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Abstract 

A Study on Transfer Function Design 

for Direct Volume Rendering 

 

Jihye Yun 

School of Computer Science and Engineering 

The Graduate School 

Seoul National University 

 

Although direct volume rendering (DVR) has become a commodity, 

the design of transfer functions still a challenge. Transfer functions 

which map data values to optical properties (i.e., colors and 

opacities) highlight features of interests as well as hide unimportant 

regions, dramatically impacting on the quality of the visualization. 

Therefore, for the effective rendering of interesting features, the 

design of transfer functions is very important and challenging task. 

Furthermore, manipulation of these transfer functions is tedious and 

time-consuming task. In this paper, we propose a 3D spatial field 

for accurately identifying and visually distinguishing interesting 

features as well as a mechanism for data exploration using multi-
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dimensional transfer function. 

First, we introduce a 3D spatial field for the effective 

visualization of constricted tubular structures, called as a stenosis 

map which stores the degree of constriction at each voxel. 

Constrictions within tubular structures are quantified by using 

newly proposed measures (i.e., line similarity measure and 

constriction measure) based on the localized structure analysis, and 

classified with a proposed transfer function mapping the degree of 

constriction to color and opacity. We show the application results of 

our method to the visualization of coronary artery stenoses. We 

present performance evaluations using twenty-eight clinical 

datasets, demonstrating high accuracy and efficacy of our proposed 

method. 

Second, we propose a new multi-dimensional transfer function 

which incorporates texture features calculated from statistically 

homogeneous regions. This approach employs parallel coordinates 

to provide an intuitive interface for exploring a new multi-

dimensional transfer function space. Three specific ways to use a 

new transfer function based on parallel coordinates enables the 

effective exploration of large and complex datasets. We present a 

mechanism for data exploration with a new transfer function space, 

demonstrating the practical efficacy of our proposed method. 

Through a study on transfer function design for DVR, we 
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propose two useful approaches. First method to saliently visualize 

the constrictions within tubular structures and interactively adjust 

the visual appearance of the constrictions delivers a substantial aid 

in radiologic practice. Furthermore, second method to classify 

objects with our intuitive interface utilizing parallel coordinates 

proves to be a powerful tool for complex data exploration. 

 

Keywords: Direct volume rendering, transfer function, tubular 

structure, constriction, coronary artery stenosis, parallel 

coordinates 

Student Number: 2011-30246 
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Chapter 1.  Introduction 

1.1 Background 

1.1.1  Volume rendering 

Volume rendering is a technique used to display a meaningful 2D 

image of a 3D volumetric dataset which is acquired by a computed 

tomography (CT), magnetic resonance imaging (MRI), or 3D 

tomosynthesis scanner. There are two fundamental types of volume 

rendering: surface rendering and direct volume rendering (DVR). 

Surface rendering converts a 3D volumetric dataset into a surface 

representation (i.e., polygonal meshes) which can be rendered with 

traditional rendering techniques. The marching cubes algorithm [1] 

is a common technique for extracting an isosurface which is a 

surface representing the locations of a constant value (i.e., isovalue) 

within a volume dataset. Since only surface representation is used, 

much of the information within data is lost. DVR visualizes 3D 

volumetric dataset without explicitly extracting geometric surfaces, 

instead uses a transfer function that maps voxel values to optical 

properties, such as colors and opacities [2, 3]. Among various DVR 
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techniques, a ray-casting DVR is usually considered to provide high 

image quality. The ray-casting DVR is the image-order method as 

its computation emanates from the output image; in contrast, the 

object-order method determines, for each data sample, how it 

affects the pixels on the output image. In the basic form, the ray-

casting DVR algorithm consists of following four steps (see Figure 

1.1): 

 

 Ray casting - For each pixel of the output image, a ray is 

casted and traverses the volume data. 

 Sampling - Along the ray lying within the volume data, the 

intensities are sampled at the uniform (or non-uniform [2]) 

intervals. Since the volume data in general is not aligned with 

the ray, it is necessary to interpolate the values of sample 

points from their surrounding voxels. 

 

 

Figure 1.1 The four basic steps of the ray-casting DVR. ① Ray casting. 

② Sampling. ③ Shading. ④ Compositing. Image courtesy of Wikipedia. 
  
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 Shading - The optical property of each sample point is 

evaluated by a transfer function, and then shaded according to 

its surface orientation (i.e., gradient) and the location of light. 

 Compositing - The shaded sampling points are composited 

along the ray; the composition is derived from the rendering 

equation. As a result, the final color for each pixel is obtained. 

 

One of the main challenge of DVR is the rendering of interested 

features with sufficient saliency so that they are visually 

distinguished from other structures. In DVR, transfer functions that 

map data values to optical properties (i.e., colors and opacities) 

highlight features of interests as well as hide unimportant regions, 

dramatically impacting on the quality of the visualization. Therefore, 

for the effective rendering of interesting features, the design of 

transfer functions is very important and challenging task. 

1.1.2  Computer-aided diagnosis 

Volume rendering technique is widely used in many fields of 

application. It has been extensively used in not only clinical 

applications for assisting diagnosis and operation planning but also 

industrial applications for non-destructive testing and reverse 

engineering. Among various applied fields, DVR has been most 
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widely used in medicine, especially in radiology. In medical 

applications, DVR is used for the generation of cognitive three-

dimensional image from overwhelming 3D volumetric data from 

modern scanners (e.g., CT, MRI, and 3D tomosynthesis). Under the 

time pressure of clinical situation requiring prompt and important 

clinical decision, radiologists want 3D rendering wherein lesions of 

their interest are visualized distinguishably from other anatomical 

structures. These procedures that assist radiologists in the 

interpretation of medical images are called computer-aided 

diagnosis. 

Computer-aided diagnosis, which assists radiologic interpret-

ation by means of computer image analysis, has become one of the 

major research subjects in medical imaging and diagnostic radiology 

[3]. The basic concept of computer-aided diagnosis is to provide a 

second opinion in the detection and diagnostic process. The 

radiologists are answerable to the final interpretation of medical 

images. The usefulness of computer-aided diagnosis depends on 

the number of true-positive and false-positive markers [4]. High 

sensitivity (high true-positive rate) improves the performance of 

radiologists. For some applications, the large number of false-

positive markers is not a major problem because these markers can 

easily be dismissed by the radiologists [5]. Nevertheless, an 

excessive number of false-positive markers cause the increased 
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reading time and detection errors. With the goals of improving 

accuracy in diagnosis and reducing the interpretation time, 

computer-aided diagnosis has been widely applied in the detection 

and diagnosis of many different types of abnormalities: breast 

cancer, lung cancer, coronary artery disease, and congenital heart 

defect. 

1.1.3  Parallel coordinates 

High-dimensional data analysis and visualization is very useful in 

many domains and applications [6]. Parallel coordinates [7, 8] is 

one of most popular and effective visualization techniques for 

multi-variate data in information visualization. In the parallel 

coordinates, each domain corresponds to a vertical axis and each 

data element (e.g., a ܰ-dimensional tuple) is represented by one 

polyline with vertices on the parallel axes; the position of the 

vertex on the ݅  th axis corresponds to the ݅  th coordinates of the 

data element (see Figure 1.2). By corresponding parallel axes to 

dimensions, the parallel coordinates represents ܰ-dimensional data 

in a 2-dimensional space. 

Interaction plays an important role to enhance perception for 

data exploration and visual data mining [9]. The ability to interact  



 

- 6 - 

 

with visual representations (e.g., parallel coordinates) can greatly 

reduce the drawbacks of visualization techniques, particularly those 

related to visual clutter and object overlapping, providing the user 

with mechanisms for handling large and complex datasets [10]. The 

parallel coordinates allow the user to interact with the data in many 

ways. The user can select a subset of the data by using a brushing 

operation (see Figure 1.3 (a)). The selected set of the data is then 

used as input for subsequent operations, such as highlighting, 

labeling, replacing, deleting, and many more [9]. The user can also 

reorder parallel axes by dragging and dropping, reducing visual 

clutter by revealing patterns (e.g., correlations between dimensions) 

 

Figure 1.2 Parallel coordinates for exploring and analyzing multi-

dimensional data. Each dimension corresponds to a vertical axis, and 

each data element is represented by one polyline crossing the parallel 

axes. Image courtesy of https://bl.ocks.org/jasondavies/1341281. 

 
  
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that might have been hidden before (see Figure 1.3 (b)). These 

interactive parallel coordinates enable the effective exploration of 

large and complex datasets. 

 

(a) 

  

(b) 

Figure 1.3 Interactions with parallel coordinates. (a) Brushing on the 

(right-most) year axis from 1980 to 1982. (b) Reordering. Image 

courtesy of https://bl.ocks.org/jasondavies/1341281. 

 
  
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1.2 Problem statement 

DVR visualizes 3D volumetric data based on transfer functions that 

map data values to specific optical properties (i.e., colors and 

opacities). These transfer functions highlight features of interest as 

well as hide unimportant regions, and thus, they are crucial in the 

exploration of 3D volumetric data. It is a challenging task to specify 

an appropriate transfer function which accurately identifies and 

visually distinguishes interesting features. In addition, manipulation 

of transfer functions for this classification is tedious and time-

consuming task. In this paper, we deal with two main problems with 

transfer functions: effective rendering of interested features and 

efficient manipulation of transfer functions. 

One of the main challenges of DVR is the rendering of 

interested features with sufficient saliency so that they are visually 

distinguished from other structures. In medicine, radiologists have 

used DVR for the diagnosis of lesions or diseases; they should be 

visualized distinguishably from other surrounding anatomical 

structures. Of diverse diagnostic tasks in radiology, the detection of 

constricted regions in complex tubular structures (e.g., coronary 

artery stenosis in coronary artery, intra-thoracic airway 

constriction, carotid artery stenosis, and intestinal obstruction) is 
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one of most frequent and important diagnostic tasks. In diagnosing 

various diseases regarding constricted tubular structures in 

radiologic diagnoses, early detection of coronary artery disease 

(CAD) is very important because it is known to be the most 

common cause of death in the world [11] (see Figure 1.4). 

Traditionally, invasive coronary angiography (ICA) has been 

considered as gold standard for assessing CAD. However, ICA is an 

invasive technique and did not provide the information of the plaque 

because it is just luminogram. Recently, coronary computed 

tomography angiography (CCTA) has been widely adopted to non-

 

Figure 1.4 Cardiovascular disease and other major causes of death for 

all males and females (United States: 2011) [11]. A: Cardiovascular 

disease plus congenital cardiovascular disease. B: Cancer. C: Accidents. 

D: Chronic lower respiratory disease. E: Diabetes mellitus. F: Alzheimer 

disease. 

 



 

- 10 - 

 

invasively diagnose CAD with high diagnostic accuracy. In particular, 

CCTA has been reported to be useful for rapid detection of CAD in 

patient with acute chest pain in an emergency situation [12, 13]. 

However, the interpretation of CCTA requires substantial clinical 

expertise and experience [14]: it could take about several hours for 

a physician without experience of cardiac imaging to detect stenosis 

manually in a CCTA dataset, which may be unacceptable in the 

emergency situation [15]. Therefore, an imaging system that 

visualizes the constricted regions (i.e., stenosis) saliently can be a 

very helpful volume navigation tool in the CAD diagnostic procedure. 

