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Abstract

A Study on Transfer Function Design

for Direct Volume Rendering

Jihye Yun
School of Computer Science and Engineering

The Graduate School

Seoul National University

Although direct volume rendering (DVR) has become a commodity,
the design of transfer functions still a challenge. Transfer functions
which map data values to optical properties (i.e., colors and
opacities) highlight features of interests as well as hide unimportant
regions, dramatically impacting on the quality of the visualization.
Therefore, for the effective rendering of interesting features, the
design of transfer functions is very important and challenging task.
Furthermore, manipulation of these transfer functions is tedious and
time—consuming task. In this paper, we propose a 3D spatial field
for accurately identifying and visually distinguishing interesting

features as well as a mechanism for data exploration using multi—



dimensional transfer function.

First, we introduce a 3D spatial field for the effective
visualization of constricted tubular structures, called as a stenosis
map which stores the degree of constriction at each voxel.
Constrictions within tubular structures are quantified by using
newly proposed measures (i.e., line similarity measure and
constriction measure) based on the localized structure analysis, and
classified with a proposed transfer function mapping the degree of
constriction to color and opacity. We show the application results of
our method to the visualization of coronary artery stenoses. We
present performance evaluations using twenty—eight clinical
datasets, demonstrating high accuracy and efficacy of our proposed
method.

Second, we propose a new multi—dimensional transfer function
which incorporates texture features calculated from statistically
homogeneous regions. This approach employs parallel coordinates
to provide an intuitive interface for exploring a new multi—
dimensional transfer function space. Three specific ways to use a
new transfer function based on parallel coordinates enables the
effective exploration of large and complex datasets. We present a
mechanism for data exploration with a new transfer function space,
demonstrating the practical efficacy of our proposed method.

Through a study on transfer function design for DVR, we



propose two useful approaches. First method to saliently visualize
the constrictions within tubular structures and interactively adjust
the visual appearance of the constrictions delivers a substantial aid
in radiologic practice. Furthermore, second method to classify
objects with our intuitive interface utilizing parallel coordinates

proves to be a powerful tool for complex data exploration.

Keywords: Direct volume rendering, transfer function, tubular
structure, constriction, coronary artery stenosis, parallel
coordinates

Student Number: 2011—-30246
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Chapter 1. Introduction

1.1 Background

1.1.1 Volume rendering

Volume rendering is a technique used to display a meaningful 2D
image of a 3D volumetric dataset which is acquired by a computed
tomography (CT), magnetic resonance imaging (MRID), or 3D
tomosynthesis scanner. There are two fundamental types of volume
rendering: surface rendering and direct volume rendering (DVR).
Surface rendering converts a 3D volumetric dataset into a surface
representation (i.e., polygonal meshes) which can be rendered with
traditional rendering techniques. The marching cubes algorithm [1]
is a common technique for extracting an isosurface which is a
surface representing the locations of a constant value (.e., isovalue)
within a volume dataset. Since only surface representation is used,
much of the information within data is lost. DVR visualizes 3D
volumetric dataset without explicitly extracting geometric surfaces,
instead uses a transfer function that maps voxel values to optical

properties, such as colors and opacities [2, 3]. Among various DVR



techniques, a ray—casting DVR is usually considered to provide high

image quality. The ray—-casting DVR is the image—order method as

its computation emanates from the output image; in contrast, the

object—order method determines, for each data sample, how it

affects the pixels on the output image. In the basic form, the ray—

casting DVR algorithm consists of following four steps (see Figure

1.1):

Ray casting — For each pixel of the output image, a ray is
casted and traverses the volume data.

Sampling — Along the ray lying within the volume data, the
intensities are sampled at the uniform (or non—uniform [2])
intervals. Since the volume data in general is not aligned with
the ray, it is necessary to interpolate the values of sample

points from their surrounding voxels.

Figure 1.1 The four basic steps of the ray—casting DVR. @O Ray casting.

@ Sampling. @ Shading. @ Compositing. Image courtesy of Wikipedia.



e Shading — The optical property of each sample point is
evaluated by a transfer function, and then shaded according to
its surface orientation (i.e., gradient) and the location of light.

e Compositing — The shaded sampling points are composited
along the ray; the composition is derived from the rendering

equation. As a result, the final color for each pixel is obtained.

One of the main challenge of DVR is the rendering of interested
features with sufficient saliency so that they are visually
distinguished from other structures. In DVR, transfer functions that
map data values to optical properties (i.e., colors and opacities)
highlight features of interests as well as hide unimportant regions,
dramatically impacting on the quality of the visualization. Therefore,
for the effective rendering of interesting features, the design of

transfer functions is very important and challenging task.

1.1.2 Computer—aided diagnosis

Volume rendering technique is widely used in many fields of
application. It has been extensively used in not only clinical
applications for assisting diagnosis and operation planning but also
industrial applications for non—destructive testing and reverse

engineering. Among various applied fields, DVR has been most



widely used in medicine, especially in radiology. In medical
applications, DVR is used for the generation of cognitive three—
dimensional image from overwhelming 3D volumetric data from
modern scanners (e.g., CT, MRI, and 3D tomosynthesis). Under the
time pressure of clinical situation requiring prompt and important
clinical decision, radiologists want 3D rendering wherein lesions of
their interest are visualized distinguishably from other anatomical
structures. These procedures that assist radiologists in the
interpretation of medical images are called computer—aided
diagnosis.

Computer—aided diagnosis, which assists radiologic interpret—
ation by means of computer image analysis, has become one of the
major research subjects in medical imaging and diagnostic radiology
[3]. The basic concept of computer—aided diagnosis is to provide a
second opinion in the detection and diagnostic process. The
radiologists are answerable to the final interpretation of medical
images. The usefulness of computer—aided diagnosis depends on
the number of true—positive and false—positive markers [4]. High
sensitivity (high true—positive rate) improves the performance of
radiologists. For some applications, the large number of false—
positive markers is not a major problem because these markers can
easily be dismissed by the radiologists [5]. Nevertheless, an

excessive number of false—positive markers cause the increased



reading time and detection errors. With the goals of improving
accuracy in diagnosis and reducing the interpretation time,
computer—aided diagnosis has been widely applied in the detection
and diagnosis of many different types of abnormalities: breast
cancer, lung cancer, coronary artery disease, and congenital heart

defect.

1.1.3 Parallel coordinates

High—dimensional data analysis and visualization is very useful in
many domains and applications [6]. Parallel coordinates [7, 8] is
one of most popular and effective visualization techniques for
multi—variate data in information visualization. In the parallel
coordinates, each domain corresponds to a vertical axis and each
data element (e.g., a N—dimensional tuple) is represented by one
polyline with vertices on the parallel axes; the position of the
vertex on the ith axis corresponds to the ith coordinates of the
data element (see Figure 1.2). By corresponding parallel axes to
dimensions, the parallel coordinates represents N—dimensional data
in a 2—dimensional space.

Interaction plays an important role to enhance perception for

data exploration and visual data mining [9]. The ability to interact



economy (mpg)

Figure 1.2 Parallel coordinates for exploring and analyzing multi—
dimensional data. Each dimension corresponds to a vertical axis, and
each data element is represented by one polyline crossing the parallel

axes. Image courtesy of https://bl.ocks.org/jasondavies/1341281.

with visual representations (e.g., parallel coordinates) can greatly
reduce the drawbacks of visualization techniques, particularly those
related to visual clutter and object overlapping, providing the user
with mechanisms for handling large and complex datasets [10]. The
parallel coordinates allow the user to interact with the data in many
ways. The user can select a subset of the data by using a brushing
operation (see Figure 1.3 (a)). The selected set of the data is then
used as input for subsequent operations, such as highlighting,
labeling, replacing, deleting, and many more [9]. The user can also
reorder parallel axes by dragging and dropping, reducing visual

clutter by revealing patterns (e.g., correlations between dimensions)



ecanomy (mpg)

Figure 1.3 Interactions with parallel coordinates. (a) Brushing on the
(right—most) year axis from 1980 to 1982. (b) Reordering. Image

courtesy of https://bl.ocks.org/jasondavies/1341281.
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that might have been hidden before (see Figure 1.3 (b)). These

interactive parallel coordinates enable the effective exploration of

large and complex datasets.



1.2 Problem statement

DVR visualizes 3D volumetric data based on transfer functions that
map data values to specific optical properties (i.e., colors and
opacities). These transfer functions highlight features of interest as
well as hide unimportant regions, and thus, they are crucial in the
exploration of 3D volumetric data. It is a challenging task to specify
an appropriate transfer function which accurately identifies and
visually distinguishes interesting features. In addition, manipulation
of transfer functions for this classification is tedious and time-—
consuming task. In this paper, we deal with two main problems with
transfer functions: effective rendering of interested features and
efficient manipulation of transfer functions.

One of the main challenges of DVR is the rendering of
interested features with sufficient saliency so that they are visually
distinguished from other structures. In medicine, radiologists have
used DVR for the diagnosis of lesions or diseases; they should be
visualized distinguishably from other surrounding anatomical
structures. Of diverse diagnostic tasks in radiology, the detection of
constricted regions in complex tubular structures (e.g., coronary
artery stenosis in coronary artery, intra—thoracic airway

constriction, carotid artery stenosis, and intestinal obstruction) is
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Figure 1.4 Cardiovascular disease and other major causes of death for
all males and females (United States: 2011) [11]. A: Cardiovascular
disease plus congenital cardiovascular disease. B: Cancer. C: Accidents.
D: Chronic lower respiratory disease. E: Diabetes mellitus. F: Alzheimer

disease.

one of most frequent and important diagnostic tasks. In diagnosing
various diseases regarding constricted tubular structures in
radiologic diagnoses, early detection of coronary artery disease
(CAD) is very important because it is known to be the most
common cause of death in the world [11] (see Figure 1.4).
Traditionally, invasive coronary angiography (ICA) has been
considered as gold standard for assessing CAD. However, ICA is an
invasive technique and did not provide the information of the plaque
because it is just luminogram. Recently, coronary computed

tomography angiography (CCTA) has been widely adopted to non—



invasively diagnose CAD with high diagnostic accuracy. In particular,
CCTA has been reported to be useful for rapid detection of CAD in
patient with acute chest pain in an emergency situation [12, 13].
However, the interpretation of CCTA requires substantial clinical
expertise and experience [14]: it could take about several hours for
a physician without experience of cardiac imaging to detect stenosis
manually in a CCTA dataset, which may be unacceptable in the
emergency situation [15]. Therefore, an imaging system that
visualizes the constricted regions (i.e., stenosis) saliently can be a
very helpful volume navigation tool in the CAD diagnostic procedure.

