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ABSTRACT 

Zhang, Ting. M.S.I.E., Purdue University, August 2014. Multimodal Perception of 
Histological Images for Persons Blind or Visually Impaired. Major Professors: Bradley S. 
Duerstock and Juan P. Wachs. 
 
 
Currently there is no suitable substitute technology to enable blind or visually impaired 

(BVI) people to interpret visual scientific data commonly generated during lab 

experimentation in real time, such as performing light microscopy, spectrometry, and 

observing chemical reactions. This reliance upon visual interpretation of scientific data 

certainly impedes students and scientists that are BVI from advancing in careers in 

medicine, biology, chemistry, and other scientific fields. To address this challenge, a real-

time multimodal image perception system is developed to transform standard laboratory 

blood smear images for persons with BVI to perceive, employing a combination of 

auditory, haptic, and vibrotactile feedbacks. These sensory feedbacks are used to convey 

visual information through alternative perceptual channels, thus creating a palette of 

multimodal, sensorial information. A Bayesian network is developed to characterize 

images through two groups of features of interest: primary and peripheral features. 

Causal relation links were established between these two groups of features. Then, a 

method was conceived for optimal matching between primary features and sensory 

modalities. Experimental results confirmed this real-time approach of higher accuracy in 

recognizing and analyzing objects within images compared to tactile images.  
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CHAPTER 1. INTRODUCTION 

1.1 Overview 

From the 2011 National Health Interview Survey (NHIS) Preliminary Report (American 

Foundation for the Blind, n.d.), there are estimated 21.2 million adults in the United 

States, more than 10% of all adult Americans have impaired sight. Over 59,000 children 

(through age 21) in the United States are enrolled in elementary through high schools. 

Among 6,607,800 are working-age blind or visually impaired (BVI) persons. Of these 

individuals 64% stated that they did not finish high school and only 16% received high 

school   diplomas.   The   BVI   population   who   earned   Bachelor’s   or   higher   degrees   was  

much less, only 374,400 or 5.7% of those aged 21 to 64. The lack of proper and effective 

assistive technologies (AT) is a major roadblock for individuals that are BVI wanting to 

actively participate in science and advanced research activities (W. Yu, Reid, & Brewster, 

2002). A major challenge for them is to perceive and understand scientific visual data 

acquired during wet lab experimentation, such as viewing live specimens through a stereo 

microscope or histological samples through light microscopy (LM) (Bradley S. 

Duerstock, Lisa Hillard, & Deana McDonagh, 2014). According to Science and 

Engineering Indicator 2014 published by the National Science Foundation (NSF), no 

more than 1% of blind or visually impaired people are involved in advanced science and 

engineering research and receive doctoral degrees (National Science Board, 2014).
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Images have always been a direct way to convey information, like the adage   says   “A  

picture  is  worth  a  thousand  words”.  Although  this  may  not  be  true  to  all  the  cases,  there  is  

an increasing trend that images, as well as diagrams, charts and scientific data have been 

applied in diverse situations replacing word description to assist people to understand the 

content. This trend has also led to the recent growth of the visual analytics discipline 

(Wong & Thomas, 2004). However, the popularizations of proper assistive technologies 

are not sufficient for BVI students and scientists to easily interpret images. More than 70% 

of textbooks consists of diagrams without word description (Burch & Pawluk, 2011). 

Braille, audio books and screen readers are common assistive technologies applied to 

help blind students reading word material, while tactile papers are utilized to show 

images. Tactile graphics work similar as Braille in that surfaces are slightly raised to 

highlight important features of an image. Although computer-aided tactile graphics 

printing systems have alleviated the load for people who manually create the tactile 

graphics (Takagi, 2009), the information that tactile graphics can convey is much less 

than what visual perception provides. With the popularization and cost reduction of 3D 

printers, increasing interest in their use to generate tactile graphics has surged. Now, 3D 

models can be are created for 2D images by mapping pixel intensity to plate height (Greg 

J. Williams et al., 2014). By utilizing 3D printing technology, more information, like 

intensity, pattern and relative relationship, can be revealed to the visually impaired. 

However, it is still time consuming for a 3D printer to print out a tactile plate (from 5 to 7 

hours depending on image’s size and resolution). This cannot be a viable real-time 

solution. 
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Real-time methods leveraging from hearing and tactual sensoria have been studied as 

well. However, by using current single-modality human-computer interfaces (HCI), only 

limited visual information can be accessed. Tactile-vision sensory substitution (TVSS) 

technologies, such as Tongue electrotactile array (P. Bach-y-Rita, Kaczmarek, Tyler, & 

Garcia-Lara, 1998), and dynamic tactile pictures (Heller, 2002), have been demonstrated 

capable of conveying visual information (Paul Bach-y-Rita & W. Kercel, 2003) of spatial 

phenomenology (Ward & Meijer, 2010). Nevertheless, the low resolutions of 

somatosensory display arrays have been reiteratively reported as a major limitation to 

convey complex image information. Auditory-vision sensory substitution has also been 

studied in image perception (Capelle, Trullemans, Arno, & Veraart, 1998; De Volder et 

al., 2001) as a potential solution. Trained early blind participants showed increased 

performance in localization and object recognition (Arno, Capelle, Wanet-Defalque, 

Catalan-Ahumada, & Veraart, 1999) through auditor-vision sensory substitution. 

Auditory-vision sensory substitution involves the memorization of different audio forms 

and training is required to map from different audio stimulus to visual cues. In addition, it 

has been shown that the focus on auditory feedback may decrease the subjects’  ability  to  

get information from the environment (Meers & Ward, 2005). 

The current gap for this problem is that existing solutions cannot help convey to blind 

persons the richness, complexity and amount of visual data readily understood by persons 

without disabilities. In this study, a real-time multimodal image perception approach (see 

Figure 1.1) is investigated that offers feedback through multiple sensory channels, 

including auditory, haptics and vibrotactile. Through the integration of multiple sensorial 

substitutions, participants supported using this studied platform showed higher analytic 
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performance than when using the standard interface based on tactile sensory feedback 

only. 

 

Figure 1.1 A blind subject navigating a blood smear image using a haptic device with a 
stylus grip and perceiving blood smear image through multiple modalities in real-time. 

 

1.2 Research Problem 

Representing visual images for visually impaired people is not a new problem; however, 

the solutions suggested so far have shown to represent only a small fraction of the 

original visual content. Most of current methods are only based on one modality to 

convey visual information. For instance, perception of tactile graphics is dependent on 

fingertip tactual feedback. Verbal descriptions are dependent on listening. However, the 

integration of the multiple modalities has been challenging at the least. Integrating 

multiple modalities has been studied in HCI (human computer interaction) research to 

enhance the processing and understanding of complex information. A few studies have 

focused on the integration of hearing and tactual feedback to assist the visually impaired. 

