
the parameters, with rationale for each choice. In Section 4,
we outline our simulation setup and present our results.
Section 5 discusses our findings and makes suggestions for
defence and future work. Examples of related work are
presented in Section 6, and we conclude in Section 7.

2. Background

2.1. EpidemicModelling. Themedical field of epidemiology is
the study of disease incidence in populations, used to analyse
spread dynamics and to measure potential immunisation
strategies. Based on the work of Kermack and McKendrick
[5], epidemic principles are used to mathematically model
the outbreak of infectious diseases where scientific experi-
mentation is not feasible or ethical [6], allowing researchers
to predict possible impact factors in transmission dynamics,
which then feeds into the development of public health
policies [6]. Epidemic modelling was introduced to cyberse-
curity by Kephart and White [7] in their study of computer
viruses, where they used populations of computer systems,
substituted malware for diseases, and based contact on
network communication graphs. This has developed further
to apply to various types of malware, including botnets where
such models allow us to consider the factors impacting the
size of bot populations.

Epidemic models consist of states or compartments, cou-
pled with some transition conditions that determine when
a node moves from one state to another. These models are
sometimes referred to as compartmental models, as the total
population is divided amongst a number of compartments
based on their current status [6]. States (or compartments)
are designed to abstractly describe the current role played
by nodes, encapsulating any behaviours and characteristics
that may be associated with that role. The number of states
reflects the number of possible roles that nodes may take.The

system is then measured by considering rates of change and
calculating the number of nodes within each compartment
over time. In compartmental models, transitions are typically
defined as a system of differential equations, commonly
featuring elements such as the rates of contact, infection,
recovery, births, and deaths.

The most basic epidemic model is SI, consisting of the
Susceptible (S) and Infected (I) states. ‘Susceptible’ describes
a vulnerable individual who has not yet been infected,
whilst ‘Infected’ tends to denote an individual who is both
a carrier and a propagator of the pathogen. Nodes would
then transition from S to I at the rate of infection. The SIR
model adds the Recovered (R) state to represent individuals
who have been healed and subsequently gained immunity.
Nodes will transition from I to R at the rate of recovery.
An alternative is SIS, where recovered nodes do not gain
immunity but instead return to their previous susceptible
status. Finally, the SEIR model adds the Exposed (E) state
to denote infected individuals who are either asymptomatic
or not able to pass on the pathogen until they transition
into the I state. This is used where the incubation period
of diseases needs to be considered. Basic versions of the
epidemic models are generally deterministic but may include
probabilistic elements. Stochastic versions of these models
tend to use Markovian Processes or stochastic differentials
[6].

In this work, the model incorporates probabilistic ele-
ments to more accurately represent the likelihoods of contact
and infection. Additionally, we based our approach on the
SIS format. This is because IoT malware often runs in the
RAM and is not persistent, meaning that rebooting can
clean the sensor of an infection. However, the node does
not gain immunity. Meanwhile, devices which are recovered
via patching are likely to fall victim to the same malware
again because bots frequently receive updates containing
new exploits. Hence, in both scenarios, it is realistic to
consider recovered nodes susceptible to reinfection rather
than permanently immune.

2.2. IoT Sensor Networks. IoT sensor networks consist of
wireless sensor nodes, which are small devices equipped
with the ability to sense the environment and to perform
small computations [8]. Devices form a wireless sensor
network (WSN) to collaboratively sense and respond to
the environment [8] and also to communicate with IoT-
enabled devices like routers, allowing access to the wider
infrastructure for data retrieval and processing. WSNs are
made up of sensor nodes and sink nodes. Sink nodes act as
a hub for data collection and as a gateway for the WSN [9].
Users may observe the IoT-based WSN directly, via a local
IP-based network, or remotely over the Internet and can send
commands via sink nodes [9].The defining characteristics of
WSNs are summarised in Table 1.

Sensor nodes consist of 4 base parts: the power unit,
the sensor, the processor, and the radio [9]. The sensor
measures environmental variables, whilst the radio handles
communication. The processor arranges tasks and deals
with the conversion of data into signals for transmission,
whilst the power unit consists of the node’s battery pack
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Table 1: Key characteristics of IoT sensors in WSNs.

Characteristic Description
Restricted energy Nodes must conserve their batteries.
Restricted processing Limited capacity due to low power.
Dense deployment [9] High density for better coverage.
Application-specific [9] Designed for particular sensing tasks.
Many-to-one traffic Many nodes forward data to 1 sink.

[9]. The processor also manages sleep cycles, used by nodes
to conserve power. Typically, the most energy-consuming
function is the exchange of data, with the degree of energy
required increasing exponentially the further the data needs
to travel [9]. Hence, node density and deployment patterns
must be considered carefully.

The IoT stack is structured similarly to the TCP/IP stack
with 5 horizontal layers defining end-to-end communication
from the physical medium (layer 1) up to the application
(layer 5). It also includes additional vertical ‘planes’ [9],
representing processes which must be managed at each layer.
These are (a) Power (i.e., the sharing of power between node
functions), (b) Mobility (i.e., the tracking of nodes), and (c)
Tasks, (i.e., communication, message detection, and sensing
activities). Protocols at each layer must address the 3 vertical
processes [8].

For the botmaster, these processes may highlight areas of
vulnerability. For example: (a) high-power consumption on
infected nodes can result in node death, (b) node mobility
can be exploited to join WSNs in Sybil-style attacks, and (c)
task schedules may be manipulated to steal information. For
captured nodes, these processes also need to be considered
as part of the botnet’s maintenance. In the Power plane,
the botmaster must limit bots’ activity levels to avoid power
depletion as this would hurt their propagation gains. In the
Tasks plane, this may involve the cancellation of scheduled
tasks or the disabling of services. Meanwhile, in the Mobility
plane, GPS tracking on mobile nodes may reveal new targets.

There are currently several IoT communication stan-
dards available; in this work, we focus on 6LoWPAN (IPv6
over Low-Power WPAN) and RPL (Routing Protocol for
Low-Power and Lossy Networks) [10] which are designed
specifically for LLNs (Low-Power and Lossy Networks) (i.e.,
constrained networks) such as IoT-based WSNs [10]. Based
on the IEEE 802.15.4 network standard, they provide IPv6-
based routing functionality [8] to connect sensor networks
to IP networks. The migration to IPv6 is necessary due to the
massively increased number of Internet-connected devices
in need of unique identifiers [8]. 6LoWPAN runs on low-
energy sensor devices and adds an interface layer to allow
compatibility between the IP-based routing and the lower
IEEE 802.1.5.4-based layers [8].