Interesting tubular structures in medicine, such as the vascular
system, are typically small and tortuous and become gradually
narrower as they go, covering only a few voxels in the distal part in
CT or MRI images. In addition, their neighboring structures often
have similar intensity with them, making it more difficult to detect
(or segment) tubular structures (e.g., aorta and heart chambers
neighboring coronary arteries in CCTA). Coronary artery stenoses
(i.e., constrictions) within coronary arteries (i.e., tubular structures)
are classified by the degree of blockage caused by coronary artery
plaques including calcified, non—calcified, and mixed plaques; the
degree of blockage determines the treatment for CAD including
medicines, medical procedures, and surgeries. In CCTA, calcified

plaques appear as small and bright regions, non—calcified plaques

-10 -



have low contrast, and mixed plaques literally have mixed texture
of calcified and non—calcified plaques [33]. Because of such visual
difference of these three plaques, it i1s elusive to detect various
kinds of stenoses simultaneously. Thus, the fully automated
detection of such heterogeneous constrictions is a very challenging
task.

Although many approaches have been proposed for effective
classification, manual design of transfer functions remains a difficult
and laborious task, requiring efficient manipulation mechanisms. A
1D transfer function based on scalar data values is the most
commonly used one, which is difficult to differentiate the materials
with similar intensities (e.g., brain and region near the skull in MRI
[29]). Higher dimensional transfer functions can lead to more
accurate classification since they employ more properties for each
voxel, such as gradient [23, 24], curvature [25, 26], and local
texture features [27]. The gradient magnitude enhances borders
between different materials, and the curvature classifies specific
shapes of surfaces. The local texture features identify different
patterns of materials. However, as the dimension of transfer
function increases, the specification of transfer function becomes
more difficult. Thus, an intuitive and efficient user interface for
specifying these higher dimensional transfer functions is crucial to

explore and understand a volume dataset with DVR.

-11 -



1.3 Main contribution

In this study, we propose a 3D spatial field for effective
classification of constricted tubular structures, called as stenosis
map. For ease of explanation, we describe the proposed approach
with an exemplary application to coronary artery stenoses; but, this
approach can be directly applied to other constricted tubular
structures only with relevant parameter exploration. Furthermore,
we present a mechanism for data exploration based on parallel
coordinates for multi—dimensional transfer function design.

The proposed method for effective volume visualization of
constricted tubular structures consists of the following three main
steps, as shown in Figure 1.5. First, we detect tubular structures by
using a newly proposed similarity measure to line (.e., line
similarity), which serve as the search space of the subsequent
stenosis map computation. This search space restriction reduces
false positive and improves accuracy in the constriction detection
step. The newly proposed similarity measure to line is derived from
the localized structure analysis based on the Hessian matrix, which
1s calculated after applying Gaussian prefiltering; the optimal
Gaussian scale selection is important in the Gaussian prefiltering. In

this study, we use the mean diameter of the coronary artery which

-12 -
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Figure 1.5 Process of effective volume visualization of constricted

tubular structures.

is calculated from the coronary angiography procedure. For the
application to other tubular structures, the diameter for the given
tubular structures can be used.

And then we quantify constrictions within the previously
detected tubular structures by using a newly proposed constriction
measure which is also derived from the Hessian matrix. In a similar
manner as in the selection of optimal Gaussian scale for the
coronary artery, we determine the optimal Gaussian scale for the
stenosis using the degree of stenosis severity which is assessed by

the percentage of obstruction in the lumen diameter. For the

-13 -



application to other kinds of constrictions, relevant constriction
threshold (e.g., 50% obstruction in CCTA) can be used. As a result
of quantifying constrictions within tubular structures, we obtain a
3D spatial field of stenosis map, of which each voxel has a scalar
value of its corresponding degree of constriction.

Finally, the stenosis map is rendered simultaneously with the
input volume data by using multi—volume DVR. While a ray
traverses both volume datasets simultaneously, it samples the
intensity from the input volume data and the degree of constriction
from the stenosis map at a uniform interval. And it accumulates the
color and opacity that can be evaluated using a newly proposed
transfer function. Also, we propose a new opacity modulation
technique (i.e., constriction—magnitude—based opacity modulation),
which delivers a clear visualization of the inner stenoses. Such
stenosis—based classification enables easy and intuitive adjustment
of the visual appearance of constrictions within tubular structures.
The performance evaluation using twenty—eight clinical datasets
shows that constricted regions are accurately encoded into the
stenosis map and saliently visualized, demonstrating that our
method can be an effective volume exploration tool in various,
including but not limited to medicine, application fields of DVR.

We also propose a data exploration method based on parallel

coordinates. Our data exploration method uses the statistical and

- 14 -



texture features to define a new multi—dimensional transfer
function which is able to achieve the desired classification of
objects in DVR. First, we extract the statistical features (i.e., mean
value and standard deviation) using adaptive growing technique
which also extrudes the relative size of the local feature at each
voxel. Second, we calculate the texture features (i.e., entropy and
homogeneity) using adaptive block based gray—level co—
occurrence matrix (GLCM) which is defined based on the
previously computed relative size at each voxel. Finally, we define a
new multi—dimensional transfer function incorporating previously
computed statistical and texture features, which employs parallel
coordinates wherein each voxel is represented as a polyline with
parallel axes of individual multi—dimensional features. Multi—
dimensional transfer function design with parallel coordinates
enables more interactive exploration of the transfer function space
with multi—variate features. The step—by—step illustration of our
data exploration method shows that the parallel coordinate

representation can be used as a tool to help users in specifying a

transfer function to classify or segment a large and complex dataset.
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1.4  Organization of dissertation

The remainder of this paper is organized as follows. The next
chapter briefly review previous researches in the transfer functions
of DVR, segmentation of coronary artery stenosis and parallel
coordinates. Chapter 3 introduces an effective volume visualization
technique for constricted tubular structures. For ease of explanation,
we describe the proposed approach with an exemplary application
to coronary artery stenoses; but, this approach can be directly
applied to other constricted tubular structures only with relevant
parameter exploration. Chapter 4 presents a data exploration
method based on parallel coordinates, followed by conclusion in

Chapter 5.

-16 -



Chapter 2. Related Work

2.1 Transfer function

DVR wvisualizes 3D volumetric data without explicitly creating
intermediate geometric structures (i.e., meshes composing an
isosurface); instead, transfer functions make volumetric data visible
by mapping data values to optical properties (i.e., colors and
opacities). Transfer functions highlight features of interest as well
as hide unimportant regions, dramatically affecting the quality of the
visualization. Although DVR has become a commodity, the design of

transfer function is still a challenge.

2.1.1 Transfer functions based on spatial characteristics

One of the main challenges of DVR 1is the specification of an
appropriate transfer function that accurately identifies and visually
distinguishes interesting features. For these accurate classification,

some approaches used spatial characteristics derived by analyzing

around a voxel instead of voxel's properties (e.g., intensity,

-17 -
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Figure 2.1 Size—based classification of an aneurysm. Left: 1D transfer
function based on scalar value. Middle: Size—based classification, where
size maps to color and scalar value to opacity. Right: Size—based
classification, where opacity is the product of opacity mappings from
both scalar value and size. Color mapping is same as left. Image

courtesy of Correa and Ma [16].

gradient, and curvature). Correa and Ma [16] proposed size—based
transfer functions that mapped the relative size of features to color
and opacity. Size—based transfer functions were achieved with the
use of scale fields, which are scalar fields where every voxel
represents the local scale or size of the feature containing that
voxel. These scale—fields were computed via scale—space analysis
and a set of detection filters. Unlike other complex spaces, size can
be defined in a single dimension and it complements easily
traditional transfer functions (see Figure 2.1). They also proposed
a 2D transfer function based on occlusion spectrum which is

distribution of ambient occlusion that can be interpreted as a

- 18 -



Occlusion
Intensity

Figure 2.2 Occlusion spectrum for an MRI dataset. Anatomical structures
(e.g., skull, brain, and ventricles) appear depending on how internal they

are. Image courtesy of Correa and Ma [17].

weighted average of the intensities in a spherical neighborhood
around each voxel [17]. Occlusion spectrum encodes the
contribution of the voxels in the neighborhood of a given point, and
exhibits spatial coherence, important for identifying features and
their spatial relationships. When combined with the intensity values,
the occlusion spectrum provides a classification space that
separates features that are highly occluded (e.g., separation of
interior objects from outer objects) (see Figure 2.2). Also, many
other approaches relying on local neighborhood analysis have been

proposed, including statistical transfer function space [18] and

- 19 -



shape—based classification [19—21].

In this paper, we propose a new spatial field that can deliver a
new dimension for salient visualization of constrictions within
tubular structures, called as a stenosis map. The stenosis map is
derived by analyzing local structural features around a voxel, and
used to design a new transfer function which maps the degree of
constriction to color an opacity, complementing easily traditional

transfer function unlike other complex spaces.

2.1.2 Opacity modulation techniques

In order to enhance important features or suppress unwanted
details, opacity modulation techniques have been proposed. A
common method is gradient—magnitude opacity modulation. Levoy
[23] modulated the opacity according to the magnitude of the local
gradient, enhancing boundaries and suppressing homogeneous
regions. Bruckner et al. [22] introduced context—preserving volume
rendering technique which modulated the opacity of a sample in
order to simultaneously visualize interior and exterior structures
while retaining context information. The opacity of a sample is
modulated by a function of shading intensity, gradient magnitude,

distance to the eye point, and previously accumulated opacity to
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Figure 2.3 Context—preserving volume rendering of a contrast—
enhanced CT angiography dataset using different values of the two
parameters. Columns have the same k; value and rows have the same

ks value. Image courtesy of Bruckner et al [22].

selectively reduce the opacity in less important data regions. By
means of the two user—specified parameters, the user can
interactively uncover occluded regions (see Figure 2.3). These
opacity modulation techniques are applicable to any type of transfer
functions without restrictions.