For example, a method to provide simple visual information, such as navigating bar 
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charts (W. Yu et al., 2002) has been suggested. In our study, histology images that have 

both educational and clinical relevance are evaluated. 

By building on the assumption that images can be encoded through several features, and 

each feature can only be represented by one modality; the objective of this work is to find 

the optimal mapping between feedback modality and image feature in terms of human 

performance on image navigation and recognition. This problem can be represented as: 

� �max ,f i j  

where f is a metric that evaluates the outcome and performance of a multimodal system. 

Different image features are denoted by i, and j represents a feedback modality. The 

indices of i and j indicates the selection of mapping from one image feature to one 

feedback modality. 

 

1.2.1 Research Questions 

RQ1: What is the optimal mapping between feedback modality and image feature that 

leads to better task performance? 

RQ2: Does this integrated method lead to better task performance than single-modality 

methods currently provided to blind students? 

 

1.3 Contribution 

In this thesis, the relationship between image features and sensory modalities is studied 

which could be applied to different image perception based areas, such as virtual reality 

environments and vision sensorial substitution systems. The construction of Bayesian 

network reveals how various image features can affect each other. These causal relations 
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between different image features facilitate the progress of generating images accessible to 

BVI persons. With the conditional dependency probabilities computed from the image 

feature Bayesian network, the key information in an image can be identified by finding 

the feature of largest possibility, or by finding the feature which is the cause for most 

features. Empirical studies incorporating a real-time multimodal image perception 

approach described in this thesis have shown to effectively help BVI people to 

independently navigate and explore histology images. One of the advantages of this 

approach is it not only decreases the time and man power required in traditional print-out 

methods, but makes real-time image-based data interpretable by blind individuals. This 

HCI system can also be connected to a light microscope with a computer monitor output 

in order to render digitized image information to BVI users in real-time. A 6° of freedom 

haptic controller and peripheral vibrotactile device connected to the computer as well as 

the computer speakers are used for the user interface. 

 

1.4 Thesis Structure 

The rest of the thesis is divided as follows. Chapter 2 summarizes previous related work. 

Chapter 3 describes the methodology of the scientific approach applied to address the 

research questions in this thesis (1.2.1). An overview of the entire system with a succinct 

description of each module is first described. Then, the strategy applied to characterize 

images by key features and to construct feature relationships using a Bayesian network 

are illustrated. The last part of Chapter 3 describes the investigation of proper sensorial 

substitution by solving a linear assignment problem. Experiments and results are 

explained in Chapter 4. Finally, conclusions and future work are discussed in Chapter 5.  
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CHAPTER 2.  LITERATURE REVIEW 

This chapter is an overview of current research that pertains to this thesis. First, real-time 

sensory substitution that expresses the information conveyed by one sensory modality 

through another sensory modality is described. Different applications of real-time sensory 

substitution are illustrated. Then, an introduction of basic image processing techniques 

that are utilized to extract key features of images is mentioned. The Bayesian network 

and linear assignment problem used in this thesis are also illustrated here. At last, systems 

that utilized multiple sensory modalities are discussed. 

2.1 Sensory Substitution 

Blind or deaf people fail to see or hear because they lose the ability to transmit the 

sensory signals from the sensory modality to their brain (Paul Bach-y-Rita & W. Kercel, 

2003). Therefore, to replace the functionality of an impaired sensory modality, other 

functioning sensory systems must be utilized to alternatively convey the missing sensory 

information. This is called sensory substitution. This concept was first introduced in 1969 

to describe blind persons perceiving images using tactile images (Bach-Y-Rita, Collins, 

Saunders, White, & Scadden, 1969). Through the vibrations of four hundred solenoid 

stimulators arranged in a twenty by twenty array that presses against the skin of the back 

(figure 2.1), participants were able to distinguish and identifying different objects. This 

required twenty to forty hours of extensive training. Tactile and audio sensory 
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substitutions are the two most popular sensory substitution approaches currently most 

studied. In sections below, tactile and audio sensory substitutions for vision sensory 

systems are discussed. 

 

Figure 2.1 Vision substitution system with vibration stimulators. 
 

2.1.1 Tactile Sensory Substitution 

Tactile sensory substitution can first be categorized as two different groups based on the 

two different types of stimulators it utilizes: electrotactile or vibrotactile. Both of them 

have strengths and drawbacks. 

Obvious from the literature, electrotactile stimulators generate electronic voltage to 

stimulate the touch nerve endings in the skin. Different sensations will be felt according 

to various voltages, currents and waveform. It can also be affected by the material, size of 

the contact devices and the skin condition of the contact location (Kaczmarek, Webster, 

Bach-y-Rita, & Tompkins, 1991). A variety number of body areas can be utilized to 

receive electrotactile stimulation, such as back, abdomen, fingers, forehead, tongue and 

the roof of the mouth (Paul Bach-y-Rita, 2004). Due to different impedance of different 
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skin areas, high voltage stimulation may be applied if the contact is located at high 

impedance areas. However, this is not considered as a safe approach. The tongue and roof 

of the mouth are then proposed to be a better place to receive electrotactile stimulation 

since it is proved that low currents and voltages can be felt at those areas (P. Bach-y-Rita 

et al., 1998; Tang & Beebe, 2003). Using the tongue as the receptor has been approved as 

assistance to the blind in the United Kingdom and utilized in clinical experiments for a 

number of applications (“HowStuffWorks   ‘BrainPort,’”   n.d.). The major disadvantages 

of electrotactile stimulator would be the distress caused to participants while the voltage 

is high or the duration of stimulation is too long. Thresholds of sensation and pain or P/S, 

can be considered as a key indicator to determine the properness of parameters setting. In 

Table 2.1 (Kaczmarek et al., 1991) summarizes the results of some experiments which 

indicate a best range of parameters setting to satisfy the sensation and pain threshold. 

Vibrotactile stimulations take advantage of mechanical vibratory somatosensation 

through the skin. Vibration sensations are perceived according to different vibration 

frequencies, normally ranges from 10 to 500Hz (Kaczmarek et al., 1991). The Optacon™ 

was manufactured in 1971. It is a vision sensory substitution device that realized real-

time paper material reading by providing feedbacks through vibration on index finger. 

