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Abstract 

Multi-modality positron emission tomography – computed tomography (PET-CT) visualises 

biological and physiological functions (from PET) as region of interests (ROIs) within a higher 

resolution anatomical reference frame (from CT). The need to efficiently assess and assimilate the 

information from these co-aligned volumes simultaneously has stimulated new visualisation 

techniques that combine 3D volume rendering with interactive transfer functions to enable efficient 

manipulation of these volumes. However, in typical multi-modality volume rendering visualisation, 

the transfer functions for the volumes are manipulated in isolation with the resulting volumes being 

fused, thus failing to exploit the spatial correlation that exists between the aligned volumes. Such lack 

of feedback makes multi-modality transfer function manipulation to be complex and time-consuming. 

Further, transfer function alone is often insufficient to select the ROIs when it comprises of similar 

voxel properties to those of non-relevant regions.  

In this study, we propose a new ROI-based multi-modality visibility-driven transfer function (m2-vtf) 

for PET-CT visualisation. We present a novel ‘visibility’ metrics, a fundamental optical property that 

represents how much of the ROIs are visible to the users, and use it to measure the visibility of the 

ROIs in PET in relation to how it is affected by transfer function manipulations to its counterpart CT. 

To overcome the difficulty in ROI selection, we provide an intuitive ROIs selection tool based on 

automated PET segmentation. We further present a multi-modality transfer function automation 

where the visibility metrics from the PET ROIs are used to automate its CT’s transfer function. Our 

GPU implementation achieved an interactive visualisation of multi-modality PET-CT with efficient 

and intuitive transfer function manipulations. 

Keywords: Multi-modality volume rendering and Visibility histogram and Transfer function and PET-

CT imaging and Image segmentation 

1 Introduction 

Multi-modality (MM) biomedical imaging devices such as positron emission tomography and 

computed tomography (PET-CT) have enabled improvements in cancer staging and assessing the 

response to treatment [1]. PET-CT allows visualisation of biological and physiological function (PET) 

within the spatial context of anatomy (CT). Thus a key element in PET-CT visualisation is to 
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optimally visualise the region of interest (ROI) from PET, such as tumours and other abnormal 

structures, while preserving as much visibility of the underlying anatomy from CT, without 

compromising the visibility of the ROIs. The ability to efficiently assess and assimilate the 

information contained in these two volumes simultaneously, however, has raised new 3D visualisation 

challenges.  

Volume rendering algorithms are an effective approach to 3D visualisation to discover meaningful 

data in biomedical images [2]. In these renderings, transfer functions, which control opacity and 

colour parameters, are commonly used to manipulate the volumes [3-8]. Although the transfer 

functions provide powerful manipulation capabilities, e.g., there are algorithms that can use varying 

voxel properties including gradients [3], textures [7], or size [8], these algorithms are typically 

manually-driven and need careful inspection of the changes in the resultant renderings. The 

complexity of applying transfer functions is compounded when multi-modality volumes such as PET-

CT are considered since they require a combined manipulation of a pair of transfer functions. In a 

typical multi-modality visualisation [9-12], transfer functions are defined independently on the 

individual volumes with the resulting volumes being fused, e.g., PET transfer function is initially 

defined which is then followed by manipulating its counterpart CT transfer function to select 

corresponding anatomical regions while minimising the occlusion of PET. Unfortunately, such 

individual transfer function manipulations are complicated and time-consuming. Pre-defined transfer 

functions also do not sufficiently cater for inter-patient variation and variations with different 

pathologies.  

In this study, we propose a new multi-modality visibility-driven transfer function (m2-vtf) for PET-CT 

visualisation where we employ ‘visibility’ metrics to measure the level of occlusion caused by CT 

structures in front of and/or overlapping the PET ROIs. The use of visual cues such as the visibility 

has demonstrated assistance in the transfer function manipulation process [13-16]. The visibility 

histogram proposed by Correa and Ma [13] used the level of visibility of all samples along a view-

point as a visual feedback attribute in real-time volume rendering. They showed that the visibility 

histogram could help discover occlusion patterns and provide a powerful feedback mechanism to 

guide / automate the transfer function manipulation. We extended the visibility calculations into 

multi-modality volumes to provide a mechanism for visual feedback of the occlusion, in this case, 