RPL arranges nodes into DoDAGs (Destination-orien-
tated Directed Acyclic Graphs) to enable routing. In these
graphs, nodes form parent-child relationships, anchored by
a root node which is the edge router connecting the WSN
to the IP network. Parent-child relationships are based on
an OF (Objective Function), a user-defined metric for route

optimisation [11]. The neighbour representing the optimum
path towards the root is hence selected as the preferred
parent. Consequently, IEEE 802.15.4 also allows nearby nodes
to have P2P-based communication.

2.3. IoT Botnets. Mirai caused widespread disruption during
2016 and 2017 with a series of large-scale DDoS attacks.
According to [2], 65,000 devices were infected in 20 hours,
and the botnet achieved a peak size of 600,000 nodes [2].
Mirai uses worm-based propagation, which is characterised
by periods of scanning for vulnerable devices, reportedly
targeting IoT-enabled cameras, routers, printers, and video
recorders during its “rapid scanning phase” [1, 2]. The
malware sends TCP SYNmessages to random IPv4 addresses
on ports 23 and 2323. For successful connections, it then tries
to access the device using a dictionary attack based on 62
commonly used default logins credentials. If successful, the
logins and the device IP are recorded on a server which then
triggers a loader to download the malware on to the target
[2]. Mirai sometimes kills existing processes [2], which may
be a defence against other malware or a method of preserving
energy. Antonakakis et al. [2] noted that Mirai’s scanning
rates and subsequent infection rates were lower than that of
other known worms such as Code Red or Blaster, suggesting
that limited device capacity may be the cause.

AfterMirai’s source codewasmade public, several deriva-
tives have been reported [1]. One such derivative is the worm-
based bot Persirai. Discovered in April 2017, it reportedly uses
port 81 and known exploits to gain access to password files
on IoT webcams before targeting routers via UPnP exploits
[1]. BrickerBot, also identified in April 2017, uses default
SSH logins and known exploits to permeate IoT devices,
before corrupting firmware and generally debasing devices to
make then unusable [1]. More recently, BitDefender reported
a botnet called HideNSeek, detected in January 2018 [4].
Suggested to be in its expansion phase, it propagates by
randomly scanning the IP space with SYN connections on
ports 23, 2323, 80, and 8080 [4], and when a connection is
established, attempts a Mirai-style dictionary attack.

The IoT botnets observed to date find victims by scanning
the network, target similar open ports, and use exploits or
weak credentials for penetration. Overall, they are charac-
terised by their simplicity, using worm-based propagation
for the majority of infections. This suggests that IoT is
not yet well understood by users and is hence lacking the
required security measures. Whilst the choice for simple
propagation methods may be related to device limitations,
this also makes IoT an attractive target for botmasters despite
device constraints. If nodes’ power and other resources are
well managed, the botnet can quickly infect many low-
capacity devices, resulting in a sizable attack force. This was
demonstrated in the case of Mirai [1] and will likely be seen
in its derivatives as well.

3. Proposed Model

We developed IoT-SIS, a novel propagation model to
explore the characteristics of IoT networks and the bot-
nets targeting them. The model’s starting scenario assumes
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Figure 1: Flowdiagram of proposed IoT-SISmodel with states and
key transitions.

that there is an existing infection and seeks to measure
how quickly and widely this might spread. Note that we
specifically focus on battery-powered IoT devices in order
to understand the impact of energy consumption in this
context. For simplicity, we make the following assumptions:
(1) a static network, i.e., nodes have no mobility, (2) a
deterministic deployment layout, i.e., static and predefined,
(3) node homogeneity, i.e., nodes consist of similar devices
with the same functionality and properties [9], and (4) a
mesh topology, i.e., nodes are connected directly to many
other nodes, unlike in a star topology. We do not consider
the source of infection, or the impact of sleep cycles (the
schedules of which will be different for each scenario).

IoT-SIS is based on the SIS paradigm from epidemiol-
ogy. Given a population of nodes N, a set of compartments
represent possible node states. Then, differentials are added
to describe the rates of change between the proportional
node populations. Susceptible S nodes are free of malware
but vulnerable to infection; this is the default state of nodes.
Infected I nodes are carriers who can transmit the infection.
Given a series of time-steps represented by t, the number of
nodes within each state is a fraction of N such that

𝑁 = 𝑆 (𝑡) + 𝐼 (𝑡) =
𝑆

𝑁
+

𝐼

𝑁
(1)

Successful contacts, followed by successful transmission
events, cause nodes to pass from S to I. The I nodes are
categorised based on the nature of the infection event which
led to their transition. The model is illustrated in Figure 1
and mathematically defined by the following system of
differentials:

𝑑𝑆

𝑑𝑡
= −𝛽𝑅𝑆𝐼 − 𝛽𝐿𝑆𝑙𝑜𝑐𝐼 − 𝛽𝑃𝑆𝑛ℎ𝑏𝐼 − 𝑑𝑡ℎ𝐵𝑆 + 𝛼𝐼 (2)

𝑑𝐼𝑅
𝑑𝑡

= 𝛽𝑅𝑆𝐼 − 𝛼𝐼𝑅 − 𝑑𝑡ℎ𝐵𝐼𝑅 − 𝑑𝑡ℎ𝑅𝐼𝑅 (3)

𝑑𝐼𝐿
𝑑𝑡

= 𝛽𝐿𝑆𝑙𝑜𝑐𝐼 − 𝛼𝐼𝐿 − 𝑑𝑡ℎ𝐵𝐼𝐿 − 𝑑𝑡ℎ𝐿𝐼𝐿 (4)

𝑑𝐼𝑃
𝑑𝑡

= 𝛽𝑃𝑆𝑛ℎ𝑏𝐼 − 𝛼𝐼𝑃 − 𝑑𝑡ℎ𝑃𝐼𝑃 − 𝑑𝑡ℎ𝑃𝐼𝑃 (5)

where

(i) S is the total susceptible population.
(ii) 𝑆𝑙𝑜𝑐 is the fraction of S in the local network (of a node).
(iii) 𝑆𝑛ℎ𝑏 is the fraction of S in the neighbour set (of a

node).
(iv) I is the total infected population, 𝐼 = 𝐼𝑅 + 𝐼𝐿 + 𝐼𝑃.
(v) 𝐼𝑅 is the fraction of I nodes infected via random

scanning.
(vi) 𝐼𝐿 is the fraction of I nodes infected via local scanning.
(vii) 𝐼𝑃 is the fraction of I nodes infected via P2P.
(viii) 𝛽R is the random scanning-based infection rate.
(ix) 𝛽L is the local scanning-based infection rate.
(x) 𝛽P is the P2P-based infection rate.
(xi) 𝑑𝑡ℎ𝐵 is the death rate due to standard activities.
(xii) 𝑑𝑡ℎ𝑅 is the death rate driven by random scanning.
(xiii) 𝑑𝑡ℎ𝐿 is the death rate driven by local scanning.
(xiv) 𝑑𝑡ℎ𝑃 is the death rate driven by P2P communication.
(xv) 𝛼 is the recovery rate.