In this paper, we propose a new opacity modulation technique
(i.e., constriction—magnitude—based opacity modulation), which
delivers a clear visualization of the inner stenoses. When rendering

the contrasted tubular structures (i.e., contrasted coronary arteries
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in CCTA), they are displayed with high opacity, often blocking the
constrictions inside them. To resolve this problem, we introduce an

opacity modulation technique.

2.1.3 Multi—dimensional transfer functions

A 1D transfer function based on scalar data values is the most
commonly used one, which is difficult to differentiate the materials
with similar intensities (e.g., brain and region near the skull in MRI
[29]). Higher dimensional transfer functions can lead to more
accurate classification since they employ more properties for each
voxel, such as gradient [23, 24], curvature [25, 26], and local
texture features [27]. Kindlmann ef al [26] advances the use of
curvature information in multi—dimensional transfer functions, with
a methodology for computing high—quality curvature measurements.
Curvature—based transfer functions extend the expressivity and
utility of DVR through contributions in three different applications:
non—photorealistic volume rendering, surface smoothing via
anisotropic diffusion, and visualization of isosurface uncertainty
(see Figure 2.4). Caban and Rheingans [27] used textural
properties to differentiate materials. For each subvolume of interest,

multi—dimensional texture—based descriptor 1s computed, which
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(b) (d)

Figure 2.4 Applications of curvature—based transfer functions. (a)

Volume rendered diagram of (k;,k,) space. (b) Non—photorealistic
volume rendering using transfer function from (a). (c) Surface
smoothing via anisotropic diffusion. (d) Visualization of isosurface

uncertainty. Image courtesy of Kindlmann e a/. [26].

captures the local textural statistical properties: first— (e.g.,
skewness and kurtosis), second— (e.g., energy and entropy), and
high—order statistics (e.g., short run and long run). All the

statistical descriptors are pre—computed and stored in a vector

image, which is used to look up the voxel's properties during the
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Figure 2.5 Texture—based classification. Left: Synthetic data being
visualized with the standard transfer function. Right: The same dataset
visualized using texture—based transfer function. The center of the
volume (pointed by the arrow) can be highlighted by analyzing local

textural properties. Image courtesy of Caban and Rheingans [27].

ray—casting DVR. Structures and features with the same intensity
can be visualized with different rendering properties (see Figure
2.5).

In this paper, we propose a new multi—dimensional transfer
function space using the statistical and texture features (i.e., mean
value, standard deviation, relative size, and texture features). This
approach successfully discriminates different objects with the
similar intensities using our intuitive interface utilizing parallel

coordinates.
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2.1.4 Manipulation mechanism for transfer functions

Although many approaches have been proposed for effective
classification, manual design of transfer functions remains a difficult
and laborious task, requiring efficient manipulation mechanisms. In
order to simplify the user interaction with the transfer function,
Kniss et al. [28] introduced the concept of dual domain (spatial

domain and transfer function domain) interaction (see Figure 2.6).

Data Probe

Iue Re- i/ElUe Re-projected Vo jected Vo

CIassnf cation Widgets
i \ xel

Transfer Function
Figure 2.6 Dual domain interaction. Top: Spatial domain. The user points
at the feature of interest using a data probe or a clipping plane. Bottom:
Transfer function domain. The user assigns the visual attributes to the

reprojected values. Image courtesy of Kniss et a/. [28].
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Figure 2.7 Painting user interface. Left: A slice painted by a user (pink:
features of interest, blue: undesirable materials). Middle: The result of
classification with a color bar. Right: The rendered result of the

classified volume. Image courtesy of Tzeng et al. [29].

In the spatial domain, the user points at a location of interest using
a data probe or a clipping plane. The values at that point are
visualized in the transfer function domain, and the user can then
begin specifying a custom transfer function. With this approach, the
conceptual gap between domains is significantly lessened,
effectively simplifying the complicated task of specifying a multi—
dimensional transfer function. Tzeng et al. [29] provides a painting
user interface that is used to automatically define high—dimensional
classification functions (see Figure 2.7). The user specifies regions
of interest by simply painting on a few slices from the volume data.
The painted voxels are used in an iterative training process, and
then the entire volume data can be classified. Such a system

employing a machine learning method using the painted regions as
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Figure 2.8 Non—parametric clustering within the transfer function space.

Left: Value versus value gradient histogram. Middle: The generated
transfer function using non—parametric clustering. Right: The rendered

result. Image courtesy of Maciejewski et al. [31].

training data enables the user to perform classification in a much
higher dimensional space without explicitly specifying the mapping
for every dimension used. Roettger et al. [30] presented a method
that groups spatially connected regions in the 2D histogram used
for classification. In the transfer function domain, each feature
(connected regions in the spatial domain) is segmented by using the
voxel barycenter and the region variance, assisting manual
specification of colors for similar features. Likewise, Maciejewski et
al. [31] applied a non—parametric clustering within the transfer
function domain in order to extract patterns and guide transfer
function generation (see Figure 2.8).

In this paper, we propose a data exploration method based on

parallel coordinates for multi—dimensional transfer function design.
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Our intuitive interface utilizing parallel coordinates enables more
interactive exploration of the transfer function space with multi—

variate features, crucial to understand large and complex datasets.

2.2 Coronary artery stenosis

CAD is the most common type of heart disease, leading cause of
death in the world [11]. It occurs when coronary arteries, which
supply blood (including oxygen and nutrients) to the myocardium,
become narrow or occluded due to the build—up of plaques (e.g.,
calcium, fat, and cholesterol). These narrowing of a vessel is
referred to as stenosis, leading complications such as chest pain or
heart attack. In order to determine the appropriate clinical
procedure of patients with acute chest pain, it is crucial to diagnose
the presence and severity of coronary artery stenosis. CCTA is a
non—invasive evaluation procedure for the diagnosis of CAD with
high diagnostic accuracy, allowing the interpreter to assess the
presence, extent, and type of coronary artery plaques [41]. Several
studies have shown that CCTA is very useful to detect CAD rapidly
for a patent who complained acute chest pain in the emergency
situation [12, 13]. However, the interpretation of CCTA requires

substantial clinical expertise and experience [14]: it could take
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about several hours for a physician without experience of cardiac
imaging to detect stenosis manually in a CCTA dataset, which may
be unacceptable in the emergency situation [15]. Therefore, an
automated system that can identify the stenosis fast and accurately
could be an assistant or alternative to the physicians in an
emergency.

There have been many approaches in the image segmentation
field that tried to detect coronary artery stenosis automatically or
semi—automatically. They can be categorized into two groups:
segmentation— and feature—based methods.

Segmentation—based methods detect stenoses by estimating a
vessel diameter after lumen segmentation. Some methods
incorporated both a new lumen segmentation algorithm and a new
stenosis detection algorithm. On the other hand, other methods
employed a previously published lumen segmentation algorithm, and
then proposed a new stenosis detection algorithm (refer interested
readers to [32] for complete survey of lumen segmentation).
Wesarg et al. [33] proposed a tracking—based segmentation which
progresses along the vessel by iterative prediction and correction
steps. The predicted centerline is corrected by the center of
cross—sectional contour points. And the stenosis is then detected
by using the diameter information and intensity analysis. This

method only detected calcified plaques and required substantial
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user involvement. Saur et al. [34] employed a rule—based technique
which involved the extraction and registration of lesion candidates
in both contrast—enhanced and non—contrast—enhanced CT images.
The prior—segmentation of coronary artery is used to restrict the
lesion candidates to only those within the coronary arteries. This
method automatically detected calcified plagques using distance
(between corresponding plaques of two images) and intensity score
rules. Although the registration step significantly reduced the false
positive rate, it made patients exposed to unnecessary radiation
with those two CT image acquisitions. Xu et al. [35] proposed a
fuzzy segmentation method in which each voxel has the probability
to belong to a target object. The segmentation of coronary artery is
accomplished using a previously published method by Yang et al
[36] which is a hybrid strategy using multi—scale filtering and a
Bayesian probabilistic approach within the level set segmentation
model. In following, for measuring local diameters along a coronary
artery centerline, they adopted the fuzzy distance transform which
is the smallest fuzzy distance from the boundary, and used these
distance values for detecting and quantifying stenoses. These
segmentation—based methods are highly dependent on the result of
lumen segmentation which usually requires a lot of manual
interactions.

Feature—based methods, which use machine Ilearning
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techniques to reduce manual interactions, detect stenoses using
features computed along the centerline of a vessel. Mittal et al. [37]
designed a cylindrical sampling pattern with the axis of cylinder
aligned to the centerline of coronary artery. Since stenoses can
occur anywhere around the axis, they used features which are

rotation invariant about the axis to detect calcified plaques.

TeBmann et al [38] also employed a cylindrical pattern and used

intensity variance, entropy, and Harr—like features to detect both
calcified and non—-calcified plaques. These feature—based methods
used supervised schemes so that it is laborious to collect manually
labeled data for all types of lesions. Zuluaga et al. [39] attempted to
use an unsupervised scheme which does not require any labeled
data for training. However, bifurcations were falsely detected as
stenoses in this method. To overcome this shortcoming, they
proposed a semi—supervised scheme in [40]. In this method, the
training set is made of both unlabeled data and a small amount of
data labeled as normal.

Unlike these previous methods that usually require a lot of
manual interactions [33—35], or laborious manual data classification
[37, 38, 40], we analyze the localized structure for the efficient and
accurate detection of coronary arteries and inner stenoses. We

compared the result of our method with those of 11 recently
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proposed methods, which were presented at MICCAI 2012

workshop, ‘3D Cardiovascular Imaging: a MICCAI segmentation

challenge’ [41]. This challenge was aimed at quantitatively

evaluating the algorithms for coronary artery stenoses detection/
quantification and lumen segmentation in CCTA, and conducted
using a database that consists of multi—center multi—vendor CCTA
datasets. Using the database for this challenge, we measured and

compared the detection accuracy results.