occlusion from the CT to its counterpart PET, and vice versa. Further, we introduce a visibility-driven 

transfer function automation to optimise the transfer functions for PET-CT volumes. In PET-CT it is 

necessary to separate ROIs from non-relevant regions for further analysis. As an example, 

abnormalities in PET images, including tumours, can occupy the same intensity ranges as normally 

occurring structures in the body such as with the liver, kidneys, bladder, and brain (see Fig. 1). In such 

cases, even with the aid of the visibility metrics, the transfer functions manipulations (in 1D or multi-

dimensions) are unable to depict all the tumours seen throughout the body. This further limits the 

ability of the visibility metrics since they are unable to separate the visibility of the ROIs from other 

non-relevant regions. We, therefore, integrate an automated segmentation algorithm to our rendering 

framework such that the ROI from PET can be intuitively selected. The visibility of the ROIs can then 

be used as an optimisation constraint to derive optimal CT transfer functions. We present the 

capabilities of our method in the visualisation of clinical PET-CT studies with several different 

anatomy and disease types. 

2 Related Work     

2.1 Transfer Function Manipulation 

Transfer functions, which are used to isolate and manipulate ROIs, play an important role in the visual 

quality of image volumes generated by direct volume rendering [2]. The most common transfer 

function is one-dimensional (1D) and it uses voxel intensities to classify the ROIs. To improve the 

manipulation capabilities, a number of multi-dimensional transfer functions have been proposed. The 

basic idea is to incorporate varying voxel properties derived from a volume into the transfer function 

manipulations. In a pioneering study, Kindlmann et al. [3-4] introduced two-dimensional (2D) transfer 
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functions based on first- or second-order derivatives of voxels within a volume; thus enabling users to 

emphasise the boundaries of adjacent anatomical regions. Kniss et al. [5] suggested a set of widgets to 

interactively manipulate these transfer functions. Caban and Rheingans [7] used local statistical 

texture properties to distinguish ROIs from regions with the same intensity and gradient. Recently, 

Correa and Ma [6, 8] used spatial voxel properties, i.e., size and occlusion in transfer functions to 

manipulate ROIs in complex datasets. However, these studies are inherently designed for single-

modality images, and their application to multi-modality volumes is often restricted to the 

manipulation of the transfer function for individual volumes in isolation.  

Specific transfer function manipulation algorithms for multi-modality volumes have also developed.  

Cai and Sakas [9] introduced a data intermixing algorithm to fuse multiple volumes in volume 

rendering. Bramon et al. [10] suggested an information-theoretic method to automatically select the 

most informative voxels from two overlapping volumes. Kim et al. [12] used a pair of 1D transfer 

functions for PET and CT volumes, with the resultant volumes being fused (data intermixing). In 

another study, Haidacher et al. [11] proposed a 2D transfer function space that was made of a fused 

volume for multi-modality visualisation and an additional 𝜃  value, which described the 

complementary information contained from the volume pair, was able to separate the different tissue 

types from the two volumes.  

In all these studies, transfer functions were applied to individual volumes, and therefore disregarded 

how a change in the transfer function of one volume may affect the second volume. Our motivation 

for this work stemmed from a lack of occlusion feedback from spatially-aligned multiple volumes in 

the manipulation of multi-modality transfer functions. To equip the user with a feedback mechanism 

for the transfer function manipulation process, we use the visibility property that represents how much 

of each voxel in a volume is visible to the user. 

2.2 Visibility-Driven Transfer Function 

The visibility of a voxel has been used as a fundamental optical property in numerous visualisation 

applications e.g. to guide the selection of the optimal view-point of a volume [17]. Correa and Ma [13] 

showed a usage of the visibility to guide the transfer function manipulation for single-modality 

volumes. They introduced the notion of visibility histogram, which represents the opacity contribution 

of each intensity bin in the histogram to the resultant rendering, as an interactive aid for generating 

effective transfer functions. Furthermore, they suggested a semi-automatic transfer function 

manipulation approach, which can identify optimal opacity parameters to maximise the visibility of 

the user-defined ROIs in the volume. Ruiz et al. [14] then proposed an automatic transfer function 

manipulation scheme, where the user assigned the desired visibility and the opacity mapping was then 

automatically optimised. Wang et al. [15] instead employed a ‘feature visibility’ where the visibility 

was calculated per ‘feature’ from the volume. Here, features were user-selected visual attributes in 

multi-dimensional transfer function space and these were used to select and manipulate the volume 

rendering.  