Figure 2.2 shows an example of using Optacon reading a book. The Optacon consists of a 

small camera and a 24 by 6 array that can vibrate according to the image that is being 

viewed through the camera. Blind people place their index fingers onto the dynamic 

tactile array, and use their other hand to move the camera across a line of print. Although 

vibrotactile stimulation is more safe than electrotactile stimulation, the main problem of 
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vibrotactile stimulation is that participants may physiologically adapt to the tactile sense 

rapidly (Way & Barner, 1997). 

Table 2.1 Summary of electrotactile sensation thresholds and pain/sensation current ratios 

Electrode 
type 

Body 
location 

Electr. 
Area 

(mm2) 

Wave-
form 

Freq. 
(Hz) 

Pulse 
width 
limits 
(ms) 

Sensation 
Current 
(mA) 

Sensation 
Charge 

(nC) 
P/S 

Silver 
coaxial Abdomen 15.9 M- 60/200 

0.002 20 40 
8 

0.7 0.1 70 

SS coaxial 
gelled 

Trunk 8.42 M (a) 0.1 1.5 150 
1.6 

Fingertip 8.42 M (a) 0.1 6 600 

SS/aluminu
m coaxial Abdomen 0.785 M 50 0.25 0.4 100 6.25 

Steel 
electrode 

pair 
Fingertip 0.007

8 M (b) 0.5 
(c) 0.2 100 

1.5 
(d) 1.0 500 

Coaxial 
Forearm 

Back 
abdomen 

7.07 PT 25 

1 17 17 

8.4 

100 2.5 250 

Waveforms: M is monophasic, + or – indicated if known; PT is the pulse rain 
Comments: (a) Best frequency 1-100 Hz; (b) Best frequency 1-200 Hz; 
                   (c), (d) 0.79 and 6.35 mm electrode spacing. 
 

Tactile substitution can also be divided as several categories in terms of the sensory 

channel it replaces, such as tactile-visual substitution and tactile-auditory substitution. 

Since people that are blind or visually impaired is the target group in this thesis, only 

tactile-visual substitution is introduced in the following section. 
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Figure 2.2 Example of reading paper material using Optacon. 
 

2.1.1.1 Tactile-visual substitution 

Since tactile-vision sensory substitution (TVSS) was first introduced by Bach-y-Ritain in 

1969, studies and applications of it have not paused.  From image perception to video 

understanding, from obstacle detection to way finding, tactile-vision sensory substitution 

has been utilized in various ways helping BVI people succeed not only in performing 

activities of daily living (ADL) , but in academic and occupational activities as well (Paul 

Bach-y-Rita, 2004; Fritz, Way, & Barner, 1996; Johnson & Higgins, 2006; Nguyen et al., 

2013;;  Owen,  Petro,  D’Souza,  Rastogi,  &  Pawluk,  2009;;  Rastogi  &  Pawluk,  2013). 

Tongue has been shown to be sensitive to eletrotactile stimulations at low electronic 

voltage and currents. Various applications have been studied utilizing the tongue due to 

its high concentration of sensory receptors on its surface (Paul Bach-y-Rita & Kaczmarek, 

2002; Paul Bach-y-Rita & W. Kercel, 2003). Figure 2.3 shows an example of TVSS 

using the tongue as the visual substitute modality. Cross-modal brain plasticity is also 

examined using electrotactile stimulations on the tongue (Ptito, Moesgaard, Gjedde, & 
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Kupers, 2005; Sampaio, Maris, & Bach-y-Rita, 2001). Wireless electrotactile devices 

have been studied to give BVI persons more freedom to navigate the environment 

(Nguyen et al., 2013). A recent research that takes advantages of smartphones (Kajimoto, 

Suzuki, & Kanno, 2014) reveals more possibilities and directions that TVSS can be 

applied. The system consists of an electrotactile display with 512 electrodes, a 

smartphone and an LCD (shown in Figure 2.4). Participants were able to get a view of the 

surroundings by taking photos using the camera on the smartphone. Images are then 

converted through the optical sensors beneath each electrode. This low cost but powerful 

system gives us a hint to connect current assistive technologies with mobile devices 

which become increasingly popular in recent years. Although TVSS succeed in helping 

BVI people navigate the environment and perceiving images, the low resolution of tactile 

somatosensation compared to the visual system has always been a main drawback of this 

method. The low resolution of tactual sensory compared to visual limits blind or visually 

impaired people to access complex visual information. Studies have shown the ratio of 

tactual to visual bandwidth is around 1 to 1000, which means the capacity of tactual sense 

to receive and perceive is much less than vision (Way & Barner, 1997). Usually, a TVSS 

user must move the camera connected with the TVSS all around to identify an object. 

Therefore, to improve the capabilities of conventional tactile-vision sensory substitution 

and decrease the drawbacks of low resolution of tactile displays, image processing and 

trajectory tracking algorithms have also been studied to help BVI explore the 

environment (Hsu et al., 2013).  
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Figure 2.3 Tactile-vision substitution through the tongue. 

 

Figure 2.4 Mobile TVSS system with the use of smartphones. 
 

 

2.1.2 Auditory Sensory Substitution 

Instead of tactual feedback, auditory sensory substitution systems take advantages of 

auditory feedback to compensate for the lack of other sensory modalities. Visual or tactile 
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information are detected and transformed into auditory signals. Auditory-visual 

substitution can be considered as the most popular auditory sensory substitution system.  

2.1.2.1 Auditory-visual substitution 

To take advantages of auditory sensory, the frequency of auditory pitch, binaural 

intensity and phase differences, sound loudness, specific sets of tones are mapped to 

different image properties (Capelle et al., 1998). Spontaneous mappings were found not 

only between auditory pitch and object location, but between auditory pitch and object 

size as well (Evans & Treisman, 2010). In addition to auditory pitch, sound loudness can 

help convey visual information as well. It was found that loud sounds facilitate the 

perception of large objects, while soft sounds can improve the perception of small ones 

(Marks, 1987; Smith & Sera, 1992). Researches have also been conducted to convey live 

video through auditory pitch and loudness (Meijer, 1992). In most auditory-visual 

substitution systems, only grayscale images are utilized and color information is not 

conveyed.  Recently  in  2012,  a  new  sensory  substitution  system  “EyeMusic”  was  released.  

It can not only represent real-time visual information through small computer or 

smartphone with stereo headphones, but can represent color information through different 

musical instruments as well. Due to the limitation of differentiating among different 

musical instruments, only five colors are conveyed: white, blue, red, green and yellow 

(Sami Abboud, 2014).  

Trained early blind participants showed increased performance in localization and object 

recognition (Arno et al., 1999) through auditory-visual substitution. However, auditory-

vision substitution requires the memorization of different audio forms and extensive 
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training is required to map from different audio stimulus to visual cues (Arno et al., 1999). 

