1,857 research outputs found

    Multimodal perception of histological images for persons blind or visually impaired

    Get PDF
    Currently there is no suitable substitute technology to enable blind or visually impaired (BVI) people to interpret visual scientific data commonly generated during lab experimentation in real time, such as performing light microscopy, spectrometry, and observing chemical reactions. This reliance upon visual interpretation of scientific data certainly impedes students and scientists that are BVI from advancing in careers in medicine, biology, chemistry, and other scientific fields. To address this challenge, a real-time multimodal image perception system is developed to transform standard laboratory blood smear images for persons with BVI to perceive, employing a combination of auditory, haptic, and vibrotactile feedbacks. These sensory feedbacks are used to convey visual information through alternative perceptual channels, thus creating a palette of multimodal, sensorial information. A Bayesian network is developed to characterize images through two groups of features of interest: primary and peripheral features. Causal relation links were established between these two groups of features. Then, a method was conceived for optimal matching between primary features and sensory modalities. Experimental results confirmed this real-time approach of higher accuracy in recognizing and analyzing objects within images compared to tactile images

    Text Extraction From Natural Scene: Methodology And Application

    Full text link
    With the popularity of the Internet and the smart mobile device, there is an increasing demand for the techniques and applications of image/video-based analytics and information retrieval. Most of these applications can benefit from text information extraction in natural scene. However, scene text extraction is a challenging problem to be solved, due to cluttered background of natural scene and multiple patterns of scene text itself. To solve these problems, this dissertation proposes a framework of scene text extraction. Scene text extraction in our framework is divided into two components, detection and recognition. Scene text detection is to find out the regions containing text from camera captured images/videos. Text layout analysis based on gradient and color analysis is performed to extract candidates of text strings from cluttered background in natural scene. Then text structural analysis is performed to design effective text structural features for distinguishing text from non-text outliers among the candidates of text strings. Scene text recognition is to transform image-based text in detected regions into readable text codes. The most basic and significant step in text recognition is scene text character (STC) prediction, which is multi-class classification among a set of text character categories. We design robust and discriminative feature representations for STC structure, by integrating multiple feature descriptors, coding/pooling schemes, and learning models. Experimental results in benchmark datasets demonstrate the effectiveness and robustness of our proposed framework, which obtains better performance than previously published methods. Our proposed scene text extraction framework is applied to 4 scenarios, 1) reading print labels in grocery package for hand-held object recognition; 2) combining with car detection to localize license plate in camera captured natural scene image; 3) reading indicative signage for assistant navigation in indoor environments; and 4) combining with object tracking to perform scene text extraction in video-based natural scene. The proposed prototype systems and associated evaluation results show that our framework is able to solve the challenges in real applications

    FingerReader: A Wearable Device to Support Text Reading on the Go

    Get PDF
    Visually impaired people report numerous difficulties with accessing printed text using existing technology, including problems with alignment, focus, accuracy, mobility and efficiency. We present a finger worn device that assists the visually impaired with effectively and efficiently reading paper-printed text. We introduce a novel, local-sequential manner for scanning text which enables reading single lines, blocks of text or skimming the text for important sections while providing real-time auditory and tactile feedback. The design is motivated by preliminary studies with visually impaired people, and it is small-scale and mobile, which enables a more manageable operation with little setup

    Enabling Seamless Access to Digital Graphical Contents for Visually Impaired Individuals via Semantic-Aware Processing

    Get PDF
    Vision is one of the main sources through which people obtain information from the world, but unfortunately, visually-impaired people are partially or completely deprived of this type of information. With the help of computer technologies, people with visual impairment can independently access digital textual information by using text-to-speech and text-to-Braille software. However, in general, there still exists a major barrier for people who are blind to access the graphical information independently in real-time without the help of sighted people. In this paper, we propose a novel multi-level and multi-modal approach aiming at addressing this challenging and practical problem, with the key idea being semantic-aware visual-to-tactile conversion through semantic image categorization and segmentation, and semantic-driven image simplification. An end-to-end prototype system was built based on the approach. We present the details of the approach and the system, report sample experimental results with realistic data, and compare our approach with current typical practice