Jung et al. [16] recently considered visibility in multi-modality volumes where the visibility histogram 

was calculated for the two volumes, and then used to guide the transfer function of one volume, while 

observing how it affects the visibility of its counterpart volume. Although this approach showed the 

feasibility of using visibility in multi-modality transfer function, it relied exclusively on manual 

transfer function manipulations. So in this study, we introduce a new visibility-driven transfer 

function for multi-modality visualisation with intuitive ROI selection and automated transfer function 

manipulations.  

2.3 Segmentation-based ROI Visualisation 

The use of ROIs has received attention due to its ability to prioritise and provide focus in volume 

rendering visualisations. Viola et al. [18] introduced importance-driven volume rendering where an 

‘importance value’ which indicates visibility priority, was assigned to the segmented ROIs. Using the 

ROIs, it generated a cut-away view which retained the visibility of ROIs with high importance by 

removing ROIs with lower importance. One of its drawbacks, however, was that it removed less 
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important ROIs and often related information was lost. In Tzeng and Ma [19], individual segmented 

ROIs were given their own transfer function, with all the ROI renderings fused into a single scene. 

Kim et al. [20] used segmentation by rendering the segmented ROIs (tumours from PET) together 

with PET and CT volumes.  

In our paper, we have used automated segmentation to select the ROIs, which are then used in 

visibility-driven transfer function manipulation. Segmentation enables separation of different 

structures in PET which can then be used for ROI-based analysis and importance-driven visualisation 

approaches. The visibility histogram, when applied to the image volume, is unable to provide a 

visibility metric only for the ROIs, since it is unable to separate the visibility of ROIs from non-

relevant regions [3].   

3 Methods   

3.1 Overview  

 Fig. 1. Overview of multi-modality PET-CT visualisation framework with our m2-vtf.  

 

Our PET-CT visualisation has three major steps as depicted in Fig. 1: (a) individual PET and CT 

volumes are rendered with their own transfer functions. In these transfer functions, a control line (red) 

drawn on top of the intensity histogram (pink bars in the x-axis) describes the opacity mapping (y-

axis). Here, the CT transfer function control line is assigned to two opacity peaks corresponding to 

lungs and skin (first peak), and bones (second peak), as indicated by arrows. Similarly for PET, a 

control line is defined to select high functional activities, which includes the tumour but also other 

non-relevant structures. Prior to the rendering, the PET image is automatically segmented into ROIs 

to separate high uptake structures; (b) the two volumes are fused (data intermixing) into a single 

rendering scene, which then computes the visibility histogram for the PET and CT, by taking into 

account the overlapping voxels from the two volumes as well as their opacity mappings. From the two 

overlapping volumes the visibility histograms for PET and CT are calculated: Segmented ROIs in 

PET are used to calculate the visibility for each ROI to create a ROI-based visibility histogram 

(green-pink bars); and for CT, the visibility histogram (green bars) is calculated using its intensity 

range and drawn on top of its intensity histogram. As the user redefines the opacity mapping from one 

of the transfer functions, the visibility histograms are recalculated and show the user its changes on 
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the PET and CT visibility histograms; and (c) based on the user ROI selection, our transfer function 

operates by automatically optimising the transfer function of the CT to minimise its occlusion to the 

selected ROI. In this example, the selected tumour ROI (red box) in the lung is made more apparent 

compared to the rendering in (b), with increased visibility of the PET ROI (compared to (b)) and 

reduction in the CT visibilities belonging to the lung structures (first peak). 

3.2 ROIs Segmentation 

We have adopted an automated PET thresholding segmentation algorithm [22] to construct our ROIs 

based on the PET response criterion (PERCIST) [21]. PERCIST is an approach to derive metabolic 

changes in malignant lesions. It uses a reference region placed on the right lobe of the liver or the 

descending aorta in the case of abnormality in the liver, with the metabolism in the region used to 

calculate a threshold value for PET segmentation. This threshold value can then be used to separate 

malignant tumours from non-tumours. However, because it is a thresholding approach, it also results 

in the inclusion of other non-relevant regions that are above the threshold, such as the brain, bladder, 

and kidneys. From the thresholded results, all grouping of voxels (greater than 10 voxels) were 

defined as an ROI. 