In   addition,   the   focus   on   auditory   feedback   can   decrease   subjects’   ability   to   get  

information from the environment (Meers & Ward, 2005). 

 

2.2 Image Processing 

Current image processing methods have already provided various ways to make images 

easy to perceive by visually impaired people due to the limitation of auditory and tactual 

sensory modality compared with visual system (Way & Barner, 1997). According to 

different goals and types of images, the choice of images processing techniques differs 

for different applications and research. For image enhancement and simplification for 

visually impaired people, color image to grayscale, edge detection and texture analysis 

are several commonly applied image processing techniques (Rastogi & Pawluk, 2013; 

Way & Barner, 1997). These image processing techniques are utilized in this thesis 

research and discussed in following sections. 

 

2.2.1 Color to Grayscale 

Since most of current assistive technologies convey intensity information to blind or 

visually impaired people, intensity can be considered as the most important element for 

image processing techniques. Converting a color image to a grayscale one is a basic step 

to convey visual information to BVI persons (Ikei, Wakamatsu, & Fukuda, 1997; Way & 

Barner, 1997). Edge detection algorithms calculate significant changes in intensity 

between nearby pixels. Textures are recognized by different placement and repeat of 

intensity values. 
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A color image I of width w and height h can be represented as a threedimensional array 

of size w×h×3, where each of the three dimensions represents a different color channel: 

red, green and blue. Figure 2.5 shows an example of the three channels and the converted 

grayscale one of a color image. More formally, the values in each channel are represented 

as Rmn, Gmn and Bmn, where 1≤m≤w and 1≤n≤h. To convert a color image to grayscale, 

a common strategy is to calculate the weighted sums of each pixel’s RGB values and 

have that value represent the grayscale equivalent quantity. This conversion is described 

as 

 
mn

g mn

mn

R
I G

B
P
ª º
« » « »
« »¬ ¼

 (2.1) 

where 1≤m≤w and 1≤n≤h. 

Ig is the grayscale image and μ is the weighting coefficient, which is a 1×3 array. 

Different algorithms lead to different weighting coefficients. There are two most popular 

weighting coefficients currently applied. One is to take the average of all R, G and B 

channels. This average-method does not show accurate results as human visual system. 

Since the cone density in human eyes is not uniform across colors, human eyes are more 

sensitive to green light, followed by red and blue. Therefore, to correct for human visual 

system,  a  method  normally  named  as  “luminance”  is  introduced.  This  luminance-method 

takes green channel as the most important factor, so that the G channel has the largest 

weighting. MATLAB utilize this luminance method and the value of μ (and commonly 

adopted) is [0.2989, 0.5870, 0.1140] as an example. 
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Figure 2.5 Examples of color image to grayscale conversion. (a) Original image; (b) 
Converted grayscale image; (c) Red channel; (d) Green channel; (e) Blue channel.  
 

2.2.2 Edge Detection 

Edge detection can give a clear impression of the shape and size of objects in an image. 

The representation of edges in an image plays an important role in image navigation for 

the visually impaired or blind. Specially, it alleviates the load in what respects to 

distinguishing objects and background, and tracing shapes and sizes.  

Edge detection is a process that can locate and highlight sharp discontinuities in pixel 

intensity, which represent boundaries of objects in an image. Classical strategies of edge 

detection algorithms apply a 2D mask throughout the image (a process called convolution) 

(Heath, Sarkar, Sanocki, & Bowyer, 1997). This 2D mask is also called an operator, 

which is sensitive to large gradients in an image while ignoring area of similar pixel 

intensities (G & S, 2011).  Current researches have provided us a variety of operators that 

performs well for different types of edges and images. Comparisons and surveys are also 

published as guidance on how to choose the algorithm that fits best different applications 

(a) (b) 

(c) (d) (e) 
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(Davis, 1975; Peli & Malah, 1982). Sobel, Prewitt, Roberts, Laplacian of Gaussian, Zero-

Cross and Canny are several popular edge detection operators that have been 

implemented by various programming languages. Classical operators, such as Sobel and 

Prewitt, and Zero-Cross which is based on second directional derivative of an image are 

simple and fast; however, these operators are sensitive to noise and inaccurate when 

images become complicated. Some Gaussian operators, like Canny, perform better when 

facing noise in images and provide more accurate and localized detection results. 

However, it is time consuming and of relatively high computational complexity (G & S, 

2011). Figure 2.1 below shows a visual comparison between these edge detection 

algorithms. 

 

Figure 2.6 Results of different edge detection algorithms 
 

From Figure 2.6 we can observe that Canny algorithm shows the best result. This is 

because the research on this algorithm followed three criteria to improve the performance 

of  edge  detection  algorithm  in  his   times.  The  first  criterion  is  “Good  Detection”,  which  

means high hit rate and low error  rate.  The  second  criterion  “Good  localization”  aims  to  

mark the edge points as close as possible to the true edge. And the third criterion is “Only  

one  response  to  a  single  edge” (Canny, 1986).  
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2.2.3 Texture Analysis 

Image texture in this thesis refers to the texture of an object from the image processing 

stand point, and not necessary from the perceptual point of view. The texture discussed in 

this thesis represents spatial arrangement of color and intensity in images or particular 

regions in an image (Stockman & Shapiro, 2001). It can be considered as one of the main 

features that can characterize an image or an object in the image (Wechsler, 1980). 

Therefore, image texture is always utilized to help in segmentation and classification of 

images. For instance, texture analysis has been used to segment different information on 

a page layout from text regions to non-text regions (Jain & Zhong, 1996). Text regions 

have specific textures since they follow a unique spatial arrangement rule that each text 

lines are of the same orientation and the same spacing between them. Texture analysis 

has also been adopted to facilitate mountain vegetation mapping (Dobrowski, Safford, 

Cheng, & Ustin, 2008) and map construction. From satellite photos (see Figure 2.7), 

terrain of different vegetation communities represents different textures. Since texture 

analysis has been proved succeeded in classify different objects and regions in an image, 

various applications are studied utilizing texture analysis to help blind or visually 

impaired people distinguish different objects. A sonar aid was developed to help blind 

people navigate the environment providing feedbacks of objects surface textures (Kay, 

1974). Text detection from natural scene images using texture analysis approaches were 

also studied to help blind or visually impaired people read print materials (Ezaki, Bulacu, 

& Schomaker, 2004; Hanif & Prevost, n.d.). A wearable real-time vision substitution 

system that utilized texture analysis to filter important environment elements was also 
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studied to help blind people travel (Balakrishnan, Sainarayanan, Nagarajan, & Yaacob, 

n.d.). 