2.3 Parallel coordinates

Parallel coordinates [7, 8], which is one of most popular and
effective visualization techniques for multi—variate data in
information visualization, has been used for specifying and
visualizing higher dimensional classifier in DVR [42—45]. Lum et al.
[44] developed a user interface for effectively exploring and
utilizing the multi—scale volume data generated by the filter bank to
refine volume classification. As illustrated in Figure 2.9, the top row
(Level 0) represents the distribution of data values for the original,

unfiltered volume. The lines moving downward through the

subsequent levels represent data values’ response to progressively
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Level 0

Level 1

Level 2

Level 4
Figure 2.9 User interface for utilizing the multi—scale volume data
generated by the filter bank to refine volume classification. The thick
horizontal lines are coordinate axes corresponding to a particular filtered
data level. Each colored line corresponds to the data value of a sample

point in each filter level. Image courtesy of Lum et al. [44].

stronger filtering. User interaction starts with specifying a 1D
transfer function for the top, and then this transfer function is
refined by inserting additional classification widgets, as necessary,
at varying filter levels (see Figure 2.10). Zhao and Kaufman [45]
also utilized parallel coordinates for the design of the transfer
function. For each voxel of input dataset, various high dimensional
parameters (i.e., sixteen statistical attributes such as contrast,
correlation, and angular second moment) are calculated. And then,

parameters are selected according to the patterns of corresponding
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(a) (d) (e)

Figure 2.10 Refinement of the transfer function. The bundles of pink and
green lines in (a) are the result of user probes of the wanted (red) and
unwanted (green) areas in (b). The mixing of values at level zero
indicates overlapping intensity values. However, the clear separation
into pink and green bundles at subsequent filter levels suggest that a
higher dimensional classification can help. (b) and (d) show the result of
applying the defined transfer function at level zero. Adding a
classification widget at level two and three produced the improved

results shown in (¢) and (e). Image courtesy of Lum et al. [44].

polylines drawn in parallel coordinates. For the high dimensional
transfer function design, the user can choose to either interactively
design special widgets on the coordinates directly or automatically
project all the attribute parameters to the 2D space by the local

linear embedding technique as dimension reduction, and then assign
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colors and opacities to the classes calculated by a k—mean
algorithm in the 2D space.

In this paper, we propose a data exploration method based on
parallel coordinates. Our data exploration method wuses the
statistical and texture features to define a new multi—dimensional
transfer function. Adaptive growing technique is used to extract the
statistical features (i.e., mean value and standard deviation), which
keeps the neighborhood within the same material and enhances the
accuracy of the subsequent texture analysis step. The relative size
of the local feature at each voxel, which is also extruded by
adaptive growing technique, is used to calculate the texture
features (i.e., entropy and homogeneity) based on GLCM. Using
calculated statistical and texture features, we define a new multi—
dimensional transfer function using parallel coordinates. The step—
by—step illustration of our data exploration method shows that the
parallel coordinate representation can be used as a tool to help
users 1in specifying a transfer function to classify or segment a

complex dataset.
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Chapter 3. Volume Visualization of

Constricted Tubular Structures

3.1 Overview

First, we propose a 3D spatial field for the effective visualization of
constricted tubular structures, called as a stenosis map which
stores the degree of constriction at each voxel. Constrictions within
tubular structures are quantified by using newly proposed measures
(i.e., line similarity measure and constriction measure) based on the
localized structure analysis, and classified with a proposed transfer
function mapping the degree of constriction to color and opacity. We
show the application results of our method to the visualization of
coronary artery stenoses. We present performance evaluations
using twenty—eight clinical datasets, demonstrating high accuracy
and efficacy of our proposed method. The ability of our method to
saliently visualize the constrictions within tubular structures and
interactively adjust the visual appearance of the constrictions

proves to deliver a substantial aid in radiologic practice.
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3.2 Localized structure analysis

To classify the constrictions within tubular structures, we use local
structural features in this paper. Let I(x) denote the density value
at a point x = (xg,xq,x,) in input volume data. The local structure
of I(x) in a neighborhood of x can be approximated by the Taylor

expansion [46].
1
I(x + Ax) = I(x) + AxTVI(x) + EAxTH(x)Ax , (3.1)

where VI is the gradient vector and H(x) denotes the Hessian
matrix, which is a matrix built of the second partial derivatives of

I(x) as follows:

0% 0% 9%
0x? 0xdy 0x0z
H(x) = %1 91 9% (3.2)
dyox 0dy? 0yoz
921 9% 0%
| 0z0x 0z0dy 922 |

At each voxel position x, we calculate the second derivatives
and construct the Hessian matrix. By the eigenvalue decomposition

of the Hessian matrix, we obtain three eigenvalues, A;, 1,, and A5
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Table 3.1 Basic conditions for each localized structure [47]

Localized structure Eigenvalue signature

Sheet (e.g., cortex) A3 KA = =0
Line (e.g., vessel, bronchus) A3 =1, KA; =0

Blob (e.g., nodule) A3 =N, =2; K0

(14 = 2, = 13) and their corresponding eigenvectors, e;, e,, and es.

The combination of these three eigenvalues, called as eigenvalue

signature, characterizes the local morphologic structure of an object.

Sheet, line, and blob structures can be classified using the
conditions summarized in Table 3.1, assuming that bright structures
exist in a dark background [47]. Measurements of similarity to a
specific localized structure can be derived from these basic
conditions. Specially, this localized structure analysis has been
successfully applied to detect tubular structures (e.g., vascular
trees [48—50], or airway trees [51]).

In practice, the second derivatives are calculated after
applying the Gaussian filter to input volume data. The Gaussian
filter 1s specified by its standard deviation, called as Gaussian scale,
and the Gaussian scale can be fixed for the detection of single—
scale objects or ranged for the detection of multiple—scale objects.

For the accurate localized structure analysis based on the Hessian
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matrix, it is important to use an optimal Gaussian scale at the stage
of Gaussian prefiltering. The optimal value of Gaussian scale for a
target object with a diameter d is proven to be d/4 [52]. Using the
optimal Gaussian scale, the proposed method performs two steps of
localized structure analysis targeting two different objects of a
tubular structure and inner constrictions. Each analysis uses the

optimal Gaussian scale corresponding to its target object.

3.3 Stenosis map

3.3.1 Overview

The first step of classifying constricted tubular structures is the
estimation of input volume data to encode the degree of constriction,
resulting in the stenosis map. In order to discriminatingly visualize
coronary artery stenoses caused by all types of plaques, we
compute the stenosis map by analyzing the localized structure
around a voxel; we propose measurements of similarity to a specific
localized structure. In the stenosis map, each voxel has a scalar
value of its corresponding degree of constriction, understood as

how constricted it is relative to surrounding tubular structures. The
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process of computing the stenosis map consists of the following two
procedures. Fist, tubular structures are detected by using a newly
proposed similarity measure to line (i.e., line similarity), which
serves as the search space of the subsequent stenosis map
computation. Second, from the previously detected tubular
structures, inner constricted regions are detected by using a newly
proposed constriction measure; and their degree of constriction are

calculated, resulting in the stenosis map.

3.3.2 Detection of tubular structures

Interesting tubular structures in medicine, such as the vascular
system, are typically small and tortuous and become gradually
narrower as they go, covering only a few voxels in the distal part in
CT or MR images. In addition, their neighboring structures often
have similar intensity with them, making it more difficult to detect
(or segment) tubular structures (e.g., aorta and heart chambers
neighboring coronary arteries in CCTA).

Now, we elaborate on the computation of the stenosis map
with exemplary application to coronary artery stenosis; however,
its application to other tubular structures is straightforward with

easy—to—follow parameter exploration (detailed in Section 3.6.5).
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Coronary artery stenoses (i.e., constrictions) within coronary
arteries (i.e., tubular structures) are classified by the degree of
blockage caused by coronary artery plaques including calcified,
non—-calcified, and mixed plaques. In CCTA, calcified plaques
appear as small and bright regions, non—calcified plaques have low
contrast, and mixed plaques literally have mixed texture of calcified
and non—calcified plaques [33]. Because of such visual difference
of these three plaques, it is elusive to detect various kinds of
stenoses simultaneously. Such heterogeneous constrictions are not
rare in medicine, making the radiologic diagnosis more difficult.

Prior to detection coronary artery stenoses, we first find
tubular structure of coronary arteries to restrict the search space
of the subsequent constriction detection step. This search space
restriction reduces false positive and improves accuracy in the
constriction detection step. The tubular structures of coronary
arteries are detected by using a newly proposed similarity measure
derived from the Hessian matrix.

As discussed before, the optimal Gaussian scale selection in
the Gaussian prefiltering is important in the localized structure
analysis based on the Hessian matrix. In this study, we use the
mean diameter of the coronary artery when determining the optimal
Gaussian scale for the coronary artery detection. The mean

diameter of the coronary artery is calculated from the coronary
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Table 3.2 Diameters of coronary artery [53]

QCA diameters

Vessel type
Mean = SD Range
LM 5.07 £ 0.75 3.82 - 6.09
LAD 3.30 £ 0.85 1.46 — 5.28
LCX 3.53 £ 0.76 1.52 - 5.27
RCA 3.61 £ 0.58 2.71 - 5.67
Total 3.57 £ 0.84 1.46 - 6.09

Note. Data are in millimeters. LM = left main. LAD = left anterior descending

branch. LCX = left circumflex branch. RCA = right coronary artery.

angiography procedure that quantitatively measures coronary
artery dimensions [53] (see Table 3.2). The severity of stenosis is
assessed by the percentage of obstruction in the lumen diameter; a
normal vessel is 0% stenosis. To differentiate the coronary artery
stenosis with = 20% obstruction in CCTA, the isotropic spatial
resolution of CT should be at least 0.3 mm [54]. Considering the
anatomical information about the coronary artery [53, 54], the
diameter of a coronary artery is about 9—15 voxels in coronary CT
data with a spatial resolution of 0.3 mm. Therefore, the optimal
Gaussian scale for the coronary artery is set to be less than 3.75

(=15/4). For the application to other tubular structure, the diameter
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for the given tubular structures can be used.

After the Gaussian prefiltering, the tubular structures of
coronary arteries are detected by a proposed similarity measure to
line. At each voxel position, we calculate a similarity measure to

line SMj;,e, called as line similarity, given by:

( 1 if 23<1,<1; <0 and
Rpion < Tpiop and
Rsheet > Tsheet and

SMijine = Rooise > Tnoise and (3.3)
G/11 <Tg
\ 0 otherwise ,
where
|24
Rpiop = 77—, (3.4)
” ]
|22
Rsheet = 157 (3.5)
sheet |/13| )
Ruoise = \/A1Z + /122 + 2.32 . (3.6)

The line similarity involves three measures, Rppop, Rsneer> and Rppise
of Frangi et al. [55]. Ry, detects blob—like structure: it reaches
its maximum value for a blob—like structure and is close to zero for

line—like structure (4; = 0) or sheet—like structure (1, *1; = 0).
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(a) (b)

Figure 3.1 Coronary artery detection of (a) a 2D slice image and (b) a
3D rendered image of CCTA. The detected coronary artery is used to
restrict the search space of the subsequent constriction detection step,

reducing false positive and improving accuracy.