3.3 ROIs-based Multi-modality Visibility Histogram 

Visibility histograms were introduced to guide transfer function manipulation, which represent the 

opacity contribution of intensity in the histogram to the rendered image. This metric is computed by 

measuring the visibility of each voxel in a viewpoint and then adding the visibility to the 

corresponding bins in the histogram [13]. In this study, we have extended the visibility histogram 

calculation into two overlapping volumes as illustrated in Fig. 2 where the ray passes through voxel 

pairs in PET and CT volumes, VPET and VCT. The combined visibility for a coordinate position p, T(p), 

is the accumulation of the opacity contributions of all the voxel pairs starting from a view-point E to p 

(front-to-back composition) according to: 

   𝑇(𝑝) =  𝑒− ∫ 𝐴(𝑡)𝑑𝑡
𝐸

𝑃       (1) 

𝐴(𝑝) =  𝐴(𝑝 − ∆𝑝) + (1.0 − 𝐴(𝑝 − ∆𝑝)) ∗ 𝑂(𝑝)    (2) 

where 𝐴(𝑝) is the composition of opacities from the voxel pair, and 𝑂(𝑝) is the voxel’s opacity. The 
visibilities of the voxels, computed as the product of the voxels’ opacities, were then added into their 
corresponding bins of the visibility histogram VH[x] with x as the bin number such that: 

𝑉𝐻[𝑥] = ∑ 𝑂(𝑝) ∙ 𝑇(𝑝)𝑝∈𝑥                               (3) 

For a CT volume, visibility histogram, VHCT, was constructed with N bins representing the entire 
intensity range. For a PET volume, each ROI occupied a bin in the visibility histogram, VHPET. For 
improved presentation, we normalise our histograms into a logarithmic scale to reduce the wide-
ranging quantities among the intensities. 

 

 

Fig. 2. Calculation of the ROI-based multi-modality PET-CT visibility histograms.     
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Multi-modality visibility histogram represents the visibilities of the composited voxels from multiple 

volumes. As such, these visibility histograms introduce ‘composite dependency’, which measures how 

much of the voxel is visible, in addition to the visibility histogram’s existing opacity and view 

dependencies. Fig. 3 demonstrates the application of our proposed multi-modality visibility histogram 

on two synthetic volumes. In this scene, the spheres contain low to high intensities spread out in 

Gaussian distributions from the centre to its outer rim. Here, a volume is a small sphere (A), and 

another volume consists of two larger spheres (B1 and B2), B1 of which has the same centre but larger 

radius compared to A and therefore completely encapsulates the sphere. These spheres are assigned to 

different colours but the same opacities and are controlled by a pair of 1D transfer functions. In (i), 

only the red sphere, A, is visible with the opacities of the blue and green spheres, B1 and B2, set to zero. 

The increase in the opacities of B1 and B2 results in their visibility increasing while lowering the 

visibility of A (maximum visibility decreased from 24.10 to 9.56 (60.33%)), as shown in (ii), 

affecting both its rendering and its visibility histograms. In (iii), the two volumes are rotated such that 

the overlapping A and B1 are now closer to the view-point and completely in front of B2, thus resulting 

in zero visibility for B2, even though its opacity is unchanged from (ii), while we see a large increase 

in the visibilities of the overlapping A and B1 (46.97% increase for A and 49.37% for B1). Finally, (iv) 

is the opposite of (iii) where B2 occludes A completely and B1 partially. Here, the visibilities of the 

two overlapping A and B1 are at their lowest, due to them being occluded from B2, while B2 is at its 

highest visibility due to it being closer and fully visible in the current view-point. Note the zero 

visibility in the lower intensity ranges of B1 in (iv) which represent the voxels closer to the occluded 

section of the sphere.  

 

 

Fig. 3 Illustration of composite and view dependencies of multi-modality visibility histograms on two aligned volumes. A 

volume has small red sphere (A); top visibility histogram, whereas another volume consists of two larger blue and green 

spheres (B1 and B2); bottom visibility histogram.     