 

Figure 2.7 Vegetation communities derived from automated segmentation based on 
image texture analysis 
 

There are two different approaches, statistical and structural approaches, developed to 

accomplish texture analysis tasks since texture can be defined by two ways. One 

definition describes texture as images shown stochastic structure. The other definition 

characterizes texture as patterns that show repeated manner over a region of the image. 

Besides statistical and structural, impressionistic and deliberate are two other names that 

used to describe these two approaches as well (Lipkin, 1970). 
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2.2.3.1 Statistical Texture Analysis Approach 

Statistical texture analysis approaches take image textures as quantitative measurements 

that can be computed through analysis of intensity and color relationships between pixels. 

One statistical method is called first-order statistics. It calculates the gray level 

differences between image pixels and estimates the probability density for these 

differences (Haralick, Shanmugam, & Dinstein, 1973). The other statistical method is 

called second-order statistics, which is the most used statistical method for texture 

classification (Sutton & Hall, 1972). It is known as co-occurrence matrices as well. Two 

parameters are used in this co-occurrence matrices method, a distance and an angle. It 

discovers the spatial relations between similar gray levels. After the first and second 

order statistics are computed, several features can be extracted to characterize one texture. 

Mean, variance, coarseness, skewness and kurtosis are common measurements applied. 

Besides these two approaches, Fourier analysis has also been utilized to investigate 

textures since Fourier transformation deals with frequency domain (Lendaris & Stanley, 

1970). Experiments have been conducted to test the performance of Fourier analysis 

(Bajcsy, 1973). The experimental results show that it can provide global information but 

shows weakness in analyzing local information (Wechsler, 1980). However, Fourier 

analysis is computational expensive and problem arises when it deals with non-square 

region. In 1975, Mary M. Galloway introduced a new way to analysis and to classify 

image textures, which is called gray level run lengths approach. This method first finds 

connected pixels of the same gray level and then use the lengths of those connected 

pixels and the distribution of the lengths as measurements to characterize an image 

texture (Galloway, 1975). More features were introduced in later studies for the run 
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lengths method.For instance, the gray value distribution of the runs and the percentage 

for runs of same length are two popular studied features (Chu, Sehgal, & Greenleaf, 

1990). In a review paper that compares the four texture analysis methods mentioned 

above, it states that the co-occurrence matrices method performs the best, followed by 

first-order statistics, Fourier analysis and gray level run length method (Conners & 

Harlow, 1980). 

 

2.2.3.2 Structural Texture Analysis Approach 

Different from statistical approach, structural texture analysis approach normally deal 

with artificial image textures (see Figure 2.8). Structural approach assumes that textures 

are consist of a set of primitive units that can be easily identified (Wechsler, 1980). 

According to Fumiaki Tomita and Saburo Tsuji, structural texture analysis consists of 

extraction of texture elements (or primitives), shape analysis of texture elements and 

estimation of placement rule of texture elements (Tomita & Tsuji, 1990). The texture 

elements are defined by a simple shape region of uniform grey level. After these elements 

are extracted, brightness, area, size, directionality and curvature are computed as 

properties of an element. Classification of these primitives can then be performed 

according to the properties computed. 
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Figure 2.8 Artificial image texture examples. 
 

Structural texture analysis approach is not widely utilized as statistical method. 

Identifying the primitives in a right manner is not an easy case if it does not deal with 

artificial image textures or simple textures. Also, the investigation of possible placement 

rule of texture primitives is still a challenge (Wechsler, 1980). 

 

2.3 Multimodal Sensory Interpretation 

Multimodal sensory interpretation involves the integration of multiple sensory signals to 

convey or retrieve information. Although multimodal sensory integration did not gain 

much attention until the twentieth century as an area of academic study, it can be 

discovered in  all  aspects  of  human’s  life (Kress, 2009). In one example, body language 

(e.g. prosodic gestures) have meaning when are accompanied by speech and facial 

expressions. Gestures also are used to emphasize verbal content. In the context of the 

blind or visually impaired persons, multimodality has been adopted in a number of 

systems (Lécuyer et al., 2003; W. Yu et al., 2002; Wai Yu, McAllister, Murphy, Kuber, 

& Strain, n.d.) to convey visual information through alternative channels/modalities, such 
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as integrating both tactual and auditory sensory that are functional to the subject, and 

therefore it provides an effective form of interaction. 

Multimodal sensory substitution approaches have been recognized as the most effective 

way to surmount the obstacles that visually impaired people may meet when accessing 

image information. Multimodal sensory substitution methods are reported to have the 

ability to maximize the benefits of each singular modality through the interaction of each 

modality and enhance the accessibility (Jacko et al., 2003; Wai Yu et al., n.d.). The 

classic drag-and-drop tasks were tested using multimodal feedbacks from auditory, 

tactual and haptics. The experiment results indicated significant performance over single 

visual feedback for both visually impaired and sighted users. 

A Multimodal System can be defined as a system that integrates multiple human sensory 

modalities, such as visual, auditory and haptic/kinesthetic signals (Blattner & Glinert, 

1996). These modalities can be taken as both input (control forms) and output (feedback). 

Control a system using speech, hand gestures and eye gazes can be examples of input 

usage. An example of an input multimodal system is given by Koons et al. In that system, 

speech, gesture and gaze, are complemented to evoke an action. The spoken command 

“Move the blue circle there” is recognized through a discrete word recognition system 

and the direction “there” is defined by a pointing gesture using a hand data glove, and 

gaze direction using eye tracker (Koons, Sparrell, & Thorisson, 1993).  

For BVI persons, multiple modalities have been used as system output that convey 

information to users. For visually impaired or blind people browsing the web or graphs’  

exploration, a multimodal system that integrated both audio and haptic sensory feedback 

was developed to express visual information in real-time (W. Yu et al., 2002; Wai Yu et 
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al., n.d.). In this system, most participants used haptic feedback as navigation guide, 

while auditory feedback were used to provide information of a certain object, such as 

bars height in a bar chart. Another multimodal system was developed to help BVI people 

explore and navigate in virtual environment, named as HOMERE (Lécuyer et al., 2003). 

It integrated force feedback from a virtual blind cane, a thermal feedback simulating a 

virtual sun and an auditory feedback according to specific events in the environment. 

