We study scalar solitons on the fuzzy sphere at arbitrary radius and
noncommutativity. We prove that no solitons exist if the radius is below a
certain value. Solitons do exist for radii above a critical value which depends
on the noncommutativity parameter. We construct a family of soliton solutions
which are stable and which converge to solitons on the Moyal plane in an
appropriate limit. These solutions are rotationally symmetric about an axis and
have no allowed deformations. Solitons that describe multiple lumps on the
fuzzy sphere can also be constructed but they are not stable.Comment: 24 pages, 2 figures, typo corrected and stylistic changes. v3:
reference adde