3.4 Automatic Transfer Function Optimisation 

Our m2-vtf enables optimisation of CT transfer function based on maximising the visibility of an ROI 

from its counterpart PET. We formulate the manipulation of the CT transfer function as an energy 

minimization problem. Here, set of opacity parameters, 𝜃, of an initial CT transfer function (preset) is 

optimised by minimising an energy function, E, consisting of: (i) tolerance of PET ROIs visibility 

defined as ET and (ii) freedom of transfer function movements for CT defined as EF. The tolerance of 

ROIs visibility is used to control how much of it is to be made visible in the resultant renderings. It 

can be calculated via sum of the squared difference between user-defined visibility, VD, and resultant 

visibility, VR, for the individual ROIs: 

𝐸T(𝜃) = ∑ (𝑉𝐷𝑛
− 𝑉𝑅𝑛

)2𝑁
𝑛=1           (4) 
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where N is the number of ROIs. The freedom of the opacity parameters is used to supress the voxels 

that are occluding the ROIs. The minimum and maximum in pth opacity parameter, 𝜃𝑝
𝑚𝑖𝑛 and 𝜃𝑝

𝑚𝑎𝑥, 

respectively, are limited such that:  

𝐸𝐹(𝜃) = ∑  |𝜃𝑝
𝑚𝑖𝑛 − 𝜃𝑝|

+

2
+  |𝜃𝑝 − 𝜃𝑝

𝑚𝑎𝑥|
+

2
 𝑃

𝑝=1               (5) 

where P is the number of the parameters and a clamping operator [x]+  = x if x > 0 or 0 otherwise. 

Finally, the optimal CT transfer function is generated with an iterative manner satisfying: 

𝑎𝑟𝑔𝑚𝑖𝑛𝜃 𝑤𝐸𝑇(𝜃) + (1 − 𝑤)𝐸𝐹(𝜃)                       (6) 

where w is the weight for visibility tolerance. Downhill simplex optimisation [23] was used to solve 

the minimisation problem for its effectiveness in non-linear optimisation with multiple local optima 

[24]. Compared to gradient-based approaches, it is less dependent on the initial transfer function [25] 

which is an important characteristic to ensure convergence. It is computationally more efficient as it 

only needs an energy function while retaining competitive performance depending on the application, 

in terms of convergence accuracy and computation time [26]. 

3.5 User Interactions for ROI Definition 

 

Fig. 4 ROI selection in our m2-vtf  

A key requirement for any ROI-based visualisation is an intuitive and simple selection of the ROIs. In 

our visualisation, we used PET segmentation to automatically derive ROIs and used it to construct the 

ROI-based visibility histogram. In this approach, each ROI was represented by a bar and the visibility 

among the voxels in that ROI was calculated into a single visibility metric. These bars were then 

sorted according to intensity and colour-coded green and pink (left to right in Fig. 4). The ROIs in the 

rendering were represented by a bounding box with the same colour code as its corresponding 

visibility bars. The ROI visibility histogram can be used to select the ROI by clicking on bars (a). 

Non-relevant regions can be selected and then removed. By removing all non-relevant regions, the 

resulting ROI visibility histogram is shown in (b) with only four ROIs, extensive glucose avid foci in 

the right hemithorax. 
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4 Implementation 

4.1 Datasets and Pre-processing 

PET-CT studies were acquired from a Siemens Biograph TruePoint PET-CT scanner at the 

Department of PET and Nuclear Medicine, Royal Prince Alfred (RPA) Hospital, Sydney, Australia. 

All studies have 326 slices with slice thickness of 3 mm to cover the whole body from the top of the 

head to the upper thighs. PET image slices were reconstructed to 168 x 168 matrix with pixel 

resolution of 4.07 mm2 and CT slices were reconstructed to 512 x 512 matrix at 0.98 mm2. The 

hardware co-registered PET was then resampled to the CT dimensions. The CT scans were processed 

to remove the background and bed/linen via adaptive thresholding and image subtraction from a bed 

template. The voxel intensity of the CT was in Hounsfield units (HU) with intensity ranges of 0 to 

4095 (12 bit). For PET, we applied linear intensity normalisation and matched the intensity range of 

the CT. Low count intensity ranges (less than 10 voxels) for both volumes were truncated. 