Nodes are lost from the S state at the rate of infection.
Infections may be based on random scanning (R), local
scanning (L), or P2P communication (P). Nodes transition
into the I subset which aligns with their infection type. Nodes
are lost from the I state at the rate of recovery and transition
back into S. We also consider death rates. Nodes may die of
‘natural causes’ at the benign death rate 𝑑𝑡ℎ𝐵. Nodes may die
due to malicious activity at the malicious death rates. These
parameters are described in more detail in the following
subsections.

3.1. Network Structure & Population. Conceptually, the net-
work is made up of multiple M interconnected WSNs. The
total population N is divided amongst these WSNs:

𝑁 = 𝑊𝑆𝑁1 + 𝑊𝑆𝑁2 . . .𝑊𝑆𝑁𝑀 (6)

These WSNs may be connected directly, via IP-based
infrastructure networks, or via the Internet. For simplicity,
we do not define a separation between these connectivity
types and assume that infection type is more relevant. Hence,
the model view encompasses the collection of WSNs. We do
consider the type of infection associated with the different
connectivity types as follows:

(i) Inter-WSN: traffic is routed over layer 3, with targets
found via random scanning.

(ii) Intra-WSN: traffic is routed over layer 3, with targets
found via local scanning.

(iii) Between neighbours: traffic is exchanged via P2P
over layer 2, with targets based on P2P relationships.

This means that each infection method has a different
attack surface, consisting of different proportions of the S
population. If a given I node uses random scanning, it has
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access to all of S, whereas with local scanning it can only
reach the proportion of S which is local to it. Similarly, this
node can only reach its direct neighbours if it uses P2P-
based propagation. This is detailed further in the coming
sections.

We assume that the population has a finite number of
nodes; i.e., there are no births into the system. Nodes may
be removed from the population via deaths, either ‘naturally’
due to standard end-of-life or wear-and-tear or as a direct
result of bot infections. Natural deaths occur in both S and
I populations, whilst bot deaths only occur within the I
population.

3.2. Infection Rates. There are 3 infection rates, each repre-
senting a different propagation method. For each, the in-
fection rate 𝛽 is

𝛽 = 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑟𝑎𝑡𝑒 × 𝑃𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 (7)

where 𝑃𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 is the transmission probability (i.e., the
infection probability per contact). This is sampled from
a Poisson distribution, where 𝜆 is the mean number of
successful transmissions of the infection per contact per time
for a single I node.Hence, it is the proportion of total contacts
per time which lead to infection. The Poisson distribution is
applicable where events are discretely measured, and where
event occurrence is rare per given period [13]. Transmissions
can be counted discretely as individual events and, given a
wider network of WSNs, should be relatively rare. Further-
more, the probability of an I node causing an infection does
not change over time, and previous successful or unsuccessful
attempts do not impact the chances of future attempts [13].

Additionally, any increase in the number of infections
is caused by the growth of the I population rather than an
increase in the infection rate. Hence, transmission events are
independent. Given the scanning rates of known botnets,
we can estimate the proportion of contacts which result in
successful transmissions and, hence, estimate a value for 𝜆.
The total I population is split into 3 subsets to match the
infection methods: random scanning, local scanning, and
P2P. Note that these sets represent how the nodes became
infected, but any I node may perform any kind of infection.

Theoretically, a worm-based bot malware may use 1, 2,
or all 3 of these infection types. Random scanning of the
IP address space has been observed frequently in worm-
based propagation, e.g., Mirai [2]. Meanwhile, HideNSeek
reportedly changes its behaviour if the infected IP is within
the same LAN as the infecting source node [4]. When local,
a TFTP connection is used to download the malware from
the source node. Otherwise, it must be downloaded remotely
[4]. Additionally, HideNSeek is described as a P2P botnet [4].
IEEE 802.15.4 allowsP2P communication between neighbour
nodes. Meanwhile, users often are not aware of the full
functionality of their IoT devices. Thismeans that it is feasible
that IoT-targeting bots will further exploit P2P as a contact
vector.

3.3. Propagation Mechanisms. Scanning-based propagation
requires nodes to make connections to remote nodes which

they then attempt to gain access to. However, connection
attempts may be unsuccessful because the IP does not
correspond to an active node, the target device is not running
targeted services, or due to simple network error. Hence, the
random-scanning contact rate is defined:

𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠 𝑝𝑒𝑟 𝑡𝑖𝑚𝑒 = 𝑠𝑐𝑎𝑛𝑠 𝑝𝑒𝑟 𝑡𝑖𝑚𝑒 × 𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠 (8)

where the 𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠 is the probability of connection success,
sampled from a Poisson distribution with 𝜆 defined as
the mean number of connection events. Random-scanning
behaviour will target the whole S population, including
remote WSNs, and hence it is feasible to assume that this
will result in some unsuccessful connections. In contrast, we
would expect more local scans to be successful and most P2P
connections to be successful.Therefore, this is reflected in the
definitions of the infection rates.

3.4. Subsets of S Population. Given a network space made
up of multiple WSNs, random scanning relies on routing to
scan the entire IP address space and hence targets the whole
S population (i.e., all S nodes across all the WSNs). Local
scanning is similar but targets the local IP address space (i.e.,
within a single WSN). Directly connected neighbours use
P2P, and hence P2P-based propagation targets only a node’s
neighbour set. In short, each infection method has access to a
different proportion of the available S population. Where loc
is the mean number of nodes in 1 average WSN, we define
𝑆𝑙𝑜𝑐 as the fraction of the total S population within a local
network.This determines the attack surface of local scanning.
Similarly, where 𝑛ℎ𝑏 is the mean number of nodes within the
neighbour set of 1 average node, 𝑆𝑛ℎ𝑏 is the fraction of the
total S population which makes up the attack surface of P2P
infections.