Interesting tubular structures in medicine, such as the vascular 

system, are typically small and tortuous and become gradually 

narrower as they go, covering only a few voxels in the distal part in 

CT or MRI images. In addition, their neighboring structures often 

have similar intensity with them, making it more difficult to detect 

(or segment) tubular structures (e.g., aorta and heart chambers 

neighboring coronary arteries in CCTA). Coronary artery stenoses 

(i.e., constrictions) within coronary arteries (i.e., tubular structures) 

are classified by the degree of blockage caused by coronary artery 

plaques including calcified, non-calcified, and mixed plaques; the 

degree of blockage determines the treatment for CAD including 

medicines, medical procedures, and surgeries. In CCTA, calcified 

plaques appear as small and bright regions, non-calcified plaques 
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have low contrast, and mixed plaques literally have mixed texture 

of calcified and non-calcified plaques [33]. Because of such visual 

difference of these three plaques, it is elusive to detect various 

kinds of stenoses simultaneously. Thus, the fully automated 

detection of such heterogeneous constrictions is a very challenging 

task. 

Although many approaches have been proposed for effective 

classification, manual design of transfer functions remains a difficult 

and laborious task, requiring efficient manipulation mechanisms. A 

1D transfer function based on scalar data values is the most 

commonly used one, which is difficult to differentiate the materials 

with similar intensities (e.g., brain and region near the skull in MRI 

[29]). Higher dimensional transfer functions can lead to more 

accurate classification since they employ more properties for each 

voxel, such as gradient [23, 24], curvature [25, 26], and local 

texture features [27]. The gradient magnitude enhances borders 

between different materials, and the curvature classifies specific 

shapes of surfaces. The local texture features identify different 

patterns of materials. However, as the dimension of transfer 

function increases, the specification of transfer function becomes 

more difficult. Thus, an intuitive and efficient user interface for 

specifying these higher dimensional transfer functions is crucial to 

explore and understand a volume dataset with DVR. 
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1.3 Main contribution 

In this study, we propose a 3D spatial field for effective 

classification of constricted tubular structures, called as stenosis 

map. For ease of explanation, we describe the proposed approach 

with an exemplary application to coronary artery stenoses; but, this 

approach can be directly applied to other constricted tubular 

structures only with relevant parameter exploration. Furthermore, 

we present a mechanism for data exploration based on parallel 

coordinates for multi-dimensional transfer function design. 

The proposed method for effective volume visualization of 

constricted tubular structures consists of the following three main 

steps, as shown in Figure 1.5. First, we detect tubular structures by 

using a newly proposed similarity measure to line (i.e., line 

similarity), which serve as the search space of the subsequent 

stenosis map computation. This search space restriction reduces 

false positive and improves accuracy in the constriction detection 

step. The newly proposed similarity measure to line is derived from 

the localized structure analysis based on the Hessian matrix, which 

is calculated after applying Gaussian prefiltering; the optimal 

Gaussian scale selection is important in the Gaussian prefiltering. In 

this study, we use the mean diameter of the coronary artery which 
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is calculated from the coronary angiography procedure. For the 

application to other tubular structures, the diameter for the given 

tubular structures can be used. 

And then we quantify constrictions within the previously 

detected tubular structures by using a newly proposed constriction 

measure which is also derived from the Hessian matrix. In a similar 

manner as in the selection of optimal Gaussian scale for the 

coronary artery, we determine the optimal Gaussian scale for the 

stenosis using the degree of stenosis severity which is assessed by 

the percentage of obstruction in the lumen diameter. For the 

 

Figure 1.5 Process of effective volume visualization of constricted 

tubular structures. 
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application to other kinds of constrictions, relevant constriction 

threshold (e.g., 50% obstruction in CCTA) can be used. As a result 

of quantifying constrictions within tubular structures, we obtain a 

3D spatial field of stenosis map, of which each voxel has a scalar 

value of its corresponding degree of constriction. 

Finally, the stenosis map is rendered simultaneously with the 

input volume data by using multi-volume DVR. While a ray 

traverses both volume datasets simultaneously, it samples the 

intensity from the input volume data and the degree of constriction 

from the stenosis map at a uniform interval. And it accumulates the 

color and opacity that can be evaluated using a newly proposed 

transfer function. Also, we propose a new opacity modulation 

technique (i.e., constriction-magnitude-based opacity modulation), 

which delivers a clear visualization of the inner stenoses. Such 

stenosis-based classification enables easy and intuitive adjustment 

of the visual appearance of constrictions within tubular structures. 

The performance evaluation using twenty-eight clinical datasets 

shows that constricted regions are accurately encoded into the 

stenosis map and saliently visualized, demonstrating that our 

method can be an effective volume exploration tool in various, 

including but not limited to medicine, application fields of DVR. 

We also propose a data exploration method based on parallel 

coordinates. Our data exploration method uses the statistical and 
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texture features to define a new multi-dimensional transfer 

function which is able to achieve the desired classification of 

objects in DVR. First, we extract the statistical features (i.e., mean 

value and standard deviation) using adaptive growing technique 

which also extrudes the relative size of the local feature at each 

voxel. Second, we calculate the texture features (i.e., entropy and 

homogeneity) using adaptive block based gray-level co-

occurrence matrix (GLCM) which is defined based on the 

previously computed relative size at each voxel. Finally, we define a 

new multi-dimensional transfer function incorporating previously 

computed statistical and texture features, which employs parallel 

coordinates wherein each voxel is represented as a polyline with 

parallel axes of individual multi-dimensional features. Multi-

dimensional transfer function design with parallel coordinates 

enables more interactive exploration of the transfer function space 

with multi-variate features. The step-by-step illustration of our 

data exploration method shows that the parallel coordinate 

representation can be used as a tool to help users in specifying a 

transfer function to classify or segment a large and complex dataset. 
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1.4 Organization of dissertation 

The remainder of this paper is organized as follows. The next 

chapter briefly review previous researches in the transfer functions 

of DVR, segmentation of coronary artery stenosis and parallel 

coordinates. Chapter 3 introduces an effective volume visualization 

technique for constricted tubular structures. For ease of explanation, 

we describe the proposed approach with an exemplary application 

to coronary artery stenoses; but, this approach can be directly 

applied to other constricted tubular structures only with relevant 

parameter exploration. Chapter 4 presents a data exploration 

method based on parallel coordinates, followed by conclusion in 

Chapter 5. 
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Chapter 2.  Related Work 

2.1 Transfer function 

DVR visualizes 3D volumetric data without explicitly creating 

intermediate geometric structures (i.e., meshes composing an 

isosurface); instead, transfer functions make volumetric data visible 

by mapping data values to optical properties (i.e., colors and 

opacities). Transfer functions highlight features of interest as well 

as hide unimportant regions, dramatically affecting the quality of the 

visualization. Although DVR has become a commodity, the design of 

transfer function is still a challenge. 

2.1.1  Transfer functions based on spatial characteristics 

One of the main challenges of DVR is the specification of an 

appropriate transfer function that accurately identifies and visually 

distinguishes interesting features. For these accurate classification, 

some approaches used spatial characteristics derived by analyzing 

around a voxel instead of voxel’s properties (e.g., intensity, 
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gradient, and curvature). Correa and Ma [16] proposed size-based 

transfer functions that mapped the relative size of features to color 

and opacity. Size-based transfer functions were achieved with the 

use of scale fields, which are scalar fields where every voxel 

represents the local scale or size of the feature containing that 

voxel. These scale-fields were computed via scale-space analysis 

and a set of detection filters. Unlike other complex spaces, size can 

be defined in a single dimension and it complements easily 

traditional transfer functions (see Figure 2.1). They also proposed 

a 2D transfer function based on occlusion spectrum which is 

distribution of ambient occlusion that can be interpreted as a 

 

Figure 2.1 Size-based classification of an aneurysm. Left: 1D transfer 

function based on scalar value. Middle: Size-based classification, where 

size maps to color and scalar value to opacity. Right: Size-based 

classification, where opacity is the product of opacity mappings from 

both scalar value and size. Color mapping is same as left. Image 

courtesy of Correa and Ma [16]. 
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weighted average of the intensities in a spherical neighborhood 

around each voxel [17]. Occlusion spectrum encodes the 

contribution of the voxels in the neighborhood of a given point, and 

exhibits spatial coherence, important for identifying features and 

their spatial relationships. When combined with the intensity values, 

the occlusion spectrum provides a classification space that 

separates features that are highly occluded (e.g., separation of 

interior objects from outer objects) (see Figure 2.2). Also, many 

other approaches relying on local neighborhood analysis have been 

proposed, including statistical transfer function space [18] and 

 

Figure 2.2 Occlusion spectrum for an MRI dataset. Anatomical structures 

(e.g., skull, brain, and ventricles) appear depending on how internal they 

are. Image courtesy of Correa and Ma [17]. 
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shape-based classification [19-21]. 

In this paper, we propose a new spatial field that can deliver a 

new dimension for salient visualization of constrictions within 

tubular structures, called as a stenosis map. The stenosis map is 

derived by analyzing local structural features around a voxel, and 

used to design a new transfer function which maps the degree of 

constriction to color an opacity, complementing easily traditional 

transfer function unlike other complex spaces. 

2.1.2  Opacity modulation techniques 

In order to enhance important features or suppress unwanted 

details, opacity modulation techniques have been proposed. A 

common method is gradient-magnitude opacity modulation. Levoy 

[23] modulated the opacity according to the magnitude of the local 

gradient, enhancing boundaries and suppressing homogeneous 

regions. Bruckner et al. [22] introduced context-preserving volume 

rendering technique which modulated the opacity of a sample in 

order to simultaneously visualize interior and exterior structures 

while retaining context information. The opacity of a sample is 

modulated by a function of shading intensity, gradient magnitude, 

distance to the eye point, and previously accumulated opacity to 
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selectively reduce the opacity in less important data regions. By 

means of the two user-specified parameters, the user can 

interactively uncover occluded regions (see Figure 2.3). These 

opacity modulation techniques are applicable to any type of transfer 

functions without restrictions. 

In this paper, we propose a new opacity modulation technique 

(i.e., constriction-magnitude-based opacity modulation), which 

delivers a clear visualization of the inner stenoses. When rendering 

the contrasted tubular structures (i.e., contrasted coronary arteries 

 

Figure 2.3 Context-preserving volume rendering of a contrast-

enhanced CT angiography dataset using different values of the two 

parameters. Columns have the same ߢ௧ value and rows have the same 

 .௦ value. Image courtesy of Bruckner et al. [22]ߢ
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in CCTA), they are displayed with high opacity, often blocking the 

constrictions inside them. To resolve this problem, we introduce an 

opacity modulation technique. 

2.1.3  Multi-dimensional transfer functions 

A 1D transfer function based on scalar data values is the most 

commonly used one, which is difficult to differentiate the materials 

with similar intensities (e.g., brain and region near the skull in MRI 

[29]). Higher dimensional transfer functions can lead to more 

accurate classification since they employ more properties for each 

voxel, such as gradient [23, 24], curvature [25, 26], and local 

texture features [27]. Kindlmann et al. [26] advances the use of 

curvature information in multi-dimensional transfer functions, with 

a methodology for computing high-quality curvature measurements. 

Curvature-based transfer functions extend the expressivity and 

utility of DVR through contributions in three different applications: 

non-photorealistic volume rendering, surface smoothing via 

anisotropic diffusion, and visualization of isosurface uncertainty 

(see Figure 2.4). Caban and Rheingans [27] used textural 

properties to differentiate materials. For each subvolume of interest, 

multi-dimensional texture-based descriptor is computed, which 
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captures the local textural statistical properties: first- (e.g., 

skewness and kurtosis), second- (e.g., energy and entropy), and 

high-order statistics (e.g., short run and long run). All the 

statistical descriptors are pre-computed and stored in a vector 

image, which is used to look up the voxel’s properties during the  

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2.4 Applications of curvature-based transfer functions. (a) 

Volume rendered diagram of ሺߢଵ, ଶሻߢ  space. (b) Non-photorealistic 

volume rendering using transfer function from (a). (c) Surface 

smoothing via anisotropic diffusion. (d) Visualization of isosurface 

uncertainty. Image courtesy of Kindlmann et al. [26]. 
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ray-casting DVR. Structures and features with the same intensity 

can be visualized with different rendering properties (see Figure 

2.5). 