Rgpeer distinguishes between line— and sheet—like structures: when
|A5] > 1251 = 0 (Rgpeer being smaller), the structure is more likely to
be sheet—like rather than line—like. R, minimizes the influence
of image noise: it gets small in the background where there is no
structure; and it gets great in high—contrast regions when at least
one of the eigenvalues is large. To detect coronary arteries having
all types of plaques, the thresholds, Tpiop, Tsheet> and Tppise are
experimentally determined to be 0.35, 0.25, and 0.0035,
respectively. Figure 3.1 shows that the line similarity in (3.3)
works well enough to restrict the search space of the subsequent

constriction detection step.
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In contrasted CT data for specific legions examination in
tubular structures, the narrow linear region within the contrasted
tubular structure has a high value of line similarity. However, the
blob boundary also exhibits high line similarity, being falsely
detected as a line. It is because the blob boundary, blurred by
Gaussian prefiltering, is not regarded as a part of blob but as a line.
To discriminate this, we analyze eigenvalue profiles along a line
across the narrow linear and blob boundary regions (see Figure
3.2). The narrow linear region has a high rate of change in A, and
A3 but a low rate of change in A;. In contrast, the blob boundary

region has a high rate of change in all three eigenvalues. Therefore,

we use the rate of change in A; for discriminating these two regions:

low (or high) change rate in A, indicates the narrow linear region
(or the blob boundary region). Thus, the regions with higher
eigenvalue gradients, regarded as the blob boundary, are excluded
from the coronary artery (see (3.3), where the regions with
eigenvalue gradient magnitude G, lower than the optimal threshold
T, are regarded as a line). Figure 3.3 and 3.4 show that the
eigenvalue gradient magnitude successfully discriminates the blob
boundary regions from areas with high line similarity: the blob
boundary falsely detected as a line in Figure 3.3(c) (see the green
regions in the left blob) and Figure 3.4 (a) (see the blue regions in

the aorta) disappears in Figure 3.3 (d) and Figure 3.4 (b).
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(a) b)

Figure 3.2 Eigenvalue profiles of (a) narrow linear and (b) blob
boundary regions. Upper row shows 2D slice images. Lower row shows
eigenvalue profiles across the red line on the 2D slice images in the
upper row. In narrow linear region, rates of change in A, and A; are
high but a rate of change in 4, is low as in (a), whereas in blob
boundary region, all three eigenvalues are high as in (b). (4;: solid line,
A,: dashed line, A3: dashed—dotted line, dark grey area: detected as a

line, light grey area: detected as a blob).
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(b)

Figure 3.3 Removal of blob boundary region based on eigenvalue

(a) (c) (d)

gradient. (a) DVR of a 3D simulation phantom with a blob and a line. (b)
Central slice of the phantom. (c) Without removal of blob boundary
region, the boundary of the blob is falsely detected as a line. (d) With
removal of blob boundary region (T, =0.0025), the false detection

disappears. (The green represents the regions detected as a line).
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(a) ()

Figure 3.4 Constriction detection (a) without and (b) with removal of
blob boundary region based on eigenvalue gradient. The lower row
shows close—up images of the orange rectangular region in the upper
row. In (a), the boundary of the aorta is falsely detected as a line. (The

blue represents the regions detected as a line).
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3.3.3 Stenosis map computation

From the previously detected tubular structures (.e., detected as a
line), inner constricted regions (i.e., coronary artery stenosis) are
detected. Constrictions are detected by using a constriction
measure that is also derived from the Hessian matrix. In a similar
manner as in the selection of optimal Gaussian scale for the
coronary artery, we determine the optimal Gaussian scale for the
stenosis. The severity of stenosis is assessed by the percentage of
obstruction in the lumen diameter. The degree of stenosis severity
— insignificant (< 50%) and significant (= 50%) - determines the
treatment of CAD [56]. As mentioned in Section 3.1, the diameter
of the coronary artery is about 9—15 voxels in coronary CT data
with a spatial resolution of 0.3 mm. Significant stenoses are with at
least 50% obstruction in the lumen diameter, and thus, the lumen
with significant stenoses occupies at most 7.5 voxels (= 15 voxels
X 50%). Therefore, we set the optimal Gaussian scale for the
stenosis to be less than 1.875 (= 7.5/4). For the application to
other kinds of constrictions, relevant constriction threshold (e.g., 50%
obstruction in CCTA) can be used.

For accurate detection of constrictions (i.e., stenosis) within

the tubular structures (i.e., coronary arteries), we devise a
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constriction measure that quantifies how constricted compared to
surrounding tubular structure. This constriction measure is applied
only to the previously detected tubular structures. The stenosis is
represented as a morphologically narrowed line. As described in
Table 3.1, a line can be classified by A3 =1, K4; =0. As a
structure becomes less likely to be a line, |A,|/|13] decreases with
negative A, and A3 . And as a line is getting morphologically
narrowed, A; increases and has a positive value [47]. Thus, the
structure with A; = 0 is regarded as a normal line rather than a
morphologically narrowed line. Considering all these conditions, we

propose the constriction measure as M opstrice @S follows:

FL.FN lf Al>0 and A3S12<0

Mconstrict = { (3.7)
0 otherwise ,
where
(1= 12,1/1231)?
F, = exp <— o , (3.8)
(1 —1a,D?

Fy = exp <—2—BZ . (3.9)

Figure 3.5 shows that the constriction measure in (3.7) quantifies

the morphologically narrowed line well: constricted regions are
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(a) (b) (c)

Figure 3.5 Constriction quantification. (a) DVR of a 3D simulation
phantom with morphologically narrowed lines (left, 50% obstruction;
middle, 70% obstruction; and right, 90% obstruction). (b) Central slice
of the phantom. (¢) Each line has a scalar value of its corresponding
degree of constriction. The 50% obstructed line (left) has a lower value
than 90% obstructed line (right). (The green represents the regions
detected as a constriction. Higher degree of constriction is shown in

brighter green).

detected and quantified by the proposed constriction measure,
having scalar values of corresponding degree of constriction. The
parameters a and B are experimentally set to be 0.115 and 0.185,
respectively. As a result, we obtain the stenosis map in which each
voxel has a scalar value (ranging from 0.0 to 1.0) of its

corresponding degree of constriction Mconstrict-
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3.4 Stenosis—based classification

3.4.1 Overview

CCTA datasets can be visualized by using multi—planar reformation,
maximum intensity projection, and/or DVR techniques. Specially,
DVR intuitively displays and conveys complicated anatomical
information of tortuous tubular structures. Among various DVR
techniques, we employ a multi—volume ray—casting DVR. In order
to saliently visualize constrictions (i.e., stenosis) within the tubular
structures (i.e., coronary arteries), we propose a stenosis—based
classification technique which uses a newly proposed transfer
function reflecting the degree of constriction to color. When
rendering the contrasted tubular structure (i.e., contrasted coronary
arteries in CCTA), they are displayed with thigh opacity, often
blocking the constrictions inside them. To resolve this problem, we

propose a new opacity modulation strategy.

3.4.2 Constriction—encoded volume rendering

With the stenosis map, we have obtained the necessary information
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to apply a stenosis—based transfer function. Among various DVR
techniques, we employ a ray—casting DVR wherein a ray casted
from an image plane traverses the volume data while sampling the
intensity at a wuniform (or non—uniform [2]) interval and
compositing colors and opacities evaluated by a transfer function.
At each sampling position P; along a viewing ray, the color ¢; and
opacity ; are computed as follows [57]:
ci=c-1+@d—aiq) ap,cp, ,

(3.10)

a=a 1+ A —ai1) ap, ,

where ¢;_; and a;_; are the previously accumulated color and
opacity, respectively. c¢p, and ap, are the color and opacity

contributions at the position P;, which are defined as follows:

cp, = TF(fp,)

ap, = TF(fp,) ,

(3.11)

where TF, and TF, are transfer functions which assign color and
opacity to the scalar value fp, at each position P;, respectively.
The stenosis map is rendered simultaneously with the input
volume data by using multi—volume DVR. While a ray traverses
both volume datasets simultaneously, it samples the intensity from

the input volume data and the degree of constriction from the
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stenosis map at a uniform interval. And it accumulates the color and
opacity that can be evaluated using a transfer function proposed in
(3.12) and (3.13).

To visualize the constrictions saliently, we propose a transfer

function that reflects the degree of constriction to color:

Cconstrict if Smap (Pi) > Tconstrict
CPi = (3 . 1 2)
TF(fp,)  otherwise ,

where Sp.,(P;) is the degree of constriction at position P; in the
stenosis map, Spmap, and Teonserice 1S @ threshold that influences the
detection accuracy of constrictions. We optimally determine the
threshold T,onserice SO that only stenosis regions are rendered with a
predefined constriction color Ceonstrice - 1he sampling positions
except for stenosis regions are assigned with colors evaluated by a

user—defined transfer function for the input volume data.
3.4.3 Opacity modulation based on constriction

When rendering the contrasted tubular structures (i.e., contrasted
coronary arteries in CCTA), they are displayed with high opacity,

often blocking the constrictions inside them. As shown in Figure
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3.6(a) and (b), although the proposed method accurately detects
the constrictions (i.e., stenosis), opaque vessels hide the inner
constrictions. To resolve this problem, we propose constriction—
magnitude—based opacity modulation, motivated by the gradient—
magnitude—based opacity modulation [23] that modifies the opacity
according to the gradient magnitude for the boundary enhancement.
We modulate the opacity based on the degree of constriction stored

in the stenosis map as follows:

ap, = TFy(fp,) -m(P) , (3.13)

where

mP) =6+ (1 =6) - Spap(Py) . (3.14)