4.2 Visualisation Implementation 

To be used as a visual feedback mechanism, m2-vtf needed to be computed in interactive volume 

rendering. To achieve real-time performance, we used graphical process unit (GPU) optimised Voreen 

volume rendering library [27]. Voreen is an open source texture-based volume rendering engine that 

allows interactive visualisation of volumetric data sets with high flexibility for integrating new 

algorithms and optimisations. In the rendering framework, we used a fragment shader to calculate the 

visibility of the samples from the two volumes with a single raycast. Parallel processing, together with 

vertex fragment streams were used to calculate the visibility metrics of several slices simultaneously 

in a single-pass using frame buffer objects [13].   

5 Results 

 

5.1 Whole-body PET-CT studies 

Fig. 5 demonstrates our m2-vtf for whole-body PET-CT visualisation. In  Fig. 5 individual PET (panel 

a) and CT renderings (panel b) with the visibility histograms and transfer functions are depicted. Here, 

the visibility histograms are individually calculated for each volume. The two volumes can be fused 

into a single scene as in (c) with the recalculation of the visibility histograms from the overlapping 

voxels. By using the transfer functions pair, individual PET and CT transfer functions can be 

manipulated while observing the effect of the visibility from changes in e.g., PET on the CT 

counterpart. However, a limitation is the inability to classify the tumour ROI in the PET volume, in 

this case the large mass in the lung, from other non-relevant regions that are also visualised. With the 

lack of classification ability, the visibility metric becomes irrelevant since all these structures share 

the same visibility. By using PET segmentation, we can compute the ROI visibility histogram and 

select only the tumour as in (d). The visibility of the PET is then recalculated to only represent the 

occlusions to the ROI. In this rendering, the tumour’s visibility is not high due to the occlusion from 

the lung tissues and the rib cage (bones) in front of and/or overlapping the ROI. To reduce such 

occlusion, we can adjust the CT opacity corresponding to the occluding structures by manually 

manipulating its transfer function. This results in reduced opacities for the lung structures and also the 

bone structures in (e) (see grey arrows) while increasing the visibility of the PET ROI in (e) (indicated 

by red arrow). 
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Fig. 5 A comparison of PET-CT visualisations between using a pair of single-modal visibility-driven 

transfer functions ((a) and (b)) and with m2-vtf on a PET-CT study ((c) to (e)), with a large high-grade 

lung tumour patient study.     

 

Our multi-modality transfer function automation is exemplified in Fig. 6. A tumour in the right lung 

from PET, which is faintly visible in (a), is selected as an ROI (from the ROI visibility histogram). 

Based on the selection, (b) to (d) represents the visualisations according to varying user-defined 

constraints for ROI’s visibility tolerance. In (b), a low tolerance of 0.2 was set for the visibility of the 

ROI, and therefore resulted in CT structures predominating in the rendering. When the tolerance was 

increased to 0.5, and then to 0.8, respectively of (c) and (d), we can clearly notice the reduction of the 

lung and bone structures in the CT, thus making the PET ROI more visible. In this example, the 

second constraint of the CT transfer function freedom was set to 0.9 for all variations to give higher 

degrees of movement. 

In Fig. 7, a whole-body PET-CT study of a patient with disseminated disease is visualised. The centre 

images (d) and (e) show the same PET-CT study in a coronal view (d) and a rotated view (e). The 

transfer function was set to visualise the bone, lung, and skin from the CT. For PET, it was again set 

to visualise the segmented ROIs. These ROIs can be selected individually or as a set, and used to 

automate the CT transfer function. We can see that the bulk of the disease is in the abdomen where 

there are very large masses on both sides; there are innumerable, markedly glucose avid regions in the 

bone marrow (flexible tissue found in the interior of bones) e.g., in (a), (c), (f), and (g); there is a soft 

tissue abnormality in right side of the upper thoracic spine as in (b). These findings are consistent with 

a high-grade lymphoma. A powerful feature in the visibility histogram is its view dependency, which 

calculates the visibility according to the user’s viewpoint. In this study, we can see the changes in the 

ROI visibility from the rotation of the volume in (e) for PET, whereas there is only a small difference 

in the CT.  
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Fig. 6. Automated CT transfer function according to varying optimisation constraint of ROI’s 

visibility tolerance from low (0.2) to high (0.8).  