In this paper, we propose a new multi-dimensional transfer 

function space using the statistical and texture features (i.e., mean 

value, standard deviation, relative size, and texture features). This 

approach successfully discriminates different objects with the 

similar intensities using our intuitive interface utilizing parallel 

coordinates. 

 

Figure 2.5 Texture-based classification. Left: Synthetic data being 

visualized with the standard transfer function. Right: The same dataset 

visualized using texture-based transfer function. The center of the 

volume (pointed by the arrow) can be highlighted by analyzing local 

textural properties. Image courtesy of Caban and Rheingans [27]. 
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2.1.4  Manipulation mechanism for transfer functions 

Although many approaches have been proposed for effective 

classification, manual design of transfer functions remains a difficult 

and laborious task, requiring efficient manipulation mechanisms. In 

order to simplify the user interaction with the transfer function, 

Kniss et al. [28] introduced the concept of dual domain (spatial 

domain and transfer function domain) interaction (see Figure 2.6). 

 

 

Figure 2.6 Dual domain interaction. Top: Spatial domain. The user points 

at the feature of interest using a data probe or a clipping plane. Bottom: 

Transfer function domain. The user assigns the visual attributes to the 

reprojected values. Image courtesy of Kniss et al. [28]. 
  
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In the spatial domain, the user points at a location of interest using 

a data probe or a clipping plane. The values at that point are 

visualized in the transfer function domain, and the user can then 

begin specifying a custom transfer function. With this approach, the 

conceptual gap between domains is significantly lessened, 

effectively simplifying the complicated task of specifying a multi-

dimensional transfer function. Tzeng et al. [29] provides a painting 

user interface that is used to automatically define high-dimensional 

classification functions (see Figure 2.7). The user specifies regions 

of interest by simply painting on a few slices from the volume data. 

The painted voxels are used in an iterative training process, and 

then the entire volume data can be classified. Such a system 

employing a machine learning method using the painted regions as 

 

Figure 2.7 Painting user interface. Left: A slice painted by a user (pink: 

features of interest, blue: undesirable materials). Middle: The result of 

classification with a color bar. Right: The rendered result of the 

classified volume. Image courtesy of Tzeng et al. [29]. 
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training data enables the user to perform classification in a much 

higher dimensional space without explicitly specifying the mapping 

for every dimension used. Roettger et al. [30] presented a method 

that groups spatially connected regions in the 2D histogram used 

for classification. In the transfer function domain, each feature 

(connected regions in the spatial domain) is segmented by using the 

voxel barycenter and the region variance, assisting manual 

specification of colors for similar features. Likewise, Maciejewski et 

al. [31] applied a non-parametric clustering within the transfer 

function domain in order to extract patterns and guide transfer 

function generation (see Figure 2.8). 

In this paper, we propose a data exploration method based on 

parallel coordinates for multi-dimensional transfer function design. 

 

Figure 2.8 Non-parametric clustering within the transfer function space. 

Left: Value versus value gradient histogram. Middle: The generated 

transfer function using non-parametric clustering. Right: The rendered 

result. Image courtesy of Maciejewski et al. [31]. 
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Our intuitive interface utilizing parallel coordinates enables more 

interactive exploration of the transfer function space with multi-

variate features, crucial to understand large and complex datasets. 

2.2 Coronary artery stenosis 

CAD is the most common type of heart disease, leading cause of 

death in the world [11]. It occurs when coronary arteries, which 

supply blood (including oxygen and nutrients) to the myocardium, 

become narrow or occluded due to the build-up of plaques (e.g., 

calcium, fat, and cholesterol). These narrowing of a vessel is 

referred to as stenosis, leading complications such as chest pain or 

heart attack. In order to determine the appropriate clinical 

procedure of patients with acute chest pain, it is crucial to diagnose 

the presence and severity of coronary artery stenosis. CCTA is a 

non-invasive evaluation procedure for the diagnosis of CAD with 

high diagnostic accuracy, allowing the interpreter to assess the 

presence, extent, and type of coronary artery plaques [41]. Several 

studies have shown that CCTA is very useful to detect CAD rapidly 

for a patent who complained acute chest pain in the emergency 

situation [12, 13]. However, the interpretation of CCTA requires 

substantial clinical expertise and experience [14]: it could take 
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about several hours for a physician without experience of cardiac 

imaging to detect stenosis manually in a CCTA dataset, which may 

be unacceptable in the emergency situation [15]. Therefore, an 

automated system that can identify the stenosis fast and accurately 

could be an assistant or alternative to the physicians in an 

emergency. 

There have been many approaches in the image segmentation 

field that tried to detect coronary artery stenosis automatically or 

semi-automatically. They can be categorized into two groups: 

segmentation- and feature-based methods. 

Segmentation-based methods detect stenoses by estimating a 

vessel diameter after lumen segmentation. Some methods 

incorporated both a new lumen segmentation algorithm and a new 

stenosis detection algorithm. On the other hand, other methods 

employed a previously published lumen segmentation algorithm, and 

then proposed a new stenosis detection algorithm (refer interested 

readers to [32] for complete survey of lumen segmentation). 

Wesarg et al. [33] proposed a tracking-based segmentation which 

progresses along the vessel by iterative prediction and correction 

steps. The predicted centerline is corrected by the center of 

cross-sectional contour points. And the stenosis is then detected 

by using the diameter information and intensity analysis. This 

method only detected calcified plaques and required substantial 
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user involvement. Saur et al. [34] employed a rule-based technique 

which involved the extraction and registration of lesion candidates 

in both contrast-enhanced and non-contrast-enhanced CT images. 

The prior-segmentation of coronary artery is used to restrict the 

lesion candidates to only those within the coronary arteries. This 

method automatically detected calcified plaques using distance 

(between corresponding plaques of two images) and intensity score 

rules. Although the registration step significantly reduced the false 

positive rate, it made patients exposed to unnecessary radiation 

with those two CT image acquisitions. Xu et al. [35] proposed a 

fuzzy segmentation method in which each voxel has the probability 

to belong to a target object. The segmentation of coronary artery is 

accomplished using a previously published method by Yang et al. 

[36] which is a hybrid strategy using multi-scale filtering and a 

Bayesian probabilistic approach within the level set segmentation 

model. In following, for measuring local diameters along a coronary 

artery centerline, they adopted the fuzzy distance transform which 

is the smallest fuzzy distance from the boundary, and used these 

distance values for detecting and quantifying stenoses. These 

segmentation-based methods are highly dependent on the result of 

lumen segmentation which usually requires a lot of manual 

interactions. 

Feature-based methods, which use machine learning 
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techniques to reduce manual interactions, detect stenoses using 

features computed along the centerline of a vessel. Mittal et al. [37] 

designed a cylindrical sampling pattern with the axis of cylinder 

aligned to the centerline of coronary artery. Since stenoses can 

occur anywhere around the axis, they used features which are 

rotation invariant about the axis to detect calcified plaques. 

Teßmann et al. [38] also employed a cylindrical pattern and used 

intensity variance, entropy, and Harr-like features to detect both 

calcified and non-calcified plaques. These feature-based methods 

used supervised schemes so that it is laborious to collect manually 

labeled data for all types of lesions. Zuluaga et al. [39] attempted to 

use an unsupervised scheme which does not require any labeled 

data for training. However, bifurcations were falsely detected as 

stenoses in this method. To overcome this shortcoming, they 

proposed a semi-supervised scheme in [40]. In this method, the 

training set is made of both unlabeled data and a small amount of 

data labeled as normal. 

Unlike these previous methods that usually require a lot of 

manual interactions [33-35], or laborious manual data classification 

[37, 38, 40], we analyze the localized structure for the efficient and 

accurate detection of coronary arteries and inner stenoses. We 

compared the result of our method with those of 11 recently 
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proposed methods, which were presented at MICCAI 2012 

workshop, ‘3D Cardiovascular Imaging: a MICCAI segmentation 

challenge’ [41]. This challenge was aimed at quantitatively 

evaluating the algorithms for coronary artery stenoses detection/ 

quantification and lumen segmentation in CCTA, and conducted 

using a database that consists of multi-center multi-vendor CCTA 

datasets. Using the database for this challenge, we measured and 

compared the detection accuracy results. 

2.3 Parallel coordinates 

Parallel coordinates [7, 8], which is one of most popular and 

effective visualization techniques for multi-variate data in 

information visualization, has been used for specifying and 

visualizing higher dimensional classifier in DVR [42-45]. Lum et al. 

[44] developed a user interface for effectively exploring and 

utilizing the multi-scale volume data generated by the filter bank to 

refine volume classification. As illustrated in Figure 2.9, the top row 

(Level 0) represents the distribution of data values for the original, 

unfiltered volume. The lines moving downward through the 

subsequent levels represent data values’ response to progressively 
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stronger filtering. User interaction starts with specifying a 1D 

transfer function for the top, and then this transfer function is 

refined by inserting additional classification widgets, as necessary, 

at varying filter levels (see Figure 2.10). Zhao and Kaufman [45] 

also utilized parallel coordinates for the design of the transfer 

function. For each voxel of input dataset, various high dimensional 

parameters (i.e., sixteen statistical attributes such as contrast, 

correlation, and angular second moment) are calculated. And then, 

parameters are selected according to the patterns of corresponding 

 

Figure 2.9 User interface for utilizing the multi-scale volume data 

generated by the filter bank to refine volume classification. The thick 

horizontal lines are coordinate axes corresponding to a particular filtered 

data level.  Each colored line corresponds to the data value of a sample 

point in each filter level. Image courtesy of Lum et al. [44]. 
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polylines drawn in parallel coordinates. For the high dimensional 

transfer function design, the user can choose to either interactively 

design special widgets on the coordinates directly or automatically 

project all the attribute parameters to the 2D space by the local 

linear embedding technique as dimension reduction, and then assign 

 

Figure 2.10 Refinement of the transfer function. The bundles of pink and 

green lines in (a) are the result of user probes of the wanted (red) and 

unwanted (green) areas in (b). The mixing of values at level zero 

indicates overlapping intensity values. However, the clear separation 

into pink and green bundles at subsequent filter levels suggest that a 

higher dimensional classification can help. (b) and (d) show the result of 

applying the defined transfer function at level zero. Adding a 

classification widget at level two and three produced the improved 

results shown in (c) and (e). Image courtesy of Lum et al. [44]. 
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colors and opacities to the classes calculated by a k-mean 

algorithm in the 2D space. 

In this paper, we propose a data exploration method based on 

parallel coordinates. Our data exploration method uses the 

statistical and texture features to define a new multi-dimensional 

transfer function. Adaptive growing technique is used to extract the 

statistical features (i.e., mean value and standard deviation), which 

keeps the neighborhood within the same material and enhances the 

accuracy of the subsequent texture analysis step. The relative size 

of the local feature at each voxel, which is also extruded by 

adaptive growing technique, is used to calculate the texture 

features (i.e., entropy and homogeneity) based on GLCM. Using 

calculated statistical and texture features, we define a new multi-

dimensional transfer function using parallel coordinates. The step-

by-step illustration of our data exploration method shows that the 

parallel coordinate representation can be used as a tool to help 

users in specifying a transfer function to classify or segment a 

complex dataset. 
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Chapter 3.  Volume Visualization of  

Constricted Tubular Structures 

3.1  Overview 

First, we propose a 3D spatial field for the effective visualization of 

constricted tubular structures, called as a stenosis map which 

stores the degree of constriction at each voxel. Constrictions within 

tubular structures are quantified by using newly proposed measures 

(i.e., line similarity measure and constriction measure) based on the 

localized structure analysis, and classified with a proposed transfer 

function mapping the degree of constriction to color and opacity. We 

show the application results of our method to the visualization of 

coronary artery stenoses. We present performance evaluations 

using twenty-eight clinical datasets, demonstrating high accuracy 

and efficacy of our proposed method. The ability of our method to 

saliently visualize the constrictions within tubular structures and 

interactively adjust the visual appearance of the constrictions 

proves to deliver a substantial aid in radiologic practice. 
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3.2  Localized structure analysis 

To classify the constrictions within tubular structures, we use local 

structural features in this paper. Let ܫሺxሻ denote the density value 

at a point x	 ൌ 	 ሺݔ଴, ,ଵݔ  ଶሻ in input volume data. The local structureݔ

of ܫሺxሻ in a neighborhood of x can be approximated by the Taylor 

expansion [46]. 