The modulation factor m(P;) at position P; is determined by the
modulation base & and the degree of constriction Sp.,(P). By
adjusting the modulation base §, the users can interactively uncover
occluded constrictions. Figure 3.6(c) and (d) show 3D renderings
with two different values of §. With smaller §, areas inside the
vessels are more revealed, the stenoses being more saliently
visualized. This constriction—magnitude—based opacity modulation
enables easy and intuitive adjustment of the transfer function when
visualizing 1nner constrictions simultaneously with tubular

structures.
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3.5 GPU implementation

Our method computes the stenosis map in the pre—processing stage
and provides an interactive 3D volume rendering using this pre—
computed stenosis map (see Figure 3.7). Both stenosis map
computation and data classification are implemented using GPU in
separate HLSL programs (compute shader and pixel shader,
respectively). To minimize the memory required by the stenosis
map, we construct the stenosis map in a volume data of 8—bit float
format. Although the 8—bit float has lower precision than 32—bit
float, it preserves data precision enough to distinguish constricted
tubular structures from other anatomical structures. The stenosis
map computation is GPU—implemented by using a compute shader
over two passes. The first pass computes eigenvalues for detecting
tubular structures. The second pass detects tubular structures
using the eigenvalues, and then computes the degree of constriction
only for the voxels detected as tubular structures and stores them
in the stenosis map. For multi—volume DVR, the stenosis map and
the input volume data are both loaded in GPU memory. Data
classification is done using both volume data by a GPU-—based ray
casting pixel shader. The proposed algorithms of stenosis map

computation and data classification are implemented in Direct3D 11
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CT data >

Stenosis map
computation

¥

Compute eigenvalues
for detecting tubular structures

3

Detect tubular structures

Compute degree of constriction

s 2

Data classification

Ctenosis maD

Multi-volume direct volume rendering
(ray casting)

) 2

Stenosis enhanced
3D rendered image

Figure 3.7 GPU implementation. The stenosis map is computed by using

a compute shader over two passes in the pre—processing stage. Data

classification is done using both the input volume data and the stenosis

map by a GPU—based ray casting pixel shader.

and high level shading language on an NVIDIA GeForce GTX TITAN

with 6 GB of memory.

- 58 -



3.6 Experimental results

3.6.1 Clinical data preparation

We evaluate the performance of the proposed method using ten
clinical CCTA datasets from different patients. CT scanning was
performed with a 256—row multi—detector CT scanner (CT 256,
Philips Medical Systems, Cleveland, OH). The number of images per
scan ranged from 262 to 319. Each image has a matrix size of 512
X 512. The pixel size ranged from 0.29 to 0.42 mm, and the slice
interval was all 0.45 mm.

For each CT dataset, a cardiac radiologist with 6 years of
clinical experience manually specified coronary artery stenoses,
assessed the degree of blockage of the coronary artery, and
classified the type of plaque, which 1s the main cause of the
blockage, into three types: non-—calcified, calcified, and mixed
plaques (see Figure 3.8). The purpose of the proposed method is to
discriminatingly visualize coronary artery stenoses caused by all
types of plaques. Thus, we evaluated the proposed method using
the ten datasets that contain significant (= 50%) stenoses caused

by at least one type of plaque (see Table 3.3).

- 59 -



(a) (b) (c)

Figure 3.8 Three types of plaque [58]. (a) Non—calcified plagque has low
density compared to contrast—enhanced vessels without any visible
calcification. (b) Calcified plaque was defined as plaque having
calcification (= 130HU) in more than 50% of the entire volume. (c)
Mixed plaque was defined as plaque having calcification in < 50% of the
entire volume. The upper and lower rows show 2D slices and 3D

rendered images, respectively.

3.6.2 Qualitative evaluation

We qualitatively evaluate the proposed constriction visualization
method by comparing it with the conventional classification [59].

Figure 3.9 shows the 3D renderings of a CCTA dataset (dataset #1)
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(a) (b)

Figure 3.9 3D rendered images using (a) conventional classification and
(b) proposed stenosis—based classification. Regions constricted by
plaques, which are invisible (a), are clearly visualized in blue in (b). The
lower row shows close—up images of the orange rectangular region in
the upper row (green dashed arrow: calcified plaque, yellow solid arrow:

non—-calcified plaque).

containing > 80% coronary artery stenoses caused by both non-—

calcified and calcified plaques. Whereas the plaques are not
distinguishable in the conventional method (Figure 3.9 (a)), the
regions constricted by plaques are clearly visualized in a predefined

color (blue) with the proposed method (Figure 3.9 (b)).
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(a) (b) (c)

Figure 3.10 3D rendered images using (a) conventional classification
and proposed stenosis—based classification with (b) § =1.0 and (¢) 6 =
04 in (3.14). The proposed opacity modulation based on degree of
constriction enables a clear visualization of the inner stenoses, where
smaller § shows more inner stenoses. The lower row shows close—up
images of the orange rectangular region in the upper row (yellow arrow:

mixed plaque).

Figure 3.10 shows the 3D renderings of a CCTA dataset

(dataset #7) containing > 70% coronary artery stenosis caused by

mixed plaques. The stenoses are almost invisible in the
conventional method (Figure 3.10 (a)). The proposed method

detects the stenoses accurately; however, the contrast—enhanced
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vessels, which are opaquely rendered with a typical transfer
function for the coronary artery visualization, usually hide the inner
stenoses (Figure 3.10 (b)). The proposed opacity modulation
modifies the opacity based on the degree of constriction, delivering
a clear visualization of the inner stenosis (Figure 3.10 (¢)).

In the conventional classification, it is tedious or very difficult
to specify an appropriate transfer function which visually
distinguishes all features of interests. Not rarely, it is almost
impossible to visualize a feature of interest (e.g., stenosis caused
by non—-calcified or mixed plaques) inside a structure that should be
simultaneously rendered (e.g., coronary artery). In contrast, the
proposed stenosis—based classification enables the salient
visualization of constrictions within a tubular structure that have

very poor visibility in the conventional classification.

3.6.3 Quantitative evaluation

We quantitatively validate how accurately the stenosis map encodes
constrictions. As described in Section 3.6.1, a cardiac radiologist
with 6 years of clinical experience manually specified coronary

artery stenoses in each of the ten datasets. For each dataset, the

radiologist manually identified stenoses with > 50% blockage. In
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this way, we obtained the manually classified stenoses that serve as
the ground truth for the accuracy assessment of the proposed
method. The cardiac radiologist assessed the images twice to avoid
intra—observer disagreement.

We evaluated the accuracy of the automatic stenosis
classification of the proposed method in terms of two different

factors as follows:

Epp = num{(Qay — Qmanuar) N Qauto} »

(3.15)

Epy = num{QManual N (-QAll - -QAuto)} ’

where Quanuar  and Quueo are the regions of manually and
automatically classified stenosis and g, is the whole regions of a
CCTA dataset. The false positive error Egp is the number of
stenosis regions classified automatically but not classified manually,
relating to the specificity. The false negative error Epy is the
number of stenosis regions classified manually but not classified
automatically, relating to the sensitivity.

Table 3.3 summarizes the stenosis classification errors for the
ten datasets. Epy was O for all datasets, indicating that the
proposed method did NOT miss any coronary artery stenosis.
Although Epp seemed to be relatively large, the number of regions

incorrectly classified as stenosis was very small compared to that
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of whole regions in a CCTA dataset. In addition, about 30% of these

incorrect regions were non—cardiovascular regions (e.g., aorta),

and thus, they could be easily excluded. Therefore, the over—

classification of stenosis did not degrade the overall diagnostic

performance when cardiac radiologists diagnose coronary artery

stenoses in CCTA.

Our method generates the stenosis map in the pre—processing

step while computing the Hessian matrix and its eigenvalues at each

Table 3.3 Accuracy assessment result of stenosis classification

Dataset Epp  Epy
Proximal LAD 80% stenosis, non—calcified and
1 . 4 0
calcified plaques
LM, proximal LAD, proximal LCX 50% stenosis,
2 . 7 0
calcified plaque
3 Proximal LAD 70% stenosis, calcified plaque 3 0
4 LM, proximal LAD 70% stenosis, calcified plaque 6 0
5 Proximal LAD 80% stenosis, mixed plaque 9 0
6  Proximal LAD 80% stenosis, mixed plaque 3 0
7  Mid LAD 70% stenosis, mixed plaque 6 0
3 Proximal LAD 70% stenosis, calcified plaque 7 0
Distal LCX 70% stenosis, mixed plaque
9 Proximal to mid LAD 80% stenosis, non-—calcified 19 0
plaque
10  Proximal to mid LAD 90% stenosis, calcified plaque 1 0
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voxel of a CCTA dataset. Such per—voxel computation was
accelerated using parallel processing on a GPU in our implement—

ation. The stenosis map computation time, averaged over multiple

tests for all ten datasets, was 47.42 + 3.24 s, and the average

rendering speed was 42.6 + 1.22 fps.

3.6.4 Comparison with previous methods

We compared the result of our method with those of 11 recently

proposed methods, which were presented at MICCAI 2012

workshop, ‘3D Cardiovascular Imaging: a MICCAI segmentation

challenge’ [41]. A database for this workshop consists of 48 multi—

center multi—vendor CCTA datasets. Among of them, 18 CCTA
datasets have reference standard quantification results obtained
from the coronary angiography procedure and consensus reading of
CCTA. We measured and compared the detection accuracy results
using these 18 CCTA datasets with the corresponding reference
standard from coronary angiography.

For the reference standard generation, one experienced
cardiologist identified and analyzed all the coronary artery

segments [41]. The stenosis detection method is evaluated using
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the metrics described in [41] - the sensitivity and the positive

predictive value (PPV) as follows:

TP
itivity = ———— (3.16)
Sensitivity TPFFN
= (3.17)
PPV TP+ FP '

where the true positive (TP) means that both the reference

standard and the algorithm stenosis/segment have a grade > 50%.

The false negative (FN) means that the reference standard

stenosis/segment has a grade > 50% while the algorithm

stenosis/segment has a grade < 50%. The false positive (FP) means

that the reference standard stenosis/segment has a grade < 50%

while the algorithm stenosis/segment has a grade > 50%.

