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ABSTRACT

Visualization and exploration of volumetric datasets has been an active area of 

research for over two decades. During this period, volumetric datasets used 

by domain users have evolved from univariate to multivariate. The volume 

datasets are typically explored and classified via transfer function design and 

visualized using direct volume rendering. To improve classification results and 

to enable the exploration of multivariate volume datasets, multivariate transfer 

functions emerge. In this dissertation, we describe our research on multivariate 

transfer function design. To improve the classification of univariate volumes, 

various one-dimensional (1D) or two-dimensional (2D) transfer function spaces 

have been proposed; however, these methods work on only some datasets. We 

propose a novel transfer function method that provides better classifications by 

combining different transfer function spaces. Methods have been proposed for 

exploring multivariate simulations; however, these approaches are not suitable 

for complex real-world datasets and may be unintuitive for domain users. To this 

end, we propose a method based on user-selected samples in the spatial domain to 

make complex multivariate volume data visualization more accessible for domain 

users. However, this method still requires users to fine-tune transfer functions 

in parameter space transfer function widgets, which may not be familiar to them. 

We therefore propose GuideME, a novel slice-guided semiautomatic multivari­

ate volume exploration approach. GuideME provides the user, an easy-to-use, 

slice-based user interface that suggests the feature boundaries and allows the 

user to select features via click and drag, and then an optimal transfer function 

is automatically generated by optimizing a response function. Throughout the 

exploration process, the user does not need to interact with the parameter views at 

all. Finally, real-world multivariate volume datasets are also usually of large size, 

which is larger than the GPU memory and even the main memory of standard



work stations. We propose a ray-guided out-of-core, interactive volume rendering 

and efficient query method to support large and complex multivariate volumes 

on standard work stations.
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CHAPTER 1

INTRODUCTION 

1.1 Motivation
Volumetric data are important to many application domains, and are usually 

visualized using direct volume rendering. In recent years, the volume datasets 

utilized by domain users have evolved from univariate to multivariate. Multi­

variate volume datasets have become increasingly important and popular. Me­

teorologists simulate atmosphere movements, e.g., hurricanes, which involves 

the interaction of dozen of physical parameters to study their causes and try to 

forecast them. Combustion simulations involving multiple chemical elements 

and physical measurements can help engineers to improve the efficiency of an 

engine. Geophysicists compute several attributes derived from the amplitude 

of three-dimensional (3D) seismic survey data to facilitate the exploration of oil 

and gas [12]. Physicians determine the location of lesions in the brain using MRI 

scans that contain multiple channels. Transfer function design is the major means 

for exploring volume data and extracting features in direct volume rendering. 

Transfer functions of 1D or 2D are commonly used for the exploration of uni­

variate volume datasets, and multivariate transfer functions are used to explore 

multivariate volume datasets. However, extracting clear features of interest for 

univariate volumes using 1D or 2D transfer functions is usually difficult due 

to the limited classification ability of these low-dimensional transfer functions. 

On the other hand, although methods and systems have been proposed for 

multivariate volume exploration and visualization, domain users urgently need 

an intuitive and flexible multivariate visualization tool that is able to extract 

meaningful features in complicated real-world datasets. Moreover, due to the 

boost of accuracies of acquisition devices, storage and computational capacities of 

computers, multivariate volume datasets are generated with ever increasing size.
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Giga-scale or even tera-scale multivariate volume datasets have become common, 

and fast volume rendering and query techniques are vital for the visualization of 

these datasets.

In this dissertation, we present our proposed approaches to the multivariate 

transfer function design problem. This chapter first introduces transfer function 

combinations, in which we propose to combine the best features of existing transfer 

function spaces to create a transfer function space that provides better classification. 

It then introduces a transfer function design approach based on user-selected 

samples in the spatial domain to make multivariate volumetric data visualization 

more accessible for domain users. Next, it introduces GuideME: an automated 

technique for designing optimal multivariate transfer functions with a simple 

and easy-to-use slice-based user interface for highly complex volumes. Finally, it 

introduces our work on scalable out-of-core methods for interactive rendering and 

efficient querying for large multivariate seismic volumes on consumer level PCs.

1.2 Transfer Function Combinations
Direct volume rendering is an active area of research. Mapping of data values 

to optical properties, known as classification, remains a challenging problem. 

Transfer functions are most commonly used for classification in volume rendering, 

yet finding good transfer functions remains a difficult problem. For material 

boundaries, it has been shown that 2D transfer functions provide greater speci- 

ficity1 than 1D transfer functions [54,60]. In many datasets, separate features may 

share the same scalar value and gradient magnitudes and as such scalar value, 

gradient magnitude tuples are not sufficient for separating such features.

Recently, many new 2D transfer function spaces have been proposed to improve 

the classification from different metrics. The size-based transfer function is a 

transfer function space [14] built upon blob detection techniques using scale space 

theories to classify objects based on their sizes. The occlusion spectrum is another 

2D transfer function space [15] that takes into consideration ambient occlusion

1 We use the disambiguation definition of specificity rather than the statistical definition, which  
means the proportion of negatives in a binary classification test that are correctly identified.
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within the volume for discriminating between features of similar scalar values. 

It is also possible to compute statistical measurements such as mean value and 

standard deviation in a local region around a voxel [38] to form a 2D transfer 

function space. All these methods are effective on some datasets. Other datasets, 

however, may contain materials that have similar statistical properties but occlude 

each other, or have materials that share similar statistical properties and occlusion 

measurements but differ in size.

We propose, therefore, to combine the best features of these transfer functions to 

create a transfer function space that provides better specificity. Our contributions 

in this work are threefold: 1) combining 2D transfer function space with 1D 

transfer function spaces with a basic approach for selecting combinations, 2) a user 

interface supports transfer function design in the combined transfer function space, 

3) experiments and detailed discussions of different transfer function combinations 

and original 2D transfer functions on various datasets.

We experimented with combinations of these transfer function spaces and 

discuss a basic approach for selecting combinations that improve classification 

and show that this combined transfer function space provides better classification 

than 2D gradient magnitude transfer functions, 2D statistical transfer functions, 

2D occlusion-based transfer functions or 2D size-based transfer functions.

1.3 Transfer Function Design Based on User-Selected 
Samples for Intuitive Multivariate 

Volume Exploration
Multivariate dataset visualization has been an active research area for the past 

decade and remains a challenging topic. A linked-view visualization system that 

enables the users to explore the datasets in both the transfer function domain 

and the spatial domain may boost their understanding of the data. In recent 

years, visualization researchers have been studying this topic and some solutions 

have been proposed [21, 1, 5, 31]. These linked-view systems provide users the 

ability to explore the dataset with closely linked scientific visualization views, e.g., 

volume rendering or isosurface rendering, and information visualization views, 

e.g., scatter plots, parallel coordinate plots (PCP) or dimensionality reduction
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views. Typically, the user explores and extracts features of interest by interactively 

designing transfer functions (TFs) in the value domain over the information 

visualization contexts and examining classified results in the spatial domain from 

the scientific visualization view. Successful examples using these systems are 

clearly shown for simulation datasets. However, extracting meaningful features 

in real-world measurement datasets, e.g., multivariate 3D seismic survey, via these 

systems is not trivial. Features inside the seismic dataset have to be recognized 

in the spatial domain by a geology expert, and the features have complicated 

combinations of attribute values and subtle differences from their surroundings. 

Therefore, it is too laborious to extract features by iterating between TF design in 

the value domain and getting feedback from the results rendered in the spatial do­

main, especially when the dimensionality is high. Our geophysicists collaborators 

have found extracting features with only the value domain TF widgets, e.g., on a 

PCP to be cumbersome, and specifically asked for more automated methods.

We propose a TF design approach based on user-selected samples from the 

spatial domain represented as slices for more intuitive exploration of multivariate 

volume datasets. Specifically, the user starts the visualization by probing fea­

tures of interest in a panel view, which simultaneously displays associated data 

attributes in slices. Then, the data values of these features can be instantly and 

conveniently queried by drawing lassos around the features or, more easily, by 

applying "magic wand" strokes. High-dimensional transfer functions (HDTFs) 

can then be automatically and robustly generated from the queried data samples 

via the kernel density estimation (KDE) [87] method. The TFs are represented by 

parallel coordinate plots (PCPs) and can be interactively modified in an HDTF 

editor. Automatically generated Gaussian TFs in dimensionality reduced 2D view 

can also be utilized to extract features. The extracted features are rendered in the 

volume rendering view using directional occlusion shading to overcome artifacts 

from Phong shading in the multivariate case. To further refine features, which 

share similar data value ranges, direct volume selection tools on the volume 

rendering view or the panel view can be applied.

The contributions of this work are the following: First, we propose a transfer
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function design method for multivariate volume visualization based on user- 

selected samples, specifically an HDTF generation method based on KDE and 

a Gaussian mixture model based 2D Gaussian TF generation method. Second, 

we also propose an interactive multivariate volume visualization system based 

on the proposed method that has been implemented to allow domain users to 

extract refined features in very complicated multivariate volume datasets more 

intuitively.

1.4 GuideME: Slice-guided Semiautomatic Multivariate 
Volume Exploration

The state-of-the-art method for exploring multivariate volumes is user inter­

action with multiple linked view systems. This method requires the user to 

explore the volume using parameter views, e.g., parallel coordinate plots (PCP) or 

histograms, in a trial-and-error manner [1, 5, 31]. Although these systems have 

been successful in simulation datasets where the user understands the "recipe" of 

the parameter space, i.e., knows what combinations of value ranges of attributes 

may result in interesting features, it is difficult for the user to explore complex 

measured datasets, e.g., seismic datasets. To this end, research efforts have 

addressed the exploration of complex datasets such as seismic data [103, 43, 44]. 

In [103], the approach allows domain users to apply their expertise to the finding 

of features by directly selecting a region of interest in a multipanel slice view. 

However, these methods either work only on univariate seismic data for a certain 

type of features [43, 44] or still require transfer function tuning with a PCP-based 

or a histogram-based editor [103], which can be unintuitive and time consuming 

for domain users. Moreover, switching between multiple views may be somewhat 

distracting.

Seismic datasets are an important tool for the petroleum industry which is the 

driving application of our method. Geophysicists interpret features that indicate 

potential oil and gas reservoirs, including channels and salt domes, on 3D seismic 

data slices. To interpret the seismic data, they first identify and locate geological fea­

tures on slices from the 3D seismic data through examination and selection. With 

the advancement of multivariate 3D seismic [12] interpretation, attributes derived
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from the seismic amplitude are used to aid in the extraction of relevant features. 

Interpretation is done mainly by free-hand drawing on slices and refinement of 

the features through multiattribute transfer functions [103, 90]. Users typically 

perform the following tasks during interpretation: selecting features by drawing 

on 2D slices, refining those features through transfer function manipulation, and 

examining results in 3D renderings. Other domains use similar tasks and we 

demonstrate the generality of our approach with multimodal MR brain scans.

We therefore propose GuideME, a novel method for multivariate volume 

exploration that strives to provide the user with a very simple and intuitive 

exploration process for highly complex datasets. Instead of multiple linked views, 

our method has only one slice view coupled with a focus overlay and a volume 

rendering view, and the tedious trial-and-error interactions are largely replaced 

by a guided uncertainty-aware lasso and automated feature extraction. The user 

starts the exploration by browsing through the slices and detects a feature of 

interest using his/her domain knowledge. A focus window that allows the user 

to inspect other attributes that can be placed over the feature of interest. Through 

the inspection, the user determines attributes that best describe the boundaries of 

the feature. A boundary confidence image is then blended with the slices, and 

the user can easily select the region with a guided uncertainty-aware lasso that 

automatically snaps to the detected feature boundaries. The selected region is 

then used as input for the automated feature extraction. Eventually, the feature 

is volume rendered and may be optionally edited directly in the 3D view. Using 

a highly complex real-world seismic dataset and multimodal MR brain scans, we 

show our approach is efficient, and is able to create results comparable to those 

given by previous method and ground-truth segmentations.

In this work, we make the following contributions:

• A novel slice-guided semiautomatic multivariate volume exploration work­

flow. The user is freed from unfamiliar parameter space views and tedious 

trial-and-error transfer function tunings.

• A guided uncertainty-aware lasso for region selection, based on edge detec­

tion and Dijkstra shortest path algorithms.
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• A technique to automatically fine-tune a multivariate transfer function given 

the lasso, based on the optimization of a response function.

1.5 Interactive Multivariate Volume Rendering and 
Efficient Query on Standard PCs

Due to the advance in 3D seismic imaging techniques, resolution of 3D seis­

mic datasets used in the petroleum industry is usually of giga-bytes. Multiple 

attributes derived from the original seismic amplitude dataset have been used for 

aiding the interpretation of the seismic survey. With these additional attributes, 

however, the size of the entire dataset may become far larger than the capacity of 

the GPU memory and even the main memory of a typical workstation. Recently, 

GPU-based multiresolution out-of-core volume rendering systems have been pro­

posed. The Gigavoxel approach by Crassin et al. [16] and CERA-TVR by Engel [23] 

divide the dataset into multiresolution bricks and utilize an octree structure and 

ray guided paging system to efficiently render large sparse volume datasets. Had- 

wiger et al. [35] propose a rendering system that uses a virtual memory system and 

2D mipmapping to support dense and noisy petascale microscopy scans. However, 

none of these methods are able to handle large multivariate volume datasets. In 

this work, we extend the approach by Hadwiger et al. to support interactive 

rendering of large multivariate seismic datasets on a consumer-level PC. On the 

other hand, data value querying raises another challenging issue for multivariate 

datasets especially when the data are very dense as hierarchical acceleration 

techniques, e.g., octrees may not be beneficial. We propose an efficient data 

querying technique based on precomputed per-block Gaussian mixture models 

and run-time ellipse-polygon intersection detection. An interactive exploration 

system has been built to allow the user to visualize the multivariate volumes as 

well as to edit multivariate transfer functions with the query feedback on parallel 

coordinate plots.

1.6 Dissertation Statement
Multivariate transfer function design is vital for the exploration and visual­

ization of univariate and multivariate volumetric datasets, which are important
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to many real-world applications. The design of multivariate transfer functions 

requires both existing and novel techniques in volume rendering, user interaction, 

image processing, data analysis and optimization.

1.7 Dissertation Contributions
The main contributions of this dissertation are:

• More intuitive multivariate volume exploration and visualization work­

flows designed for domain users. Our proposed methods strive to maintain 

the power and flexibility of existing workflows, while overcoming the short­

comings of existing approaches that are designed from the perspective of 

visualization experts. We provide domain users with new work flows that 

are designed as a result of close collaborations. The resulting workflows give 

domain users a central role and try to reduce unfamiliar widgets and views 

that may hassle users. For example, we allow the user to select samples 

directly on data slices to generate the initial transfer function, and then 

fine-tune the transfer function using parameter space widgets. A further 

developed workflow can be seen in GuideME, in which the parameter 

space is completely hidden from the user and the manual transfer function 

tuning process is replaced by an optimization approach. Through real-world 

examples, domain users find the new workflows more intuitive and efficient.

• Improved classification ability of transfer functions demonstrated on com­

plex real-world datasets. We propose a transfer function combination method 

that generates multidimensional transfer function spaces by ranking and 

selecting the most helpful 1D or 2D transfer function spaces computed from 

a univariate volume. Moreover, transfer functions do not contain spatial 

information. Easy-to-use spatial fine tuning tools are therefore provided. 

Diffusion-based region growing tools and lasso tools are provided for effi­

cient volume editing on transfer function classified results on either 2D or 

3D image spaces. Complex real-world datasets, including CT lung scan, MR 

brain scans and multivariate seismic datasets, have been successfully used 

to demonstrate the improved classification ability of transfer functions.
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• Improved user interactions in the visualization process. The goal for 

easier visualization experience for domain users is considered in all our 

proposed work. An easy-to-understand user interface that combines 2D and 

1D transfer function widgets is built for the transfer function combination 

work. The user interface of the multivariate volume visualization system 

that is based on user-selected samples provides synchronized panel view, 

click-and-drag transfer function editors and hand drawing-based region 

selection and spatial fine tuning tools on 2D and 3D views. In GuideME, the 

user is given suggestions of feature boundaries and uncertainty information, 

and the selection of region is aided by lassos that automatically snap to 

feature boundaries.

1.8 Outline
The background and important related work are explained in Chapter 2. Chap­

ter 3 details the work of transfer function combinations. The work of multivariate 

transfer function design based on user-selected samples in the spatial domain is 

presented in Chapter 4. Chapter 5 presents the method of GuideME, slice-guided 

multivariate exploration of volumes. In Chapter 6, we present the work of 

interactive rendering and efficient query of large multivariate seismic volumes on 

consumer-level PCs. Finally, conclusions and future work are given in Chapter 7.



CHAPTER 2

BACKGROUND 

2.1 Transfer Function Spaces
Volume datasets can be explored using transfer functions. The most frequently 

used transfer function for volume rendering is a 1D transfer function that uses 

scalar values for classification. Realizing the poor classification ability of that 

transfer function space, Levoy [60] and Kindlmann et al. [54] use the gradient 

magnitude of the volume as another property for better classification. Kniss 

et al. [56] advocate and implement multidimensional transfer functions widgets, 

making the 2D transfer function a standard method in modern volume renderers. 