We find the fraction of N within each WSN (assuming
that all WSNs are of the same size) and then take that percent
of the current S population to find the final 𝑆𝑙𝑜𝑐 value. This
means that the target population accessible via local scanning
is always capped. Similarly, we find the fraction of N within
each neighbour set and then take that percent of the current
S population to find 𝑆𝑛ℎ𝑏. The mean size of a P2P neighbour
set will be a function of the node distribution scenario, the
average node transmission range, and the total nodes per
WSN.

3.5. Deployment Setups & Neighbour Sets. Before RPL arran-
ges nodes into DoDAGs for routing and IP connectivity, each
node can form layer 2 P2P relationships with neighbours who
are within its transmission range. Hence, each node has a
P2P neighbour set associated with it. We make the following
assumptions:

(i) All nodes have the same transmission range.

(ii) Nodes are uniformly distributed (i.e., equally spaced).

(iii) WSNs have uniform node counts and deployment
areas.
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For a uniform distribution, the node density (per unit of
space) is defined by (9). Given the node transmission range,
the number of neighbours per node is given by (10).

𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑡𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠

𝑑𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 𝑎𝑟𝑒𝑎
(9)

𝑛𝑜. 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 × 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑛𝑔𝑒 (10)

3.6. Deaths. We assume that the energy spent on sensing
and processing is negligible in comparison to the energy
spent on sending and receiving transmissions. Hence, we
focus only on the energy consumed for communication in
this model. Significantly, this will be directly impacted by
the propagation activities of bot-infected nodes. Excluding
random errors or physical tampering, nodes deaths are
caused primarily by power depletion. All nodes consume
energy when sending/receiving traffic which is part of their
normal operation. Hence, the benign (i.e., ‘normal’) death
rate depends on the normal contact rate of nodes.

If we assume that bot nodes send and receive additional
traffic, then the contact rate of infected nodes should be
higher than for S nodes. Therefore, alongside the normal
contact rate, we also introduce a malicious contact rate.
Death rate caused by malicious behaviour then depends on
the malicious contact rate. Propagation can be attributed to
this additional traffic, and subsequently the infection rate
depends on the malicious contact rate as well. Hence, bot
nodes should die at standard rate plus the malicious rate.
Node death rate (dths) is dependent on the amount of trans-
mitted data, the transmission distance, and the characteristics
of the node as follows:

𝑝𝑜𝑤𝑒𝑟𝑚𝑠𝑔 = 𝜇 × 𝑚𝑒𝑎𝑛 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑠𝑖𝑧𝑒 × 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (11)

𝑝𝑜𝑤𝑒𝑟𝑡𝑖𝑚𝑒 = 𝑝𝑜𝑤𝑒𝑟𝑚𝑠𝑔 × 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑟𝑎𝑡𝑒 (12)

𝑛𝑜𝑑𝑒 𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛 = 𝑡𝑜𝑡𝑎𝑙 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 × 𝑝𝑜𝑤𝑒𝑟𝑡𝑖𝑚𝑒 (13)

𝑑𝑡ℎ𝑠 =
1

𝑛𝑜𝑑𝑒 𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛
(14)

where the 𝜇 is the mean power needed to transmit 1B of data
1m in distance, 𝑝𝑜𝑤𝑒𝑟𝑚𝑠𝑔 is the power required per message,
𝑝𝑜𝑤𝑒𝑟𝑡𝑖𝑚𝑒 is the power consumed per time, and distance refers
to how far apart nodes are spaced, defined by

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝑑𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 𝑎𝑟𝑒𝑎

𝑛𝑜. 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠
(15)

Given themesh setup of the sensor network, nodes should
always forward traffic to an immediate neighbour, regardless
of whether the destination node is nearby or in a remote
WSN. Hence, exchanging data with an immediate neighbour
will consume as much power as exchanging data with a
remote node. As benign andmalicious activities have separate
death rates, there may also be different contact rates and
message sizes associated with them. Since the infected death
rate is the inverse of the infected lifespan, a longer lifespan
should result in a lower death rate and vice versa. If an

I node performs no malicious activity (malicious contact
rate=0), it lives out the normal lifespan. If an I node performs
no normal activity (benign contact rate=0), it lives out the
infected lifespan. If an I node performs both types of activity,
its lifespan is shortened, proportional to the contact rate of
each traffic type. Therefore, bot nodes are more likely to die
earlier. Note that each infection type has its own death rate,
driven by the relevant contact rate.

3.7. Recovery. The recovery rate 𝛼 depends on the behaviours
of network defenders, including how active they are in their
monitoring and how effective they are at identifying and
cleaning I nodes. Hence, it is plausible for us to control
the recovery rate directly to determine what level and type
of engagement is necessary to effectively mitigate botnet
spread. For instance, we can increase or decrease recovery
rate to observe the impact of faster or slower interventions.
Therefore, 𝛼 can be estimated by the user of the model.
Since all the nodes in a single WSN will be serving the same
purpose, it is plausible to assume that they are of the same
hardware and running the same software [14]. Hence, a single
patch type should address infections caused by a single worm
strain.

4. Simulations

4.1. Setup. Our aim was to test the population dynamics
and parameter relationships in the model under different
conditions. To achieve this, we ran a series of manual
numerical simulations with different input values fromwhich
we gained an understanding of these relationships. This was
followed by a formal Monte Carlo simulation to generate a
range of outputs and to understand the likelihoods of these
outcomes based on our starting assumptions.

Botnets have particular requirements. For instance, they
usually need to collect as many bots as possible to have a
sufficient attack force. They then need to be able to sustain
that population over time in order to launch successful
campaigns. To address this, the model principally covers
2 planes: space and power. The spatial aspects of IoT-
based bot propagation relate to the infection types and their
corresponding attack surfaces. This determines the reach of
the infection. The power aspects are addressed through the
contact rates and the death rates. This determines the power
depletion applied on the nodes. This setup also aligns with
2 defining characteristics of IoT networks, which are dense
node deployment and limited power availability. Based on the
model’s 2 planes, we predicted the following:

(i) There is a significant relationship between infection
rate and malicious death rate.

(ii) Power dynamics will be different for dense infected
networks vs. sparse infected networks.

(iii) There is a relationship between propagation attack
surface, the bot count, and the spatial distribution of
bots.