Figure 2.9 shows the experimental environment of this system. Besides the integration of 

auditory and haptics feedback, tactual feedback is also integrated with auditory to help 

BVI users browse graphical information, such as diagrams and pie charts (Wall & 

Brewster, 2006). This system is called Tac-tiles. It provided tactual feedback on 

fingertips by a dynamic tactile pin-array, with auditory feedback through speech or non-

speech audio cues. 

 

Figure 2.9 HOMERE multimodal system for virtual environment navigation for persons 
blind or visually impaired. 
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2.4 Bayesian Network 

To construct the inference relation between different image features in this thesis, a 

Bayesian network is employed. This section introduces the basic concepts of Bayesian 

network, the methods to construct Bayesian networks, and how it has been applied in 

related research areas. 

A Bayesian network, also known as a belief network, is a type of statistical model that 

describes the probabilistic dependencies between a set of variables (Heckerman, Geiger, 

& Chickering, 1995). Figure 2.10 shows a simple Bayesian network.  

 

 

In Figure 2.10, there are three events: sprinkler, rain and grass wet. Assume both the 

sprinkler and rain can cause grass to get wet, and the rain can cause the sprinkler. In a 

Bayesian network, these three events can be regarded as three variables. These three 

variables are of Boolean type, either true or false with a probability distribution. 

Therefore, the joint probability of this model can be formulated as: 

 (G,S,R) P(G |S,R)P(S| R)P(R)P   (2.2) 

where G represents grass wet, S represents sprinkler and R represents rain. The 

probability that one variable causes the other variable can then be easily calculated. 

Sprinkler Rain 

Grass 
Wet 

Figure 2.10 A simple Bayesian network. 
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Bayesian network can also be denoted as a directed acyclic graph (DAG) that has a 

conditional probability distribution (CPD) with it, P. Variables are named as nodes in a 

graph and the dependency relationships are denoted as directed edges. Therefore, a 

Bayesian network can be denoted as B = (G, P) where G represents the graph and P 

represents the conditional probability distribution.  

To construct a Bayesian network or Bayesian model, a DAG is first developed. To 

construct the DAG of Bayesian structure, there are two methods that are most adopted. 

The Expert-based modeling method generates the Bayesian structure by human experts. 

Current   literature   and   experts’   experience   and   opinions   are   taken   into   account   to  

construct the model (Yu-Ting Li & Juan P. Wachs, 2014a). The other approach to 

construct a Bayesian structure utilizes Genetic Algorithms (GA). Several structures are 

first generated randomly. The best structure is then selected with Genetic Algorithms and 

observation data. Once the Bayesian structure is constructed, the probability of each 

variable can be calculated with observation data. The states of certain variables can then 

be inferred when evidence variables are observed. This process of calculating probability 

distribution of variables based on observed evidence is called probabilistic inference 

(Heckerman, 2008). 

Bayesian network has been utilized to finish various tasks. It was used as a prediction 

model to estimate the maintainability for object-oriented systems (van Koten & Gray, 

2006). Bayesian network shows higher accuracy when compared with commonly used 

regression-based models. Bayesian network has also been applied to speech recognition. 

By using Bayesian network, long-term articulatory and acoustic context can be explicitly 

represented with the cooperation of hidden Markov models (HMMs) (Zweig & Russell, 
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1998). It can analyze different factors together based on the conditional probabilistic 

dependencies and reveal uncertainty related to any strategy proposed. Bayesian network 

has also contributed to biology related field, such as modeling gene regulatory networks, 

protein structure and analyzing gene expression (N.  Friedman,  Linial,  Nachman,  &  Pe’er,  

2000). 

Bayesian network has also been applied in related image feature extraction area. A 

dynamic Bayesian network was generated to perform autonomous 3D model 

reconstruction task from single 2D image (Delage, Lee, & Ng, 2006). Object detection 

was achieved by constructing dependency relations among different image features 

through a Bayesian network (Schneiderman, 2004). Bayesian networks have also been 

applied for semantic image understanding and image interpretation by constructing a 

probability distribution function among various image and object features (Kumar & 

Desai, 1996; Luo, Savakis, & Singhal, 2005). Pertaining to this thesis work, Bayesian 

network has been studied to model the relationships between basic visual features in an 

image. Bayesian network is utilized to infer the causal relations between identity and the 

position of features in visual scenes (Chikkerur, Serre, Tan, & Poggio, 2010). 

Chikkerur’s  study   indicates   that  spatial   information  can  reduce   the  uncertainty   in  shape  

information.  

 

2.5 Linear Assignment Problem 

Linear Assignment Problem (LAP) is utilized in this thesis to model the relationship 

between image features and sensory modalities. This section introduces the concepts 
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involved in LAP and various algorithms that solved this problem. Applications of this 

problem are also discussed. 

The Linear Assignment Problem (LAP) (Munkres, 1957) is considered as one of the most 

basic optimization problems in operation research and combinatorial optimization 

(Burkard,   Dell’Amico,   &   Martello,   2009). The goal is to find out the maximum or 

minimum weight matching in a weighted bi-graph. Bi-graph is a graph that the vertices in 

it can be divided into two independent sets, U and V, and edges only connect a vertex in 

U to one vertex in V. There are no edges insides one set (see Figure 2.11). A bi-graph can 

be denoted as G=(U,V;E), where G represents the graph, U and V represents two sets of 

vertices and E denotes the edges in this graph.  

 

Figure 2.11 Linear assignment problem bi-graph. 
 

A classical scenario of linear assignment problem is that there are n men and n jobs and 

each  man’s  completion time on each job are given. The objective of this problem is to 

find out the optimal assignment of men to jobs which makes the total completion time for 

all jobs a minimum.  

To construct a mathematical model for the assignment problem, a cost matrix, C=(cij), 

should first be defined as a n×n  matrix that the cost of assign row i to column j is cij. 

U V

E
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Then the linear assignment problem is described as an assignment whereas each row i is 

assigned to one column j in matrix C=(cij), in a way that the total cost can be minimized. 

Let a binary matrix X=(xij) such that 

 
1,  if there is assignment from i to j
0,  otherwiseijx ­

 ®
¯

  (2.3) 

Then, the linear assignment problem is defined as 
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To solve this problem, many algorithms have been developed, starting with Easterfield in 

1946. In 1952, Votaw and Orden first  named  this  problem  as  the  “assignment  problem”  

(Burkard et al., 2009).      The   “Hungarian   algorithm”   is   one   of   the   most   well-known 

combinatorial optimization algorithms that can solve the LAP in time complexity of 

O(n4). The first computer code for solving the linear assignment problem was published 

based on the Munkres algorithm (Silver, 1960) in 1960. Later in the 1960s, the first O(n3) 

algorithm, which is also the best time complexity one, was developed by (Dinic & 

Kronrod, 1969). Other O(n3) algorithms were studied in the following years as well, such 

as shortest path computations on reduced costs (Edmonds & Karp, 1972; Tomizawa, 

1971) and primal simplex algorithm (Akgül, 1993). 
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Applications of linear assignment problem are studied across various areas in real world. 