By far, the 1D and 2D transfer functions are the most popular and practical 

techniques for classification in volume rendering; however, great efforts have 

been made to define new transfer function spaces to improve the classification 

ability.

Due to noise and partial volume effects, selecting a boundary in the arches of 

a gradient magnitude-based transfer function is not easy and sometimes even 

impossible. To resolve this problem, Lundstrom et al. [64] employ the local 

histograms to better discern tissues in medical datasets and propose a 2D transfer 

function space that uses competitive classification certainty measure in addition 

to scalar values. Sereda et al. [86] use a 2D LH histogram-based transfer function 

for easier boundary identification and selection and further use this boundary 

information for a region growing segmentation schema.

Higher degree derivatives of the original scalar volume can also be used as 

transfer function spaces. Kindlmann et al. [55] use curvature as a second dimen­

sion of their transfer function domain. The curvature-based transfer functions 

allow nonphotorealistic renderings that highlight the contours of the volume.
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The theory of scale-space, developed originally by the computer vision and 

image processing communities, can be used to classify objects based on their sizes. 

A commonly used scale-space representation is the linear Gaussian scale-space, 

which is essentially a convolution of a volume with differently sized Gaussian 

filters. Lum et al. [63] combine it with an image pyramid representation of different 

scales to improve classification. Correa and Ma [14] create a continuous scale-space 

for the volume and use anisotropic diffusion to detect "blobs" in the volume. The 

size of these defines an additional metric of the volume, which is then used to 

create size-based transfer functions.

Shape is another important aspect to classify an object. Sato et al. [83] use eigen­

value analysis on 3D local intensity structures to classify tissues in medical datasets 

with 2D transfer function spaces created using shape measurements: sheet, line or 

blob along with the scalar value. Prassni et al. [78] propose shape-based transfer 

functions by computing shape descriptors over presegmented volume to provide 

a manageable set of shape classified volumetric features with an intuitive optical 

properties assignment interface.

In many cases, different features occlude with each other but share similar 

scalar values, e.g., the skin and the gray matter in an MR brain scan. Correa and 

Ma [15] use the occlusion of a voxel as an additional dimension of the transfer 

function domain to classify features of similar scalar value, but different local 

neighborhoods.

Volumes can also be classified based on their statistical metrics, such as mean 

value or standard deviation of voxels in a certain neighborhood. Caban et al. [10] 

compute local statistical metrics and use their linear combinations to classify fine 

structures. Patel et al. [74] use a dynamically changing neighborhood to compute 

mean value and variance for voxels, thus defining a transfer function domain. 

A user interface then allows a selection of features based on the mean value, 

variance and radius of the neighborhood. Haidacher et al. [38] further extend 

this approach by selecting the radius semiautomatically via an adaptive sample 

selection technique.

Transforming the volume data into frequency domain is another idea for
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generating transfer function spaces. Vucini et al. [94] utilize GPU-based fast 

Fourier transformation to support interactive frequency-based transfer function 

design that enhances conventional volume visualization.

2.2 User Interfaces for Transfer Function Design
A 1D transfer function that uses scalar values of the volume or a 2D transfer 

function that has the gradient magnitude of the volume as a second property for 

better classification [54] are most frequently used. As in most volume visualization 

systems available nowadays, e.g., Voreen [93], VisIt [62] and ImageVis3D [48], the 

transfer functions can be interactively defined by 1D transfer function widgets or 

2D transfer function widgets proposed by Kniss et al. [56].

However, to design a good transfer function, the user has to manipulate the 

transfer function widgets in the transfer function space and check the result in 

the volume rendered image, which is laborious and time consuming. To address 

this issue, researchers have proposed to automate the transfer function design 

process. Many researchers focus on the automation of user interactions on the 

transfer function space. Maciejewski et al. [65] utilize KDE to structure the data 

value space to generate initial transfer functions. Wang et al. [96] initialize transfer 

functions by modeling the data value space using the Gaussian mixture model 

and render the extracted volume with preintegrated volume rendering. Most 

recently, Ip et al. [50] propose a hierarchical visual segmentation method using 

normalized-cut on the intensity-gradient magnitude 2D transfer function space to 

assist the volume exploration process. Although these automated methods applied 

on the transfer function space significantly reduce the time a user spends in the 

volume exploration process [50] compared to the most commonly used transfer 

function widgets, interacting with the transfer function space is not intuitive.

Therefore, the potential of transfer function design on more intuitive spaces 

has also been studied. One strategy is to provide the user with a gallery of 

predefined transfer functions, and then the user can easily design customized 

transfer functions by picking features of interest from the gallery and refining 

them. Marks et al. [67] propose Design Gallery as a general user interface for
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computer graphics applications. As for volume rendering, the design gallery 

automatically defines a set of random 1D transfer functions and generates the 

resulting thumbnails by the dispersion heuristic. The resulting thumbnails are 

arranged using multidimensional scaling algorithm. The user can then select 

a preferred thumbnail and fine tune its associated transfer function. Similarly, a 

spreadsheet-like interface is proposed by Jankun-Kelly and Ma [51] where the user 

can explore a range of parameter combinations at the same time and compare the 

results side-by-side. Tory et al. [89] propose a parallel coordinates style interface 

that provides an overview of rendering options and transfer function settings. 

The user can easily explore different parameters and backtrack the visualization 

history using the proposed interface. Tzeng and Ma [92] propose to use ISODATA 

(Iterative Self-Organizing Data Analysis) clustering on a small subset of all data 

voxels to classify the volume, and then these classified features are displayed in 

a cluster-space user interface. With this user interface, the user is able to design 

transfer functions without knowing the transfer function space, simply by picking 

features from the gallery of preclassified features and refining them using the 

clustering operation buttons and rendering property adjustment widgets.

Interacting with the spatial domain views, e.g., sketching on the volume 

rendering view, is another intuitive option for the user. Several methods have 

been proposed to enable the user to design transfer functions by sketching on the 

spatial domain. Tzeng et al. [90, 91] propose systems that allow users to sketch 

the volume slices to assign color and transparency, and then high-dimensional 

transfer functions are generated using artificial neural network. Based on user 

sketches on the rendered images, Wu and Qu [99] fuse multiple features in distinct 

rendering results into a comprehensive visualization. Ropinski et al. [80] propose 

a sketch-based user interface for 1D transfer function design where the user draws 

strokes to define foreground and background to extract layers in the volume, and 

then the transfer functions are refined by adjusting the color and opacity of each 

layer. A more convenient sketch based volume exploration system is proposed 

by Guo et al. [30] where a full set of tools have been developed to enable direct 

manipulation of color, transparency, contrast and other optical properties on the
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volume rendering view by means of user drawn strokes. In its essence, the system 

intelligently defines 1D transfer functions based on user sketches.

Other researchers have proposed methods to design transfer functions by 

semantics. Salama et al. [82] propose a framework that allows visualization experts 

to design high-level transfer function user interface with semantic information. 

Given specific features of interest by the domain user, e.g., bones, skin and blood 

vessels, the visualization expert creates transfer function models described by sets 

of control points from many data instances of the same type. Each transfer function 

model can be written as a data point in a high-dimensional space, and the semantic 

parameters can be generated using principal component analysis (PCA) on these 

high-dimensional data points. A simple semantics editor user interface can then 

be created from the semantic parameters that modify the control points of the low 

level 2D transfer function widgets. The user simply needs to adjust a set of sliders 

for each semantic parameter.

2.3 Multivariate Data Visualization
Visualizing and understanding multidimensional datasets has been an active 

research topic in information visualization. The scatter plot matrix is a straight­

forward yet scalable way that utilizes pairwise scatterplots as matrix elements to 

represent multidimensional datasets. The scatter plot matrix trades the resolution 

of each scatter plot to display more plots. Due to the large amount of plots shown 

in a scatter plot matrix, exploration of the multivariate space becomes cumbersome 

and time consuming. Elmqvist et al. [22] therefore propose a method for navigating 

through the plots. Other researchers have studied how to choose the display order 

of the scatter plots [85].

Parallel coordinate plots (PCPs) [49] is a popular multivariate visualization 

technique that overcomes the two-variable limit of the scatter plot. PCP arranges 

individual variable axes parallel to each other and represents individual samples 

as a polyline passing through all axes. With increasing samples, the PCP will 

become more cluttered and the rendering cost will be prohibitively expensive. 

A large amount of research efforts have been done to address this over-plotting
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issue. Fua et al. [26] propose to cluster the data values and render only the 

representing polylines of each cluster. Novotny and Hauser [70] separate the 

number of polylines to render from the number of data samples by generating 

the PCP from 2D histograms of adjacent variable pairs, and outliers are also 

identified through histogram analysis. Zhou et al. [102] perform visual clustering 

on the PCPs by drawing curved edges instead of polylines and optimizing the 

arrangement of these curved edges. Heinrich and Weiskopf [41] show how PCPs 

can be made continuous, which gives a smooth and uncluttered representation. 

The over-plotting issue can also be resolved by edge bundling, and researchers 

have proposed a variety of techniques: e.g., geometry-based edge bundling [17], 

hierarchical edge bundling [45] and force-directed edge bundling [46]. McDonnell 

and Mueller [68] address the over-plotting issue using illustrative rendering which 

applies opacity and shading effects, silhouettes emphasizing, shadows and halos 

to edge bundled PCPs.

Dimensional reduction and projection are other techniques for multidimen­

sional data visualization. These techniques provide a similarity-based overview 

for multidimensional data. Numerous research efforts have been focused on this 

topic, and popular methods include principal component analysis (PCA) [53], mul­

tidimensional scaling (MDS) and Isomap [88]. To reduce computation complexity, 

techniques that apply classical dimensional reduction and projection methods to 

only a small subset of representative samples and project the remaining samples 

via interpolation have been proposed. These techniques include Landmarks 

MDS [19] and Pivot MDS [8]. Alternatively, Faloutsos and Lin propose the 

Fastmap algorithm [24], which has exactly O(n) complexity. Fastmap utilizes 

dissimilarities between each sample and two pivot elements per coordinate axis to 

make its distance computation O(n). More recently, Paulovich et al. [75] propose 

the part-linear multidimensional projection (PLMP) method, which requires only 

distance information between pairs of representative samples, and therefore is 

faster than previous methods for large datasets. Moreover, with a representative 

sample positioning strategy, PLMP is able to conduct dimensional projection for 

out-of-core datasets.
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Parallel coordinate plots capture individual dimensional information well but 

suffer from the clutter problem and such plots require expertise to interpret, 

because data points are transformed into polylines and the polylines occlude with 

each other. It is hard and sometimes even impossible to check the data correlation 

between a single pair of attributes, let alone for multiple attributes on the PCPs. 

On the other hand, pairwise scatter plots provide a clear correlation between a 

pair of attributes. A 2D scatter plot of the dimensional reduced or projected space 

of the high-dimensional data provides an easy-to-understand overview of the 

high-dimensional space at the cost of losing individual dimensional information. 

It is nontrivial if not impossible to use only one of these techniques to provide 

the user with proficient insights to a multidimensional dataset. Unfortunately, 

providing several linked views: one for PCPs, one for pairwise scatter plots and 

yet another for dimensional reduced/projected scatter plot would cause a context 

jump for the user. Researchers therefore have proposed to take the advantages of 

these techniques and combine them in a unified plot. Yuan et al. [100] propose 

SPPS (scattering points in parallel coordinates), which draws pairwise scatter 

plots between each pair of PCP axes or adopts a DIMDS (dimensional incremental 

multidimensional scaling) scatter plot between a selected pair of PCP axes. They 

convert parallel coordinates segments into point plots and draw the PCPs as curves 

that pass through their associated points. To provide a seemless integration, a 

uniform brushing tool that allows linked brushing on either the PCPs or the scatter 

plots is also proposed.

2.4 Interactive Linked View Multivariate Volume 
Visualization System

Multivariate volume datasets can be explored using linked view systems that 

have shown to be useful for multivariate simulation data exploration. Early 

studies utilize multiple linked scatter plots as the data value view and the user 

brushes regions of interest on these plots to design transfer functions. The SimVis 

system [21, 77] allows the user to interact with several 2D scatter plot views using 

linked brushes to select features of interest in particle simulations rendered as 

polygons and particles.
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As parallel coordinate plots have become a widely accepted method for mul­

tidimensional data visualization, researchers propose to build data value view 

together with transfer function widgets based on parallel coordinate plots. Akiba 

and Ma [1] propose a tri-space exploration technique involving parallel coordi­

nate plots together with time histograms to help the design of high-dimensional 

transfer functions for time-varying multivariate volume datasets. Blaas et al. [5] 

extend parallel coordinate plots for interactive exploration of large multitime point 

datasets rendered as isosurfaces. Rubel et al. [81] build a cluster-based multivariate 

visualization system centered on the histogram-based parallel coordinates for 

very large multivariate time-varying particle simulation. Given a user-selected 

multivariate value range on any attribute axis on the parallel coordinates, a fast 

multivariate query using bitmap indexing is conducted. The query result is then 

represented as parallel coordinate plots using the method proposed by Novotny 

and Hauser [70]. Finally, the particles that satisfy the query are rendered in the 

spatial view using particle systems.

A parallel coordinate plot provides a good context for the definition of each 

attribute value in high-dimensional transfer functions. However, due to data 

point to polyline transformation and the occlusion issue by its nature, it is hard 

to observe high-dimensional features and check correlations between attributes in 

a parallel coordinate plot as stated in Section 2.3. Researchers therefore resort to 

the dimensional reduction and projection techniques in conjunction with parallel 

coordinate plots to provide the user with more insight. Zhao and Kaufman [101] 

combine multidimensional reduction and transfer function design using parallel 

coordinates but their system is able to handle only very small datasets. Guo et 

al. [31] propose an interactive HDTF design framework using both continuous 

PCPs and MDS technique accelerated by employing an octree structure. Guo et 

al. [32] develop parallel algorithms for multivariate volume rendering, continuous 

PCPs computation and MDS computation to make their work [31] scalable.

However, we have observed two limitations in the above systems: 1) the 

user has to explore the data via interactions on the transfer function view, which 

may be unintuitive for domain users and moreover makes exploration for real-
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world datasets difficult, and 2) the visualization is merely produced with transfer 

functions and it is difficult to achieve a more refined result.

2.5 Interactive Large Volume Rendering
Ray casting and slice-based volume rendering are the two methods used for 

direct volume rendering. Thanks to the computational power of GPUs, volume 

rendering has become interactive. However, with the ever increasing size of 

volume datasets, interactive direct volume rendering of large volume datasets 

that cannot fit into the GPU memory, i.e., out-of-core volume rendering, is still 

a challenging topic. Building hierarchical structure for a volumetric data is a 

common way to enable and accelerate out-of-core volume rendering. In the early 

work of hardware assisted volume rendering, LaMar et al. [59] and Weiler et al. [97] 

propose to use hierarchical bricking schemes. Boada et al. [6] build a mipmap-like 

structure based on an octree, and then they choose a cut through the tree and use 

the mipmap data of the leaves during rendering. Guethe and Strasser [33] use 

hierarchical wavelet representation and screen-space error estimation for level of 

detail selection. The ImageVis3D system [48] uses a kD tree to subdivide data 

and each brick in the tree is rendered in one rendering pass. Gobbetti et al. [28] 

determine the visibility of octree nodes using the corresponding partial octree on 

the CPU, which is then downloaded to the GPU.

All work above requires a CPU-based traversal of an explicit hierarchical 

structure, which can be very expensive. More recently, due to the improvement of 

the GPU, GPU-based ray-guided volume rendering frameworks enable efficient 

rendering of gigascale and even petascale volume data on a single consumer 

level GPU. Crassin et al. [16] propose a GPU-based ray-guided octree volume 

rendering framework, called "gigavoxel," which uses ray casting information to 

directly guide the data streaming. The "gigavoxel" framework is efficient as the 

ray casting information naturally determines voxel visibility and view frustum. 

However, "gigavoxel" is intended for entertainment applications, which usually 

result in sparse octrees, and moreover, the kD restart octree traversal scheme 

requires a full path traversal from the root of the tree for each voxel, which can
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be costly. Hadwiger et al. [35] present an interactive volume renderer that scales 

to petascale which uses a visualization-driven virtual memory approach. Similar 

to "gigavoxel," ray casting is also utilized to detect visible data, however, [35] 

avoids the potentially costly kD restart octree traversal. Unlike "gigavoxel,: [35] 

it is designed and optimized for dense anisotropic microscopy data. In contrast 

to all previous work, the virtual memory approach requires no precomputation of 

a multiresolution hierarchy. Instead, it constructs volume data from the 2D raw 

images based on a visualization-driven data construction scheme via on-the-fly 

stitching and re-sampling.