 

ሺxܫ ൅ ∆xሻ ൌ ሺxሻܫ ൅ ∆x்ܫ׏ሺxሻ ൅
1
2
∆x்ܪሺxሻ∆x , (3.1) 

 

where ܫ׏  is the gradient vector and ܪሺxሻ  denotes the Hessian 

matrix, which is a matrix built of the second partial derivatives of 
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At each voxel position x, we calculate the second derivatives 

and construct the Hessian matrix. By the eigenvalue decomposition 

of the Hessian matrix, we obtain three eigenvalues, ߣଵ, ߣଶ, and ߣଷ 
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ଵߣ) ൒ ଶߣ ൒  .ଷ) and their corresponding eigenvectors, ݁ଵ, ݁ଶ, and ݁ଷߣ

The combination of these three eigenvalues, called as eigenvalue 

signature, characterizes the local morphologic structure of an object. 

Sheet, line, and blob structures can be classified using the 

conditions summarized in Table 3.1, assuming that bright structures 

exist in a dark background [47]. Measurements of similarity to a 

specific localized structure can be derived from these basic 

conditions. Specially, this localized structure analysis has been 

successfully applied to detect tubular structures (e.g., vascular 

trees [48-50], or airway trees [51]). 

In practice, the second derivatives are calculated after 

applying the Gaussian filter to input volume data. The Gaussian 

filter is specified by its standard deviation, called as Gaussian scale, 

and the Gaussian scale can be fixed for the detection of single-

scale objects or ranged for the detection of multiple-scale objects. 

For the accurate localized structure analysis based on the Hessian 

Table 3.1 Basic conditions for each localized structure [47] 

Localized structure Eigenvalue signature 

Sheet (e.g., cortex) ߣଷ ≪ ଶߣ ≃ ଵߣ ≃ 0 

Line (e.g., vessel, bronchus) ߣଷ ≃ ଶߣ ≪ ଵߣ ≃ 0 

Blob (e.g., nodule) ߣଷ ≃ ଶߣ ≃ ଵߣ ≪ 0 
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matrix, it is important to use an optimal Gaussian scale at the stage 

of Gaussian prefiltering. The optimal value of Gaussian scale for a 

target object with a diameter ݀ is proven to be ݀ 4⁄  [52]. Using the 

optimal Gaussian scale, the proposed method performs two steps of 

localized structure analysis targeting two different objects of a 

tubular structure and inner constrictions. Each analysis uses the 

optimal Gaussian scale corresponding to its target object. 

3.3  Stenosis map 

3.3.1  Overview 

The first step of classifying constricted tubular structures is the 

estimation of input volume data to encode the degree of constriction, 

resulting in the stenosis map. In order to discriminatingly visualize 

coronary artery stenoses caused by all types of plaques, we 

compute the stenosis map by analyzing the localized structure 

around a voxel; we propose measurements of similarity to a specific 

localized structure. In the stenosis map, each voxel has a scalar 

value of its corresponding degree of constriction, understood as 

how constricted it is relative to surrounding tubular structures. The 
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process of computing the stenosis map consists of the following two 

procedures. Fist, tubular structures are detected by using a newly 

proposed similarity measure to line (i.e., line similarity), which 

serves as the search space of the subsequent stenosis map 

computation. Second, from the previously detected tubular 

structures, inner constricted regions are detected by using a newly 

proposed constriction measure; and their degree of constriction are 

calculated, resulting in the stenosis map. 

3.3.2  Detection of tubular structures 

Interesting tubular structures in medicine, such as the vascular 

system, are typically small and tortuous and become gradually 

narrower as they go, covering only a few voxels in the distal part in 

CT or MR images. In addition, their neighboring structures often 

have similar intensity with them, making it more difficult to detect 

(or segment) tubular structures (e.g., aorta and heart chambers 

neighboring coronary arteries in CCTA). 

Now, we elaborate on the computation of the stenosis map 

with exemplary application to coronary artery stenosis; however, 

its application to other tubular structures is straightforward with 

easy-to-follow parameter exploration (detailed in Section 3.6.5). 
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Coronary artery stenoses (i.e., constrictions) within coronary 

arteries (i.e., tubular structures) are classified by the degree of 

blockage caused by coronary artery plaques including calcified, 

non-calcified, and mixed plaques. In CCTA, calcified plaques 

appear as small and bright regions, non-calcified plaques have low 

contrast, and mixed plaques literally have mixed texture of calcified 

and non-calcified plaques [33]. Because of such visual difference 

of these three plaques, it is elusive to detect various kinds of 

stenoses simultaneously. Such heterogeneous constrictions are not 

rare in medicine, making the radiologic diagnosis more difficult. 

Prior to detection coronary artery stenoses, we first find 

tubular structure of coronary arteries to restrict the search space 

of the subsequent constriction detection step. This search space 

restriction reduces false positive and improves accuracy in the 

constriction detection step. The tubular structures of coronary 

arteries are detected by using a newly proposed similarity measure 

derived from the Hessian matrix. 

As discussed before, the optimal Gaussian scale selection in 

the Gaussian prefiltering is important in the localized structure 

analysis based on the Hessian matrix. In this study, we use the 

mean diameter of the coronary artery when determining the optimal 

Gaussian scale for the coronary artery detection. The mean 

diameter of the coronary artery is calculated from the coronary 
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angiography procedure that quantitatively measures coronary 

artery dimensions [53] (see Table 3.2). The severity of stenosis is 

assessed by the percentage of obstruction in the lumen diameter; a 

normal vessel is 0% stenosis. To differentiate the coronary artery 

stenosis with ≥ 20% obstruction in CCTA, the isotropic spatial 

resolution of CT should be at least 0.3 mm [54]. Considering the 

anatomical information about the coronary artery [53, 54], the 

diameter of a coronary artery is about 9-15 voxels in coronary CT 

data with a spatial resolution of 0.3 mm. Therefore, the optimal 

Gaussian scale for the coronary artery is set to be less than 3.75 

(=15/4). For the application to other tubular structure, the diameter 

Table 3.2 Diameters of coronary artery [53] 

Vessel type 
QCA diameters 

Mean ± SD Range 

LM 5.07 ± 0.75 3.82 – 6.09 

LAD 3.30 ± 0.85 1.46 – 5.28 

LCX 3.53 ± 0.76 1.52 – 5.27 

RCA 3.61 ± 0.58 2.71 – 5.67 

Total 3.57 ± 0.84 1.46 – 6.09 

 

Note. Data are in millimeters. LM = left main. LAD = left anterior descending 

branch. LCX = left circumflex branch. RCA = right coronary artery. 
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for the given tubular structures can be used. 

After the Gaussian prefiltering, the tubular structures of 

coronary arteries are detected by a proposed similarity measure to 

line. At each voxel position, we calculate a similarity measure to 

line ܵܯ௟௜௡௘, called as line similarity, given by: 

 

௟௜௡௘ܯܵ ൌ

ە
ۖۖ

۔

ۖۖ

ۓ
	 	 	 	 1	 	 	 ݂݅ ଷߣ ൑ ଶߣ ൑ ଵߣ ൏ 0 ܽ݊݀
	 	 	 	 	 	 	 ܴ௕௟௢௕ ൏ ௕ܶ௟௢௕ ܽ݊݀
	 	 	 	 	 	 	 	 	 	 	 	 ܴ௦௛௘௘௧ ൐ ௦ܶ௛௘௘௧	 	 ܽ݊݀	 	 	
	 	 	 	 	 	 	 	 	 	 ܴ௡௢௜௦௘ ൐ ௡ܶ௢௜௦௘	 	 ܽ݊݀	
	 	 	 	 	 	 	 	 	 ఒభܩ ൏ ܶீ 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 0	 	 	 ݁ݏ݅ݓݎ݄݁ݐ݋ ,

	 (3.3) 

where 

ܴ௕௟௢௕ ൌ
|ଵߣ|

ඥ|ߣଶߣଷ|
, (3.4) 

ܴ௦௛௘௘௧ ൌ
|ଶߣ|
|ଷߣ|

, (3.5) 

ܴ௡௢௜௦௘ ൌ ටߣଵ
ଶ ൅ ଶߣ

ଶ ൅ ଷߣ
ଶ . (3.6) 

 

The line similarity involves three measures, ܴ௕௟௢௕, ܴ௦௛௘௘௧, and ܴ௡௢௜௦௘ 

of Frangi et al. [55]. ܴ௕௟௢௕ detects blob-like structure: it reaches 

its maximum value for a blob-like structure and is close to zero for 

line-like structure (ߣଵ ൎ 0) or sheet-like structure (ߣଶ ൎ ଵߣ ൎ 0). 
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ܴ௦௛௘௘௧ distinguishes between line- and sheet-like structures: when 

|ଷߣ| ≫ |ଶߣ| ൎ 0 (ܴ௦௛௘௘௧ being smaller), the structure is more likely to 

be sheet-like rather than line-like. ܴ௡௢௜௦௘ minimizes the influence 

of image noise: it gets small in the background where there is no 

structure; and it gets great in high-contrast regions when at least 

one of the eigenvalues is large. To detect coronary arteries having 

all types of plaques, the thresholds, ௕ܶ௟௢௕ , ௦ܶ௛௘௘௧ , and ௡ܶ௢௜௦௘  are 

experimentally determined to be 0.35, 0.25, and 0.0035, 

respectively. Figure 3.1 shows that the line similarity in (3.3) 

works well enough to restrict the search space of the subsequent 

constriction detection step. 

  

(a)                       (b) 

Figure 3.1 Coronary artery detection of (a) a 2D slice image and (b) a 

3D rendered image of CCTA. The detected coronary artery is used to 

restrict the search space of the subsequent constriction detection step, 

reducing false positive and improving accuracy. 
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In contrasted CT data for specific legions examination in 

tubular structures, the narrow linear region within the contrasted 

tubular structure has a high value of line similarity. However, the 

blob boundary also exhibits high line similarity, being falsely 

detected as a line. It is because the blob boundary, blurred by 

Gaussian prefiltering, is not regarded as a part of blob but as a line. 