Table 3.4 shows the accuracy comparison results of the
proposed method with 11 previous methods whose accuracy was
reported in [41]. The accuracy was measured using the identical 18
CCTA datasets. As shown in Table 3.2, the proposed method shows
the highest sensitivity of 92% for the detection of stenosis among
of them. Our method did not miss any coronary artery stenosis

except the occluded stenosis. Although our method shows a
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Table 3.4 Accuracy comparison results with previous methods

Methods Category Sensitivity PPV
Cetin and Unal [15] Min. user 68 49
Duval et al. [60] Automatic 68 21
Mohr et al. [61] Automatic 72 25
Shahzad et al. [62] Min. user 48 63
Broersen et al. [63] Automatic 36 39
Okslz et al. [64] Min. user 36 64
Melki et al. [65] Automatic 60 20
Wang et al. [66] Automatic 40 30
Lor and Chen [67] Min. user 44 48
Eslami et al. [68] Min. user 56 19
Flérez—Valencia et al. [69] Min. user 24 11
Proposed method Automatic 92 17

Note. The maximum value of each column is marked in bold. ‘Min. user’

represents minimal user interaction.

relatively low PPV which indicates an increase in the number of

false positives, considering the trade—off between sensitivity and

specificity of a detection algorithm, the over—detection of lesions

would benefit patients better than the miss of lesions.
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3.6.5 Parameter study

The parameter study described in this section will show an easy—
to—follow procedure to determine major parameters in the proposed
method when applied to other constricted tubular structures. We
evaluated the effects of major parameters on the constriction (i.e.,
stenosis) detection accuracy using another nine test datasets.

At the stage of Gaussian prefiltering, the optimal size of
neighboring window is as important as the optimal Gaussian scale.
The neighboring window size determines the local range for the
localized structure analysis, and thus, it directly influences the
constriction detection accuracy. The proposed method involves two
steps of localized structure analysis with different target objects of
coronary artery and stenosis. Each analysis uses the optimal
Gaussian scale corresponding to its target object. For each of these
two localized structure analyses, we evaluated the final constriction
detection error, computed by averaging false positive errors Egp

and false negative errors Epy across all the nine test datasets.

While varying the neighboring window size from 9x9x9 to

15x15%15 in the first step of coronary artery detection, the final

constriction detection error was computed. The optimal neighboring

window size was determined to be 13x13x13 with the smallest
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Table 3.5 Constriction detection error with varying neighboring window size

for coronary artery detection

Neighboring window size 93 113 133 153

o ] Epp 4.3 0.6 5.8 12.9
Constriction detection error

(# of incorrectly detected region)

Esy 7.9 3.1 0.0 0.8

Note. Neighboring window size A3 represents A X A X A.

Table 3.6 Constriction detection error with varying neighboring window size

for stenosis detection

Neighboring window size 53 73 93 113

o ] Erp 0.0 0.7 5.8 15.5
Constriction detection error

(# of incorrectly detected region)

Emy 8.1 4.9 0.0 0.1

Note. Neighboring window size A3 represents A X A X A.

false negative error of 0.0 (see Table 3.5). Similarly, while varying

the neighboring window size from 5x5x5 to 11x11x11, the optimal

neighboring window size in the second step of stenosis detection
was determined to be 9x9x9 with the smallest false negative error
of 0.0 (see Table 3.6).

The parameter Typp » Tspeer » and Tppise in (3.3) for the

detection of tubular structures (i.e., coronary arteries) influence the

final constriction detection since they determine the search space of
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the subsequent stenosis map computation. While varying each
threshold, we assessed the final constriction detection error as in
the previous optimal window size determination using the nine test
datasets, and then determined an optimal value.

From 0.25 to 0.45, the threshold Ty, was optimally
determined to be 0.35 with the smallest false positive error of 4.3
and the false negative error of 0.0 (see Table 3.7). Through the
assessment of the threshold Tgpeer from 0.15 to 0.9, Tgpeer (smaller
Teneer leads to higher false positive) was found to minimally affect
the constriction detection error. With Tgueer smaller than 0.75, the
final constriction detection error was all identical as the blob
boundary region removal using the eigenvalue gradient also
removed the false positive regions possibly detected with Tgpeer <
0.75. With Tgeer > 0.75, the false negative error increased. Thus,
we set Tspeer to be 0.25, one value < 0.75. From 0.0025 to 0.0045,
the threshold T,,;e Was optimally determined to be 0.0035 with the
smallest false positive error of 4.3 and the false negative error of
0.0 (see Table 3.8).

We introduced the eigenvalue gradient magnitude G;, in (3.3)
for excluding the blob boundary regions which are falsely detected
as tubular structures. From 0.0005 to 0.003, the threshold T; was
optimally determined to be 0.001 with the smallest false positive

error of 5.8 and the false negative error of 0.0 (see Table 3.9).
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Table 3.7 Constriction detection error with varying threshold Ty.p

Threshold Ty, 025 03 035 04 045

Em 30 40 43 67 93

Constriction detection error

(# of incorrectly detected region)

Emw 13 07 00 00 00

Table 3.8 Constriction detection error with varying threshold Tyse

Neighboring window size 0.0025 0.0035 0.0045

L . Epp 16.7 4.3 1.7
Constriction detection error

(# of incorrectly detected region)

Epy 0.0 0.0 2.7

Table 3.9 Constriction detection error with varying eigenvalue gradient

threshold Ty

Neighboring window size 0.0005 0.001 0.002 0.003

o ] Epp 2.7 5.8 9.5 10.9
Constriction detection error

(# of incorrectly detected region)

Emy 1.6 0.0 0.0 0.0
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Chapter 4. Interactive Multi—Dimensional
Transfer Function Using Adaptive

Block Based Feature Analysis

4.1 Overview

We also propose a data exploration method based on parallel
coordinates. Our data exploration method uses the statistical and
texture features to define a new multi—dimensional transfer
function which is able to achieve the desired classification of
objects in direct volume rendering. First, we extract the statistical
features (i.e., mean value and standard deviation) using adaptive
growing technique which also extrudes the relative size of the local
feature at each voxel. Second, we calculate the texture features
(i.e., entropy and homogeneity) using adaptive block based GLCM
which 1s defined based on the previously computed relative size at
each voxel. Finally, we define a new multi—dimensional transfer
function using previously computed statistical and texture features,
which incorporates parallel coordinate wherein each voxel is

represented as a polyline with parallel axes of individual multi—
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dimensional features.

4.2 Extraction of statistical features

Prior to analyzing the texture features, we first extract the
statistical features (i.e., mean value and standard deviation) using
the adaptive growing technique. We employ the adaptive growing
approach of Haidacher et a/. [18] which iteratively grow a spherical
neighborhood by increasing the radius by one voxel in each step.
We briefly review this approach as follows; and refer interested
readers to [18] for details.

In the following review, we use two different notations for the
statistical properties. The mean value y, and the standard deviation

o, for a certain radius r, are the estimations for the statistical

(1,6)
Sphere r-1

(“‘r»llGr»l)

Figure 4.1 Mean value and standard deviation for the sphere and the

outer hull. Image courtesy of Haidacher et al. [18].
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properties of all points within a sphere of radius r. g, and 4, are

the statistical properties of the points in the outer hull of the sphere

(see Figure 4.1). This method compares for each growing step if

the newly grown hull still belongs to the same material. Figure 4.2

shows the processing steps for each growing step. In each growing

step, the statistical properties of a larger region are considered.

Since the statistical properties of sphere r—1 are already known,

those of the additional points in the hull (.e., g, and 4,) are

estimated. Before applying a similarity test between the statistical

properties of the hull and the inner sphere, it must be ensured that

the distribution of data values in the hull is normally distributed.

Start . . . ..
> Properties Estimation Hy, O
Normal Distribution Test iy, Gy
N Yes
Pass? ]
P g Bpeq 3 1,
Similarity Test =
No Yes
Pass? 1
Merging Statistical Properties My, Op
Result Yes > No r++
< \W

Figure 4.2 Adaptive growing technique for the extraction of the

statistical features (i.e., mean value and standard deviation). Image

courtesy of Haidacher et al. [18].
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This is necessary because the similarity test is based on normal
distributions. Among various normality tests in statistics, they
chose the Jarque—Bera test [70] which uses the third—order
moment (i.e., skewness) and the fourth—order moment (.e.,
kurtosis). If this test is passed, the similarity test is continued. The
similarity test detects whether the hull is still part of the same

material as the sphere r—1 using a generalized form of the

student’'s t—test known as the Welch's t—test [71]. If the statistical

properties have passed the normal—distribution test and the
similarity test, the material in the outer hull still is considered the
same as that in the sphere r — 1. Thus, the statistical properties of
both areas are merged together. These merged statistical
properties are used in the next growing step of the adaptive
growing technique. The loop is terminated when the normal—
distribution test or the similarity test fails or when the maximum
radius (six in case of our method) is reached. Additionally, this
adaptive growing technique extrudes the radius at which the loop is
terminated. This radius is considered the relative size of the local
feature at each voxel, that is the size of statistically homogeneous
regions. Figure 4.3 show the result of the adaptive growing
technique, which is the radius at which the loop is terminated with

maximum radius 6. Since the adaptive growing approach of
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(a) (b) (c) (D)

Figure 4.3 Radius at which the loop of the adaptive growing technique of
Haidacher et al [18] is terminated. Upper row shows histograms of
synthetic datasets (a) without and (b) —(d) with Gaussian noise ((b)g =
2, (c)o =4, (d)o =6). Middle row shows 2D slices images. Lower row
shows the result of adaptive growing technique, that is the radius at
which the loop is terminated with the maximum radius 6 (yellow: r =1,
orange: r = 2, light green: r = 3 dark green: r = 4, light blue: r =5, dark

blue: r=6).

Haidacher er al/ [18] deals with noise in the data, statistically

homogeneous regions are successfully detected regardless of

presence of noise; and an extruded radius can be considered the

relative size of the local feature at each voxel.
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4.3 Extraction of texture features

Using the previously computed relative size of the local feature of
each voxel, texture features (i.e., entropy and homogeneity) are
calculated. Texture is one of the important characteristics used in
identifying objects or regions of interest in an image, and contains
important information about the structural arrangement of surfaces
[72]. In statistical texture analysis, texture features are computed
from the statistical distribution of observed combinations of
intensities at specified positions relative to each other in the image
[73]. Depending on the number of intensity values in each
combination, statistical texture analysis methods can be further
classified into first—, second—, and higher—order statistics. Among
various methods for statistical texture analysis, we employ GLCM
which is a way of extracting second—order statistical texture
features.