CHAPTER 3

TRANSFER FUNCTION COMBINATIONS

Direct volume rendering has been an active area of research for over two 

decades. Transfer function design remains a difficult task since current methods, 

such as traditional 1D and 2D transfer functions, are not always effective for all 

datasets. Various 1D or 2D transfer function spaces have been proposed to improve 

classification exploiting different aspects, such as using the gradient magnitude 

for boundary location and statistical, occlusion or size metrics. In this chapter, we 

present a novel transfer function method that can provide more specificity for data 

classification by combining different transfer function spaces. In this work, a 2D 

transfer function can be combined with 1D transfer functions and improves the 

classification. Specifically, we use the traditional 2D scalar/gradient magnitude, 2D 

statistical, and 2D occlusion spectrum transfer functions and combine these with 

occlusion and/or size-based transfer functions to provide better specificity. We 

demonstrate the usefulness of the new method by comparing it to the following 

previous techniques: 2D gradient magnitude, 2D occlusion spectrum, 2D statistical 

transfer functions and 2D-size based transfer functions.

3.1 Combining Transfer Functions
3.1.1 Formulating Transfer Function Combinations

In practice, using just one or two metrics during volume classification makes it 

difficult to robustly classify and separate features in complex volumes. Using more 

properties in the transfer function space often can better describe features in the 

volume; however, user interaction becomes more difficult or even impossible when 

the number of properties, and thus the dimensionality, of the transfer function 

space increases. Gaussian transfer functions have been proposed by Kniss et 

al. [57] to provide analytical multidimensional transfer functions of arbitrary
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dimensionality. Also a procedural high-dimensional transfer function model is 

proposed in [36]. However, in both works, how to provide an effective user 

interface remains unclear.

The proposed transfer function combination sequentially applies two transfer 

functions, a 2D and a 1D one, to all voxels vx, where X  is the 3D position, of the 

input dataset V that has l properties Y1rY2,. . .  Yf.

{C1 , C2, C3, ... Q } = TFw( V)where 

Cj := {vx|TFwj(Yp(X), Yq(X)) > 0,p,q e  [1,l]} (3.1)

{Wi c  Cj} = TFr(Yr(X))where 

X  e Cj(X), j  e  [1,k],r e  { 1 , . . . , l}/{p, q} (3.2)

In Equation 3.1, a number of 2D transfer function widgets, k, are first applied to 

the volume, resulting in sets of classified voxels C1 , C2, C3 ... Ck, respectively. Then 

one from a set of r, which is typically 1 or 2, 1D transfer functions is applied to 

the classified region Cj, yielding the final classified volume region Wi. Each 2D 

transfer function widget has one associated 1D transfer function.

Kniss et al. [57] clearly show a 2D example that separating high dimensional 

transfer functions into lower-dimensional transfer functions using multiplication 

can lead to misclassification, which gets worse when the dimensionality is ex­

tended into 3D. Our proposed method, however, does not suffer from such issues 

as each 2D transfer function widget has a 1D transfer function that helps further 

separate features within the voxels selected by the 2D transfer function. This 

dimension reduction method, however, can cause classification inconsistencies 

compared to a true 3D transfer function. We believe that this is a reasonable 

compromise, considering that the losses in classification precision compared to 

using an equivalent higher dimensional transfer function are typically minor.

Rezk-Salama [79] proposed a similar idea called local transfer functions to set 

transfer functions for segmented volumes, i.e., a transfer function is associated 

with a tag in the tagged volume; voxels are essentially preclassified and their tags 

are stored in a volume. Our method is more flexible as the user essentially inter­

actively labels voxels using the 2D transfer functions and then further classifies
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the features using the associated 1D transfer function. Bruckner and Groller [9] 

similarly use a 1D transfer function to index into a table of style transfer functions 

for flexible illustrative volume renderings. Their work conceptually differs from 

ours as our transfer function combination method is utilized to improve the 

specificity of transfer functions rather than producing illustrative visualizations.

3.1.2 Selecting Combinations

We propose to separate the transfer function space into a 2D transfer function 

space with a set of 1D transfer function spaces as a trade-off between dimension­

ality and usability.

A problem naturally arises when more than three properties/attributes are 

provided, namely which properties contain salient features, which attributes are 

most effectively used as the 2D transfer function domain, and which are best 

classified by the associated 1D transfer functions. Thus, we provide a few simple 

rules to aid the user in selecting appropriate combinations.

For a given set l properties of a dataset, the correlation coefficient matrix R 

of size l x  l is computed, as well as the entropy vector E of size l, which contains 

all properties' entropy. The primary property Yp, is chosen that represents the 

original information of the dataset (e.g., original intensity dataset or the mean 

dataset computed from the statistical properties extraction process as shown in 

Section 3.2.3). A property that is intrinsically associated with Yp (e.g., gradient 

magnitude vs. original intensity dataset or standard deviation vs. mean value) is 

used as the secondary property Yq. The primary and secondary properties define 

the 2D transfer function space. For all remaining properties Y{, i e  [1, l] and i ± p, q 

a score is computed as a linear interpolation between the correlation coefficient
E(Y)

Rpi and the normalized entropy mxE, as shown in Equation 3.3:

E(Y)
Si = -aRpil + (1 — a)------ e / 0 — a < 1 (3.3)

max E

The correlation coefficient depicts the similarity between properties: a lower 

correlation coefficient value indicates a higher independence of properties. By 

intuition, more independent properties correspond to more interesting features, 

which we hope can be extracted by combining them together. Therefore, we favor
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Rpi = (3.4)

properties that are less correlated with the already chosen properties and as such 

a negative relationship between the absolute value of correlation coefficient |Rpi| 

and the score Si is shown in Equation 3.3. Specifically, the coefficient matrix R of 

property Yp and Yi is computed by Equation 3.4.

Cov(p, i)

■\JCov(pr p)Cov(i, i)

where Cov(p, i) is the covariance matrix of property Yp and Yi.

However, using the correlation coefficient alone could lead to situations where 

properties that do not increase classification ability can beat more meaningful 

properties in the scoring, and to remedy this, the entropy of a property is also

considered in Equation 3.3. The entropy value of a property reflects the amount
E(Y)of information contained in that property, shown as a normalized form mxE in 

Equation 3.3. The entropy is defined as

n

E(Yi) = Yu  p(yb)log2(p(yb)) (3.5)
b=1

where n is the number of bins in the histogram of property Yi, b is the current 

bin and p(yb) is the probability of data value yb at current bin. E(Y;) describes the 

homogeneity of property Yi and is negatively proportional to the homogeneity, 

i.e., higher entropy represents less homogeneity.

Properties that are less homogenous usually contain more features of interest 

compared to more homogenous ones. Therefore, low homogeneity can be used 

to rule out less contributing properties that have higher score from the correlation 

coefficient. As such, high entropy is desired in our scheme, i.e., properties that 

are less homogenous are favored over more homogenous ones. However, low 

entropy may also be of interest on some occasions, e.g., a property contains 

large homogenous regions but highlights a small feature that no other properties 

can. The classification ability of those properties, however, is hard to describe by 

mathematical quantities but can be rather easily determined subjectively.

The parameter a is dataset dependent and allows the user to choose a balance 

between the correlation of two properties and the amount of information contained 

in an individual property.
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The remaining properties are then ranked based on their scores Si and used as 

the tertiary attributes for the associated 1D transfer functions. We found that using 

one or two tertiary attributes provides a good compromise between complexity 

and effectiveness of the classification. One of the available tertiary attributes is 

selected as the active one for each widget in the 2D transfer function space.

As an example, the process of combination selection for CT chest scan Artifix 

discussed in Section 3.3.2 is shown. Using the rules, we compute the correlation 

coefficients and the entropies of the five properties of the dataset as shown in 

Table 3.1.

Choosing the scalar value x as the primary attribute suggests using the gradient 

magnitude |Vx| as the secondary attribute. Then scores s ,̂a,p for mean, standard 

deviation and occlusion properties are computed for the remaining attributes by 

setting a to 0.4, which yields s ,̂a,p = [-0.0347,0.1938,0.3086].

The occlusion property has the highest score, meaning it is the best property 

regarding both the correlation between it and the primary attribute and the 

information it contains. The occlusion property is used as the tertiary attribute to 

define a combined 3D gradient magnitude/occlusion transfer function space.

Alternatively, choosing the mean value p  and the standard deviation a  as the 

primary and secondary attributes, the scores sx,|vx|,p are computed for the other 

attributes, yielding sx,|vx|,p = [0.0094,0.2061,0.3045] for scalar, gradient magnitude 

and occlusion properties, respectively. The occlusion property has the highest 

score and is thus used as the tertiary attribute to define a combined 3D statisti­

cal/occlusion transfer function space.

3.1.3 User Interface

In general, true 3D transfer function widgets are relatively difficult to interact 

with, since robust and effective interaction with a 3D space is still an open 

research problem [7]. The proposed combined transfer function space, however, 

is separable into a 2D transfer function space and a set of 1D transfer function 

spaces. Haidacher et al. [37] propose a similar separation method for multimodal 

visualization. In contrast to their simple triangle shaped windowing function, our 

method provides more insights and flexible controls for the 1D transfer function
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Table 3.1. The correlation coefficients and the entropies of the properties computed 
from Artifix CT chest scan dataset. The properties are the intensity value X, the 
gradient magnitude |Vx|, the mean value p, the standard deviation a  and the 
occlusion metric p. The bottom row shows the entropy E of each attribute.

X |Vx| a P
X 1.0000 0.1654 0.9973 0.2435 0.7286

|Vx| 0.1654 1.0000 0.1690 0.9569 -0.0583
0.9973 0.1690 1.0000 0.2464 0.7388

a 0.2435 0.9569 0.2464 1.0000 0.0067
P 0.7286 -0.0583 0.7388 0.0067 1.0000
E 5.3828 3.6077 4.8012 3.8392 7.9090

spaces. This separation, as stated before, can cause decreased classification 

precision when the 1D transfer function spaces are not independent from the 2D 

transfer function space compared to a true 3D transfer function space. However, 

our combination selection rules proposed in Section 3.1.2 help to rule out highly 

dependent 1D transfer function spaces. Therefore, we believe this separation is a 

good trade-off between interactivity and classification precision.

Each 1D transfer function is attached to every selected region in the 2D transfer 

function domain based on the usual transfer function widgets or selectors. Thus, 

features in the volume can be classified by selecting their voxels in the 2D domain 

defined by the primary and secondary attributes. In cases where those voxels 

represent multiple separate features, the additional 1D transfer function can be 

used to further separate such features within the voxels selected in the 2D domain 

using one of the tertiary attributes. While adding complexity to the manipulation 

of transfer functions, this technique provides familiar interaction with each of the 

2D and 1D transfer functions (TF). We believe this additional interaction (com­

bining familiar 2D TF manipulation with familiar 1D TF manipulation) provides 

a reasonable method for interacting with the higher dimensionality of transfer 

function combinations. However, it does require users to be familiar with such 

interaction techniques.

Figure 3.1 illustrates the proposed 3D transfer function editor for a 2D gradient 

magnitude transfer function space with associated 1D occlusion transfer functions. 

The top part shows the 2D gradient magnitude transfer function domain x  x
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Figure 3.1. The separable 3D transfer function editor. The transfer function editor 
with the 2D gradient magnitude transfer function space x x  ||Vx|| shown on top, 
and the 1D occlusion space pc attached to the currently selected widget c in the 
2D space, shown below. In this example, the blue widget is active, and the 1D 
histogram represents the occlusion information of all the voxels with statistical 
properties selected by the widget in the 2D statistical domain.

||Vx||, where the user can place and interact with traditional 2D transfer function 

widgets [56] TFw2d and a more generic lasso tool. The occlusion volume space 

pc or the size volume space tc of the region c selected by the currently active 

2D transfer function widget TFwc is represented by a 1D transfer function editor, 

shown at the bottom, along with a 1D histogram of the occlusion information of 

all voxels selected by c. That is, the 1D transfer function editor operates strictly on 

voxels selected by a 2D transfer function widget (the blue widget in Figure 3.1).
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The 2D transfer function widgets, such as ellipse, rectangle or triangle widgets 

as proposed by Kniss et al. [56], typically include some default shapes with few 

degrees of freedom. Users are able to set colors, opacities and different fall-offs 

for each of these widgets. These tools provide facilities to the user for a general 

exploration of transfer function spaces using easy to manipulate high-level widgets.

However, it is difficult for the user to precisely select arbitrary regions. This 

often prevents a user from exploring the subtle structures in the transfer function 

domain, which may make a significant difference in the final visualization. Thus, 

similarly to commonly used image processing applications, we also include a lasso 

tool to allow the user to intuitively and easily select arbitrary regions by drawing 

the region boundaries directly into the transfer function space. In Figure 3.1, the 

red curve illustrates the hand drawn boundary path with a spherical fall-off for 

the color and opacity. A box on the left hand side of the 1D transfer function editor 

allows the user to select which tertiary attribute is used as the 1D transfer function 

space for each 2D widget.

The proposed user interface allows the user to interact with the 3D transfer 

function space intuitively. Whenever the user creates a transfer function widget 

on the 2D transfer function space, the histogram of the voxels selected by that 

widget is computed and immediately shown in the 1D transfer function editor. 

Initially, the 1D transfer function maps, as visible, all voxels that are selected by 

the 2D transfer function widget. With the help of the 1D histogram, one can 

then design the 1D transfer function intuitively. As such, users are provided with 

a familiar interface thus providing intuitive interaction. This user interface adds 

minimal complexity to the standard 1D and 2D transfer function editors in existing 

volume visualization systems, e.g., Voreen [93] and ImageVis3D [48]. With a 3D 

transfer function space we are able to leverage the usability of the user interface; 

however, we are also interested in extending it for higher dimensional transfer 

function spaces in the future.
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3.2 Specific Transfer Function Spaces Used
In addition to the well-known 2D gradient magnitude and scalar value transfer 

function, we include several recently proposed transfer functions to be used 

in combinations. Creation of these transfer functions is generally based on the 

methods described in the respective papers, but with slight modifications, which 

are discussed in the following subsections: size-based transfer functions [14] in 

Section 3.2.1, occlusion-based transfer functions [15] in Section 3.2.2 and statistical 

transfer functions [38] in Section 3.2.3.

3.2.1 Size Information Computation

Correa and Ma [14] proposed a three-step method to create a size volume S 

from an input volume. The three steps are scale-space computation, scale detection 

and back projection. Correa and Ma use anisotropic diffusion to create the scale 

space with better localization. The classical normalized Laplacian kernel is used 

to detect the blobs as local maxima both in spatial and scale domains. A back 

projection step utilizing Shepard's interpolation with Wendland polynomials is 

then conducted for the detected blob tuple (x, y,z, t).

A single voxel can be part of features with multiple sizes; however, only the 

largest size value is kept at each voxel. Thus smaller features get masked out by 

larger ones, which happens in the brain MRI example shown in Section 3.3.4. To 

avoid this situation, we allow the user to specify an intensity range to compute a 

scale space specifically for that range.

3.2.2 Occlusion Information Computation

Correa and Ma [15] suggest using an extended ambient occlusion metric to 

measure the occlusion of the volume. One can view the occlusion information p as 

a weighted sample mean value for a spherical neighborhood with certain radius 

R centered at each voxel, which results in an isotropic blurring effect that does not 

preserve the boundaries of the structures.

Sometimes, overly smoothed volumes that lose all their boundary information 

are not desired, thus we derive a gradient based equation for computing the 

occlusion information, inspired by work done by Perona and Malik [76].
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For a sphere of radius R, we compute the occlusion information of the N  voxels 

xi surrounding the current voxel x as shown in Equation 3.6:

N
mx = (3.6)

i=1
2

n
gx = llv/xl I2 + n2 <3,7)

In Equation 3.7, gx is a term based on the gradient magnitude of the current voxel 

x .

The dataset dependent parameter n G R+ handles gradients of zero magnitude 

e.g., for n G [0.001, 0.01], essentially helping to preserve boundaries of different 

structures. If n ^ 1, the filter behaves similar to a box filter.

Computing mx is equivalent to convolving the volume with a spherical filter 

B r  of radius R, and then modulating it with gx:

mx = gx • <BR * Ix) <3.8)

The complexity of this operation is O(mn), where m = |nR3 + 1 , and thus very 

costly, since the radius should be large enough to maximize the variance of the 

result [15].

This computational scheme is infeasible in practice, due to its computational 

complexity. However, since each sample inside the sphere is treated equally, a box 

filter of width 2R can be used to approximate the sphere. Exploiting the separability 

of convolving with a box filter and the performance of modern GPUs allows the 

computation of mx within seconds. The 3D convolution is then separated into three 

consecutive convolutions with a 1D box filter b2R+1 of width 2R +1, as Equation 3.9 

shows:

mx = gx • {b2R+1 * [b2R+1 * <b2R+1 * Ix)]} <3.9)

This separation considerably reduces the computation time. Such an occlusion 

metric is view-independent and thus can be precomputed and stored, and there­

fore does not affect the speed of visualization.
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3.2.3 Statistical Properties

We construct the statistical feature space with a procedure similar to that 

presented by M. Haidacher et al. [38]. They propose to grow a sphere over 

the neighborhood of each voxel and to compute the following statistical metrics: 

mean value ^, standard deviation o, skewness as well as kurtosis. It is a multistage 

process: first, extract statistical metrics and second, conduct the normality test. If the 

test is passed, continue with the similarity test. After the similarity test, if the new 

samples are similar to the old ones, we combine the statistical metrics. If any of the 

above tests fail or a user-defined maximum radius rmax is reached, the procedure 

is terminated, otherwise we increase the neighborhood by one voxel.