The model itself is programmed as an R script [15].
We chose to use R because it is both powerful and free,



Security and Communication Networks 7

Table 2: Inputs for the Monte Carlo simulation.

Parameter Input Explanation

Message size Normal dist. sample, mean=50B,
sd=5B Mirai scans less than 250B/sec [2]. Scales with contact rate.

Max power 864000mAs Typical sensor battery capacity of 240mAh [12]. Converted into mAs.
Power used {0.5mA, 0.75mA, 1mA} To send 1B 1m. Estimated from 30mA peak for node [12].
Contact rates {1/s, 10/s, 20/s} IoT-based worms should be relatively slower than standard worms.
Recovery rate {0.25, 0.5, 0.75} Estimated by us based on degree of security engagement.
WSN count {1, 5, 10} Range of sensor networks available.
Trans. range {10m, 100m} Typical range is 10m, we also test larger theoretic range of 100m.
Deployment area {50m2, 100m2} Small and large deployment regions. Will change with application.

allowing for complex operations andmaking our process eas-
ily repeatable by others. The script uses the deSolve package
[16] to solve the differential equations in the model system
and the MonteCarlo package [17] to run the simulations.
Table 2 summarises our input ranges. Due to the costly nature
of running Monte Carlo simulations, and the number of
parameters included in the model, the input range for the
Monte Carlo process must be limited, whilst keeping the
values meaningful. Our approach here is inspired by [18].The
aim is to include high and low values to cover a wide-enough
range of possible outcomes. The Monte Carlo outputs were
averaged over 100 iterations, and each run of the model goes
through 100 time-steps. The results of a relationship analysis
and simulations are detailed in the next subsection.

4.2. Results. Figures 2(a), 2(b), and 2(c) show the Monte
Carlo histograms for the sizes of the infected populations at
the final time step. As expected, random scanning has the
largest impact on the network due to having the largest attack
surface. Hence, the 𝐼𝑅 population is capable of consuming the
whole network. The simulation also showed that 𝐼𝑅 becomes
negative if no infections are taking place, due to the consistent
death rate. Meanwhile, the 𝐼𝐿 and 𝐼𝑃 populations have amore
modest impact due to their capped attack surfaces.

Using only random scanning (resulting in 𝐼 = 𝐼𝑅) allows
the infection to spread throughout the S population, with
higher peak infections thanks to there being no other I
subsets. This mimics the dynamics of typical worm-based
propagation. Meanwhile, local scanning on its own (resulting
in 𝐼 = 𝐼𝐿) struggles to have a significant impact if its attack
surface is too limited. Hence, 𝐼𝐿 requires (a) an increased
contact rate, (b) a large transmission probability, or (c) fewer
WSNs (i.e., individual WSNs must be large enough).

Similarly, using only P2P (resulting in 𝐼 = 𝐼𝑃) leads to
a more extreme version of the 𝐼𝐿 scenario, as 𝐼𝑃 is capped
even more. Hence, 𝐼𝑝 also requires (a) increased contact
rate, (b) increased transmission probability, and (c) fewer
WSNs, but it can also be boosted by reducing the size of the
deployment area or increasing the node transmission range
(i.e., neighbour sets must be large enough).

Larger message sizes require more power to transmit and
hence drive up the death rate. Meanwhile, increasing nodes’
battery capacity can increase nodes’ lifespans and hence
decrease the number of deaths per time. A larger deployment

area decreases the overall density of nodes, increasing the
distance data must be sent over and consequently causing
more deaths. Figure 2(d) depicts this, where 𝑑𝑡ℎ𝐵 decreases
as density increases. Meanwhile, higher density results in a
higher probability of a large final I population, as illustrated
in Figure 2(e).

A larger deployment area also decreases 𝑆𝑛ℎ𝑏, leading to
a smaller 𝐼𝑃 population as the available peer nodes are min-
imised. Meanwhile, 𝑆𝑛ℎ𝑏 grows with the node transmission
range and allows 𝐼𝑃 to reach higher peak values thanks to the
expanded attack surface. A greater number of WSNs shrinks
𝑆𝑙𝑜𝑐 and 𝑆𝑛ℎ𝑏, as well as the density of each WSN.This pushes
up the distance between neighbouring nodes, which in turn
consumes more power to transmit data. This results in higher
death rates, and a smaller final N, as Figure 2(f) illustrates.
Conversely, dense node deployment results in lower death
rates as data is transmitted over shorter distances. The sizes
of the infected populations are also impacted.

Increasing or decreasing the contact rate has a corre-
sponding impact on the associated death rate. A larger benign
contact rate pushes up 𝑑𝑡ℎ𝐵 leading to more deaths overall.
For bot contact rates, changes also influence the associated
infection rate. Given N, the I population is distributed
amongst the 3 infected subpopulations depending on 𝛽 and
the number of available S nodes. Hence, when 1 subpopula-
tion increases in size, the others shrink proportionally. The
overall impact of increasing contact rates is a sharper increase
in infections, followed by a sharper decline in the I population
due to a larger number of deaths; i.e., the I population is not
sustained.This is demonstrated in Figure 3(a), where a higher
contact rate pushes up the death rate until the population
becomes depleted.

The capped propagation methods are more sensitive to
drops in contact rate since they are already handicapped. 𝐼𝐿
and 𝐼𝑃 populations may overcome this handicap and surpass
𝐼𝑅 if their corresponding infection rates become very large.
Figure 3(b) demonstrates this effect for 𝐼𝑃, with increasing
contact rates across 5 simulations (in ascending order so
that sim#1 used a contact rate of 5/s and sim#5 of 1,000/s).
Meanwhile, changes to𝑃𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 only impact infection rates
and not death rates because it changes the proportion of
contacts which result in infections (whilst the contact rate
remains constant). Hence, the I subpopulations reach higher
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Figure 2: Histograms and parameter relationships from the Monte Carlo simulation.

peak values faster, whilst the downward slope caused by
deaths remains constant.

5. Discussion

5.1. Implications for Malicious Actors. Our findings have a
number of real-world consequences. In this section, we
analyse the simulation results to identify how botmastersmay
achieve better propagation results.