    A HoloLens Application to Aid People who are Visually Impaired in Navigation Tasks

    Get PDF
    Day-to-day activities such as navigation and reading can be particularly challenging for people with visual impairments. Reading text on signs may be especially difficult for people who are visually impaired because signs have variable color, contrast, and size. Indoors, signage may include office, classroom, restroom, and fire evacuation signs. Outdoors, they may include street signs, bus numbers, and store signs. Depending on the level of visual impairment, just identifying where signs exist can be a challenge. Using Microsoft\u27s HoloLens, an augmented reality device, I designed and implemented the TextSpotting application that helps those with low vision identify and read indoor signs so that they can navigate text-heavy environments. The application can provide both visual information and auditory information. In addition to developing the application, I conducted a user study to test its effectiveness. Participants were asked to find a room in an unfamiliar hallway. Those that used the TextSpotting application completed the task less quickly yet reported higher levels of ease, comfort, and confidence, indicating the application\u27s limitations and potential in providing an effective means to navigate unknown environments via signage

    Development of a text reading system on video images

    Get PDF
    Since the early days of computer science researchers sought to devise a machine which could automatically read text to help people with visual impairments. The problem of extracting and recognising text on document images has been largely resolved, but reading text from images of natural scenes remains a challenge. Scene text can present uneven lighting, complex backgrounds or perspective and lens distortion; it usually appears as short sentences or isolated words and shows a very diverse set of typefaces. However, video sequences of natural scenes provide a temporal redundancy that can be exploited to compensate for some of these deficiencies. Here we present a complete end-to-end, real-time scene text reading system on video images based on perspective aware text tracking. The main contribution of this work is a system that automatically detects, recognises and tracks text in videos of natural scenes in real-time. The focus of our method is on large text found in outdoor environments, such as shop signs, street names and billboards. We introduce novel efficient techniques for text detection, text aggregation and text perspective estimation. Furthermore, we propose using a set of Unscented Kalman Filters (UKF) to maintain each text regionÂżs identity and to continuously track the homography transformation of the text into a fronto-parallel view, thereby being resilient to erratic camera motion and wide baseline changes in orientation. The orientation of each text line is estimated using a method that relies on the geometry of the characters themselves to estimate a rectifying homography. This is done irrespective of the view of the text over a large range of orientations. We also demonstrate a wearable head-mounted device for text reading that encases a camera for image acquisition and a pair of headphones for synthesized speech output. Our system is designed for continuous and unsupervised operation over long periods of time. It is completely automatic and features quick failure recovery and interactive text reading. It is also highly parallelised in order to maximize the usage of available processing power and to achieve real-time operation. We show comparative results that improve the current state-of-the-art when correcting perspective deformation of scene text. The end-to-end system performance is demonstrated on sequences recorded in outdoor scenarios. Finally, we also release a dataset of text tracking videos along with the annotated ground-truth of text regions

    An assisting model for the visually challenged to detect bus door accurately

    Get PDF
    Visually impaired individuals are increasing and as per global statistics, around 39 million are blind, and 246 million are affected by low vision. Even in India, as per the recent reviews, over 5 million visually challenged people are present. Authors performed a survey of some critical problems the visually challenged people faced in India from the centre for visually challenged (CVC) School established by UVSM Hospitals. Among the major problems identified through survey, most of these persons prefer carrying out their tasks independently, and depend on public transport buses for migration. However, critical sub-problems being faced include; bus door identification and identifying the bus route number accurately. This article aims to provide solutions in helping visually challenged individuals to identify exact bus that drives them to their destination, its door, bus number, and the path for boarding bus. A video sequence of current scenario would be sent to mobile, in which the actual processing of image is carried out. After the video sequence processing, generated output is a voice message that specifies the bus's location, door, and exact information of the bus number along the road path directly to the user using a wireless device aiming foa a low-cost solution
    • …
    corecore