581 research outputs found

    Backlund transformations and knots of constant torsion

    Full text link
    The Backlund transformation for pseudospherical surfaces, which is equivalent to that of the sine-Gordon equation, can be restricted to give a transformation on space curves that preserves constant torsion. We study its effects on closed curves (in particular, elastic rods) that generate multiphase solutions for the vortex filament flow (also known as the Localized Induction Equation). In doing so, we obtain analytic constant-torsion representatives for a large number of knot types.Comment: AMSTeX, 29 pages, 5 Postscript figures, uses BoxedEPSF.tex (all necessary files are included in backlund.tar.gz

    The double mass hierarchy pattern: simultaneously understanding quark and lepton mixing

    Get PDF
    The charged fermion masses of the three generations exhibit the two strong hierarchies m_3 >> m_2 >> m_1. We assume that also neutrino masses satisfy m_{nu 3} > m_{nu 2} > m_{nu 1} and derive the consequences of the hierarchical spectra on the fermionic mixing patterns. The quark and lepton mixing matrices are built in a general framework with their matrix elements expressed in terms of the four fermion mass ratios m_u/m_c, m_c/m_t, m_d/m_s, and m_s/m_b and m_e/m_mu, m_mu/m_tau, m_{nu 1}/m_{nu 2}, and m_{nu 2}/m_{nu 3}, for the quark and lepton sector, respectively. In this framework, we show that the resulting mixing matrices are consistent with data for both quarks and leptons, despite the large leptonic mixing angles. The minimal assumption we take is the one of hierarchical masses and minimal flavour symmetry breaking that strongly follows from phenomenology. No special structure of the mass matrices has to be assumed that cannot be motivated by this minimal assumption. This analysis allows us to predict the neutrino mass spectrum and set the mass of the lightest neutrino well below 0.01 eV. The method also gives the 1 sigma allowed ranges for the leptonic mixing matrix elements. Contrary to the common expectation, leptonic mixing angles are found to be determined solely by the four leptonic mass ratios without any relation to symmetry considerations as commonly used in flavor model building. Still, our formulae can be used to build up a flavor model that predicts the observed hierarchies in the masses---the mixing follows then from the procedure which is developed in this work.Comment: 28 pages, 3 figures, 4 tables; v2: references added, Appendix C added, additional clarification and explanations in Sec. 2; matches version accepted by Nucl. Phys.

    Orbifold boundary states from Cardy's condition

    Get PDF
    Boundary states for D-branes at orbifold fixed points are constructed in close analogy with Cardy's derivation of consistent boundary states in RCFT. Comments are made on the interpretation of the various coefficients in the explicit expressions, and the relation between fractional branes and wrapped branes is investigated for C2/Γ\mathbb{C}^2/\Gamma orbifolds. The boundary states are generalised to theories with discrete torsion and a new check is performed on the relation between discrete torsion phases and projective representations.Comment: LaTeX2e, 50 pages, 5 figures. V3: final version to appear on JHEP (part of a section moved to an appendix, titles of some references added, one sentence in the introduction expanded

    Scalar Solitons on the Fuzzy Sphere

    Full text link
    We study scalar solitons on the fuzzy sphere at arbitrary radius and noncommutativity. We prove that no solitons exist if the radius is below a certain value. Solitons do exist for radii above a critical value which depends on the noncommutativity parameter. We construct a family of soliton solutions which are stable and which converge to solitons on the Moyal plane in an appropriate limit. These solutions are rotationally symmetric about an axis and have no allowed deformations. Solitons that describe multiple lumps on the fuzzy sphere can also be constructed but they are not stable.Comment: 24 pages, 2 figures, typo corrected and stylistic changes. v3: reference adde

    Geometry of Spectral Curves and All Order Dispersive Integrable System

    Full text link
    We propose a definition for a Tau function and a spinor kernel (closely related to Baker-Akhiezer functions), where times parametrize slow (of order 1/N) deformations of an algebraic plane curve. This definition consists of a formal asymptotic series in powers of 1/N, where the coefficients involve theta functions whose phase is linear in N and therefore features generically fast oscillations when N is large. The large N limit of this construction coincides with the algebro-geometric solutions of the multi-KP equation, but where the underlying algebraic curve evolves according to Whitham equations. We check that our conjectural Tau function satisfies Hirota equations to the first two orders, and we conjecture that they hold to all orders. The Hirota equations are equivalent to a self-replication property for the spinor kernel. We analyze its consequences, namely the possibility of reconstructing order by order in 1/N an isomonodromic problem given by a Lax pair, and the relation between "correlators", the tau function and the spinor kernel. This construction is one more step towards a unified framework relating integrable hierarchies, topological recursion and enumerative geometry

    Finite higher spin transformations from exponentiation

    Full text link
    We study the exponentiation of elements of the gauge Lie algebras hs(λ){\rm hs}(\lambda) of three-dimensional higher spin theories. Exponentiable elements generate one-parameter groups of finite higher spin symmetries. We show that elements of hs(λ){\rm hs}(\lambda) in a dense set are exponentiable, when pictured in certain representations of hs(λ){\rm hs}(\lambda), induced from representations of SL(2,R)SL(2,\mathbb{R}) in the complementary series. We also provide a geometric picture of higher spin gauge transformations clarifying the physical origin of these representations. This allows us to construct an infinite-dimensional topological group HS(λ)HS(\lambda) of finite higher spin symmetries. Interestingly, this construction is possible only for 0λ10 \leq \lambda \leq 1, which are the values for which the higher spin theory is believed to be unitary and for which the Gaberdiel-Gopakumar duality holds. We exponentiate explicitly various commutative subalgebras of hs(λ){\rm hs}(\lambda). Among those, we identify families of elements of hs(λ){\rm hs}(\lambda) exponentiating to the unit of HS(λ)HS(\lambda), generalizing the logarithms of the holonomies of BTZ black hole connections. Our techniques are generalizable to the Lie algebras relevant to higher spin theories in dimensions above three.Comment: 34 pages. v3: references added. Added a discussion of the Euclidean higher spin symmetry group. Unlike what was claimed in a previous version, the formalism developed here can be applied to the Euclidean case as wel
    corecore