To discriminate this, we analyze eigenvalue profiles along a line 

across the narrow linear and blob boundary regions (see Figure 

3.2). The narrow linear region has a high rate of change in ߣଶ and 

 ଵ. In contrast, the blob boundaryߣ ଷ but a low rate of change inߣ

region has a high rate of change in all three eigenvalues. Therefore, 

we use the rate of change in ߣଵ for discriminating these two regions: 

low (or high) change rate in ߣଵ indicates the narrow linear region 

(or the blob boundary region). Thus, the regions with higher 

eigenvalue gradients, regarded as the blob boundary, are excluded 

from the coronary artery (see (3.3), where the regions with 

eigenvalue gradient magnitude ܩఒభ lower than the optimal threshold 

ܶீ  are regarded as a line). Figure 3.3 and 3.4 show that the 

eigenvalue gradient magnitude successfully discriminates the blob 

boundary regions from areas with high line similarity: the blob 

boundary falsely detected as a line in Figure 3.3(c) (see the green 

regions in the left blob) and Figure 3.4 (a) (see the blue regions in 

the aorta) disappears in Figure 3.3 (d) and Figure 3.4 (b). 
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(a)                       (b) 

Figure 3.2 Eigenvalue profiles of (a) narrow linear and (b) blob 

boundary regions. Upper row shows 2D slice images. Lower row shows 

eigenvalue profiles across the red line on the 2D slice images in the 

upper row. In narrow linear region, rates of change in ߣଶ  and ߣଷ  are 

high but a rate of change in ߣଵ  is low as in (a), whereas in blob 

boundary region, all three eigenvalues are high as in (b). (ߣଵ: solid line, 

 ଷ: dashed-dotted line, dark grey area: detected as aߣ ,ଶ: dashed lineߣ

line, light grey area: detected as a blob). 
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(a)               (b)               (c)               (d) 

Figure 3.3 Removal of blob boundary region based on eigenvalue 

gradient. (a) DVR of a 3D simulation phantom with a blob and a line. (b) 

Central slice of the phantom. (c) Without removal of blob boundary 

region, the boundary of the blob is falsely detected as a line. (d) With 

removal of blob boundary region ( ܶீ ൌ 0.0025 ), the false detection 

disappears. (The green represents the regions detected as a line). 
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(a)                       (b) 

Figure 3.4 Constriction detection (a) without and (b) with removal of 

blob boundary region based on eigenvalue gradient. The lower row 

shows close-up images of the orange rectangular region in the upper 

row. In (a), the boundary of the aorta is falsely detected as a line. (The 

blue represents the regions detected as a line). 
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3.3.3  Stenosis map computation 

From the previously detected tubular structures (i.e., detected as a 

line), inner constricted regions (i.e., coronary artery stenosis) are 

detected. Constrictions are detected by using a constriction 

measure that is also derived from the Hessian matrix. In a similar 

manner as in the selection of optimal Gaussian scale for the 

coronary artery, we determine the optimal Gaussian scale for the 

stenosis. The severity of stenosis is assessed by the percentage of 

obstruction in the lumen diameter. The degree of stenosis severity 

- insignificant (< 50%) and significant (≥ 50%) – determines the 

treatment of CAD [56]. As mentioned in Section 3.1, the diameter 

of the coronary artery is about 9-15 voxels in coronary CT data 

with a spatial resolution of 0.3 mm. Significant stenoses are with at 

least 50% obstruction in the lumen diameter, and thus, the lumen 

with significant stenoses occupies at most 7.5 voxels (= 15 voxels 

× 50%). Therefore, we set the optimal Gaussian scale for the 

stenosis to be less than 1.875 (= 7.5/4). For the application to 

other kinds of constrictions, relevant constriction threshold (e.g., 50% 

obstruction in CCTA) can be used. 

For accurate detection of constrictions (i.e., stenosis) within 

the tubular structures (i.e., coronary arteries), we devise a 
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constriction measure that quantifies how constricted compared to 

surrounding tubular structure. This constriction measure is applied 

only to the previously detected tubular structures. The stenosis is 

represented as a morphologically narrowed line. As described in 

Table 3.1, a line can be classified by ߣଷ ≃ ଶߣ ≪ ଵߣ ≃ 0 . As a 

structure becomes less likely to be a line, |ߣଶ| ⁄|ଷߣ|  decreases with 

negative ߣଶ  and ߣଷ . And as a line is getting morphologically 

narrowed, ߣଵ  increases and has a positive value [47]. Thus, the 

structure with ߣଵ ൎ 0  is regarded as a normal line rather than a 

morphologically narrowed line. Considering all these conditions, we 

propose the constriction measure as ܯ௖௢௡௦௧௥௜௖௧ as follows: 

 

௖௢௡௦௧௥௜௖௧ܯ ൌ ൝
௅ܨ ∙ 	ேܨ 	 ݂݅ ଵߣ ൐ 0 ܽ݊݀ ଷߣ ൑ ଶߣ ൏ 0

	 	 	 0	 	 	 	 	 ݁ݏ݅ݓݎ݄݁ݐ݋ ,
 (3.7) 

where 

௅ܨ ൌ exp ቆെ
ሺ1 െ |ଶߣ| ⁄|ଷߣ| ሻଶ

ଶߙ2
ቇ , (3.8) 

ேܨ ൌ exp ቆെ
ሺ1 െ ଵ|ሻଶߣ|

ଶߚ2
ቇ . (3.9) 

 

Figure 3.5 shows that the constriction measure in (3.7) quantifies 

the morphologically narrowed line well: constricted regions are 
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detected and quantified by the proposed constriction measure, 

having scalar values of corresponding degree of constriction. The 

parameters ߙ and ߚ are experimentally set to be 0.115 and 0.185, 

respectively. As a result, we obtain the stenosis map in which each 

voxel has a scalar value (ranging from 0.0 to 1.0) of its 

corresponding degree of constriction ܯ௖௢௡௦௧௥௜௖௧. 

 

(a)                     (b)                     (c) 

Figure 3.5 Constriction quantification. (a) DVR of a 3D simulation 

phantom with morphologically narrowed lines (left, 50% obstruction; 

middle, 70% obstruction; and right, 90% obstruction). (b) Central slice 

of the phantom. (c) Each line has a scalar value of its corresponding 

degree of constriction. The 50% obstructed line (left) has a lower value 

than 90% obstructed line (right). (The green represents the regions 

detected as a constriction. Higher degree of constriction is shown in 

brighter green). 
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3.4  Stenosis-based classification 

3.4.1  Overview 

CCTA datasets can be visualized by using multi-planar reformation, 

maximum intensity projection, and/or DVR techniques. Specially, 

DVR intuitively displays and conveys complicated anatomical 

information of tortuous tubular structures. Among various DVR 

techniques, we employ a multi-volume ray-casting DVR.  In order 

to saliently visualize constrictions (i.e., stenosis) within the tubular 

structures (i.e., coronary arteries), we propose a stenosis-based 

classification technique which uses a newly proposed transfer 

function reflecting the degree of constriction to color. When 

rendering the contrasted tubular structure (i.e., contrasted coronary 

arteries in CCTA), they are displayed with thigh opacity, often 

blocking the constrictions inside them. To resolve this problem, we 

propose a new opacity modulation strategy. 

3.4.2  Constriction-encoded volume rendering 

With the stenosis map, we have obtained the necessary information 
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to apply a stenosis-based transfer function. Among various DVR 

techniques, we employ a ray-casting DVR wherein a ray casted 

from an image plane traverses the volume data while sampling the 

intensity at a uniform (or non-uniform [2]) interval and 

compositing colors and opacities evaluated by a transfer function. 

At each sampling position ௜ܲ along a viewing ray, the color ܿ௜ and 

opacity ߙ௜ are computed as follows [57]: 

 

ܿ௜ ൌ ܿ௜ିଵ ൅ ሺ1 െ ௜ିଵሻߙ ∙ ௉೔ߙ ∙ ܿ௉೔ ,

௜ߙ ൌ ௜ିଵߙ ൅ ሺ1 െ ௜ିଵሻߙ ∙ ௉೔ߙ , 
(3.10) 

 

where ܿ௜ିଵ  and ߙ௜ିଵ  are the previously accumulated color and 

opacity, respectively. ܿ௉೔  and ߙ௉೔  are the color and opacity 

contributions at the position ௜ܲ, which are defined as follows: 

 

ܿ௉೔ ൌ ௖൫ܨܶ ௉݂೔൯ ,

௉೔ߙ ൌ ఈ൫ܨܶ ௉݂೔൯ , 
(3.11) 

 

where ࢉࡲࢀ and ࢻࡲࢀ are transfer functions which assign color and 

opacity to the scalar value ࢏ࡼࢌ at each position ࢏ࡼ, respectively. 

The stenosis map is rendered simultaneously with the input 

volume data by using multi-volume DVR. While a ray traverses 

both volume datasets simultaneously, it samples the intensity from 

the input volume data and the degree of constriction from the 
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stenosis map at a uniform interval. And it accumulates the color and 

opacity that can be evaluated using a transfer function proposed in 

(3.12) and (3.13). 

To visualize the constrictions saliently, we propose a transfer 

function that reflects the degree of constriction to color: 

 

ܿ௉೔ ൌ ቐ
	௖௢௡௦௧௥௜௖௧ܥ 	 	 ݂݅ ܵ௠௔௣ሺ ௜ܲሻ ൐ ௖ܶ௢௡௦௧௥௜௖௧

	 ௖൫ܨܶ ௉݂೔൯	 	 	 	 ݁ݏ݅ݓݎ݄݁ݐ݋ ,
 (3.12) 

 

where ܵ௠௔௣ሺ ௜ܲሻ is the degree of constriction at position ௜ܲ  in the 

stenosis map, ܵ௠௔௣, and ௖ܶ௢௡௦௧௥௜௖௧ is a threshold that influences the 

detection accuracy of constrictions. We optimally determine the 

threshold ௖ܶ௢௡௦௧௥௜௖௧ so that only stenosis regions are rendered with a 

predefined constriction color ܥ௖௢௡௦௧௥௜௖௧ . The sampling positions 

except for stenosis regions are assigned with colors evaluated by a 

user-defined transfer function for the input volume data. 

3.4.3  Opacity modulation based on constriction 

When rendering the contrasted tubular structures (i.e., contrasted 

coronary arteries in CCTA), they are displayed with high opacity, 

often blocking the constrictions inside them. As shown in Figure 
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3.6(a) and (b), although the proposed method accurately detects 

the constrictions (i.e., stenosis), opaque vessels hide the inner 

constrictions. To resolve this problem, we propose constriction-

magnitude-based opacity modulation, motivated by the gradient-

magnitude-based opacity modulation [23] that modifies the opacity 

according to the gradient magnitude for the boundary enhancement. 

We modulate the opacity based on the degree of constriction stored 

in the stenosis map as follows:  

 

௉೔ߙ ൌ ఈ൫ܨܶ ௉݂೔൯ ∙ ݉ሺ ௜ܲሻ , (3.13) 

where 

݉ሺ ௜ܲሻ ൌ ߜ ൅ ሺ1 െ ሻߜ ∙ ܵ௠௔௣ሺ ௜ܲሻ . (3.14) 

 

The modulation factor ݉ሺ ௜ܲሻ  at position ௜ܲ  is determined by the 

modulation base ߜ  and the degree of constriction ܵ௠௔௣ሺ ௜ܲሻ . By 

adjusting the modulation base ߜ, the users can interactively uncover 

occluded constrictions. Figure 3.6(c) and (d) show 3D renderings 

with two different values of ߜ . With smaller ߜ , areas inside the 

vessels are more revealed, the stenoses being more saliently 

visualized. This constriction-magnitude-based opacity modulation 

enables easy and intuitive adjustment of the transfer function when 

visualizing inner constrictions simultaneously with tubular 

structures. 
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3.5  GPU implementation 

Our method computes the stenosis map in the pre-processing stage 

and provides an interactive 3D volume rendering using this pre-

computed stenosis map (see Figure 3.7). Both stenosis map 

computation and data classification are implemented using GPU in 

separate HLSL programs (compute shader and pixel shader, 

respectively). To minimize the memory required by the stenosis 

map, we construct the stenosis map in a volume data of 8-bit float 

format. Although the 8-bit float has lower precision than 32-bit 

float, it preserves data precision enough to distinguish constricted 

tubular structures from other anatomical structures. The stenosis 

map computation is GPU-implemented by using a compute shader 

over two passes. The first pass computes eigenvalues for detecting 

tubular structures. The second pass detects tubular structures 

using the eigenvalues, and then computes the degree of constriction 

only for the voxels detected as tubular structures and stores them 

in the stenosis map. For multi-volume DVR, the stenosis map and 

the input volume data are both loaded in GPU memory. Data 

classification is done using both volume data by a GPU-based ray 

casting pixel shader. The proposed algorithms of stenosis map 

computation and data classification are implemented in Direct3D 11 
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and high level shading language on an NVIDIA GeForce GTX TITAN 

with 6 GB of memory. 