Shortest routes were computed to make phones efficiently communicating with multiple 

satellites and ground stations by solving a linear assignment problem (Burkard, 1986). 

LAP was also applied to determine entry and exit terminals setting in transportation 

center, like train station and airport, to minimize the density of routing (Burkard, 1986).  
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CHAPTER 3. METHODOLOGY 

This section discusses the main methods used to determine the best mapping between 

image features and feedback modalities in order to explore histology images using 

multimodal sensory substitution. The main components of the system architecture of the 

multimodal navigation system are presented in Figure 3.1. Histology images of blood 

smears are considered as the input of the entire system. Seven features are extracted to 

describe this input histology image. These features are classified into two groups, primary 

features (see Module (a)) and peripheral features (see Module (b)). The purple arrows 

between   these   features   indicate  “cause-effect”   relationship,  or  what   the evidence is and 

what is inferred from this evidence through a Bayesian network. After extracting the 

primary features from the input image (see Module (a)), the output of the system is the 

tangible expression of the extracted features through different modalities (see Module 

(c)). These modalities, in turn, are assigned to specific devices (e.g. haptic device) used to 

manipulate and explore the image (using the Linear Assignment Problem (LAP)). The 

orange arrows in the picture express one possible assignment, which is not the final 

assignment. The two key components, image feature Bayesian network and modality 

assignment problem, in the system architecture are then well-illustrated in the following 

sections.
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Figure 3.1 System Architecture: Module (a) Primary Image Features; Module (b) 
Peripheral Image Features; Module (c) Sensory Modalities. 

 

3.1 Image Feature Bayesian Network 

The feature of interest for an image varies depending not only on the theme of an image, 

but the function of image as well. In this research, the main focus is on histology images 

as educational tools, and those are utilized as test images in the various experiments 

conducted. For histology images, features of interest may be focused on those features 

that can characterize a cell and differentiate it from other kinds of cells. More specifically, 

seven features were used to encapsulate the content of histology images in a compact 

manner.  The   objects’   location, intensity, texture, shape, color, size and opacity are the 

key perceptual information that was found necessary for blind or visually impaired 

people to understand histology images. This is supported by previous research conducted 

in the area of perception of the blind (Chaudhuri, Rodenacker, & Burger, 1988; Cruz-Roa, 

Caicedo, & González, 2011). These seven features were classified into two groups: 

primary and peripheral. Intensity, texture, shape and color are categorized as primary 

features that can be directly mapped to specific modalities, while location, size and 

opacity are classified as peripheral features since they can only be acquired through 
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experience, or inferred through the frequency of occurrence of primary features (Howard, 

1958). 

 

3.1.1 Primary Feature Extraction 

Primary features are extracted from images using image processing algorithms, such as 

color image to grayscale conversion, texture analysis and edge detection. These features 

are discussed in the following subsections. 

 

3.1.1.1 Intensity 

Intensity information represents the brightness in an image. It can be considered as the 

most important feature of an image to persons blind or visually impaired. Most of current 

assistive technologies help the BVIs to see images through the delivery of image 

intensities (Lescal, Rouat, & Voix, 2013; Marks, 1987; Meijer, 1992).  

Computing the combined intensity of each pixel is a basic operation that requires 

converting a color image into a grayscale one. Intensity of each pixel is computed 

through the summation of weighted RGB values, as in 

 0.2989* 0.5870* 0.1140*Intensity R G B � �   (3.1) 

where R, G and B represents the value in red, green and blue channels of a pixel, 

respectively, in RGB color space. Green channel takes more weight since human eyes are 

more sensitive to green lights. One example is shown in figure 3.2.  
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Figure 3.2 Intensity computed from color information. (a) Color image (b) Grayscale 
image of (a). 
 

3.1.1.2 Texture 

Texture in this thesis refers to the texture of an object from the image processing stand 

point, and not necessary from the perceptual point of view. Namely, texture here refers to 

the spatial arrangement of intensities displayed by an object in an image. Discrimination 

among  object’s   textures  enabled  BVI  persons   to  perceive  difference  between  classes  of  

objects. Figure 3.3 shows an example for objects with different textures. Figure 3.3 (a) is 

a blood smear image showing both white and red blood cells. From the image, it can be 

observed that all red blood cells (see Figure 3.3 (b)) show a uniform texture which is light 

in the center and dark in the periphery. However, white blood cell (see Figure 3.3 (c)) 

shows distinct textures from red blood cells due to striking intracellular structures, most 

notably the dark purple cell nucleus at the center. 

(a) (b)
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Figure 3.3 Different textures compared between red blood cells (b) and white blood cells 
(c) in a blood smear image (a). 
 

Discrimination between objects’ textures is done using gray-level co-occurrence matrices 

(Davis, Johns, & Aggarwal, 1979). To define a gray-level co-occurrence matrix P[i,j], a 

displacement vector d=(dx,dy) should first be defined where the entries dx, dy correspond 

to displacement unit in x and y direction. The values P(i,j) are obtained by counting the 

number of pairs of pixels that displaced by d having gray values i and j. After the matrix 

is generated, there are several statistics that are used to characterize texture (Clausi, 2002). 

For example, entropy indicates the randomness of gray-level distribution, which is 

defined as: 

 > @ > @, log ,
i j

Entropy P i j P i j �¦¦ .  (3.2) 

Other texture related features are energy, contrast and homogeneity, and are defined as 

follows: 

 > @2 ,
i j

Energy P i j ¦¦  (3.3) 

(a)

(b)

(c)
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 � � > @2 ,
i j

Contrast i j P i j �¦¦  (3.4) 

 > @,
1i j

P i j
Homogeneity

i j
 

� �¦¦  (3.5) 

All objects in the image are identified using these four statistics. The distance of these 

statistics between different objects is then computed to find out similarity between 

different textures. The distance metric is defined as: 

 � � � � � � � �2 2 2 2

ij i j i j i j i jd E E C C H HK K � � � � � � �  (3.6) 

where dij is the statistics distance between object i and j. ŋ denotes Entropy, E represents 

Energy, C is Contrast and H stands for Homogeneity. 

A threshold is set to distinguish between similar and different textures. In our work, this 

threshold was determined empirically. 