GLCM is a matrix that is defined by calculating how often pairs
of pixel with specific values occur at a given offset. For an image
containing g different gray levels, g x g GLCM, parameterized by

an offset (Ax, Ay), is defined over an N X M image I as follows:
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Gray
tone 0 1 2 3
00| 1|1 0 | #(0.0) | #(0.1) | #(0.2) | #(0.3)
0|0 |11 1 | #a0.0) | 20,1 | #1,2) | #1.3)
0|2 ]| 2|2 2 #(2,0) | #2,1) | #(2.2) | #(2.3)
212133 3 | #3.0) | #3.1) | #3,2) | #3.3)
(a) (b)
4 2 1 0 4 1 0 0
2 4 0 0 1 2 2 0
1 0 6 1 0 2 4 1
0 0 1 2 0 0 1 0
(c) (d)
6 0 2 0 2 1 3 0
0 4 2 0 1 2 1 0
2 2 2 2 3 1 0 2
0 0 2 0 (4} 0 2 0
(e) ()

Figure 4.4 GLCM is a matrix that is defined by calculating how often

pairs of pixel with specific values occur at a given offset. (a) Test

image. (b) General form of GLCM. (c)—(f) GLCM with varying

orientations and the fixed radius. (¢) 6 =0" and r=1. (d) 6 =45 and

r=1. (e) 8=90" and r=1. (f) # =135 and r=1. Image courtesy

of [72].
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N M
F = 1, if Ix,y)=1iand I(x+Ax,y+Ay) =j
GLCM(,j) = Z Z {0, otherwise , (4.1)

x=1y=1

where I(x,y) indicates the pixel value at the spatial position (x,y).
Figure 4.4 (a) presents a test image with four different gray levels
0 through 3. Figure 4.4 (b) shows a generalized GLCM where #(i,))
stands for the number of times the pair of gray levels i and j have
been occurred. Instead of the offset (Ax, Ay), GLCM can also be
parameterized in terms of a radius r and an orientation 6. The four
GLCM with varying orientations (8 =0°, 45°, 90°, and 135°) and the
fixed radius equal to 1 are shown in Figure 4.4 (c)—(D).
Displacement value (.e., radius) equal to the size of the texture
element improves classification [72]. The proposed method uses a
moving window over the image; the size of neighboring window is
determined by the previously computed relative size of the local
feature at each voxel. Since the texture features are extracted
based on the neighborhood within the same material, the adaptive
block based GLCM enhances the accuracy of texture analysis.

The texture features are calculated by extracting the
statistical measures from GLCM [74]. The features generated using
this technique include contrast, entropy, homogeneity, etc. Table
4.1 summarizes some of the texture features from GLCM we have

explored.
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Table 4.1 Texture features from GLCM

Contrast z Zu —jl2GLCM(, )
i

Correlation Z Z GLCM(i,j) W
J

i

Energy ZZ GLCM(i, j)?
iJ

I " Z Z GLCM(i,))
omogenei
¢ Y 1+[i—Jjl
Entropy z Z GLCM(i, ) log GLCM (i, ))
iJ

Note. u and ¢ represent mean value and standard deviation, respectively.

4.4 Multi—dimensional transfer function design

using parallel coordinates

After the statistical and texture features have been extracted, they
are used to define a new multi—dimensional transfer function, which
incorporates parallel coordinate; it is a popular technique for
visualizing and analyzing high—dimensional data in information

visualization. In our system, each voxel is represented as a polyline
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radius mean energy homo

Figure 4.5 Multi—dimensional transfer function design using parallel
coordinates. In the parallel coordinated, each vertical axis corresponds
to computed individual features (.e., statistical and texture features)
and each data element is represented by one polyline with vertices on
the parallel axes; the position of the vertex on the i th axis corresponds

to the i th coordinates of the data element.

with parallel axes of individual multi—dimensional features (see
Figure 4.5). As mentioned in Section 1.1.3, the parallel coordinates
allow the user to interact with the data in many ways. We present

three specific ways to use our multi—dimensional transfer function
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Load Sl RS

Figure 4.6 Cube—based selecting user interface. The user specifies a
ROI using a cube—based selecting user interface in the MPRs. By
highlighting the data of the selected ROI in the parallel coordinates, the

user can easily analyze the statistical and texture features of them.

based on parallel coordinates to enable the effective exploration of
large and complex datasets. First, the user can specify a region of
interest (ROI) using a cube—based selecting user interface in the
multi—planar reformations (MPRs). MPRs are 2D reformatted
images that are reconstructed secondarily in arbitrary planes from
the stack of axial images [75]. By highlighting the data of the
selected ROI in the parallel coordinates, the user can easily analyze

the statistical and texture features of them (see Figure 4.6).
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‘ Save |

Figure 4.7 Brushing user interface. The user selects a subset of the data
by brushing on the SD axis from 0.0 to 0.0025. By coloring the selected
set of the data in the volume rendering, the user can identify and analyze

patterns revealed in the parallel coordinates.

Second, the user can select a subset of the data by using a brushing
operation in the parallel coordinates. By coloring the data in the
volume rendering, the selected set of the data can be clearly
visualized, the user can identify and analyze the data corresponding
to patterns revealed in the parallel coordinates (see Figure 4.7).
Finally, the user can specify a value k which is the number of

structures to discriminate. By using k—means clustering, the data is
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Load ROI - Clustering

Save Load Texture Analysis
Figure 4.8 Automatic classification. The user specifies a value k which
i1s the number of structures to discriminate. By wusing k —means
clustering, dominant features contained within the volumetric dataset is

colored (highlighted) in both volume rendering and parallel coordinates.

automatically classified into k groups, and the data of the largest
group is colored (highlighted) in both volume rendering and parallel
coordinates (see Figure 4.8). This automatic classification is useful
to understand dominant features contained within the volumetric

dataset.



4.5 Experimental results

The parallel coordinate representation is used as a tool to help
users in specifying a transfer function to classify or segment large
and complex dataset. In order to demonstrate the practical efficacy
of our data exploration method, we present a mechanism for data
exploration with a new transfer function space. We illustrate this
mechanism step—by—step with a dataset of brain tumor MR scans in
Figure 4.9. The user begins with classifying the volume dataset
using a 1D transfer function based on scalar data values which is
the most commonly used one (Figure 4.9 (A)). Then, the user can
evaluate the result of the classification at the volume rendered
image (Figure 4.9 (B)). If the user specified 1D transfer function is
not sufficient to saliently visualize the interested features, the user
can interact with the proposed transfer function using parallel
coordinate (Figure 4.9 (C)). In practice, all the statistical and
texture features are computed at the voxels which are selected by
the user—specified 1D transfer function in order to reduce time
complexity and improve classification accuracy. In the parallel
coordinate, each parallel axis represents one of the statistical and
texture feature (i.e., relative size, mean value, standard deviation,

and texture features); and each voxel is represented as a polyline.
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Figure 4.9 Data exploration based on multi—dimensional transfer
function using parallel coordinates. (A) The user begins with classifying
the volume dataset using a 1D transfer function based on scalar values.
(B) The user can evaluate the result of the classification at the volume
rendered image. (C) If the user specified 1D transfer function is not
sufficient to saliently visualize the interested features, the user can

interact with the proposed transfer function using parallel coordinates.

Figure 4.9 (C) shows the calculated statistical and texture features
with green polylines. As the user selects the range on each axis,
the parallel coordinate is highlighted by red polylines (red polylines

in Figure 4.9 (C)); and 3D volume rendering is updated; selected
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Figure 4.10 3D rendered image of brain tumor MR scans using automatic
classification. Materials with similar intensities can be discriminated by
the statistical and texture features. Highlighted polylines of parallel
coordinate represent the brain tumor which is a dominant feature of k—

means clustering with k = 4.

voxels are rendered with red color (Figure 4.9 (B)). This multi—
dimensional transfer function design with parallel coordinates
enables more interactive exploration of the transfer function space
with multi—variate features.

Figure 4. 10 shows the 3D rendering of brain tumor MR scans.

Using a 1D transfer function based on scalar data values, rendered
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materials are depicted by the same color since they have similar
intensities. However, the statistical (i.e., relative size, mean value,
and standard deviation) and texture features (i.e., energy and
entropy) of the tumor are different from the rest of the brain.
Highlighted polylines of parallel coordinate represent the brain

tumor.

- 89 -



Chapter 5. Conclusion

This paper proposes two approaches for the design of transfer
functions. First, we propose a new 3D spatial field for effective
visualization of constricted tubular structures, called as a stenosis
map. It successfully discriminates constrictions within a tubular
structure without laborious prior—segmentation of them. In the
stenosis map, every voxel has a scalar value representing the
degree of constriction relative to surrounding tubular structures.
The degree of constriction is computed by newly proposed
measures (i.e., line similarity measure and constriction measure)
using the localized structure analysis based on the Hessian matrix
and its eigenvalue signature. In addition, we have proposed a
stenosis—based classification that maps the degree of constriction
stored in the stenosis map to color and opacity. This classification
provides easy and intuitive adjustment of the visual appearance of
constrictions within tubular structures. We have explained the
details of our method and its efficacy using an exemplary
application to coronary artery stenoses. However, the proposed
method can be directly applied to other constricted tubular
structures only by the optimal selection of a few parameters. The

performance evaluation using twenty—eight clinical datasets shows
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that constricted regions are accurately encoded into the stenosis
map and saliently visualized, demonstrating that our method can be
an effective volume exploration tool in various, including but not
limited to medicine, application fields of DVR.

Second, we propose a data exploration tool based on a new
multi—dimensional transfer function using the statistical and texture
features (i.e., relative size, mean value, standard deviation, and
texture features), which employs parallel coordinates wherein each
voxel is represented as a polyline with parallel axes of individual
multi—dimensional features. This approach provides three specific
ways to use our multi—dimensional transfer function based on
parallel coordinates to enable the effective exploration of large and
complex datasets. Using these ways of classification, it successfully
discriminates different objects with the same intensities. Different
texture features (e.g., homogeneity, contrast, and angular second
moment) can be combined to classify various objects. We present a
mechanism for data exploration with step—by—step illustration,
demonstrating the practical efficacy of our proposed method. This
multi—dimensional transfer function design with parallel coordinates
enables more interactive exploration of the transfer function space

with multi—variate features.
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