Haidacher et al. [38] use the Jarque-Bera test [52] for normality since it is easily 

implementable on a GPU. It, however, requires a relatively large set of samples in 

order yield results of sufficient quality. Therefore, various other normality tests 

have been proposed in the literature; we chose D'Agostino's K-squared test [18] 

as a state-of-the art method. Its robustness with respect to identical values in 

the dataset makes it a good fit for CT and MRI datasets, which can contain large 

homogeneous regions.

Utilizing the transformations Z1( ^ b )  and Z2(b2) of the sample skewness Vb! 

and the sample kurtosis b2, the K-squared test (Equation 3.10) is then defined as:

K2 = Z l ( ^ b ) 1 + Z2(b2)2 (3.10)

K2 is approximately x 2-distributed with 2 degrees of freedom; we can test its null 

hypothesis by looking up the x 2-distribution table. The entry for test level 1 — a  = 

0.999 with 2 degrees of freedom in the x 2-distribution table is 13.82. Therefore, the 

normality test will be passed if

K2 < 13.82 (3.11)

If the samples in the spherical neighborhood pass the normality test, it is 

necessary to further test whether they have the same distribution as that of the 

samples computed in the previous iteration. As done by Haidacher et al. [38], 

Welch's T-test [98] is used to compare the similarity of the sample distributions.
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3.3 Results and Discussion
The statistical properties, the occlusion information and the size information 

are all precomputed on the GPU, and those volumes are then used in the interactive 

visualization stage to define the transfer function space. Users interact with an ex­

tended slice-based volume renderer implemented in OpenGL and Qt that supports 

combined 3D transfer functions to explore and generate final visualizations.

The scoring process is not part of our volume renderer and is conducted in 

MATLAB only once for a dataset. The input is a matrix where each of its columns 

is a property volume that is flattened into an 1D array. The correlation coefficient 

matrix is computed by the MATLAB function co rrco ef, which uses Pearson's 

correlation. The MATLAB function entropy, which implements Equation 3.5, is 

applied to compute the entropy of each property by taking the histograms of the 

properties in a column of the input matrix. The number of bins of the histograms 

is determined by the number of bits of the data, e.g., an unsigned 8 bit volume has 

256 bins. Finally, Equation 3.3 is evaluated for the corresponding row of the major 

property in matrix R and the normalized entropy vector mY E . The whole process 

takes about 10 seconds for each of the examples shown.

The following discussion compares 2D gradient magnitude, 2D statistical, 2D 

occlusion, 2D size with 3D combined statistical/occlusion, statistical/size, occlu­

sion spectrum/size or statistical/(occlusion, size) transfer functions applied to a 

synthetic dataset and real-world datasets. The combined 3D transfer functions 

for each dataset were typically designed within 15 to 20 minutes, similar to 

the time required to design the traditional 2D transfer functions. The synthetic 

dataset models a filled shell encompassing varying sized spheres; the "Artifix" 

dataset has been retrieved from the OsiriX DICOM archive [72]. The back pack 

and the "Artifix" datasets are CT scans of a back pack and chest, respectively, 

"CerebrixCrop" is the T1 channel of an MRI scan of a brain.

The parameters used to create the transfer function spaces are chosen by trial- 

and-error on each dataset. The synthetic dataset and CT datasets are computed 

with confidence level 0.1, whereas the MRI dataset with a confidence level 0.001 

when generating the statistical transfer function space. The radius is set to 40 for all
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datasets when creating the occlusion volumes. The synthetic dataset is processed 

with a boundary preserving parameter n = 1.0 in order to overcome the noisiness, 

whereas all other datasets use n = 0.005 to preserve the boundary details. The size 

property computed for the MRI dataset is limited to the intensity range [250,500] 

in order to classify the tumor.

The transfer function combinations shown below are chosen by applying the 

algorithm described in Section 3.1.2 with varying parameter a. An exception to 

this are the results shown in Figure 3.2, where the extremely noisy nature makes 

Equation 3.3 ineffective.

© ©i

(a) (b)

■-* i k.

(c) (d)

(e) (f) (g) (h)

Figure 3.2. Comparisons of transfer function combinations for a synthetic dataset. 
The synthetic dataset was created as a mixture of overlapping Gaussian distri­
butions with varying parameters to model a filled shell encompassing varying 
sized spheres as shown in a). The dataset has been classified, from left to right, 
using transfer functions (shown right below the rendered images) based on b) 
2D gradient magnitude, c) 2D occlusion spectrum and d) 2D size-based transfer 
function, e) 2D statistical, f) combined statistical/occlusion transfer function, g) 
combined statistical/size transfer function and h) combined statistical/(occlusion, 
size) transfer function.
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3.3.1 Synthetic Dataset

A synthetic dataset was created, as illustrated in Figure 3.2(a), in order to 

mimic a common scenario in real life medical datasets, such as chest CT scans or 

head MRI scans, where different structures overlap both spatially and in the scalar 

values. Often, the outer structures occlude with the inner ones, but they also can 

have different sizes. The synthetic dataset contains six different materials: the 

environment with p0 = 0.20,a0 = 0.14, the middle hull with 1̂ = 0.40,a1 = 0.16, the 

outer hull and the upper small inner sphere with p2 = 0.60,a2 = 0.11, and both the 

remaining larger and smaller inner spheres have ^3 = 0.80,a3 = 0.13. In addition, 

low amplitude noise following a Gaussian distribution has been added across the 

whole domain to simulate noise introduced by acquiring a volumetric image with 

a scanner.

Various transfer functions have been applied to the synthetic dataset, as shown 

in Figure 3.2. Traditional 2D gradient magnitude-based transfer functions, as 

Figure 3.2(b) illustrates, suffer severely from the overlapping scalar values in the 

transfer function domain. There, features are indistinguishable due to noise, which 

makes it hard to separate features based on their gradient magnitude, as seen in 

the joint histogram in Figure 3.2(b).

Occlusion spectrum 2D transfer functions, shown in Figure 3.2(c), are able to 

separate the inner and outer structures based on their occlusion property as in the 

transfer function shown in Figure 3.2(c). The three inner spheres, however, cannot 

be separated clearly due to the similarity in their occlusion information as well as 

their scalar values. Also, the center of the inner yellow region overlaps with all 

spheres in the occlusion spectrum, thus causing misclassification.

The size-based 2D transfer function applied to the dataset (Figure 3.2(d)) 

separates the inner spheres from each other and the outer rings; however, there are 

classification artifacts at the top and right part of the green outer ring. The small 

sphere at the bottom right cannot be properly separated from the purple sphere, 

since they both overlap in their scalar values.

Statistical 2D transfer functions, as demonstrated in Figure 3.2(e), are able to 

separate the overlap in the (p,a) transfer function domain. It is thus possible to



34

classify them using different properties. However, both spheres at the lower center 

have the same statistical properties, and similarly, the outermost shell shares the 

statistical properties with the upper central sphere, yet they represent different 

structures.

Supplementing the statistical information with occlusion information, as shown 

in Figure 3.2(f), makes it possible to separate the inner purple sphere, compared 

to Figure 3.2(e). The transfer function in Figure 3.2(f) shows that the 1D occlusion 

histogram for the highlighted 2D widget can be used to separate the purple sphere 

with its low amount of highly occluded voxels from the green outer shell, which 

has a higher amount of less occluded voxels. However, the two red spheres at the 

bottom are not separated from each other.

On the other hand, supplementing the statistical information with size infor­

mation, as shown in Figure 3.2(g), makes it possible to separate the two spheres 

at the bottom into the cyan small one and the larger red one, when compared to 

Figure 3.2(e). Noticeable are the purple artifacts in the green outer shell at the right 

side, since that region has a similar feature size compared to the purple sphere.

Figure 3.2(h) shows that occlusion and size information together are able to 

classify all the features of the dataset without ambiguity. The 1D transfer function 

associated with each widget in the 2D statistical transfer function space uses either 

size information or occlusion information to further classify the voxels selected in 

the statistical 2D transfer function domain, thus allowing the user to exploit the 

benefits of either method, while being able to interact with 1D and 2D transfer 

functions, instead of 3D or 4D transfer functions.

3.3.2 CT Scan of a Chest: "Artifix"

In the chest CT scan "Artifix" (Figure 3.3), both traditional 2D and combined 

3D transfer functions were used to classify the lung (blue), bones (shades of gray), 

blood vessels (red), aorta (dark orange), kidney (brown) and the skin (transparent 

gray).

The gradient magnitude transfer function fails to correctly separate the blood 

vessels and the kidneys from the bones. Also noticeable is the relatively high 

amount of noise distributed across the volume.
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(a) (b) (c)

(d) (e)

Figure 3.3. Transfer function combinations for a CT chest scan. The chest 
CT scan "Artifix" classified using transfer functions based on a) 2D gradient 
magnitude, b) 2D occlusion spectrum, c) 2D statistical, d) combined 3D gradient 
magnitude/occlusion transfer function and e) combined 3D statistical/occlusion 
transfer function.

The occlusion spectrum can be used to separate the kidney from the surround­

ing tissue. However, the aorta is similarly classified, since the aorta and the kidney 

are overlapping in the occlusion spectrum. Also, details of the lung are lost, since 

its tissue has similar occlusion values compared to the surrounding tissue, due to 

the intricacy and delicacy of the alveoli and bronchioles.

A statistical transfer function (Figure 3.3(c)) removes a noticable amount of that 

noise, but still leaves some areas, such as the front part of the ribs, and the kidney 

misclassified, since they are close with respect to their statistical properties.

Experimentation with the size-based transfer function as the associated transfer 

function space did not measurably improve the classification since the relative 

similarity of the scalar values in this CT scan mapped them to similar size values.

However, combining occlusion information with either a 2D gradient magni­

tude transfer function (Figure 3.3(d)) or a statistical transfer function (Figure 3.3(e))
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increases the ability to correctly separate the kidneys from the aorta. The fine 

structures of the lung's surface are identifiable, since they have different statistical 

properties compared to the surrounding tissues. There are only slight differences 

between the combined transfer functions since they are similar without consider­

ing occlusion information.

3.3.3 CT Scan of a Back Pack

Figure 3.4 shows the CT scan of a back pack filled with liquids <in red, green, 

blue), a battery <in purple) and a box <in cyan) classified with various transfer 

functions.

The scoring with a = 0.6 conducted on the back pack dataset with scalar value 

chosen as the main property and gradient magnitude as the intrinsically associated 

secondary property results in:

s ,̂a,p,S = [-0.5208,-0.3882,0.2165, -0.1595]

<a) <b) <c) <d)

<e) <f) <g)

Figure 3.4. Transfer function combinations for a back pack CT scan. The back pack 
CT scan classified using transfer functions based on a) 2D gradient magnitude, b) 
2D statistical, c) 2D size, d) 2D occlusion, e) combined 3D gradient magnitude 
/occlusion transfer function, f) combined 3D statistical/size transfer function and 
g) combined occlusion spectrum and size transfer function.
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suggests that the occlusion volume p and size volume S should be considered for 

tertiary attributes. Changing the main property to mean volume with standard 

deviation volume as the secondary attribute gives the scoring for the rest of the 

properties:

s*,|v*|/P/s = [—0.4847, —0.2140,0.2153, —0.1679]

also hints to us that the occlusion volume p and size volume S should be used as 

tertiary attributes.

The 2D transfer functions separate the different liquids to varying degrees, but 

they fail to identify the battery properly. Other features, such as the wires or the 

small circular shapes, are mapped to the same color yellow (Figures 3.4(a), 3.4(b)), 

or the same feature is mapped to different colors (Figures 3.4(c), 3.4(d)). Notable 

is the 2D occlusion transfer function, which allows the extraction of the cyan box 

but classifies the liquids with less specificity.

Adding occlusion as the third axis did not yield meaningful results, since the 

dataset itself has many features that are similarly occluded by the clothing articles 

(showing in transparent gray) inside the back pack, thus reducing the separability 

in the occlusion channel.

Utilizing a size transfer function as the third axis allows the clear separation 

of the battery (purple color). The 3D occlusion spectrum/size transfer function 

(Figure 3.4(g)) is additionally able to visualize the cyan box, which is difficult to do 

using gradient magnitude (Figure 3.4(e)) and statistical information (Figure 3.4(f)) 

as the 2D transfer function domain. However, all the 3D transfer functions have 

problems in classifying the wires as features both connected spatially and with 

respect to their colors, suggesting further investigations of alternative volumetric 

attributes as the third axis.

3.3.4 MRI Scan of a Brain: "CerebrixCrop"

MRI datasets, occurring in clinical and research studies where separating the 

brain from the surrounding tissue is of particular interest, are typically challenging 

to classify, since they often contain ubiquitous noise [27]. Figure 3.5 shows such 

a dataset containing a tumor in the center of the brain. Transfer functions are
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Figure 3.5. Transfer function combinations for an MRI brain scan data. The 
"CerebrixCrop" MRI dataset shown with focus on the brain tissue shown as yellow 
(top row) and a tumor shown in red (bottom row). The following transfer functions 
were applied: a,f) 2D gradient magnitude, b,g) 2D occlusion, c,h) 2D statistical, 
d,i) 3D statistical/occlusion, e,j) 3D statistical/(occlusion,size).

applied to classify the brain tissue (in yellow) and the fluid inside the tumor (in 

red). Note that although both features can be shown simultaneously by setting 

transparency of the brain, we set the brain to be completely transparent in the 

second row of images for clear visualizations of the tumor.

We apply the scoring process with a = 0.6 to the MRI dataset: set scalar value 

as primary and gradient magnitude as secondary yields:

sF,o,p,s = [-0.3188,-0.1247,0.1674, -0.0224]

meaning that the occlusion volume p and size volume S once again should be 

considered for tertiary attributes. Substituting the main attribute with the mean 

value with the standard deviation as the secondary attribute gives

sX/|VX|,P/S = [-0.2841,-0.0591,0.1505, -0.0298]

and leads us to the same decision.

Gradient magnitude-based 2D transfer functions (Figure 3.5(a)) fail to properly 

separate the brain from the skin, since they both share similar ranges of scalar 

values and gradient magnitudes.



39

Figure 3.5(f) demonstrates the inability for the gradient magnitude based 2D 

transfer functions to clearly pull out the tumor, since similar scalar values and 

gradient magnitudes appear universally across the dataset.

The occlusion spectrum (Figures 3.5(b) and 3.5(g) helps to better separate the 

brain from its surrounding tissues as well as remove noise with scalar values 

similar to the tumor. However, the surface of the brain tissue is still incorrectly 

classified and a large amount of noise still appears around the tumor due to similar 

occlusion values in these regions.

Statistical transfer functions (Figures 3.5(c) and 3.5(h)) significantly smooth 

the dataset, making the creases and recesses of the brain tissue clearly show up, 

however, noise that heavily affects the visual quality is still seen across the dataset, 

especially in Figure 3.5(h).

Combining the occlusion information with statistical information, as shown in 

Figures 3.5(d) and 3.5(i), classifies the brain tissue properly, but fails to clearly 

extract the tumor.

However, a transfer function combination with two tertiary attributes, as 

shown (Figures 3.5(e) and 3.5(j)), clearly separates both the brain tissue and the 

tumor. The statistical attributes are used as the primary and secondary attributes, 

and the occlusion and size information are used as the tertiary attributes.

The widget that classifies the yellow brain tissue uses the occlusion attribute 

to further classify it with the associated 1D transfer function; however the widget 

classifying the red tumor uses the size attribute instead to further remove the noise 

via its associated 1D transfer function.

3.3.5 Multivariate Dataset: Hurricane Isabel

One time step (time step 30) of the VisContest 2004 Hurricane Isabel [47] 

multivariate dataset is used to demonstrate the generality of our method. The 

dataset is a simulation of a hurricane from the National Center for Atmospheric 

Research in the United States. The original dataset contains 100 time steps and 

each with 12 attributes. Many of these attributes, however, are redundant or 

contain little amount of information.



40

The three most salient attributes are selected, namely pressure, temperature and 

a water vapor mixing ratio measurement, QVAPOR, by evaluating the entropy of 

each attribute. The 2D transfer function domain is pressure and temperature. We 

use QVAPOR as the associated 1D transfer function. These attributes are then 

used to classify significant features in meteorology, including hurricane eye and 

spiral arms. As shown in Figure 3.6, each colored widget in the 2D domain uses a 

different QVAPOR 1D transfer function for classification and the classified volume 

are visualized using volume rendering. The eye of the hurricane (shown in red) 

has a lower pressure but higher temperature than the blue outer bands and a lower 

temperature compared to the yellow and green spiraling bands. The QVAPOR 

attribute allows us to see the spiraling bands with fine details in the dataset.

