30,451 research outputs found

    Rzsweep: A New Volume-Rendering Technique for Uniform Rectilinear Datasets

    Get PDF
    A great challenge in the volume-rendering field is to achieve high-quality images in an acceptable amount of time. In the area of volume rendering, there is always a trade-off between speed and quality. Applications where only high-quality images are acceptable often use the ray-casting algorithm, but this method is computationally expensive and typically achieves low frame rates. The work presented here is RZSweep, a new volume-rendering algorithm for uniform rectilinear datasets, that gives high-quality images in a reasonable amount of time. In this algorithm a plane sweeps the vertices of the implicit grid of regular datasets in depth order, projecting all the implicit faces incident on each vertex. This algorithm uses the inherent properties of a rectilinear datasets. RZSweep is an object-order, back-toront, direct volume rendering, face projection algorithm for rectilinear datasets using the cell approach. It is a single processor serial algorithm. The simplicity of the algorithm allows the use of the graphics pipeline for hardware-assisted projection, and also, with minimum modification, a version of the algorithm that is graphics-hardware independent. Lighting, color and various opacity transfer functions are implemented for giving realism to the final resulting images. Finally, an image comparison is done between RZSweep and a 3D texture-based method for volume rendering using standard image metrics like Euclidian and geometric differences

    직접 볼륨 렌더링의 전이 함수 설계에 관한 연구

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2017. 2. 신영길.Although direct volume rendering (DVR) has become a commodity, the design of transfer functions still a challenge. Transfer functions which map data values to optical properties (i.e., colors and opacities) highlight features of interests as well as hide unimportant regions, dramatically impacting on the quality of the visualization. Therefore, for the effective rendering of interesting features, the design of transfer functions is very important and challenging task. Furthermore, manipulation of these transfer functions is tedious and time-consuming task. In this paper, we propose a 3D spatial field for accurately identifying and visually distinguishing interesting features as well as a mechanism for data exploration using multi-dimensional transfer function. First, we introduce a 3D spatial field for the effective visualization of constricted tubular structures, called as a stenosis map which stores the degree of constriction at each voxel. Constrictions within tubular structures are quantified by using newly proposed measures (i.e., line similarity measure and constriction measure) based on the localized structure analysis, and classified with a proposed transfer function mapping the degree of constriction to color and opacity. We show the application results of our method to the visualization of coronary artery stenoses. We present performance evaluations using twenty-eight clinical datasets, demonstrating high accuracy and efficacy of our proposed method. Second, we propose a new multi-dimensional transfer function which incorporates texture features calculated from statistically homogeneous regions. This approach employs parallel coordinates to provide an intuitive interface for exploring a new multi-dimensional transfer function space. Three specific ways to use a new transfer function based on parallel coordinates enables the effective exploration of large and complex datasets. We present a mechanism for data exploration with a new transfer function space, demonstrating the practical efficacy of our proposed method. Through a study on transfer function design for DVR, we propose two useful approaches. First method to saliently visualize the constrictions within tubular structures and interactively adjust the visual appearance of the constrictions delivers a substantial aid in radiologic practice. Furthermore, second method to classify objects with our intuitive interface utilizing parallel coordinates proves to be a powerful tool for complex data exploration.Chapter 1 Introduction 1 1.1 Background 1 1.1.1 Volume rendering 1 1.1.2 Computer-aided diagnosis 3 1.1.3 Parallel coordinates 5 1.2 Problem statement 8 1.3 Main contribution 12 1.4 Organization of dissertation 16 Chapter 2 Related Work 17 2.1 Transfer function 17 2.1.1 Transfer functions based on spatial characteristics 17 2.1.2 Opacity modulation techniques 20 2.1.3 Multi-dimensional transfer functions 22 2.1.4 Manipulation mechanism for transfer functions 25 2.2 Coronary artery stenosis 28 2.3 Parallel coordinates 32 Chapter 3 Volume Visualization of Constricted Tubular Structures 36 3.1 Overview 36 3.2 Localized structure analysis 37 3.3 Stenosis map 39 3.3.1 Overview 39 3.3.2 Detection of tubular structures 40 3.3.3 Stenosis map computation 49 3.4 Stenosis-based classification 52 3.4.1 Overview 52 3.4.2 Constriction-encoded volume rendering 52 3.4.3 Opacity modulation based on constriction 54 3.5 GPU implementation 57 3.6 Experimental results 59 3.6.1 Clinical data preparation 59 3.6.2 Qualitative evaluation 60 3.6.3 Quantitative evaluation 63 3.6.4 Comparison with previous methods 66 3.6.5 Parameter study 69 Chapter 4 Interactive Multi-Dimensional Transfer Function Using Adaptive Block Based Feature Analysis 73 4.1 Overview 73 4.2 Extraction of statistical features 74 4.3 Extraction of texture features 78 4.4 Multi-dimensional transfer function design using parallel coordinates 81 4.5 Experimental results 86 Chapter 5 Conclusion 90 Bibliography 92 초 록 107Docto

    Rendering techniques for multimodal data

    Get PDF
    Many different direct volume rendering methods have been developed to visualize 3D scalar fields on uniform rectilinear grids. However, little work has been done on rendering simultaneously various properties of the same 3D region measured with different registration devices or at different instants of time. The demand for this type of visualization is rapidly increasing in scientific applications such as medicine in which the visual integration of multiple modalities allows a better comprehension of the anatomy and a perception of its relationships with activity. This paper presents different strategies of Direct Multimodal Volume Rendering (DMVR). It is restricted to voxel models with a known 3D rigid alignment transformation. The paper evaluates at which steps of the render-ing pipeline must the data fusion be realized in order to accomplish the desired visual integration and to provide fast re-renders when some fusion parameters are modified. In addition, it analyzes how existing monomodal visualization al-gorithms can be extended to multiple datasets and it compares their efficiency and their computational cost.Postprint (published version

    Noise-based volume rendering for the visualization of multivariate volumetric data

    Get PDF

    Drishti, a volume exploration and presentation tool

    Get PDF
    Among several rendering techniques for volumetric data, direct volume rendering is a powerful visualization tool for a wide variety of applications. This paper describes the major features of hardware based volume exploration and presentation tool - Drishti. The word, Drishti, stands for vision or insight in Sanskrit, an ancient Indian language. Drishti is a cross-platform open-source volume rendering system that delivers high quality, state of the art renderings. The features in Drishti include, though not limited to, production quality rendering, volume sculpting, multi-resolution zooming, transfer function blending, profile generation, measurement tools, mesh generation, stereo/anaglyph/crosseye renderings. Ultimately, Drishti provides an intuitive and powerful interface for choreographing animations

    Design of a multimodal rendering system

    Get PDF
    This paper addresses the rendering of aligned regular multimodal datasets. It presents a general framework of multimodal data fusion that includes several data merging methods. We also analyze the requirements of a rendering system able to provide these different fusion methods. On the basis of these requirements, we propose a novel design for a multimodal rendering system. The design has been implemented and proved showing to be efficient and flexible.Postprint (published version
    corecore