We considered propagationmethodswith access to differ-
ent proportions of the S population in order to get a macro-
scopic view of a larger sensor node population. (Conversely, if
the model scope was at the local or neighbour level, we would
have a microscopic view of those populations.) In doing so,
we found that local and neighbour set infections tend to
remain endemic and do not have significant impact on the
larger population, unless the attack force or node density is
very large. In parallel, these factors also impact power usage
and hence the network lifetime. All of this means that a

lower contact rate with further reach is more potent than a
higher contact rate with a shorter reach. This is significant
for botmasters, who will prefer a propagation method which
achieves the largest increase (with the widest spread) in the
shortest time.

This also highlights the role of Internet connectivity in
wide-scale propagation. Conventional WSNs are not nec-
essarily connected to the Internet, but IoT-based WSNs
are. This means that they are exposed to infection via
random scanning, so that existing bots can target vulner-
able nodes in remote WSNs. This means that a botmaster
can overcome (a) the limited attack capacity of individuals
and (b) the limited propagation activity of individuals, by
accumulating more bots. Large-scale deployment of IoT-
based WSNs is likely to increase in the future, for example,
with the advent of smart cities. With this kind of wider
adoption in industry and infrastructure, there is a prominent
risk of these large-scale networks being targeted by botnet
malware.
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Figure 3: Plots showing the impact of contact rates in numerical and Monte Carlo simulations.

More aggressive propagation campaigns will consume
more energy, such that an overaggressive strategy may
become inefficient as nodes die at a rate equal to or greater
than the rate of infection. A slow decline in the I population
means that the botnet population is steady.Hence, botmasters
are likely to gain a larger botnet via random scanning when
they can keep contact rate at a reasonable level. Botmasters
may try to maximise the contacts-to-infections ratio (via
the transmission probability) to maintain a larger number
of bot nodes without driving up death rates. Furthermore,
propagation messages should remain small to consume less
energy during transmission. This will also be relevant for
continuous C&C traffic.

Node density plays a central role in network lifetime.
Denser networks were shown to consume less energy at the
individual node level to send and receive data.This, combined
with the larger number of possible bots, makes dense WSNs
more desirable targets for botnet formation. WSNs with a
lot of activity may be attractive if node hardware is of a
higher specification to deal with this (e.g., higher battery
capacity or larger transmission range). If the WSN only
contains average nodes, however, a highly active network will
probably be undesirable for botmasters as network lifetime
will be compromised. A possible solution to this would be the
addition of bot functionality which cancels scheduled tasks to
reduce power depletion.

5.2. Implications for Defensive Actors. Now that we have
discussed our results from the botmaster’s perspective, we
go on to consider how our findings can provide insight for
defenders and improve the security of IoT networks.

When implementing WSN-based security provisions,
individual nodes do not usually possess the processing power
or energy capacity for host-based detection. Therefore, a
network-basedmechanism is required.The simulation results

showed that propagation dynamics can change at different
community levels (i.e., inter-WSN vs. intra-WSN vs. between
neighbours). Therefore, it may be beneficial to add network
monitors at each level to identify small-scale spread or
endemics sooner.This could form the basis for an IoT-specific
variation of the defence-in-depth security paradigm.

In reflection of the IoT-SIS model’s outputs, detection
approaches should prioritise instances of random-scanning
behaviour, as this was shown to increase the chance of an
epidemic. This type of scanning can be characterised by
a pattern of probing behaviour (to identify the presence
of a worm) combined with a large number of outgoing
connections and the indiscriminate selection of destination
IPs. Furthermore, detection methods would benefit from
considering slower scanning as we identified that keeping
contact rate minimal can result in better bot node retention.
Slow scanning rates can also be used as an obfuscation
method by botmasters.

Alongside the data they collect from the environment,
sensors also generate and share telemetry data which
describes a node’s status (e.g., current engagement, current
location, role in the current topology, and power levels) as
well as various details on its communications with other
nodes. The IoT-SIS model demonstrated that nodes are
likely to deplete their finite power resources more quickly
when they become bots. Hence, telemetry data can be used
to monitor nodes’ battery levels, delays in the execution
of scheduled tasks (aimed to conserve power), or patterns
of anomalous communication behaviour caused by botnets’
reliance on automation.

Furthermore, as end-to-end encryption becomes more
widely adopted (by both defensive and malicious actors),
detection systems will need to focus on telemetry data
as payload examination becomes unfeasible under these
conditions. Such data for propagation detection may include
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message lengths, connection durations, various timestamps,
power levels, and, where relevant, GPS coordinates. Since
bot traffic is repetitive and systematic by nature, detection
can be achieved in encrypted networks through pattern
identification in this telemetry data.

When developing immunisation schemes to deal with
ongoing epidemics, a common approach is to minimise the
frequency of contacts between infected and susceptible nodes
to reduce the number of new infections. However, we found
that propagation can be more successful if the contacts-
to-infections ratio is maximised instead of the contact rate
which may (a) cause more node deaths and (b) reveal bots’
presence to defenders. To reduce the number of successful
infections, defenders should focus on securing individual
nodes via proper login credentials (changed periodically),
updated and fully patched software, and the disabling of
unnecessary services. This is aimed at reducing the trans-
mission probability, and experience shows that such simple
steps could mitigate existing IoT worms like Mirai [2]. We
believe that this approach is more pragmatic than blocking
connections or taking nodes offlinewhich can have a negative
impact on routing and network convergence. Additionally,
immunisation and recovery efforts should be applied across
all potentially targeted WSNs for effective mitigation, as
random scanning was shown to be able to drive the bot
malware successfully across multiple WSNs for wide-scale
coverage. Hence, immunisation must be equally widespread
in its scope.

We should consider dense networks of high-grade sen-
sors to be particularly desirable for botmasters. P2P com-
munications should be well controlled and monitored to
ensure that compromises to the local network have limited
impact. In extreme cases (and where functionality is not
affected), P2P may even be disabled entirely. This may be
particularly relevant for home environments consisting of
few or individual sensors (rather than a set of collaborative
sensors).

Our results suggest that multiple small but dense WSNs
(with minimal P2P contact) are better at preventing bot
epidemics. In our model scenario, the denser the network,
the lesser the energy used by individual nodes (causing fewer
node deaths) and the smaller the attack surface (capping the
reach of the malware). However, in real-life, this should be
considered in the context of the features of the given network,
including its application and the protocols used, in order
to avoid generalisations which overlook the particularities
of different scenarios. Furthermore, the suggestion to use
small, dense WSNs needs to be balanced with the routing
performance and application requirements specific to each
scenario.