 

Figure 3.7 GPU implementation. The stenosis map is computed by using 

a compute shader over two passes in the pre-processing stage. Data 

classification is done using both the input volume data and the stenosis 

map by a GPU-based ray casting pixel shader. 
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3.6  Experimental results 

3.6.1  Clinical data preparation 

We evaluate the performance of the proposed method using ten 

clinical CCTA datasets from different patients. CT scanning was 

performed with a 256-row multi-detector CT scanner (iCT 256, 

Philips Medical Systems, Cleveland, OH). The number of images per 

scan ranged from 262 to 319. Each image has a matrix size of 512 

× 512. The pixel size ranged from 0.29 to 0.42 mm, and the slice 

interval was all 0.45 mm. 

For each CT dataset, a cardiac radiologist with 6 years of 

clinical experience manually specified coronary artery stenoses, 

assessed the degree of blockage of the coronary artery, and 

classified the type of plaque, which is the main cause of the 

blockage, into three types: non-calcified, calcified, and mixed 

plaques (see Figure 3.8). The purpose of the proposed method is to 

discriminatingly visualize coronary artery stenoses caused by all 

types of plaques. Thus, we evaluated the proposed method using 

the ten datasets that contain significant (≥ 50%) stenoses caused 

by at least one type of plaque (see Table 3.3). 



 

- 60 - 

 

3.6.2  Qualitative evaluation 

We qualitatively evaluate the proposed constriction visualization 

method by comparing it with the conventional classification [59]. 

Figure 3.9 shows the 3D renderings of a CCTA dataset (dataset #1)  

 

(a)                     (b)                     (c) 

Figure 3.8 Three types of plaque [58]. (a) Non-calcified plaque has low 

density compared to contrast-enhanced vessels without any visible 

calcification. (b) Calcified plaque was defined as plaque having 

calcification (≥ 130HU) in more than 50% of the entire volume. (c) 

Mixed plaque was defined as plaque having calcification in < 50% of the 

entire volume. The upper and lower rows show 2D slices and 3D 

rendered images, respectively. 
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containing ≥ 80% coronary artery stenoses caused by both non-

calcified and calcified plaques. Whereas the plaques are not 

distinguishable in the conventional method (Figure 3.9 (a)), the 

regions constricted by plaques are clearly visualized in a predefined 

color (blue) with the proposed method (Figure 3.9 (b)). 

 

(a)                     (b) 

Figure 3.9 3D rendered images using (a) conventional classification and 

(b) proposed stenosis-based classification. Regions constricted by 

plaques, which are invisible (a), are clearly visualized in blue in (b). The 

lower row shows close-up images of the orange rectangular region in 

the upper row (green dashed arrow: calcified plaque, yellow solid arrow: 

non-calcified plaque). 
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Figure 3.10 shows the 3D renderings of a CCTA dataset 

(dataset #7) containing ≥ 70% coronary artery stenosis caused by 

mixed plaques. The stenoses are almost invisible in the 

conventional method (Figure 3.10 (a)). The proposed method 

detects the stenoses accurately; however, the contrast-enhanced 

 

(a)                     (b)                     (c) 

Figure 3.10 3D rendered images using (a) conventional classification 

and proposed stenosis-based classification with (b) ߜ ൌ 1.0 and (c) ߜ ൌ

0.4  in (3.14). The proposed opacity modulation based on degree of 

constriction enables a clear visualization of the inner stenoses, where 

smaller ߜ shows more inner stenoses. The lower row shows close-up 

images of the orange rectangular region in the upper row (yellow arrow: 

mixed plaque). 
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vessels, which are opaquely rendered with a typical transfer 

function for the coronary artery visualization, usually hide the inner 

stenoses (Figure 3.10 (b)). The proposed opacity modulation 

modifies the opacity based on the degree of constriction, delivering 

a clear visualization of the inner stenosis (Figure 3.10 (c)). 

In the conventional classification, it is tedious or very difficult 

to specify an appropriate transfer function which visually 

distinguishes all features of interests. Not rarely, it is almost 

impossible to visualize a feature of interest (e.g., stenosis caused 

by non-calcified or mixed plaques) inside a structure that should be 

simultaneously rendered (e.g., coronary artery). In contrast, the 

proposed stenosis-based classification enables the salient 

visualization of constrictions within a tubular structure that have 

very poor visibility in the conventional classification. 

3.6.3  Quantitative evaluation 

We quantitatively validate how accurately the stenosis map encodes 

constrictions. As described in Section 3.6.1, a cardiac radiologist 

with 6 years of clinical experience manually specified coronary 

artery stenoses in each of the ten datasets. For each dataset, the 

radiologist manually identified stenoses with ≥ 50% blockage. In 
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this way, we obtained the manually classified stenoses that serve as 

the ground truth for the accuracy assessment of the proposed 

method. The cardiac radiologist assessed the images twice to avoid 

intra-observer disagreement. 

We evaluated the accuracy of the automatic stenosis 

classification of the proposed method in terms of two different 

factors as follows: 

 

ி௉ܧ ൌ ሼሺΩ஺௟௟݉ݑ݊ െ Ωெ௔௡௨௔௟ሻ ∩ Ω஺௨௧௢ሽ ,

ிேܧ ൌ ሼΩெ௔௡௨௔௟݉ݑ݊ ∩ ሺΩ஺௟௟ െ Ω஺௨௧௢ሻሽ , 
(3.15) 

 

where Ωெ௔௡௨௔௟  and Ω஺௨௧௢  are the regions of manually and 

automatically classified stenosis and Ω஺௟௟ is the whole regions of a 

CCTA dataset. The false positive error ܧி௉  is the number of 

stenosis regions classified automatically but not classified manually, 

relating to the specificity. The false negative error ܧிே  is the 

number of stenosis regions classified manually but not classified 

automatically, relating to the sensitivity. 

Table 3.3 summarizes the stenosis classification errors for the 

ten datasets. ܧிே  was 0 for all datasets, indicating that the 

proposed method did NOT miss any coronary artery stenosis. 

Although ܧி௉ seemed to be relatively large, the number of regions 

incorrectly classified as stenosis was very small compared to that 
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of whole regions in a CCTA dataset. In addition, about 30% of these 

incorrect regions were non-cardiovascular regions (e.g., aorta), 

and thus, they could be easily excluded. Therefore, the over-

classification of stenosis did not degrade the overall diagnostic 

performance when cardiac radiologists diagnose coronary artery 

stenoses in CCTA. 

Our method generates the stenosis map in the pre-processing 

step while computing the Hessian matrix and its eigenvalues at each 

 

Table 3.3 Accuracy assessment result of stenosis classification 

Dataset ܧி௉ ܧிே 

1 
Proximal LAD 80% stenosis, non-calcified and 
calcified plaques 

4 0 

2 
LM, proximal LAD, proximal LCX 50% stenosis, 
calcified plaque 

7 0 

3 Proximal LAD 70% stenosis, calcified plaque 3 0 

4 LM, proximal LAD 70% stenosis, calcified plaque 6 0 

5 Proximal LAD 80% stenosis, mixed plaque 9 0 

6 Proximal LAD 80% stenosis, mixed plaque 3 0 

7 Mid LAD 70% stenosis, mixed plaque 6 0 

8 
Proximal LAD 70% stenosis, calcified plaque 
Distal LCX 70% stenosis, mixed plaque 

7 0 

9 
Proximal to mid LAD 80% stenosis, non-calcified 
plaque 

12 0 

10 Proximal to mid LAD 90% stenosis, calcified plaque 1 0 
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voxel of a CCTA dataset. Such per-voxel computation was 

accelerated using parallel processing on a GPU in our implement-

ation. The stenosis map computation time, averaged over multiple 

tests for all ten datasets, was 47.42 ± 3.24 s, and the average 

rendering speed was 42.6 ± 1.22 fps. 

3.6.4  Comparison with previous methods 

We compared the result of our method with those of 11 recently 

proposed methods, which were presented at MICCAI 2012 

workshop, ‘3D Cardiovascular Imaging: a MICCAI segmentation 

challenge’ [41]. A database for this workshop consists of 48 multi-

center multi-vendor CCTA datasets. Among of them, 18 CCTA 

datasets have reference standard quantification results obtained 

from the coronary angiography procedure and consensus reading of 

CCTA. We measured and compared the detection accuracy results 

using these 18 CCTA datasets with the corresponding reference 

standard from coronary angiography. 

For the reference standard generation, one experienced 

cardiologist identified and analyzed all the coronary artery 

segments [41]. The stenosis detection method is evaluated using 
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the metrics described in [41] – the sensitivity and the positive 

predictive value (PPV) as follows: 

 

Sensitivity ൌ
TP

TP ൅ FN
, (3.16) 

PPV ൌ
TP

TP ൅ FP
, (3.17) 

 

where the true positive (TP) means that both the reference 

standard and the algorithm stenosis/segment have a grade ≥ 50%. 

The false negative (FN) means that the reference standard 

stenosis/segment has a grade ≥ 50% while the algorithm 

stenosis/segment has a grade < 50%. The false positive (FP) means 

that the reference standard stenosis/segment has a grade < 50% 

while the algorithm stenosis/segment has a grade ≥ 50%. 

Table 3.4 shows the accuracy comparison results of the 

proposed method with 11 previous methods whose accuracy was 

reported in [41]. The accuracy was measured using the identical 18 

CCTA datasets. As shown in Table 3.2, the proposed method shows 

the highest sensitivity of 92% for the detection of stenosis among 

of them. Our method did not miss any coronary artery stenosis 

except the occluded stenosis. Although our method shows a 
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relatively low PPV which indicates an increase in the number of 

false positives, considering the trade-off between sensitivity and 

specificity of a detection algorithm, the over-detection of lesions 

would benefit patients better than the miss of lesions. 

Table 3.4 Accuracy comparison results with previous methods 

Methods Category Sensitivity PPV 

Cetin and Unal [15] Min. user 68 49 

Duval et al. [60] Automatic 68 21 

Mohr et al. [61] Automatic 72 25 

Shahzad et al. [62] Min. user 48 63 

Broersen et al. [63] Automatic 36 39 

Öksüz et al. [64] Min. user 36 64 

Melki et al. [65] Automatic 60 20 

Wang et al. [66] Automatic 40 30 

Lor and Chen [67] Min. user 44 48 

Eslami et al. [68] Min. user 56 19 

Flórez-Valencia et al. [69] Min. user 24 11 

Proposed method Automatic 92 17 

 

Note. The maximum value of each column is marked in bold. ‘Min. user’  

represents minimal user interaction. 
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3.6.5  Parameter study 

The parameter study described in this section will show an easy-

to-follow procedure to determine major parameters in the proposed 

method when applied to other constricted tubular structures. We 

evaluated the effects of major parameters on the constriction (i.e., 

stenosis) detection accuracy using another nine test datasets. 

At the stage of Gaussian prefiltering, the optimal size of 

neighboring window is as important as the optimal Gaussian scale. 

The neighboring window size determines the local range for the 

localized structure analysis, and thus, it directly influences the 

constriction detection accuracy. The proposed method involves two 

steps of localized structure analysis with different target objects of 

coronary artery and stenosis. Each analysis uses the optimal 

Gaussian scale corresponding to its target object. For each of these 

two localized structure analyses, we evaluated the final constriction 

detection error, computed by averaging false positive errors ܧி௉ 

and false negative errors ܧிே across all the nine test datasets. 

While varying the neighboring window size from 9×9×9 to 

15×15×15 in the first step of coronary artery detection, the final 

constriction detection error was computed. The optimal neighboring 

window size was determined to be 13×13×13 with the smallest 
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false negative error of 0.0 (see Table 3.5). Similarly, while varying 

the neighboring window size from 5×5×5 to 11×11×11, the optimal 

neighboring window size in the second step of stenosis detection 

was determined to be 9×9×9 with the smallest false negative error 

of 0.0 (see Table 3.6). 