(a) Hurricane Isabel Visualization (b) Hurricane Isabel UI

Figure 3.6. Classifying a multivariate dataset using the combined transfer function 
space. Visualization of the multivariate Hurricane Isabel dataset using pressure 
and temperature in the 2D transfer function with different 1D transfer functions 
using QVAPOR for each 2D transfer function widget shown in different colors.



CHAPTER 4

TRANSFER FUNCTION DESIGN BASED ON 

USER-SELECTED SAMPLES FOR INTUITIVE 

MULTIVARIATE VOLUME EXPLORATION

Multivariate volumetric datasets are important to both science and medicine. 

We propose a transfer function (TF) design approach based on user-selected 

samples in the spatial domain to make multivariate volumetric data visualization 

more accessible for domain users. Specifically, the user starts the visualization 

by probing features of interest on slices and the data values are instantly queried 

by user selection. The queried sample values are then used to automatically 

and robustly generate high-dimensional transfer functions (HDTFs) via kernel 

density estimation (KDE). Alternatively, 2D Gaussian TFs can be automatically 

generated in the dimensionality reduced space using these samples. With the 

extracted features rendered in the volume rendering view, the user can further 

refine these features using segmentation brushes. Interactivity is achieved in our 

system and different views are tightly linked. Use cases show that our system has 

been successfully applied for simulation and complicated seismic datasets.

4.1 Method Overview
The workflow of our proposed method as shown in Figure 4.1 is comprised of 

three major stages: (A) data probing, (B) qualitative analysis and (C) optional feature 

refinement.

Data probing is the process where the user discovers regions of interest by 

examining multivariate data slices. The regions of interest can be conveniently 

selected using a lasso tool or a "magic wand" tool. Once the regions of interest are 

selected, a simple, yet efficient, voxel query operation that inquires the multivariate 

data values is performed. The user then performs a qualitative analysis, i.e.,
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Figure 4.1. The user interface and the work flow of the system implementing our proposed method. Four closely linked views 
are shown and labeled, namely: (1) multipanel view, (2) volume rendering view, (3) projection view and (4) high-dimensional 
transfer function view. Three stages: (A) data probing, (B) qualitative analysis and (C) optional feature refinement comprise 
our work flow. With the proposed method and user interface, domain users are able to explore and extract meaningful 
features in highly complex multivariate dataset, e.g., the 3D seismic survey shown above.
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extracting and rendering volumetric features by means of designing HDTFs or 2D 

TFs on dimensionality reduced spaces. KDE is utilized to automatically generate 

the HDTFs and to robustly discard outliers from the queried samples. Similar to 

previous methods [1,5, 31], the transfer functions can also be directly modified in 

the high dimensional transfer function editor. The high dimensional data space 

as well as the transfer functions are represented by parallel coordinate plots and 

pairwise scatter plots. In addition, automated 2D Gaussian TFs on the projection 

view offer a simpler alternative for more distinct features. The HDTFs can then 

be fine-tuned directly in a PCP-based HDTF editor while the 2D Gaussian TFs 

can be manipulated by 2D Gaussian TF widgets. On many occasions, however, 

different features share similar data values and thus an optional feature refinement 

stage is introduced to refine the features classified by the TFs. Features are refined 

by the user via segmentation brushes or lassos that are applied directly on the 

volume rendering view or the multipanel view. After several iterations of the 

three stages, the user can choose to output the classified result as labeled volume 

for further processing. We have implemented an interactive multivariate volume 

visualization system based on the proposed method that has been implemented 

to allow domain users to extract refined features in very complicated multivariate 

volume datasets more intuitively.

4.2 Voxel Query and PCP Generation
Our proposed method is based on user-selected multivariate voxel samples 

through interactive selection, which requires efficient voxel query. The multivari­

ate values of the queried samples should be immediately presented to the user by 

means of PCPs, and so a fast PCP generation method is needed.

4.2.1 GPU-based Voxel Query via Conditional Histogram
Computation

Voxel query can be accelerated by spatial hierarchy structures that group similar 

neighboring voxels into nodes, e.g., an octree structure adopted by Guo et al. [31]. 

However, Knoll et al. [58] report that, "Conversely, volumes with uniformly high 

variance yield little consolidation; due to the overhead of the octree hierarchy they
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could potentially occupy greater space than the original 3D array." Our initial 

experiment on the seismic data with the code from [58] agrees with this statement. 

We therefore propose to efficiently conduct the voxel query by computing sets of 

joint conditional histograms via a simple GPU-based volume traversal. A joint 

conditional histogram jch<a, b)f of two attributes a and b is a 2D histogram showing 

the joint distribution of attribute values Ya and Yb of voxels V  whose evaluated 

result from a certain boolean function f<Y(V)) <Y(V) being the attribute values of 

V) is true. If f  is always true, the joint conditional histogram degenerates to an 

unconditional joint histogram. Note that the values of user selected samples are 

queried via an unconditional joint histogram computation over the user-selected 

region on the given slice.

For a multivariate volume of N attributes, given an N-dimensional TF as the 

condition, a set of N - 1  joint conditional histograms can be computed to record 

the query results. The values of the joint conditional histograms are accumulated 

by first evaluating the N-dimensional TF for all voxels in the volume, and then 

transforming the voxels that have positive opacities from the TF into bins in 

the conditional histogram space, and finally incrementing the joint conditional 

histogram count at those bins. Specifically, given a voxel vX of N  attributes 

Y1, Y2,...,Yn <to be concise, we use yi to denote the attribute value Yi<vX)) located 

at 3D position X in the spatial domain, and an N-dimensional TF TF.

vx ^  {< y1, y2),<y2, y3), - ,  <yN-1, yN)} 

where TF<y1,y2, . . . , yN).a >  0 <4.1)

<y1,y2) ,<y2, y3),...,<yN-1, yN) being the bins of joint conditional histograms

jch<Y1 , Y2), jch<Y2, Y3) , ..., jch< Y n-1, Yn ),

respectively.

Equation 4.1 and the accumulation of the conditional histograms, which are 

stored aggregately as a 2D texture array of N -  1 slices, can be easily implemented 

on the GPU via geometry shader and ADD blending or read-write textures with 

atomic operations that are supported on recent GPUs.
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4.2.2 Parallel Coordinate Plots Generation

As proposed in [70], Figure 4.2 shows that each nonzero pixel P(i, j) in the joint 

histogram of attribute x and y yields a quad starting at the position of i on PC axis 

x and ending at the position of j  on PC axis y.

The highly parallel process can be implemented on the GPU using geometry 

shader and transform feedback buffers. The algorithm loops through all pairs of 

conditional histograms after setting up the transform feedback buffer for recording 

the resulting geometry. In each iteration, a regular grid of the same size of a slice 

of the input conditional histogram texture texcond is drawn and a geometry shader 

generates a colored quad for each vertex whose texcond value is not 0. The dynamic 

range of the data values is usually high and thus the ratio of the natural logarithm 

of the data value versus natural logarithm of the total voxel number is computed 

and then modulated with the input color C0(i, j) at grid position (i, j) to give the 

final color C(i, j).

j))
C fa j) j) b g (£  v) (4.2)

Finally, all quads are stored in the transform feedback buffer, and they can be 

rendered directly from the transform feedback buffer without being read back to 

the CPU.

4.3 Transfer Function Generation from User-Selected 
Samples

In this section, the actual TF generation method will be explained. Section 4.3.1 

introduces the method for interactive voxel sample selection, Section 4.3.2 dis-

Figure 4.2. Generating a PCP from a joint histogram.
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cusses the KDE-based HDTF generation method and Section 4.3.3 presents details 

on the automated 2D Gaussian TF on the dimensionality reduced space.

4.3.1 Sample Selection in the M ultipanel View

The user can interactively select an arbitrary region of interest in any attribute 

by either drawing a lasso or using the magic wand tool. The lasso tool is a simple 

free hand drawing tool that allows the user to select regions by manually drawing 

over the boundary of a feature. Although very flexible, the user has to be very 

careful when drawing on the boundary using the lasso tool.

To alleviate the difficulty of perfectly drawing over the boundary of a feature, 

a more intuitive and easier to use magic wand tool is introduced. The magic wand 

tool is essentially a 2D segmentation tool based on Perona and Malik's anisotropic 

diffusion [76]. Equation 4.3 describes the diffusion equation where S(t,X, y) is the 

number of seeds at position (x, y) at time t, with V(t,x, y) being the intensity of the 

chosen attribute at the same point, |VV(t,x, y)| is its gradient magnitude, and g(s) 

a conductivity term.

dS(t, X, y)
dt

=  div(g(|VV(t, x, y)|)VS(t, x, y)) (4.3)

where g(s) =  v • exp K2

Parameter K governs how fast g(s) goes to zero for high gradients, regular term v is 

chosen as 1 and normalization term h is set to n+y for numerical stability, n being the 

number of neighbors of a pixel, which is 8 in our case. Equation 4.3 can be solved 

numerically using the finite difference method with a given iteration number T. 

The iteration number T, parameter K and seeding brush size are user controllable. 

Figure 4.3 shows the panel view of a six-attribute seismic volume dataset where 

attributes are co-rendered with the seismic amplitude volume. Note that a user 

drawn magic wand in dark blue highlights a potential salt dome structure.

4.3.2 Kernel Density Estimation-based Transfer 
Function Generation

We would like to generate HDTFs from the samples selected using method 

described in Section 4.3.1. To reduce the computational complexity, we separate

—s
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Figure 4.3. Sample selection in the multipanel view. The user draws on a salt dome 
(stroke shown in light blue) over the fifth attribute in the panel view, resulting in 
the dark blue region of selection.

the N-dimensional value space into N —1 2D value spaces, i.e., a 2D + 2D +------+ 2D

(N — 1 of 2D) space. A naive approach is to generate a TF by taking the convex hull 

of these 2D sample points. Although useful when the user intends to select exact 

sample points, it is conceivable that the outliers in the samples can greatly bias the 

generated TF and result in unwanted regions selected in the value space.

Figure 4.4(a) clearly demonstrates such a situation where a red 2D TF widget 

is generated as the convex hull of the sample points with the red boundary. Also 

notable is that the color gradient of the TF widget is arbitrarily defined by the user 

that may not follow the underlying distribution of data.

Kernel density estimation (KDE) [87] seen in Equation 4.4 is a nonparametric 

method for estimating the density function fh(x) at location x of an arbitrary 

dimensional domain Q with given samples {xi},i e {1, 2, 3 , . . n}.

1 n 1 n _
f h(x) = n Y j  Kh(X — Xi) = n k ^  K( )r X' Xi e  Q (44)

i=1 i=1

where K (x) is the kernel function and h is the bandwidth. Thanks to the separation 

of the value space, instead of computing the KDE for Q of N  dimension, we
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(a) (b) (c)

Figure 4.4. Transfer function generated from user-selected sample points. User-se­
lected sample points (shown in green) over a joint histogram. TF widget generated 
from the samples as (a) convex hull and (b) KDE. In (c): a point cloud (left) and its 
KDE result color coded with a "jet" color map.

compute N - 1  KDE for Q in 2D spaces. In our case, each Q is set to the same size 

of the 2D joint histogram, which is typically 256 X 256.

An empirical optimal bandwidth estimator is suggested in [87], which can be 

extended to 2D:

h =  1.06 VdetE • n- 5 (4.5)

where det E is the determinant of the 2D covariance matrix E of current attribute 

pairs. The kernel function K(x) we used is the 2D Gaussian kernel:

1 ||x ||2
K(x) =  ,__ e 2 (4.6)

V2n

With the Gaussian kernel, each sample xi contributes to the estimate in accordance 

with its distance from X. Therefore, in the region near the intended samples more 

short distanced samples are contributing to fh(x) compared to the region near the 

outliers. As a result, the density value fh(x) around the outliers is lower than that 

of the intended samples. Figure 4.4(c) shows the density function generated by 

the KDE method of the given samples with the above settings. This result verifies 

our expectation that the outliers have a lower density than the intended sample 

regions. We can discard the outliers by setting a threshold for the density value 

fh(x). Figure 4.4(b) shows the yellow TF widget generated by KDE with a density 

threshold of 0.15. Noticeable is that the outliers are excluded from the TF widget 

and the smooth color gradient that actually follows the underlying density. The
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resulting TF can be represented by a set of 2D TFs or a PCP created using the 

method described in Section 4.2.2.

In the presence of multiple HDTFs, ambiguity could arise: different HDTFs can 

cover the same regions of certain 2D attribute pairs. To differentiate the HDTFs, a 

unique ID is specified to each HDTF and an ID map of the same size of the N - 1  2D 

TF space is created by conducting bitwise OR for all HDTFs on each 2D attribute 

pair. The ID map is later decoded in the volume rendering shader to correctly 

select voxels.

4.3.3 Automated Gaussian Transfer Functions on Dimensionality
Reduced Space

Dimensional reduction is another popular method for visualizing high-dimensional 

data due to its ability to intrinsically generate visual representations that are easy 

to understand and interact with. Instances in an m-dimensional Cartesian space 

are projected into a lower p-dimensional visual space with preservation of the 

distances between instances as much as possible. In other words, voxels with 

similar m-dimensional attribute values are projected to be near each other in the 

p-dimensional space. With a projected visual space of p =  2, the user is able to 

better identify features by doing visual classification using a 2D TF widget, and 

moreover, automated clustering methods can be applied for classification. In 

our proposed method, the high-dimensional value space is projected into a 2D 

space using Fastmap [24] and then Gaussian TFs are generated via expectation 

maximization optimization with Gaussian mixture model. The user can choose to 

use either the 2D Gaussian TF or the HDTF for each feature by switching a button 

on the user interface. The 2D Gaussian TFs are preferred for more convenient 

extraction of several distinct features at the same time, whereas the HDTFs are 

better for features that have subtle differences in the HD value domain.

We employ Fastmap [24] as the dimensional reduction technique since it is 

fast, stable and easy to implement. Fastmap is a recursive algorithm for multi­

dimensional projection with an O<N ) time complexity. Given target dimension 

k, a distance function D<) and object array O contains N  objects of m dimension, 

the algorithm FastMap computes the fc-dimensional projected image X from the N
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objects. The algorithm is summarized in Algorithm 4.1

Assuming that all attributes we are handling are continuous measurements, 

the dimensionality reduced 2D value space can be modeled by a Gaussian mixture 

model <GMM). GMM models point clouds by assigning each cluster a Gaussian 

distribution. For a point x in the 2D value space, a Gaussian distribution is shown 

in Equation 4.7 with mean value ^ being a 2D vector and covariance matrix E as 

a 2 x 2 matrix.

N ^ '  E) =  c- 2(x-p)^E-' (x-p) <4.7)

Therefore, for a GMM with fc components, the distribution of the 2D value space 

can be written as

fc
p(x\0) =  ^  a jN (x\ j , Ej ) (4.8)

j=1

where 0 is the parameter set of the fc-component GMM {aj ,^ j , E j}j=v  and a j is the 

prior probability of the jth  Gaussian distribution. The optimal 0 can be found as 

d that maximizes the likelihood of p(X|0)

n
0 =  argmax p(X|0) =  argmax f l p W )  (4.9)

i=1

where n is the number of input points. Equation 4.9 can be solved by the 

expectation maximization (EM) algorithm [4]. Given an initial setup of 0, the EM

Algorithm 4.1 FastMap(fc, D<), O) 
if fc < 0 then 

return 
else

col = col +1 (col is initialized to 0) 
end if
Choose and record the pair of pivot objects Oa, Ob.
Project objects on line (Oa, Ob) using the cosine law:

X[i,col] = Xi = D(OaA )2+DDOOOO)b2)-D<°bA)2, i 6 {0,1,2,...,N - 1} 
Call FastMap(fc - 1 , D'<),O).
Where
D'(O',O')2 = D(Oi,Oj)2 -  (xi - xj)2,i, j  6 {0,1,2,...,N - 1}
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algorithm iterates between two steps: expectation step (E step) and maximization 

step (M step) until the log likelihood

n n k
ln p(X|0) =  log(^|  p(xlld)) =  ^  { ^  a jN (x V , E j )} 

i=1 i=1 j=1

converges. We initialize the EM algorithm using the K-means algorithm [40], 

which quickly gives a reasonable estimation of 0. With an initialization of k mean 

values {uj }k=1, K-means algorithm iteratively refines {uj }k=1 until convergence 

through assignment and update steps. The assignment step assigns each sample 

to the cluster with the closest mean, and the update step calculates the new means 

to be the centroid of each cluster. In our case, the initial means are k random 

samples in the input dimensional reduced 2D point cloud. Once the K-means 

algorithm terminates, {Ej }k=1 can be easily computed with the result means, and 

prior probabilities {a j }k=1 is given by the proportion of total samples inside each 

cluster.

We use a modified TF generation scheme as in [96] but ours differs in that 1) the 

value space we use is the 2D dimensionality reduced space of high-dimensional 

attribute compared to the 2D intensity versus gradient magnitude space as in [96], 

and 2) we use the user-selected samples as the input point clouds, whereas they 

use all voxels in a volume.