Since propagation is a difficult process for detection in
real-time, as part of our future work, we would like to explore
how propagation models such as ours can be aligned with
real-life networks and measurements of traffic to create an
application framework. The framework would aim to help
users yield meaningful predictions and to aid early detection.
Furthermore, we have taken a simplified macroscopic view
of IoT networks in this model. However, research suggests
that sink nodes are more vulnerable to power depletion due

to their role as a gateway for all incoming/outgoing traffic.
Hence, in our future work, we would like to consider the role
this plays in botnet propagation.

6. Related Work

6.1. Existing Propagation Models. Malware propagation is a
difficult but significant process to observe and measure to
be able to effectively tackle the threat of cybercrime. Hence,
there is a range of literature on the subject, and despitemost of
it dealingwithmalware in conventional andmobile networks,
there has been a push in recent years to expand this into the
analysis ofWSNs and IoT. Proposedmodels tend to follow the
state-based transition approach provided by epidemiology
given its clear definitions and simple structure—a trend that
this work also follows. WSN-based models focus on particu-
larities of the environment, like node mobility, transmission
range/radius, topological variances impacting node density,
and energy usage, alongside more typical factors like user
awareness and recovery rates. The following is a selection of
existing research chosen to demonstrate the state-of-the-art
and to provide context for our work.

Wang et al. [14] designed a state-based model to observe
worm propagation in WSNs with mobile actuators. The
authors suggest that actuators can increase the speed of worm
spread if successfully compromised. The model probabilisti-
cally estimates node states to “microscopically compute the
prior probability” of individual sensor infections via directly
connected neighbours [14]. Nodes may be susceptible (S),
contagious (C), or infected (I) and are deployed with an
infected mobile actuator moving randomly amongst them.
The infection’s spatial distribution is defined based on I node
locality. This includes the identification of S nodes with
and without infected neighbours. The energy consumed by
the network is calculated based on a percentage increase
in consumption in individual nodes after infection. The
model was simulated and compared to others and reportedly
produced different results for different node density values.
Overall, the authors report that the inclusion of an infected
mobile actuator improved worm propagation across the test
scenarios, including high and low-density cases. The mobile
worm was also found to increase energy consumption when
compared to similar static worms.

Ji et al. [19] focused their work on Mirai’s architecture to
study its propagation patterns. They based their propagation
model on the SIR format, with N defined as the total IoT
population, S as IoT nodes with weak logins, I as infected
nodes, and R as immune nodes. The online device count is
Smultiplied by the rate that devices come online 𝛼, whilst the
infection count is the product of 𝛼 and I. The attack surface
is the product of 𝛼 and (𝑁−𝑃), where P is the portion of the
address space to be ignored. The authors state that because
Mirai bots did not infect targets directly (using the loader
instead), the model should assume that IoT devices do not
cause secondary infections. They also suggest that increase
in the I population will increase traffic load for the network.
Hence, they propose that the infection rate will decrease as
I grows. Using simulations based on estimates of the US
IoT-enabled camera population, they report that I increased
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steadily for a time before slowing down, due to the depletion
of ‘easy’ targets.

Singh et al. [20] studied worm propagation in WSNs
using the SEIRV model, where E denotes nodes which
are infected but not infectious, who transition into the
infectious state I, and V denotes vaccinated nodes who are
permanently immune. Nodes are uniformly distributed with
a transmission range of r, and the transmission region of
individuals is calculated based on this. The authors use the
basic reproductive number R0 to define equilibrium points
and then to evaluate the system’s stability at these points.
Through this approach, they define thresholds for both the
transmission radius and the density and then use these to test
different values for these 2 parameters. They were then able
to demonstrate the relationships between the thresholds and
the equilibrium points; i.e., epidemics fail when the radius or
density is less than the threshold and are successful otherwise.

Gardner et al. [21] developed the IoT-BAI (IoT Botnet
with Attack Information) model, based on the SEIRS for-
mat. The model is grounded on the propagation dynamics
of Mirai-like malware and considers the impact of user
behaviours, specifically in relation to increased awareness
following a publicised attack. Nodes may transition into
the R state from any other state, and the rates of recovery
increase for a finite period following an attack. Hence, there
are 2 sets of recovery rates; one during propagation (“Botnet
Growth Phase”) and one during the increased awareness
period (“Botnet Reduction Phase”) [21]. The IoT-BAI model
does not consider deaths but does incorporate a constant
birth rate to reflect the growth of the IoT device population
[21]. Based on their simulations, the authors suggest that
the constant stream of new devices makes the IoT network
increasingly vulnerable. Meanwhile, greater user awareness
triggers the Botnet Reduction Phase sooner and increases
the time between epidemics, theoretically reducing botnet
impact.

Mishra et al. [22] created the SEIRS-V model (where S-
V represents susceptible nodes who have received a vaccina-
tion) to study the propagation of worms inWSNs.Themodel
includes births (A) as well as deaths. Two separate death rates
are defined: 𝜇 for standard hardware/software failures and
𝜀 for device failures caused by worm infections. Birth and
death rates are such when there is nomalware, the population
size can be estimated as the ‘carrying capacity’, which is
defined by A/𝜇. There are also separate rates for recovery and
vaccination and, consequently, there are separate immunity
periods associated with each. The authors use MATLAB for
simulations and show that greater emphasis on recovery and
vaccination can significantly mitigate the scale of infections
by absorbing more S nodes into the R and S-V compartments.
Hence, susceptibility of nodes to future infections is reduced.
They also stress the expansive applications ofWSNs in various
areas of industry and healthcare, highlighting the need for
effective malware defences.

Feng et al. [23] used the SIRS model to consider worm
propagation in WSNs with a focus on nodes’ transmission
radius, energy consumption, and the network density. The
model assumes a uniform distribution of nodes in a 2D space,
and nodes may recover from both S and I states. Nodes

may die in each compartment due to power depletion at
the defined death rate, whilst some recovered nodes may
probabilistically become susceptible again. Based on the
reproductive ratio 𝑅0, the authors define a threshold for
the transmission radius such that for a value lower than
this threshold and with 𝑅0 ≤ 1, the worm cannot survive.
Similarly, they define a threshold for node density such that
for a value lower than this and with 𝑅0 ≤ 1, a “worm-
free equilibrium” is maintained [23]. Through numerical
simulations they consequently demonstrate that a smaller
transmission radius or lower network density can mitigate
worm propagation.