The parameter ௕ܶ௟௢௕ , ௦ܶ௛௘௘௧ , and ௡ܶ௢௜௦௘  in (3.3) for the 

detection of tubular structures (i.e., coronary arteries) influence the 

final constriction detection since they determine the search space of 

Table 3.5 Constriction detection error with varying neighboring window size  

for coronary artery detection 

Neighboring window size 9ଷ 11ଷ ૚૜૜ 15ଷ 

Constriction detection error
(# of incorrectly detected region)

ி௉ܧ 4.3 0.6 5.8 12.9 

ிேܧ 7.9 3.1 0.0 0.8 

 

Note. Neighboring window size Aଷ represents A ൈ A ൈ A. 

 

Table 3.6 Constriction detection error with varying neighboring window size  

for stenosis detection 

Neighboring window size 5ଷ 7ଷ ૢ૜ 11ଷ 

Constriction detection error
(# of incorrectly detected region)

ி௉ܧ 0.0 0.7 5.8 15.5 

ிேܧ 8.1 4.9 0.0 0.1 

 

Note. Neighboring window size Aଷ represents A ൈ A ൈ A. 
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the subsequent stenosis map computation. While varying each 

threshold, we assessed the final constriction detection error as in 

the previous optimal window size determination using the nine test 

datasets, and then determined an optimal value. 

From 0.25 to 0.45, the threshold ௕ܶ௟௢௕  was optimally 

determined to be 0.35 with the smallest false positive error of 4.3 

and the false negative error of 0.0 (see Table 3.7). Through the 

assessment of the threshold ௦ܶ௛௘௘௧ from 0.15 to 0.9, ௦ܶ௛௘௘௧ (smaller 

௦ܶ௛௘௘௧ leads to higher false positive) was found to minimally affect 

the constriction detection error. With ௦ܶ௛௘௘௧ smaller than 0.75, the 

final constriction detection error was all identical as the blob 

boundary region removal using the eigenvalue gradient also 

removed the false positive regions possibly detected with ௦ܶ௛௘௘௧ < 

0.75. With ௦ܶ௛௘௘௧ > 0.75, the false negative error increased. Thus, 

we set ௦ܶ௛௘௘௧ to be 0.25, one value < 0.75. From 0.0025 to 0.0045, 

the threshold ௡ܶ௢௜௦௘ was optimally determined to be 0.0035 with the 

smallest false positive error of 4.3 and the false negative error of 

0.0 (see Table 3.8). 

We introduced the eigenvalue gradient magnitude ܩఒభ in (3.3) 

for excluding the blob boundary regions which are falsely detected 

as tubular structures. From 0.0005 to 0.003, the threshold ܶீ  was 

optimally determined to be 0.001 with the smallest false positive 

error of 5.8 and the false negative error of 0.0 (see Table 3.9). 
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Table 3.7  Constriction detection error with varying threshold ௕ܶ௟௢௕ 

Threshold ௕ܶ௟௢௕ 0.25 0.3 0.35 0.4 0.45 

Constriction detection error
(# of incorrectly detected region)

ி௉ܧ 3.0 4.0 4.3 6.7 9.3 

ிேܧ 1.3 0.7 0.0 0.0 0.0 

 

Table 3.8  Constriction detection error with varying threshold ௡ܶ௢௜௦௘ 

Neighboring window size 0.0025 0.0035 0.0045 

Constriction detection error
(# of incorrectly detected region)

ி௉ܧ 16.7 4.3 1.7 

ிேܧ 0.0 0.0 2.7 

 

Table 3.9  Constriction detection error with varying eigenvalue gradient  

threshold ܶீ  

Neighboring window size 0.0005 0.001 0.002 0.003 

Constriction detection error
(# of incorrectly detected region)

ி௉ܧ 2.7 5.8 9.5 10.9 

ிேܧ 1.6 0.0 0.0 0.0 
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Chapter 4.  Interactive Multi-Dimensional 

Transfer Function Using Adaptive 

Block Based Feature Analysis 

4.1  Overview 

We also propose a data exploration method based on parallel 

coordinates. Our data exploration method uses the statistical and 

texture features to define a new multi-dimensional transfer 

function which is able to achieve the desired classification of 

objects in direct volume rendering. First, we extract the statistical 

features (i.e., mean value and standard deviation) using adaptive 

growing technique which also extrudes the relative size of the local 

feature at each voxel. Second, we calculate the texture features 

(i.e., entropy and homogeneity) using adaptive block based GLCM 

which is defined based on the previously computed relative size at 

each voxel. Finally, we define a new multi-dimensional transfer 

function using previously computed statistical and texture features, 

which incorporates parallel coordinate wherein each voxel is 

represented as a polyline with parallel axes of individual multi-
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dimensional features. 

4.2  Extraction of statistical features 

Prior to analyzing the texture features, we first extract the 

statistical features (i.e., mean value and standard deviation) using 

the adaptive growing technique. We employ the adaptive growing 

approach of Haidacher et al. [18] which iteratively grow a spherical 

neighborhood by increasing the radius by one voxel in each step. 

We briefly review this approach as follows; and refer interested 

readers to [18] for details. 

In the following review, we use two different notations for the 

statistical properties. The mean value ߤ௥ and the standard deviation 

௥ߪ  for a certain radius ݎ , are the estimations for the statistical 

 

 

Figure 4.1 Mean value and standard deviation for the sphere and the 

outer hull. Image courtesy of Haidacher et al. [18]. 
  
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properties of all points within a sphere of radius ߤ .ݎሶ௥ and ߪሶ௥ are 

the statistical properties of the points in the outer hull of the sphere 

(see Figure 4.1). This method compares for each growing step if 

the newly grown hull still belongs to the same material. Figure 4.2 

shows the processing steps for each growing step. In each growing 

step, the statistical properties of a larger region are considered. 

Since the statistical properties of sphere ݎ െ 1 are already known, 

those of the additional points in the hull (i.e., ߤሶ௥  and ߪሶ௥ ) are 

estimated. Before applying a similarity test between the statistical 

properties of the hull and the inner sphere, it must be ensured that 

the distribution of data values in the hull is normally distributed. 

 

 

Figure 4.2 Adaptive growing technique for the extraction of the 

statistical features (i.e., mean value and standard deviation). Image 

courtesy of Haidacher et al. [18]. 
  
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This is necessary because the similarity test is based on normal 

distributions. Among various normality tests in statistics, they 

chose the Jarque-Bera test [70] which uses the third-order 

moment (i.e., skewness) and the fourth-order moment (i.e., 

kurtosis). If this test is passed, the similarity test is continued. The 

similarity test detects whether the hull is still part of the same 

material as the sphere ݎ െ 1  using a generalized form of the 

student’s t-test known as the Welch’s t-test [71]. If the statistical 

properties have passed the normal-distribution test and the 

similarity test, the material in the outer hull still is considered the 

same as that in the sphere ݎ െ 1. Thus, the statistical properties of 

both areas are merged together. These merged statistical 

properties are used in the next growing step of the adaptive 

growing technique. The loop is terminated when the normal-

distribution test or the similarity test fails or when the maximum 

radius (six in case of our method) is reached. Additionally, this 

adaptive growing technique extrudes the radius at which the loop is 

terminated. This radius is considered the relative size of the local 

feature at each voxel, that is the size of statistically homogeneous 

regions. Figure 4.3 show the result of the adaptive growing 

technique, which is the radius at which the loop is terminated with 

maximum radius 6. Since the adaptive growing approach of 
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Haidacher et al. [18] deals with noise in the data, statistically 

homogeneous regions are successfully detected regardless of 

presence of noise; and an extruded radius can be considered the 

relative size of the local feature at each voxel. 

 

(a)               (b)               (c)               (d) 

Figure 4.3 Radius at which the loop of the adaptive growing technique of 

Haidacher et al. [18] is terminated. Upper row shows histograms of 

synthetic datasets (a) without and (b)-(d) with Gaussian noise ((b)ߪ ൌ

2, (c)ߪ ൌ 4, (d)ߪ ൌ 6). Middle row shows 2D slices images. Lower row 

shows the result of adaptive growing technique, that is the radius at 

which the loop is terminated with the maximum radius 6 (yellow: ݎ ൌ 1, 

orange: ݎ ൌ 2, light green: ݎ ൌ 3 dark green: ݎ ൌ 4, light blue: ݎ ൌ 5, dark 

blue: ݎ ൌ 6). 
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4.3  Extraction of texture features 

Using the previously computed relative size of the local feature of 

each voxel, texture features (i.e., entropy and homogeneity) are 

calculated. Texture is one of the important characteristics used in 

identifying objects or regions of interest in an image, and contains 

important information about the structural arrangement of surfaces 

[72]. In statistical texture analysis, texture features are computed 

from the statistical distribution of observed combinations of 

intensities at specified positions relative to each other in the image 

[73]. Depending on the number of intensity values in each 

combination, statistical texture analysis methods can be further 

classified into first-, second-, and higher-order statistics. Among 

various methods for statistical texture analysis, we employ GLCM 

which is a way of extracting second-order statistical texture 

features. 

GLCM is a matrix that is defined by calculating how often pairs 

of pixel with specific values occur at a given offset. For an image 

containing ݃ different gray levels, ݃ ൈ ݃ GLCM, parameterized by 

an offset ሺ∆ݔ, ܰ ሻ, is defined over anݕ∆ ൈܯ image ܫ as follows: 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 4.4 GLCM is a matrix that is defined by calculating how often 

pairs of pixel with specific values occur at a given offset. (a) Test 

image. (b) General form of GLCM. (c)-(f) GLCM with varying 

orientations and the fixed radius. (c) ߠ ൌ 0° and 	 ݎ ൌ 1. (d) ߠ ൌ 45° and 

	 ݎ ൌ 1. (e) ߠ ൌ 90° and 	 ݎ ൌ 1. (f) ߠ ൌ 135° and 	 ݎ ൌ 1. Image courtesy 

of [72]. 

 
  
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GLCMሺ݅, ݆ሻ ൌ ෍෍൜
1,	 	 	 ݂݅ ,ݔሺܫ ሻݕ ൌ ݅ ܽ݊݀ ݔሺܫ ൅ ,ݔ∆ ݕ ൅ ሻݕ∆ ൌ ݆
0,	 	 	 ݁ݏ݅ݓݎ݄݁ݐ݋ 	 	 ,

ெ

௬ୀଵ

ே

௫ୀଵ

 (4.1) 

 

where ܫሺݔ, ,ݔሻ indicates the pixel value at the spatial position ሺݕ  .ሻݕ

Figure 4.4 (a) presents a test image with four different gray levels 

0 through 3. Figure 4.4 (b) shows a generalized GLCM where #ሺ݅, ݆ሻ 

stands for the number of times the pair of gray levels ݅ and ݆ have 

been occurred. Instead of the offset ሺ∆ݔ,  ሻ, GLCM can also beݕ∆

parameterized in terms of a radius ݎ and an orientation ߠ. The four 

GLCM with varying orientations (ߠ ൌ 0°, 45°, 90°, and 135°) and the 

fixed radius equal to 1 are shown in Figure 4.4 (c)-(f). 

Displacement value (i.e., radius) equal to the size of the texture 

element improves classification [72]. The proposed method uses a 

moving window over the image; the size of neighboring window is 

determined by the previously computed relative size of the local 

feature at each voxel. Since the texture features are extracted 

based on the neighborhood within the same material, the adaptive 

block based GLCM enhances the accuracy of texture analysis. 