Given some user-provided sample data points and a class number k (which is 

set to 3 by default from our experiments), the EM algorithm computes the Gaussian 

distribution parameters 0. Each Gaussian distribution is managed by a Gaussian 

TF widget with a user-defined color C and opacity function a  of location x:

a =  amax^- 2(x—U)T E—1(x—U) (4.10)

The Gaussian TF widget is centered at the mean value u of the Gaussian distribu­

tion and its boundary is generated by transforming a unit circle with the square 

root matrix E 1/2 of covariance matrix E. E 1/2 is calculated via eigen decomposition 

of E:

E =  VDV—1 (4.11)

E 1/2 =  VD1/2 V—1 (4.12)
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where D is a diagonal matrix holding the eigenvalues and V  contains the eigen­

vectors as columns. V  is an orthogonal matrix, i.e., V-1 =  VT, since E is symmetric. 

The eigenvalues 0 1 , 0 2  are the radii of the principal axes of the ellipse, whereas the 

eigenvectors a, b are the unit vectors of the principal axes.

Transformations of the Gaussian widgets, i.e., translation, rotation and scaling, 

can be achieved using the eigenvalues and eigenvectors. The translation is done 

by shifting the ^ with an offset A^ given by user dragging. The rotation of the 

widget is achieved by rotating the eigenvectors in V  with an angle j6. Finally, 

multiplying the eigenvalues 0 1 , 0 2  with a scaling factor (sa,Sb) results in the scaling 

of the widget.

4.4 Feature Refinement in the Spatial Domain
The feature refinement stage is introduced to allow the user to directly ma­

nipulate the features in the spatial domain. Various refinement tools have been 

implemented to handle different situations. All tools support three refinement 

modes: new, add and remove.

4.4.1 Screen Space Brush in the 3D View.

The tool as seen in Figure 4.5(a) allows the user to draw strokes on the 3D 

view screen to set seeds in the visualization results, and then a GPU-based region 

growing is conducted to set the connected voxels to a given tag number. The 

seeding location is determined by casting rays from brush strokes on the image

(a) (b) (c)

Figure 4.5. Feature refinement tools. Three feature refinement tools are included 
in our method: (a) 3D brush, (b) 3D lasso and (c) 2D brush.
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plane to the volume extracted by current TFs. A voxel along the ray is seeded 

when its opacity is greater than a user-defined threshold.

4.4.2 Screen Space Lasso in the 3D View.

Alternatively, the user can directly indicate features of interest on the 3D view 

using a lasso as shown in Figure 4.5(b). A lasso is a simple tool that selects all 

voxels from the TF extracted volume that are inside the back projected volume of 

the screen space lasso covered area.

4.4.3 Refinement Brush in the Panel View.

The refinement can also be done by seeding on the panel view via drawing 

strokes (Figure 4.5(c)), and this is useful when the features of interest are occluded 

in the 3D view or readily visible in a slice. A morphological closing, i.e., dilate the 

volume by one voxel and then erode the volume by one voxel, is performed after 

refinement in order to fill small holes and bridge tiny gaps. Note that all refined 

feature groups are managed in the group manager in the HDTF editor introduced 

in Section 4.6.2, and thus similar to TF groups, their colors can be changed, they 

can be deleted and their visibility can be toggled.

4.5 Rendering
We employ the directional occlusion shading (DOS) [84], which is an efficient 

approximation to ambient occlusion as the rendering technique because the DOS 

is gradient-free and provides the user more insights into the dataset than local 

shading models as shown on seismic datasets [73]. A user study conducted 

by [61] shows that DOS outperforms other state-of-the-art shading techniques 

in relative depth and size perception correctness. Hardware supported trilinear 

interpolation cannot be used for tag volume rendering because false tag values 

will be generated. Instead, nearest neighbor sampling has to be used to correctly 

render the tag volume. However, a simple use of nearest neighbor sampling yields 

blocky looking results because of the voxel level filtering. Instead, using a manual 

trilinear 0-1 interpolation gives pixel level filtering. From our observations, the 

cases where multiple tags appear in a single 8 voxel neighborhood rarely occur
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and so a simplified method of [34] is utilized. The largest tag value in the eight 

neighboring voxels around current pixel is mapped to 1 and all others to 0 and 

then a trilinear interpolation is conducted on these 0/1 values. The interpolated 

result is then compared against 0.5. If greater, the final tag value of the pixel is set 

to the pixel's nearest neighboring voxel's tag value, otherwise the tag value is set 

to 0.

4.6 User Interface
The user interface of our system is seen in Figure 4.1 where a multipanel slice 

view for data probing is shown to the left (1), an interactive 3D view that shows 

volume rendering results and allows post feature manipulation is seen in the 

middle (2), a projection view shown to the upper right (3) and a high-dimensional 

transfer function view appears to its bottom (4). These four views are tightly 

linked and any updates in one view will be reflected in others.

4.6.1 M ultipanel Viewer

We have developed a multipanel view that shows all attributes of a slice by 

placing attributes into individual panels as seen in the left part of Figure 4.1 as 

well as in Figure 4.3. The multipanel viewer synchronizes user interactions across 

all attribute views, including: mouse positioning, panning, zooming, scrolling 

and aspect changing. To enhance the perception of attributes, each attribute can 

have a specifically designed color map that highlights features of interest. In order 

to better use the dynamic range of the color maps, the contrast of the attributes 

can be conveniently changed using the mouse wheel. Furthermore, a background 

volume can be co-rendered with the current attribute volume using transparency. 

This rendering mode is especially helpful for seismic volumes as our collaborating 

geologists suggest that it provides more insight into the attributes when the seismic 

amplitude volume is co-rendered as a context.

4.6.2 HDTF Editor

The user can interact with the HDTF editor to manually modify the HDTFs. 

Figure 4.6 shows the HDTF editor where the PCP axes reorder button and attribute-
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wise control panel can be seen on the top, the PCP TF editor is seen in the upper 

left, a group manager is shown to its right and the pairwise TF editor is shown in 

the lower part.

The attribute-wise control buttons allow the user to specify a color map, toggle 

sampling between linear and nearest neighbor, and toggle lock/unlock for each 

attribute. A locked attribute is essentially an attribute with its entire value range 

used in TFs. In other words, it can be visualized in the panel view but is not 

contributing to classification. This setting is useful since not all attributes provide 

positive assistance in the extraction of specific features and this knowledge is 

usually not known beforehand. Also, there are cases when one needs an attribute 

to provide only context for data probing, e.g., the seismic amplitude attribute, 

which will be discussed in Section 4.7. The group manager manages all TF and 

segment groups. One is able to toggle the visibility or remove an individual or a 

batch of groups conveniently.

As seen in Figure 4.6, the PCP axes are co-rendered with the 1D histograms 

of attributes shown to the right and color map to the left. Since the color map 

is synchronized with the one that appears in the panel view, the user is able to 

instantly know how to set the TF widgets. The user interacts directly with the 

parallel coordinate axes to design an HDTF using one of the three interaction 

widgets, namely, brush widget, tent widget and Gaussian widget. The brush widget 

enables the user to arbitrarily interact with the TF domain. Tent and Gaussian 

widgets are essentially sets of 1D TF widgets residing on each attribute axis of 

the HDTF domain, and they differ only in their shape of the opacity gradient. In 

addition to the PCP TF editor, a pairwise 2D TF editor is used to aid the exploration 

of pairwise features. The pairwise 2D TF editor allows the user to interact with 

N  — 1 2D TF space to fine tune the HDTFs to match irregular shaped features in 

specific pairs of attributes using 2D rectangle, triangle or lasso widgets.

4.6.3 Projection Viewer

A projection viewer has been implemented in our proposed system by com­

bining the Fastmap dimensional reduction technique with GMM 2D Gaussian 

TFs. The projection viewer extends the traditional 2D TF editor with Gaussian
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Figure 4.6. The high-dimensional transfer function editor. Note that the first 
attribute, seismic amplitude, is locked.

TF widgets, but preserves familiar 2D TF widgets: rectangle, triangle and lasso. 

Closely linked with the panel view and the HDTF editor, the projection viewer 

shows the dimensional reduction view of user-selected samples.

4.7 Use Cases
Two use cases from different application domains will be shown to demonstrate 

the usefulness of our proposed method. The first case is a commonly used 

hurricane simulation dataset and the second case is a 3D seismic survey data 

with several derived attributes, which will be used to extract geological features 

that are important in the petroleum industry since they indicate potential oil and 

gas reservoirs.

4.7.1 Hurricane Isabel Simulation

We have experimented with the proposed system on the simulation dataset: 

hurricane Isabel. The hurricane Isabel dataset [47] is a multivariate multiple time 

step atmospheric simulation. Eight attributes of time step 25 are used to generate
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the result in Figure 4.7, namely the pressure, the temperature, the total precipitation 

mixing ratio (PRECIP), the graupel mixing ratio (QGRAUP), the water vapor 

mixing ratio (QVAPOR), the total cloud moisture mixing ratio(CLOUD) and the 

speed.

The simulation dataset contains no noise and since each attribute represents 

a clear physical meaning, it is relatively easy to classify. A good classification 

can be achieved by HDTFs or alternatively by automated 2D Gaussian TFs on the 

projection view.

Joint histograms could be generated with continuous scatter plots [2]. The 

user can generate the result in Figure 4.7 by placing several large lassos on slices

(c)

Figure 4.7. Results of a hurricane simulation dataset. The extracted features 
shown in (a) the top view and (b) the bottom view. Seen in (c) is the corresponding 
projection view with automated Gaussian TFs that produce the classification result.
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in the axial view (slices indexed by the z axis) on the multipanel viewer in the 

data probing stage. The GMM-EM algorithm explained in Section 4.3.3 then 

automatically generates the TFs for classification in the qualitative analysis stage. 

The hurricane eye, spiral arms and the top of the atmosphere are clearly seen in 

Figure 4.7. Due to the nature of these data, no feature refinement is required.

The results are similar compared to previous methods. With previous meth­

ods [21, 1, 5, 31], one has to carefully design the TFs one by one for each 

feature, either by editing pairs of histograms [21], or PCP-based HDTF [1, 5] 

or high-dimensional Gaussian TF and MDS-based TF [31]. Our method, however, 

allows the user to extract the same features by simply drawing several large lassos 

across the features on the multipanel viewer, which is significantly easier.

4.7.2 3D Seismic Dataset

3D seismic imaging has been the standard for oil and gas exploration for 

decades, and more recently, multiattribute volumes derived from the seismic 

amplitude volume have been used to aid the understanding of the seismic sur­

veys [12]. However, these derived volumes are visualized individually in current 

seismic data analysis tools and therefore the relationships between attributes are 

lost. With the proposed methods and our system, our collaborating geophysicists 

successfully extract refined geological features from the dataset and can export the 

results as a labeled volume for further processing.

The data used are a part of the public 3D seismic survey dataset "New Zealand" 

of size 213 X 276 X 426, in which different geological features exist, including 

channels, faults and a salt dome, that can be potential reservoirs of oil and gas. Five 

attributes have been derived from the original seismic amplitude data (Amp). Using 

the six attributes, namely Amp, Seg_MedFilter, Inst_Amp, Inst_Phase_Entropy, 

Semb and Semb_Thick, geophysicists are able to clearly extract meaningful features 

as shown in Figure 4.8.

Note that for all features, Amp provides only context and is not clamped in order 

to select complete geological structures. The geophysicist starts the exploration 

by scrolling through the slices in the inline direction (slices indexed by the X axis) 

and finds a shallow channel complex in the Amp.
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Figure 4.8. Extracted geological features in a seismic dataset. Features extracted 
from the New Zealand dataset: a shallow channel complex in red, a salt dome 
shown in yellow, a deeper channel shown in purple and the largest fault in green.

In the data probing stage, a lasso around the channel complex is drawn on the 

Amp attribute seen in Figure 4.9(a), and from this an HDTF is generated with the 

KDE method described and fine tuned in the qualitative analysis stage as shown 

in Figure 4.9(c). The main connected component as shown in Figure 4.9(b) is 

extracted in the feature refinement via segmentation brushing in the 3D view.

The salt dome appears to be a distinct feature on slices in the cross line direction
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(j) (k) (I)

Figure 4.9. User selected samples and classified features of a seismic dataset. 
Refined features shown in the middle column with the user's selection of regions 
of interest shown in the left column and the TFs shown to the right. Note that the 
color of the refined features are independent of their TF colors.

(slices indexed by the y axis) and so the automated Gaussian TFs in the projection 

view are utilized. By drawing a lasso around the salt dome on the Inst_Amp 

attribute, as shown in Figure 4.9(d), Gaussian TFs are automatically generated in 

the projection view. The visualization of the isolated salt dome seen in Figure 4.9(e) 

is created by enlarging the Gaussian widget (Figure 4.9(f)) that highlights the salt 

dome and drawing a region-growing brush stroke on the salt dome.

Scrolling down through the time direction (slices indexed by z axis), a smaller
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channel is discovered at the bottom of the volume. The lower channel is clearly 

visible in the Inst_Amp and Semb attributes. Using the magic wand tool inside the 

channel on the Inst_Amp attribute (Figure 4.9(g)), and fine tuning the HDTF as 

seen in Figure 4.9(i), the channel can be extracted. Due to its connection to the 

surroundings, we use the lasso tool to manually extract only the channel as shown 

in Figure 4.9(h).

Finally, when the geophysicist switches back to the inline direction, the faults 

are easily recognized in the Semb_Thick attribute and are partly extracted via magic 

wand brushing (Figure 4.9(j)). Since the faults depend only on the Semb_Thick 

attribute, this attribute is fine tuned to cover the entirety of the faults (Figure 4.9(l)). 

The largest fault as seen in Figure 4.9(k) is extracted via region-growing brushing 

in the 3D view. In theory, previous methods that use only the value domain TF 

widgets are able to extract the features. However, our collaborating geophysicists 

have found that in practice, it becomes overwhelmingly laborious.

4.8 Implementation
The system is implemented in C + +  with OpenGL and Qt. The magic wand 

tool, conditional histogram generation, PCP creation and region-growing-based 

segmentation are accelerated using GLSL shaders. Directional occlusion for 

volume rendering and PCP rendering are implemented on the GPU as well. The 

f ig tr e e  package [69] is utilized for efficient kernel density estimation. The linear 

algebra operations are aided by the Eigen library [29].



CHAPTER 5

GUIDEME: SLICE-GUIDED MULTIVARIATE 

EXPLORATION OF VOLUMES

Multivariate volume visualization is important for many applications includ­

ing petroleum exploration and medicine. State-of-the-art tools allow users to 

interactively explore volumes with multiple linked parameter-space views. How­

ever, interactions in the parameter space using trial-and-error may be unintuitive 

and time consuming. Furthermore, switching between different views may be 

distracting. We propose GuideME, a novel slice-guided semiautomatic multi­

variate volume exploration approach. Specifically, the approach comprises four 

stages: attribute inspection, guided uncertainty-aware lasso creation, automated 

feature extraction and optional spatial fine tuning and visualization. Throughout 

the exploration process, the user does not need to interact with the parameter 

views at all and examples of complex real-world data demonstrate the usefulness, 

efficiency and ease-of-use of our method.

5.1 Method Overview
Our approach utilizes automated methods to replace a laborious user workflow. 

A guided uncertainty aware lasso that snaps to feature boundaries is proposed to 

assist region selection, automated transfer function tuning is applied to avoid 

trial-and-error transfer function design and finally a 3D connected component is 

automatically extracted. The result of the method is a 3D connected component 

that best represents the intention of the user. As shown in Figure 5.1, our approach 

comprises four conceptual stages: attribute inspection, uncertainty aware lasso 

drawing, feature extraction based on automated transfer function tuning and 

volume visualization with optional spatial fine tuning.



Single Slice View 
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Boundary Extraction 
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3D Connected 
Component Extraction

Oi
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Aware Lasso Extraction

d) Optional Spatial Tuning 
+Volume Rendering

Figure 5.1. The workflow of GuideME. Four stages are included in our proposed method: attribute inspection, guided 
uncertainty-aware lasso for defining features, feature extraction through automated transfer function tuning and finally, 
spatial fine tuning and visualization. Shown in this figure is the example of extracting the tumor core in a multimodal MRI 
brain scan data.

O nOj
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In the following, we explain attribute inspection in this section, detail the 

uncertainty aware lasso in Section 5.2, and the automated feature extraction in 

Section 5.3, and briefly describe the volume rendering and spatial fine tuning in 

Section 5.4.

During attribute inspection, the user inspects one attribute at a time through a 

focus window on slices. The focus window serves as a "magic lens" [3] to overlay 

the chosen attribute with the contextual background. Then, the user selects one or 

more attributes that can properly represent the feature boundaries. The selected 

attribute(s) are then used to generate uncertainty information in terms of boundary 

confidence as shown in Figure 5.2 as the color coded curves . With the uncertainty 

information, the user is able to draw guided uncertainty-aware lassos that snap to 

feature boundaries via a few mouse clicks as the white curves seen in Figure 5.2. 