Jerkins et al. [24] used the principles of epidemic mod-
elling to boost the security of IoT devices via “inocula-
tion epidemics” using the SI/NS (Susceptible, Infected/Non-
vulnerable, Susceptible) model. They aimed to use a process
similar tomalware propagation (via the SISmodel) to identify
vulnerable nodes and patch them. A ‘vaccine’ is developed by
reverse-engineering captured malware, specifically focusing
on the infection vectors and exploits used. The vaccine
then propagates like a worm using the same methods to
deliver a patch, thus giving nodes immunity against that
malware. In the model, N denotes nodes which are ‘infected’
by the vaccine. Separate infection rates are defined for the
malware and the vaccine, such that an epidemic fails when
the vaccination rate is greater than the infection rate, and
vice versa. Additionally, nodes may reboot at a rate of 𝛽 for I
nodes and 𝜃 for N nodes, such that an epidemic fails if 𝛽 > 𝜃.
Through simulations, they demonstrated that increasing the
number of nodes which are vaccinated against the malware
mitigates its propagation and diminishes its overall impact.

6.2. Comparison to the Proposed Model. Each of these works
approaches the study of WSN-based worm propagation in a
different way.Wang et al. [14] focus specifically on the mobile
actuator scenario, demonstrating how the IoT space may
present unique vulnerabilities and exploitation opportunities.
Ji et al. [19] provide a specialised model for the Mirai botnet,
driven by a need to understand the propagation of this
prevalent threat. Singh et al. [20] and Feng et al. [23] focus
on defining 𝑅0-based thresholds, using the epidemic-based
metric to determine the limits of spread. Both Gardner et al.
[21] and Mishra et al. [22] emphasise recovery, considering
the impact of user behaviours and vaccinations, respectively.
Meanwhile, Jerkins et al. [24] presented a novel approach by
appropriating epidemic processes for defence.

Most of these works study the spread of WSN-based
worm malware, with far fewer focusing on the presence
of botnets within WSNs. Botnets are different to worms
(despite sometimes being spread in a worm-like manner)
primarily because the retention of infected nodes is crucial
to the goals of the botmaster. A sufficient number of bots
must be accumulated for the botnet to be effective, whereas
a worm has no such requirement. The proposed model
aims to capture this and to explore the surrounding factors.
The works of Ji et al. [19] and Gardner et al. [21] are
botnet-focused, but they concentrate exclusively on Mirai,
using empirical measurements of this malware to build
models which characterise it specifically. In contrast, the
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proposed model considers a wider range of behaviours by
incorporating observations fromMirai’s descendants as well.
We believe that this expands the models applicability as a
result. Furthermore, the scenarios used by the related works
are based on standard wireless sensor nodes, whereas our
model is designed specificallywith IoT-based sensors inmind
the difference being that IoT devices have constant Internet
connectivity.

These papers also have vague or abstract definitions of
scanning behaviour, assuming a standard approach across
all bot instances. An exception to this is Ji et al. [19], who
consider the attack surface to be defined based on the
infection rate and omitted portions of the IP address space.
Meanwhile, the IoT-SISmodel defines 3 separate and clearly
defined scanning behaviours, along with the corresponding
attack surfaces that become available with each method.
This is justified based on observed bot behaviours. Mirai
is known to engage in random, global scanning (omitting
certain known IP ranges) [1, 2], andHideNSeek was observed
to scan locally, changing its methods when source and target
nodes were in the same LAN [4]. Finally, sensor nodes
have P2P connectivity, which is a well-established botnet
propagationmethod in conventional networks, and so should
be considered in the IoT context as well.

We found that death rates were used inconsistently
across existing propagation models, with varying levels of
importance placed on this transition. Ji et al. [19] and
Gardner et al. [21] did not consider death rates, despite
their empirical focus on Mirai. Mishra et al. [22] and Feng
et al. [23] did incorporate death rates, with the former
being somewhat similar to our work because separate death
rates are included for both normal and malicious processes.
However, neither of these works is in the context of botnets,
and hence they do not consider the effect of deaths on
botnet formation. We address this and additionally provide
a definition of the death rate based on node characteristics
and communication behaviours. Furthermore, the proposed
method aims to explore the relationship between deaths and
propagation activity by relating energy depletion to scanning
behaviours via contact rates. The rationale is that contact
frequency determines the amount of node energy consumed
for communication, whilst also determining the number of
possible infections based on contacts between S and I nodes.
We believe that this has not been demonstrated before.

By making the model specific to IoT-based botnets and
incorporating different types of scanning and deaths, we were
able to identify some dynamics which, to our knowledge,
have not been presented in the existing literature. Simulations
of the IoT-SISmodel showed that the propagation method
and the available attack space impact the spatial distribution
of bot nodes, such that methods limiting spread to nearby
nodes tend to cause intra-WSN endemics rather that epi-
demics. We also found that driving the malware to propagate
faster/harder causes nodes to consume more of their finite
energy, thereby endangering the longevity and consistency
of the botnet. Based on this, we were able to determine that
propagation strategies in IoT networks are more effective if
the transmission probability can be maximised instead of the
contact rate.

Therefore, this paper sits alongside existing works (such
as those discussed here) by providing a general model of
worm-based botnet propagation in WSNs to explore the key
characteristics of IoT networks at a macroscopic level. Our
model is not based on a specific scenario, a specific malware
strain, or aimed at deriving particularmeasurements. Instead,
we explore the factors at play in botnet formation. We believe
that there is a need for this kind of approach due to the
unique features of botnets that set them apart from other
types of malware and the unique features of IoT networks
which give rise to different environments and scenarios to
those of conventional networks.

7. Conclusions

In this paper, we have developed the novel IoT-SIS botnet
propagation model focused on IoT sensor networks and
explored how the IoT-specific characteristicsmay impact bot-
net formation. Wewere able to improve our understanding of
the botnet threat amongst sensor devices and to explore the
relationships between network density, node power, scanning
behaviours, and attack surface size for different scanning
methods. Our simulations showed that dense networks allow
better distribution of activity, resulting in longer lifespans for
individual bots, and that aggressive propagation approaches
can be counterproductive in procuring nodes. We also
showed that scanning rates and transmission probability
must be increased significantly in order to overcome capped
S populations. In the continuation of this research, we hope to
explore ways to improve the accuracy of propagation models
and to better align compartmental models with network-
based traffic analysis. In future models, we aim to look more
closely at particular IoT-specific phenomena, including the
rapid power depletion of sink nodes, the use of encryption,
and the impact of mobility.
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