The texture features are calculated by extracting the 

statistical measures from GLCM [74]. The features generated using 

this technique include contrast, entropy, homogeneity, etc. Table 

4.1 summarizes some of the texture features from GLCM we have 

explored. 
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4.4  Multi-dimensional transfer function design 

using parallel coordinates 

After the statistical and texture features have been extracted, they 

are used to define a new multi-dimensional transfer function, which 

incorporates parallel coordinate; it is a popular technique for 

visualizing and analyzing high-dimensional data in information 

visualization. In our system, each voxel is represented as a polyline 

Table 4.1 Texture features from GLCM 

Contrast ෍෍|݅ െ ݆|ଶܯܥܮܩሺ݅, ݆ሻ
௝௜

 

Correlation ෍෍ܯܥܮܩሺ݅, ݆ሻ
ሺ݅ െ ሻሺ݆ߤ െ ሻߤ

ଶߪ
௝௜

 

Energy ෍෍ܯܥܮܩሺ݅, ݆ሻଶ

௝௜

 

Homogeneity ෍෍
,ሺ݅ܯܥܮܩ ݆ሻ

1 ൅ |݅ െ ݆|
௝௜

 

Entropy ෍෍ܯܥܮܩሺ݅, ݆ሻ log ,ሺ݅ܯܥܮܩ ݆ሻ
௝௜

 

 

Note. ߤ and ߪ represent mean value and standard deviation, respectively. 
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with parallel axes of individual multi-dimensional features (see 

Figure 4.5). As mentioned in Section 1.1.3, the parallel coordinates 

allow the user to interact with the data in many ways. We present 

three specific ways to use our multi-dimensional transfer function 

 

Figure 4.5 Multi-dimensional transfer function design using parallel 

coordinates. In the parallel coordinated, each vertical axis corresponds 

to computed individual features (i.e., statistical and texture features) 

and each data element is represented by one polyline with vertices on 

the parallel axes; the position of the vertex on the ݅ th axis corresponds 

to the ݅ th coordinates of the data element. 
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based on parallel coordinates to enable the effective exploration of 

large and complex datasets. First, the user can specify a region of 

interest (ROI) using a cube-based selecting user interface in the 

multi-planar reformations (MPRs). MPRs are 2D reformatted 

images that are reconstructed secondarily in arbitrary planes from 

the stack of axial images [75]. By highlighting the data of the 

selected ROI in the parallel coordinates, the user can easily analyze 

the statistical and texture features of them (see Figure 4.6). 

 

Figure 4.6 Cube-based selecting user interface. The user specifies a 

ROI using a cube-based selecting user interface in the MPRs. By 

highlighting the data of the selected ROI in the parallel coordinates, the 

user can easily analyze the statistical and texture features of them. 
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Second, the user can select a subset of the data by using a brushing 

operation in the parallel coordinates. By coloring the data in the 

volume rendering, the selected set of the data can be clearly 

visualized, the user can identify and analyze the data corresponding 

to patterns revealed in the parallel coordinates (see Figure 4.7). 

Finally, the user can specify a value ݇  which is the number of 

structures to discriminate. By using ݇-means clustering, the data is 

 

Figure 4.7 Brushing user interface. The user selects a subset of the data 

by brushing on the SD axis from 0.0 to 0.0025. By coloring the selected 

set of the data in the volume rendering, the user can identify and analyze 

patterns revealed in the parallel coordinates. 
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automatically classified into ݇ groups, and the data of the largest 

group is colored (highlighted) in both volume rendering and parallel 

coordinates (see Figure 4.8). This automatic classification is useful 

to understand dominant features contained within the volumetric 

dataset. 

 

Figure 4.8 Automatic classification. The user specifies a value ݇ which 

is the number of structures to discriminate. By using ݇ -means 

clustering, dominant features contained within the volumetric dataset is 

colored (highlighted) in both volume rendering and parallel coordinates. 
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4.5  Experimental results 

The parallel coordinate representation is used as a tool to help 

users in specifying a transfer function to classify or segment large 

and complex dataset. In order to demonstrate the practical efficacy 

of our data exploration method, we present a mechanism for data 

exploration with a new transfer function space. We illustrate this 

mechanism step-by-step with a dataset of brain tumor MR scans in 

Figure 4.9. The user begins with classifying the volume dataset 

using a 1D transfer function based on scalar data values which is 

the most commonly used one (Figure 4.9 (A)). Then, the user can 

evaluate the result of the classification at the volume rendered 

image (Figure 4.9 (B)). If the user specified 1D transfer function is 

not sufficient to saliently visualize the interested features, the user 

can interact with the proposed transfer function using parallel 

coordinate (Figure 4.9 (C)). In practice, all the statistical and 

texture features are computed at the voxels which are selected by 

the user-specified 1D transfer function in order to reduce time 

complexity and improve classification accuracy. In the parallel 

coordinate, each parallel axis represents one of the statistical and 

texture feature (i.e., relative size, mean value, standard deviation, 

and texture features); and each voxel is represented as a polyline. 
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Figure 4.9 (C) shows the calculated statistical and texture features 

with green polylines. As the user selects the range on each axis, 

the parallel coordinate is highlighted by red polylines (red polylines 

in Figure 4.9 (C)); and 3D volume rendering is updated; selected 

 

Figure 4.9 Data exploration based on multi-dimensional transfer 

function using parallel coordinates. (A) The user begins with classifying 

the volume dataset using a 1D transfer function based on scalar values. 

(B) The user can evaluate the result of the classification at the volume 

rendered image. (C) If the user specified 1D transfer function is not 

sufficient to saliently visualize the interested features, the user can 

interact with the proposed transfer function using parallel coordinates. 
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voxels are rendered with red color (Figure 4.9 (B)). This multi-

dimensional transfer function design with parallel coordinates 

enables more interactive exploration of the transfer function space 

with multi-variate features. 

Figure 4. 10 shows the 3D rendering of brain tumor MR scans. 

Using a 1D transfer function based on scalar data values, rendered 

 

Figure 4.10 3D rendered image of brain tumor MR scans using automatic 

classification. Materials with similar intensities can be discriminated by 

the statistical and texture features. Highlighted polylines of parallel 

coordinate represent the brain tumor which is a dominant feature of ݇-

means clustering with ݇ ൌ 4. 
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materials are depicted by the same color since they have similar 

intensities. However, the statistical (i.e., relative size, mean value, 

and standard deviation) and texture features (i.e., energy and 

entropy) of the tumor are different from the rest of the brain. 

Highlighted polylines of parallel coordinate represent the brain 

tumor. 
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Chapter 5.  Conclusion 

This paper proposes two approaches for the design of transfer 

functions. First, we propose a new 3D spatial field for effective 

visualization of constricted tubular structures, called as a stenosis 

map. It successfully discriminates constrictions within a tubular 

structure without laborious prior-segmentation of them. In the 

stenosis map, every voxel has a scalar value representing the 

degree of constriction relative to surrounding tubular structures. 

The degree of constriction is computed by newly proposed 

measures (i.e., line similarity measure and constriction measure) 

using the localized structure analysis based on the Hessian matrix 

and its eigenvalue signature. In addition, we have proposed a 

stenosis-based classification that maps the degree of constriction 

stored in the stenosis map to color and opacity. This classification 

provides easy and intuitive adjustment of the visual appearance of 

constrictions within tubular structures. We have explained the 

details of our method and its efficacy using an exemplary 

application to coronary artery stenoses. However, the proposed 

method can be directly applied to other constricted tubular 

structures only by the optimal selection of a few parameters. The 

performance evaluation using twenty-eight clinical datasets shows 
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that constricted regions are accurately encoded into the stenosis 

map and saliently visualized, demonstrating that our method can be 

an effective volume exploration tool in various, including but not 

limited to medicine, application fields of DVR.  

Second, we propose a data exploration tool based on a new 

multi-dimensional transfer function using the statistical and texture 

features (i.e., relative size, mean value, standard deviation, and 

texture features), which employs parallel coordinates wherein each 

voxel is represented as a polyline with parallel axes of individual 

multi-dimensional features. This approach provides three specific 

ways to use our multi-dimensional transfer function based on 

parallel coordinates to enable the effective exploration of large and 

complex datasets. Using these ways of classification, it successfully 

discriminates different objects with the same intensities. Different 

texture features (e.g., homogeneity, contrast, and angular second 

moment) can be combined to classify various objects. We present a 

mechanism for data exploration with step-by-step illustration, 

demonstrating the practical efficacy of our proposed method. This 

multi-dimensional transfer function design with parallel coordinates 

enables more interactive exploration of the transfer function space 

with multi-variate features. 
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초 록 

직접 볼륨 렌더링(direct volume rendering, DVR)은 3차원 볼륨 

데이터를 2차원 영상으로 재구성하는 가시화 기법 중 하나로, 볼륨 

데이터에 색과 불투명도를 대응시키는 전이 함수(transfer function)를 

이용한다. 직접 볼륨 렌더링에서 전이 함수는, 관심 영역은 강조하고 

중요하지 않은 영역은 숨겨, 가시화의 품질에 큰 영향을 미치는 중요한 

요소이다. 따라서 효과적인 가시화를 위한 전이 함수의 설계는 매우 

중요하고 까다로운 과제이다. 본 논문에서는 관심 영역/특징을 정확히 

식별하여 시각적으로 구별하기 위한 3차원 공간 필드와 다차원 전이 

함수를 이용한 데이터 탐색 메커니즘을 제안한다. 

먼저, 협착 관상 구조의 효과적인 가시화를 위해 3차원 공간 

필드인 스테노시스맵(stenosis map)을 제안한다. 스테노시스맵은 주변 

관상 구조에 비해 협착된 정도를 나타내는 스칼라 값을 저장하고 있으며, 

이는 본 논문에서 새롭게 제안하는 국부적 구조 분석을 기반으로 한 

측정 함수(선 유사도 측정 함수와 협착 측정 함수)에 의해 계산된다. 

계산된 스테노시스맵은 협착 정도를 색과 불투명도에 대응시키는 전이 

함수를 설계하는데 사용되어 협착 관상 구조를 효과적으로 가시화한다. 

본 논문에서는 협착 관상 구조의 효과적인 가시화 기법을 관상 동맥 

협착에 응용한 결과를 보여주며, 28개 임상 데이터의 성능 평가로 

정확성과 효능을 입증한다. 

둘째, 통계적으로 균질한 영역에서 계산된 질감 특성을 통합하는 
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새로운 다차원 전이 함수를 제안한다. 다차원 전이 함수 공간을 

직관적으로 분석할 수 있도록 병렬 좌표계를 도입하고, 이를 사용하는 

구체적인 세가지 방법을 제공하여 크고 복잡한 데이터를 효과적으로 

탐색할 수 있도록 한다. 새로운 다차원 전이 함수를 이용한 데이터 탐색 

메커니즘 제시하여, 제안된 방법의 실제적 효능을 입증한다. 

본 논문은 직접 볼륨 렌더링의 전이 함수 설계에 관한 연구를 통해, 

두 가지 유용한 기법을 제안한다. 협착 관상 구조의 효과적인 가시화 

기법은 협착 관상 구조를 정확히 식별하여 시각적으로 구별할 뿐만 

아니라 직관적인 사용자 인터페이스로 협착 관상 구조의 시각적 모양을 

대화식으로 조정하여 관상 동맥 협착과 같은 방사선 진단에 상당한 

도움을 준다. 또한 새로 설계한 다차원 전이 함수는 통계적으로 균질한 

영역에서 계산된 질감 특징을 통합하고 병렬 좌표계를 이용한 직관적인 

사용자 인터페이스를 제공하여 크고 복잡한 데이터를 직관적으로 탐색할 

수 있는 강력한 도구이다. 

 

주요어: 직접 볼륨 렌더링, 전이 함수, 관상 구조, 협착, 관상 동맥 

협착, 병렬 좌표계 
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