Next, the feature is extracted using an automated feature extraction approach that 

minimizes false positives outside the lasso region while preserving true positives 

inside, and finds the dominant 3D connected component within the lasso region. 

Finally, further spatial fine tuning can be conducted in the 3D view.

5.2 Guided Uncertainty-aware Lasso
In this stage, we first extract feature boundaries using edge detection on 

an anisotropic diffused image of the data slice. A boundary confidence image 

describing the uncertainty can then be derived from the feature boundaries of 

the selected attributes. Next, the system calculates an optimal path between user 

clicks based on the uncertainty information to create a guided uncertainty-aware 

lasso. The details of each component will be described in the next subsections.

5.2.1 Boundary Extraction

The feature boundaries are extracted via edge detection on an anisotropic 

diffused image of current slice Ia of attribute a. We apply anisotropic diffusion [76] 

to Ia to remove noise while preserving edges. The flow function g(VIa) shown 

on the following page is used, where K is a constant that is empirically set to 30, 

which gives a good diffusion stopping effect, and the partial differential equation 

is numerically solved with a small number of iterations.
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Figure 5.2. The inspection window and the boundary confidence image. On an 
MRI brain scan dataset, the inspection window with attribute, T1C is shown over 
a tumor region with the FLAIR attribute as background. The boundary confidence 
derived from T1C, is rendered overlaying the data slice with a color map shown 
to the right.

(  l|Vi«|| ) 2 a) =  e-(— )g (VIa) =  e

Then, the edges in the filtered image are extracted by Canny edge detection [11], 

which is simple and has good accuracy. The gradient field is first derived, and we 

then compute the direction of the gradient and classify it into four cases: horizontal, 

vertical and two diagonals. We remove pixels that are not maximal in the pixel's 

classified direction in the nonmaximal suppression step. Finally, we conduct the 

hysteresis step via recursive edge tracing. To avoid user involvement in the setup 

of the lower and upper thresholds, we compute the histogram of the gradient 

magnitude and accumulate histogram bins until the sum is equal to or greater 

than a certain portion Tgm of the count of voxels on the given slice and take the 

gradient magnitude value of that bin as the upper threshold tup [11]. The lower
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threshold tio is then computed by multiplying the upper threshold with a constant 

ki. We adopt the settings of Tgm =  0.7 and ki =  0.4 from Matlab and find they work 

well on all datasets we use.

A boundary confidence image can be derived from the extracted boundary

window to indicate the uncertainty. As an uncertainty measurement, the boundary 

confidence should be in the range [0,1], which is defined by Equation 5.1.

The boundary confidence of each attribute is computed by normalizing the gra­

dient magnitude of the extracted boundaries. The normalization uses the upper 

and lower thresholds defined in the edge extraction process, and values greater 

than the upper threshold are mapped to one. Pixels that are not detected as edges 

are simply mapped to zero. Next, the boundary confidence value for all selected 

attributes is calculated by blending individual boundary confidence using the 

MAX operator, which keeps the blended value inside the range [0,1]. An equal 

weight is assigned to each attribute so as to avoid having the boundary confidence 

of one attribute reduce the importance of others, and to remove the requirement of 

user involvement. A sequential color map scheme suggested by Color Brewer [39] 

is used for the rendering of the boundary confidence image as seen in Figure 5.2. 

The color map range and opacity can be interactively modified to remove or 

highlight certain confidence value ranges.

Given the boundary confidence image Ib with its pixels P, and two user defined 

end points u and v, an uncertainty-aware lasso that snaps to feature boundaries 

can be thought of as finding an optimal path that minimizes the transition energy 

between each pixel as shown in Equation 5.2.

5.2.2 Boundary Confidence Image

images of user-chosen attributes As from the pop-up menu in the inspection

1, aW > lup
, if tio <  IIVIa11 <  tup

otherwise
(5.1)

5.2.3 Guided Uncertainty-aware Lasso
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E(I) =  £  Es(p) (5.2)
p6P

Es(p) =  1 -  ||Ib(p)ll where p 6 P

The energy in Equation 5.2 can be efficiently optimized using Dijkstra's algo­

rithm [20] from end point u to v.

To compute the optimal path using Dijkstra's algorithm, we convert image Ib 

into a bidirected graph where each pixel p is assigned a node and the edge from 

p to its neighboring pixel pn has energy Es(pn) as weight. Thanks to the efficiency 

of Dijkstra's algorithm, the user is able to interactively set the end points u, v by 

clicking on the boundary confidence image inside the inspection window to setup, 

and edit the end points by a click and drag interaction.

5.3 Automated Feature Extraction
In this stage, we extract the feature based on the lasso region via an automated 

feature extraction procedure. An initial transfer function is generated and tuned 

using our novel automated transfer function tuning method. The resulting transfer 

function gives minimum false positives outside the lasso region while preserving 

true positives inside the lasso. Then, the dominant 3D connected component in 

the classified volume is extracted.

5.3.1 Automated Transfer Function Tuning

The core of our feature extraction approach lies in automated transfer function 

tuning. By watching the domain experts manually fine-tuning the transfer func­

tions using existing tools, we observed that they focus only on the lassoed region 

and try to minimize false positives outside the lasso while preserving true positives 

inside the lasso. Therefore, we mimic this procedure by formulating an optimiza­

tion problem. For a multivariate volume of M  attributes, A =  (A1,A2,...,A m ), we 

model the M-dimensional transfer function space by conducting AND operation 

between the M  1D spaces. This avoids erroneous classification caused by a 

separable M-D transfer function composed of M 1D transfer functions multiplied 

together as shown on page 258 in [36]. We use only binary values 0 and 1 to indicate 

the selection of attribute values, and denote such a binary transfer function as f
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and its z-th 1D subspace f z. An initial transfer function can be set up, and then 

optimized by maximizing a response function.

Given the lasso region, an initial transfer function, f 0, can be created by 

querying the attribute values of the pixels inside the lasso. We conduct the query 

by a simple traversal over the slice and tested if the current pixel on the slice 

falls inside the lasso. If it does, we record the pixel's M-queried results into the 

corresponding locations of the histogram array H, where H  is a 1D histogram 

array of M-layers, and each layer Hz is a 1D histogram associated with an attribute 

Az. Then, an initial binary transfer function f 0 is generated by setting nonzero 

histogram locations to one.

We formulate a response function R(Is,Ic) of two binary images: the user lasso 

image Is and a connected component image Ic of the transfer function classified 

image I f . Since we focus on the lasso region only, we take the dominant connected 

component of the classified image inside the lasso. Specifically, we extract all 

connected components in the classified image and create a histogram of tag values 

inside the lasso. Then we keep only the connected component with the most 

frequent tag in this histogram and discard other connected components.

As shown in Figure 5.3, the relationship between Is, Ic and I f  is clearly demon­

strated. For a multivariate transfer function f ,  a slice of M-attribute volume with 

pixels p, I f  can be denoted as:

I f = {pif (vp) >  0} (5.3)

where vp = (vp, v2,... vM) is the multivariate value of pixel p. In practice, whenever 

the transfer function changes, we update If  and extract the dominant connected 

component to get image Ic. After defining the terms, we are able to describe the 

response function.

The response function R(Is,Ic) can then be written as:

R(Is , c  = wr • r(Is , c  +  (1 wr) • s(Is/Ic)

subject to Nc > Nmzn 

where wr e  [0,1]

(5.4)
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I s

*J

I c

Figure 5.3. Illustrations of images involved in the automated transfer function 
tuning process. A shows the lasso image Is where red indicates the lasso region. 
The transfer function classified image I f  is seen in B where the blue and green 
regions are classified by the transfer function. C shows the connected component 
image Ic where blue is the dominant connected component.

where r(Is,Ic) is the cross-correlation coefficient of images Is and Ic, s(Is,Ic) is a 

smoothness term; wr is a tunable weight that is empirically set to 0.7 by default; 

and the nonzero pixel count Nc of image Ic has to be greater or equal to Nmin, which 

we empirically set to be 90% of the nonzero pixel count of the lasso image Is. The 

cross-correlation coefficient is computed by treating the images as arrays of binary 

pixels as seen in Equation 5.5.

r(Is/Ic) —
°IsIc 

°Is OIc
L N—1 (Isl - Is)(Ici - I c)

(5.5)

The smoothness term s(Is, Ic) measures the normalized differences of nonzero pixels 

pc and the neighborhood pcn of Ic inside the lasso, in our case eight neighbors n, in 

the classified region inside the lasso:

s(Is,Ic) —
HiPsHin(Pc -  Pcn )

(5.6)

where Ps are nonboundary pixels of Is and smax denotes the maximum possible 

differences inside Is. Specifically, we derive smax by considering the extreme

smax
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case that all nonzero pixels are surrounded by zero pixels, which gives smax = 

8 X 1+(4x0 215+4x0 5) X |Ps| =  2 X |Ps| as the corner pixels are shared by four neighboring 

stencils and the middle pixels on each side are shared by two stencils. Maximizing 

the response function R encourages higher correlation between the classified 

region and the lasso, while penalizing the elimination of true positives inside 

the lasso. As a result, maximizing Equation 5.4 minimizes false positives outside 

the lasso while preserving true positives inside the lasso.

Since there is no direct link between the transfer function and R, Equation 5.4 

is hard to optimize using methods like gradient descent or conjugate gradient. 

We therefore propose the following greedy algorithm to approximately maximize 

R(Is,Ic). As seen in Algorithm 5.1, we first determine the order for optimizing the 

1D subspace of individual attributes of the transfer function. This step is necessary 

because this ordering affects the final result. We assume that an attribute that has 

higher R than others is likely to require fewer changes for optimization than others, 

which is confirmed by experiments on the datasets we used. Therefore, we use 

a conservative heuristic that optimizes the 1D subspaces from more contributing 

ones (higher R) to less contributing ones (lower R) for the feature of interest. 

The reason is two-fold: first, this heuristic may lead to minimal iterations of 

optimization. Second, if we start with less contributing attributes, it is likely to 

overly eliminate true positives inside the lasso and other attributes may never 

have the chance to remedy such an error. We first get the binary images classified 

by the initial transfer function of individual attribute f  for all attributes A. The 

response function value R is evaluated for each binary image, and then we sort 

the attributes by R. Next, we select the attribute that has the highest response

Algorithm 5.1 TF_Opt(Is, f 0)
for Attribute Ai in all M  attributes do 

Generate Ilc with f  
end for
Sort all attributes A with descending order of R(Is, Ilc)
f  = f0 _ 
for Attributes Aj in sorted A do 

ModifyTF( f j, Hj) 
end for
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function value, and maximize the response function R by optimizing the transfer 

function's j-th  subspace.

To optimize the individual subspace of the transfer function, we propose a sim­

ple yet efficient transfer function bin dropping approach as seen in Algorithm 5.2. 

In Figure 5.4, the steps of the bin dropping method are clearly illustrated on the 

top.

The method starts with the computation of the mean value u of the associated 

queried histogram of the given attribute. Then, the farther end of the attribute 

to u is chosen as direction d as it is likely to contain more false positives. The 

algorithm finds the optimal point that maximizes R by dropping bins from the 

transfer function in the direction d, and then performs the same operations on 

the other direction until converges. The effect of the automated transfer function 

tuning process is shown below in the figure.

5.3.2 3D Connected Component Extraction

Transfer function does not contain any spatial information, and therefore even 

an optimized transfer function may contain false positives in 3D. Therefore, the 

last step of feature extraction is to apply connected component finding to extract 

the intended feature in the transfer function classified volume. We first extract all 

connected components in the classified volume, and then query tag values inside 

the user lasso on the slice. The connected component whose tag value is most

Algorithm 5.2 ModifyTF</!,Hi)
Compute u of Hi
Select direction d whose bin is farther to u 
for true do

if Rn+1(Is,Ic) > Rn(Is, Ic) then
Drop bin from f i in direction d 

else
if Both directions have been tried then 

break
else

Switch direction d
end if 

end if 
end for
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(b) (c)

Figure 5.4. Illustrations of the transfer function modification process and effects 
of the process. (a) shows the steps involved in transfer function modification by 
bin dropping. (b) is the initial transfer function classified result (green) using the 
queried values from the lasso (white) on the MRI brain scan HG11. (c) shows the 
optimized transfer function classification result.

frequent is then selected. Next, the selected connected component is given a color 

and opacity and other components are discarded.

5.4 Volume Rendering and Spatial Fine Tuning
Once the 3D connected component has been extracted from the automated fea­

ture extraction stage, the classified result is stored as a tag volume and visualized 

using volume rendering. We adopt the directional occlusion shading method from 

Schott et al. [84], which provides better depth cues than local shading models as 

demonstrated by [61] and has been shown to provide more insights into seismic
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datasets [73]. To provide smooth tag volume rendering, we utilize a simplified 

version of [34], which can be efficiently computed in the GPU shader.

In some cases, even the user intended connected component contains false 

positives. As such, we provide the user a simple yet flexible means of spatial 

fine tuning: volume-rendered image space lasso. This image space lasso allows 

the user to select voxels inside the back projected volume of the volume rendered 

image. Two modes are provided: the keep mode keeps voxels inside the lasso 

while removing others, and the remove mode does just the opposite, which is 

similar to [95].

5.5 Implementation
Our proposed method has been implemented in C + + , with OpenGL and CUDA 

for rendering and computation. The user interface has been implemented using Qt. 

Most image processing procedures and value querying tasks, slice rendering and 

volume rendering have been implemented on the GPU using GLSL shaders with 

the GL_EXT_shader_image_load_store extension. The rendering of lassos and texts 

is accelerated with NVidia's NV_path_rendering SDK [71]. Correlation coefficient 

computation is implemented with thrust CUDA library [42]. Graph creation from 

the slice and Dijkstra's algorithm are implemented on the CPU. Efficient connected 

component extraction is realized with CONNEXE library [66].

5.6 Examples
To demonstrate the usefulness and efficiency of our method, we apply it to 

complex multivariate datasets in two disciplines: multivariate seismic data in the 

petroleum industry as shown in Figure 5.5 and multimodal brain scans from the 

2013 Medical Image Computing and Computer Assisted Intervention (MICCAI) 

Conference challenge. To validate our method, we compare the method against 

previously extracted features by domain experts for the seismic example and 

hand-segmented ground truths for the MRI brain example.
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Figure 5.5. Results of the New Zealand seismic dataset. The first row shows the 
upper channel in the dataset. Shown in subfigure (a) is the lasso that extracts the 
feature, (b) is the result using GuideME, and (c) is the result generated by a domain 
expert using [103]. To the bottom, the salt dome feature is shown. Subfigure (d) 
shows the lasso region drawn for feature extraction and in (e), shows the result 
using GuideME, and in (f), the result extracted by the domain expert.

5.6.1 Seismic Dataset

The seismic dataset we used is a part of the public New Zealand seismic 

data. Six attributes have been computed from the original seismic amplitude: 

instantaneous amplitude InstAmp, instantaneous phase InstPhase, entropy of 

instantaneous phase InstPhase_Entropy, horizon layers Layer_Seg, semblance 

Semb and thickness of semblance Semb_Thick. The user starts the exploration on 

slices in "inline" direction, which in our case is the slices on the "YZ" plane. A 

potential channel structure draws the user's attention, and the user zooms in and 

places the inspection window over this feature of interest.

As seen in Figure 5.5(a), after inspecting different attributes, it is decided that 

Inst^Amp best represents the boundary of this channel structure.
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Next, the user creates an uncertainty-aware lasso by placing several anchor 

points on the feature's boundary with relatively high boundary confidence and 

fine-tunes it by dragging the anchor points. The feature is then extracted as shown 

in Figure 5.5(b). Compared to Figure 5.5(c), where the feature is extracted by our 

collaborating geophysicists using [103], our automated method provides a similar 

result, which captures the connected body and its meander details. However, the 

proposed method greatly reduces the time to achieve such a result. With the same 

feature lassoed, our method takes around a second as shown in Section 5.6.3 to 

extract the feature, whereas pure interactive tuning takes minutes. Moreover, the 

lasso drawing process is guided, which may also be faster than free-hand drawing. 

Next, we would like to extract the salt dome structure found near the center of 

the volume. Again, the user utilizes the inspection window to examine attributes 

that emphasize this feature, and finds that in addition to the InstAmp attribute, the 

InstPhase_Entropy attribute best illustrates the boundary. Then, a lasso is drawn 

with boundary confidence information calculated from these two attributes as 

shown in Figure 5.5(d). The result as seen in Figure 5.5(e) is comparable to the one 

from domain expert interactions as seen in Figure 5.5(f).

To make a quantitative comparison, we compute the dice score, i.e., twice the 

number of overlapping voxels from two datasets divided by the sum of all voxels 

from the two datasets, for our proposed approach against the results conducted 

by the domain expert. The dice score for the upper channel is 0.84 and the score 

for the salt dome is also 0.84 as shown in Table 5.1. Both cases demonstrate that 

our method is able to extract features that are similar to interactively extracted 

and fine-tuned features generated by domain experts, but is faster and easier. 

Furthermore, the entire user interaction in our method happen on slices and the 

3D view, which may be more familiar and intuitive to domain users.