 

Fig. 7. A PET-CT study of disseminated disease consistent with a high-grade lymphoma, consisting 

of multiple abnormalities spread throughout the body. Our transfer function automation is used to 

visualise the different abnormalities based on the user-selected ROIs in (a) to (c) and multiple ROI 

selections of (f) and (g).  
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5.2 Computational Performance 

We measured the average time, in frames per second (fps), using various volume sizes, for the 

following interactions: (i) the calculation of visibility histogram from random volume manipulations 

including view-point rotations, panning, and transfer function changes; (ii) calculations of view-

independency visibility histogram based on averaging 6 rotations as in [13]; and (iii) single ROI-

based transfer function automation. All computations were performed using a PC with nVIDIA GTX 

590 1.5G GPU; Intel i7 CPU @3.20 GHz; running 64-bit Win 7.For PET-CT studies with dimensions 

of 256 x 256 x 256 x 2 volumes, which is an approximation of a typical study used in this paper, 

10.14 fps was measured for various random volume manipulations, which enables our framework to 

achieve interactive visualisation of multi-modality PET-CT volumes. As expected, the interactivity 

decreases based on the volume dimensions, but with our algorithm still achieving minimal rates of 

3.446 fps for 5123 x 2 volumes manipulations. In regards to automation, it is interesting to note that 

regardless of the volume size, automation was relatively similar (from 2.369 to 0.980 fps). In the case 

of multiple ROIs selection, where we varied between 1 to 16 ROIs, we observed negligible 

differences (0.23 seconds) in its computation. This is because the visibility histogram construction is 

only based on the ROIs of PET which occupy far less bins when compared to the full PET intensity 

histogram. The reduction of the bins enables the computation to be performed in a single rendering 

pass. 

We further computed view-independency as in [13], which is the average of the visibility calculations 

from six different viewing angles (y-axis rotation), in an attempt to remove the inherent limitations 

from view-dependency. In our results, we achieved 1.752 fps using 2563 x 2 volumes and 0.467 fps 

for 5123 x 2 volumes. These results show that with our multi-modality ROI-based visualisation, we 

can easily compute the view-independent visibility histogram after changes to its transfer function.  

      

Fig. 8. Measured fps for volume rendering manipulations (both view dependent and independent) and 

also in calculating our multi-modality transfer function optimisation (automation).      

6 Discussions and Future Work 

This study presented a PET-CT visualisation with ROI-based visibility-based multi-modality transfer 

function manipulations and automation. Although we have presented our results designed specifically 

for PET-CT visualisation, we suggest that our approach is applicable to any other co-aligned multi-

modality images (volumes aligned to the same spatial coordinates). This alignment can be from a 

multi-modality scanner or through software registration algorithms [28]. Our future studies will 

investigate the potential of our visualisation with different multi-modality volumes such as PET and 

magnetic resonance imaging (PET-MRI).  

In our results, we used a pair of 1D transfer functions for PET and CT volumes. We demonstrated that 

the use of 1D-based visibility histogram, together with ROI segmentation, was able to provide an 

efficient approach to visualising PET-CT volumes. Nevertheless, our multi-modality visibility 
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calculation is not restricted to 1D transfer functions and it can accommodate multi-dimensional 

transfer function, such as gradient-based approach [13]. 

In our experiments, we adopted a well-known and robust PERCIST segmentation for the automated 

delineation of abnormalities as ROIs from PET volumes. PERCIST has the advantage of being a 

simple yet robust and reliable algorithm on inherently noisy and low signal-to-noise (SNR) PET 

images [21]. By using a fully automated approach, a user is able to interactively and conveniently 

select the ROIs to visualise without relying on a complex and manual ROI segmentation process. 

Although we only used PERCIST segmentation algorithm, our visualisation is not restricted to this 

algorithm. It can, therefore support algorithms that are disease / modality specific, e.g., using region 

growing algorithm for brain PET tumour ROIs [29]. Our future work will investigate the integration 

of segmentation algorithm directly into our rendering framework, by leveraging the general purpose 

GPU (GPGPU) computation, and thus being able to interactively perform the segmentation in real-

time volume rendering. 

7 Conclusions 

We proposed a new visualisation for multi-modality PET-CT by integrating visibility-driven transfer 

function together with ROI selection from automated segmentation. Our visualisation enables the 

selection of an ROI from PET which is then used to calculate the visibility-driven transfer function 

automation from its counterpart CT. Our results using clinical PET-CT studies with different types of 

diseases demonstrated the capabilities  of our visualisation for multi-modality volume rendering 
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