5.6.2 Brain Scan

To demonstrate the generality of GuideME, brain tumor image data from 

the NCI-MICCAI 2013 Challenge on Multimodal Brain Tumor Segmentation [25] 

(BRaTS) were used. The data consist of multicontrast MRI scans of 30 glioma
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Table 5.1. Quantitative comparisons and timing results for the features extracted 
in the example datasets. For the timings, the first numbers in the parenthesis are 
the automated transfer function tuning time and the second numbers are the 3D 
connected component finding time.

Dataset Size #Attr Feature Dice Timing

Seismic

CN̂
hCN

x
y

z

7 Upper Channel 
Salt Dome

0.84
0.84

1.231s (741+490ms) 
1.373s (888+485ms)

MRI HG15
x 161 
y 216 
z 177

4 Tumor Core
Edema
Both

0.85
0.81
0.87

0.833s (411+422ms) 
0.817s (402+415ms)

MRI HG11
x 161 
y 216 
z 177

4 Tumor Core
Edema
Both

0.84
0.76
0.87

0.730s (350+380ms) 
0.815s (405+410ms)

patients with expert annotations for the tumor core and the edema as ground 

truths. The datasets in the challenge all contain four channels: FLAIR, T1, 

post-Gadolinium T1 (T1C) and T2. We chose high-grade subject HG15 and HG11, 

as shown in Figure 5.6, for which the methods in the proceedings of the BRaTS 

challenge gave good agreement with the ground truths.

We describe detailed operations to extract the tumor in HG15. Setting the 

FLAIR as the context attribute, and browsing the slices on XY direction, a large 

tumor region is observed. First, we extract the tumor core. Visualizing different 

attributes inside the inspection window, it is apparent that the T1C attribute is the 

best candidate for boundary confidence for the tumor core. A lasso is then drawn 

around the tumor to extract it, and a volume-rendered image space lasso is used 

to fine tune it. The extracted tumor core is seen in blue in Figure 5.6(a). Next, 

we extract the edema. Checking with different attributes inside the inspection 

window, the FLAIR attribute best describes the edema. Clicking along the edema 

boundary, the feature is then extracted and fine-tuned using the volume rendered 

image space lasso. The final classification of the edema is shown in red as seen 

in the figure. To validate the result, we compare our classification against the 

ground truth segmentation using the dice score. The dice score for the tumor and 

the edema together is 0.87, and 0.85 for the tumor and 0.81 for the edema as seen 

in Table 5.1. The result is also compared to a method [13] proposed in the BraTS
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Ground Truth

Figure 5.6. Visualization results of multimodal brain scans using GuideME. 
GuideME is applied to multimodal brain scans of four modals from the BRATS 
2013 challenge. Subfigures (a) and (b) show the visualization result and the lassos 
on the slice for HG15 and HG11. The extracted active tumors are rendered in 
blue, the edemas in red and the context of brain tissue in green. In (c) and (d), we 
compare the volume rendering of the tumor and the edema of the GuideME result 
against the ground truth. In (c) we include a slice comparison against the ground 
truth as well as the method proposed in [13].

challenge as seen in Figure 5.6(c), in which the method gives slightly above the 

0.91 dice score for the whole tumor region, and around 0.90 for the tumor while 

around 0.86 for the edema.

Similarly, we extract the tumor core and the edema for HG11 as seen in 

Figure 5.6(b). A comparison can be seen in Figure 5.6(d). The resulting dice 

score for the core and the edema is 0.87, while the core has a dice score of 0.84 

and the edema has 0.76 as shown in Table 5.1. In comparison, the scores for the 

method in [13] are just above 0.90 for the whole tumor, around 0.82 for the core 

and 0.70 for the edema.

5.6.3 Performance

All the performance timings are conducted on a workstation with a single Intel 

Core i5 3.30GHz CPU, 16GB of main memory and an Nvidia GeForce GTX 480 with
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1.5GB memory running 64-bit Windows 7 system. The creation of the boundary 

confidence image is around 200 ms, and the update of guided uncertainty-aware 

lasso typically takes below 20 ms. The timing results of features in both examples 

can be found in Table 5.1. For the seismic dataset, the classification of the upper 

channel takes 714 ms for 43 response function iterations, and it takes 55 iterations 

<888 ms) for the salt dome. For the brain scan datasets, both subjects have the same 

size and thus show similar timings. Specifically for subject HG15, the time for the 

automated transfer function tuning for the tumor takes 411 ms with a total number 

of 53 iterations. For the edema region, the timing is 402 ms for 49 iterations.

5.6.4 Discussion

Although we have not conducted a formal user study, our collaborating experts 

from the petroleum industry found GuideME an improvement over previous tools 

and provided informal comments. As in their traditional workflow, the datasets 

are examined and analyzed using slices. Since our collaborators have the expertise 

to identify a certain feature on slices, interactively selecting feature boundaries 

is not an imposition to them. As they are familiar with free-hand drawing on 

seismic slices, selecting an appropriate slice and view angle is naturally part of 

their workflow. While selecting features from multiattribute slices is interactive 

and thus done through trial and error, they have the expertise to identify a feature 

on slices. A previous method [103] required the user to use a free-hand lasso tool 

to select features of interest on slices. The free-hand lasso was cumbersome to 

use. GuideME guides the user through the uncertainty-aware lasso interactions 

where boundaries can be more rapidly and concisely defined by the drawing 

interaction. The domain experts commented that the GuideME system is faster 

and easier to use than previous tools. The experts also complained about the 

trial-and-error transfer function tuning in [103]. Having the automated transfer 

function tuning freed the experts from this tedious step. Given that the extracted 

features are comparable to the previous method as shown in Section 5.6.1, the 

domain experts found that with our proposed method, they can be more focused 

on their geological interpretation tasks.
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Our approach is not without limitations. Our proposed method is not an 

automated feature extraction method for multivariate volume datasets. It re­

quires the user to identify features of interest on slices and select them using 

the uncertainty-aware lasso. The selection of feature boundaries is an interactive 

process that requires the user's expertise and understanding of the data. The lasso 

region chosen for features is critical to the final visualization result. Furthermore, 

our method extracts features that are connected in the 3D data. Our method, 

therefore, would not work on datasets in where features are not distinguishable 

on 2D attribute slices or where features are not connected in the 3D space. While 

the user has to browse through the slices to detect features of interest and the lasso 

region drawn for features is critical to the final visualization result, we argue that 

this is where the expertise of the user applies, and is the main focus of our method.



CHAPTER 6

INTERACTIVE RENDERING AND EFFICIENT 

QUERYING FOR LARGE MULTIVARIATE 

VOLUMES ON CONSUMER LEVEL PCS

We present a volume visualization method that allows interactive rendering 

and efficient querying of large multivariate seismic volume data on consumer 

level PCs. The volume rendering pipeline utilizes a virtual memory structure 

that supports out-of-core, multivariate, multiresolution data and a GPU-based ray 

caster that allows interactive multivariate transfer function design. A Gaussian 

mixture model representation is precomputed and nearly interactive querying is 

achieved by testing the Gaussian functions against user-defined transfer functions 

on the GPU in the runtime. Finally, the method has been tested on a multivariate 

3D seismic dataset which is larger than the size of the main memory of the testing 

machine.

6.1 Multivariate Out-of-Core Volume Rendering
Multivariate, multiresolution data blocks are stored in our virtual memory 

structure. The associated ray caster is able to support multivariate transfer 

functions (TFs), which are interactively defined by the user.

6.1.1 Virtual Memory Structure for Multivariate Volumes

We share the same virtual memory hierarchy as in the work of Hadwiger et 

al., namely, in a top-down manner: page table directory, page table and block 

caches. The difference is that instead of storing a single scalar volume in the block 

cache, we store data of all attributes at a given block location contiguously in 

the block cache. The page table entries are set to point to the beginning of the 

first attribute of each block. When the volume renderer makes paging requests,
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the virtual memory system updates all attribute blocks of the requested block 

location. Also, we store our multiresolution blocks in a block file for each attribute 

to avoid the block building process from 2D tiles that intersect with the viewport. 

During initialization, our system fills the block cache by simply fetching blocks 

from the block cache files and sets flags in the page table and page table directory 

accordingly.

6.1.2 Multivariate Transfer Functions

Multivariate TFs are supported in our method, and to reduce the computational 

complexity, we separate the n-dimensional value space formed by n attributes into 

n - 1  2D space. The user designs the transfer function interactively on a parallel 

coordinate plot (PCP) based editor as shown in Figure 6.1.

We define a so called visibility TF, comprised by the n - 1  2D space, which 

determines the visibility of voxels and also defines an appearance TF of 1D, which 

controls the visual appearance of the visible voxels. The user defines the multi­

variate visibility TF by manipulating TF widgets on the parallel coordinate axes 

and designs the appearance TF by clicking on a desired axis and editing in a 1D 

TF editor to set color and opacity. Alternatively, the visibility TF can be modified 

in a 2D TF editor for a chosen pair of attributes for a more refined result.

In the TF sampling function of the GPU ray caster, we first determine the 

visibility of a voxel based on current visibility TF using an ID map, which stores

Figure 6.1. Transfer functions for the channel system of a large seismic dataset. 
The TFs classifying the channel system in Figure 6.2. The visibilisty TF is shown 
to the left where the blue PCP indicates the query result with the user-defined 
TF widget, while the appearance TF to the right sets a gray-level color map for the 
amplitude attribute.
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the coverage of all user-defined visibility TFs by bitwise OR. If any attribute value of 

current voxel falls outside the coverage of current visibility TF, the voxel is skipped. 

Otherwise, the visible voxel is rendered with the user-designed appearance TF.

6.2 Efficient Multivariate Query
To allow efficient data query on the noisy seismic datasets, we propose a 

two-stage approach that utilizes the Gaussian Mixture Model (GMM) to compactly 

approximate the multidimensional distribution of data. The method first com­

putes GMM for each block in a precomputation stage and then tests ellipse-polygon 

intersection in runtime to query data values for voxels selected by user-defined 

TFs. The per-block GMM is required to compute only once for a dataset and the 

runtime querying achieves near interactive performance.

6.2.1 Per-block Gaussian Mixture Model Computation

Assuming the datasets follow Gaussian distribution, we are able to describe 

the distribution using GMM, which is very compact in terms of storage. GMMs 

are computed using the well-known expectation maximization algorithm, and we 

precompute GMMs for each block at its finest resolution only once. In the same 

fashion as our TF space, as described in Section 6.1.2, we compute GMMs in the 

n - 1  2D space. The computation is performed using the CUDA thrust library and 

the result is written to a file that records the mean value and covariance matrix 

for each Gaussian distribution for each block. We empirically choose the number 

of Gaussians to be three as it strikes a balance between the closeness of GMM 

approximation of the original distribution and the compactness of storage.

6.2.2 Runtime Ellipse-Polygon Intersection Test

During visualization, the system queries data values for user-defined TFs on 

the GPU with the GMM information stored as a texture. For any given pair of 

attributes, each Gaussian distribution is a 2D ellipse and each user-defined TF is a 

2D polygon. We are able to conduct the query using ellipse-polygon intersection 

detection, i.e., if any part of the ellipse intersects with the TF polygon in any 

2D subspace of the n -  1 2D TF space, all values in the distribution are selected.
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The ellipse-polygon intersection is hard in the original space, and we compute a 

circle-triangle intersection in a transformed space. It is known that the ellipse can 

be transformed from a circle using matrix E 1/2, which is the square root matrix of 

matrix E, which holds the eigenvectors of the ellipse. Therefore, the ellipse can be 

transformed back to a circle using the inverse matrix E -1/2. The 2D polygon can 

be triangulated, and the triangles that form the polygon can also be transformed 

using E 1/2 into the circle's space, and then a much easier circle-triangle intersection 

test can be performed. Consequently, the query result is rendered using PCP by 

transforming the data values inside the Gaussian blobs to lines in the PCP.

6.3 Result
The proposed approach has been tested on a machine with Nvidia GTX480 

with 1.5GB memory and a single Intel Core i5 processor with 16GB memory. Due 

to the restriction of usage of the datasets provided by our collaborators, we created 

a test dataset by repeating a small 100MB public domain seismic dataset with its 

five derived attributes three times in the x and y axes and four times in the z axis. 

The total size of the dataset is then 21.6GB, and we achieved frame rates from 2 FPS 

to 25 FPS with different settings of transfer functions on a frame buffer of 800 x 800. 

The querying time varies from 30 ms to 4 s, which is positively correlated with the 

number of voxels that passed runtime testing. As shown in Figure 6.2, a channel 

system and a salt dome structure have been classified using the multivariate TFs. 

The channel system is colored using an appearance TF with a gray-level color map 

on the seismic amplitude attribute, and the salt dome structure is colored with a 

red-to-blue color map on the thickness attribute.



Figure 6.2. Our proposed method allows interactive visualization and efficient query of large multivariate seismic datasets 
on consumer level PCs. Shown here is a test seismic data of six attributes with size: 1278 x 1653 x 1704.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this dissertation, we have described our progress on the research of multivari­

ate transfer function design. In summary, our contributions are the improvement 

of the classification ability of transfer functions, intuitive workflows for multi­

variate volume exploration based on multivariate transfer function design, and 

interactive out-of-core rendering of large multivariate volumes. The improvement 

of classification ability of transfer functions is achieved using transfer function com­

binations. Transfer function combinations use existing transfer function spaces, 

specifically, the scalar/gradient magnitude transfer function space, the statistical 

transfer function space, the occlusion transfer function space and the size-based 

transfer function space. Combinations that have better specificity than the element 

transfer functions are selected to create a new high-dimensional transfer function 

space. A moderate amount of precomputation that has been accelerated using 

GPUs and separable convolution filters allows subsequent interactive design and 

manipulation of the combined multivariate transfer functions via an intuitive 

transfer function editor.

A novel multivariate volume exploration workflow has been proposed for more 

intuitive user interaction with refined feature extraction results. The workflow is 

designed to facilitate domain users with multivariate transfer function design. 

Initial transfer function setup is achieved by generating multivariate transfer 

functions from user-selected samples lassoed directly on slice-based panel views. 

Transfer functions are then fine-tuned using linked parameter space widgets, 

including parallel coordinate plots and histograms. The extracted features can 

be further edited directly on the 2D or 3D view.

GuideME, a slice-guided semiautomatic multivariate volume exploration method,
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is a further improvement on the workflow of multivariate volume exploration. In 

GuideME, the user explores the volume on slices, inspects different attributes 

via an inspection window and draws guided uncertainty-aware lassos on feature 

of interest, and then the features are extracted through an automated feature 

extraction approach whose core is a multivariate transfer function optimization 

method. More specifically, a boundary confidence measurement that is derived 

from edge detection provides the user with hints and the uncertainty of feature 

boundaries. A guided uncertainty-aware lasso that snaps to the feature boundary 

facilitates region selection. An automated feature extraction method minimizes 

false positives outside the lasso while preserving true positives inside the lasso. 

Our experiments have shown that GuideME gives comparable results to those 

generated by previous methods and expert segmentations, but is more efficient 

and easier in terms of interaction.

A GPU-based out-of-core method has been proposed to support interactive 

rendering and efficient query of large multivariate seismic volumes on consumer 

level PCs. Virtual memory hierarchy is utilized for the realization of interactive 

rendering. The efficient query is achieved by conducting ellipse/polygon interSec­

tions for precomputed Gaussian mixture models of the multivariate data blocks. 

The method allows the user to efficiently explore large volumes using parameter 

space multivariate transfer function editors.

All these works share the same research focus: multivariate transfer function 

design for complex univariate or multivariate datasets. We have demonstrated 

the usefulness and efficiency of the proposed methods through highly complex 

real-world datasets, including CT chest scan, MR brain scans and seismic data. 

Moreover, we have gain positive feedback from our collaborating geophysicists. 

They find the proposed methods, especially the novel multivariate volume explo­

ration workflows, merit the exploration of complex multivariate seismic data.

Further research on multivariate transfer function design can happen in many 

ways at different levels. The transfer function combinations are selected using 

the rules described in Section 3.1.2, and it would be interesting to see robust 

methods to automatically choose the best transfer function combinations. In
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order to improve the classification over a specific region, metric volumes used 

for further classification steps may be computed locally from the regions already 

classified instead of being precomputed globally. We would like to investigate 

how to provide the user more guidance during the volume exploration process 

by bringing in advanced image processing and machine learning techniques. We 

might then be able to automatically select an appropriate slice that captures useful 

features, and furthermore, the features would be automatically highlighted for the 

user. Time varying datasets are another topic of interest. By exploiting temporal 

coherence between time steps of simulations or scans, it is possible to automatically 

propagate and modify already defined multivariate transfer functions. Ultimately, 

our goal is to develop an interactive, flexible, scalable and intuitive visual analytic 

environment. Domain users should be able to conduct both qualitative and 

quantitative analysis on very large and complex volume datasets that have one 

or more time steps. The visual analytic environment should allow users to focus 

purely on utilizing their domain knowledge, whereas the laborious or unintuitive 

procedures, e.g., transfer function design should be conducted automatically by 

the computer.
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