 

3.1.1.3 Shape 

Shape is another crucial image feature for BVI persons to enable greater understanding of 

the salient characteristics of an object. For histology, shape of cells can help distinguish 

different cell types. Figure 3.4 shows an example of normal red blood cells and sickle 

cells. Normal red blood cells (Figure 3.4 (a)) are round shaped, while sickle cells (Figure 

3.4 (b)) are flat arcs and show distinct differences in both directions. 
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Figure 3.4 Shape difference between normal red blood cells and sickle cells. 
 

To characterize the shape or boundary of an object in a color image, a conversion from 

color to grayscale is first performed, and then the Canny edge detection algorithm (Canny, 

1986) was utilized. Finally chain code is used to represent the shape in a compact fashion. 

Figure 3.5 shows the edge detection results of tested blood smear images. 

 

Figure 3.5 Edge detection results for 4 tested blood smear images. (a) ~ (d): Original 
images; (e) ~ (h) corresponding detected edges. 
 

(a) (b)

(a) (b) (c) (d)

(e) (f) (g) (h)
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3.1.1.4 Color 

Color information is obtained by brightness normalized RGB values of pixels. Given a 

color of (R, G, B), where R, G and B represents the intensity of Red, Green and Blue 

channels. Normalized RGB values are then computed by following equations: 

 
Rr

R G B
 

� �
 (3.7) 

 
Gg

R G B
 

� �
 (3.8) 

 
Bb

R G B
 

� �
 (3.9) 

where r, g and b denotes normalized R, G and B values, which can be also interpreted as 

the proportion of red, green and blue in the color. 

The use of normalized RGB values removes the effect of any intensity variance, which 

also facilitates the mapping to other sensory modalities. 

 

3.1.2 Peripheral Feature Extraction 

Since some image features cannot be properly conveyed by certain or only one sensory 

modality, extracted image features from histology images are classified into two groups, 

primary features and peripheral features. Primary features are mapped to other sensory 

modalities, while peripheral features are inferred from primary features through a 

Bayesian network. The Bayesian network is generated to infer the probability of the 

peripheral features based on evidences exhibited by the occurrence and the amount of the 

primary features. The construction of Bayesian network is a three-step approach. In the 

first step, expert-based modeling is used to generate fundamental structures of this 

network. Several candidate structures were generated by human experts during this step. 
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Since each link in the network associates with a conditional probability of inferring a 

child node from a parent, then in the second step, a probability function is applied to 

calculate the probability of each link from observations obtained through experiments. At 

last, a Bayesian scoring function was applied to find out the optimal structure between 

candidate structures generated by human experts (Yu-Ting Li & Juan P. Wachs, 2014a, 

2014b). 

3.1.2.1 Expert-based Modeling 

In the first step, Expert-based modeling is used to generate fundamental structures of this 

network. Our expert is a postdoctoral researcher who is blind with no functional sight and 

a doctorate degree in chemistry. He is also Braille literate with extensive experience 

using assistive technologies for the BVI community. In this Bayesian network, there are 

seven nodes where each node represents the perception of an image feature. All of these 

nodes are of type Boolean, which in this case means whether a certain feature is 

perceived or not. The definition and states of each node are summarized in Table 3.1. 

Table 3.1 Definition of Discrete States for Each Node 

Node Description 
(Perception of feature) States 

n1 Intensity {True, False} 
n2 Texture {True, False} 
n3 Shape {True, False} 
n4 Color {True, False} 
n5 Size {True, False} 
n6 Location {True, False} 
n7 Opacity {True, False} 

 

Three candidate structures (shown in Figure 3.2) are generated by the BVI subject during 

this step. A blind scientist was recruited to link this two groups of features based on his 
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own experience and current literatures. The blind scientist was first presented with these 

seven features classified in two different groups. Then questions were asked that given 

one feature from the primary features group, what features from peripheral group may be 

perceived. By asking these questions, the blind scientist was required to generate any 

possible combinations of links between these two groups of features. In this thesis, the 

blind scientist came up with three structures shown below.   

 

Figure 3.6 Candidate Bayesian structures generated by typical user. 
 

3.1.2.2 Probability Calculation 

Each link in the network is associated with a conditional probability of inferring a child 

node from a parent. The probability function to calculate the probability of each link is 
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computed from observations, which in turn are obtained through experiments. The 

probability function is defined as: 

 � � � �
� �

� �
� �

, 1, 1
|

1
i j i j

i j
j j

P n n N n n
P n n

P n N n

  
  

 
 (3.10) 

where N(x) counts the number of observations that satisfied condition x. 

 

3.1.2.3 Bayesian Network Optimization 

At last, to find out the optimal structure between candidate structures generated by human 

experts, a Bayesian scoring function (Nir Friedman, 1997) is defined: 

 � � � � � �
� �

� �
� �1 1 1

, |
i iq rN

ij ijk ijk

i j kij ij ijk

N a s
score D G P D G

N M a   

* * �
  

* � *�� �  (3.11) 

where 

 
1

ir

ij ijk
k

N a
 

 ¦  (3.12) 

 
1

ir

ij ijk
k

M s
 

 ¦  (3.13) 

D represents the observation dataset obtained through experiments, G represents the 

candidate Bayesian structure and N is the number of nodes in the network. qi is the 

number of possible values of node i’s  predecessors;;  ri is the number of different values of 

node i; aijk is the parameter of a Bayesian network with Dirichlet distribution; sijk is the 

number of tuples in the dataset where node i is equal to k and its predecessors are in jth 

instantiation. Γ denotes the gamma function. The probability density function of Dirichlet 

distribution can be represented as: 
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where α=(α1,…,  αk) and 

 � �
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� �
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*
 
*

�
¦

  (3.15)  

The optimal candidate Bayesian structure is the one that maximizes equation 3.11. Figure 

3.7 shows the optimal structure with conditional probabilities defined in equation 3.10.  

 

Figure 3.7 Optimal Bayesian structure. 
 

3.2 Modality Assignment Problem 

To express the four primary features discussed in Chapter 3.1.1 to BVI persons, five 

sensory modalities (vibration, viscosity, depth, audio pitch and unique audio cues) were 

selected in this study taking different manifestations for each sensory type. Since only 

one modality can be used to represent one feature, the mapping problem between primary 

features and modalities can be considered as a linear assignment problem (see Figure 3.1 

Module (b) and Module (c)). There will be a particular cost for mapping one feature to 

one modality; therefore, the optimum mapping combination can be generated by finding 
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the match that has the minimum total cost. Also, not all modalities need to be candidates 

for each feature because some modalities may not be applicable to a certain feature in 

terms of its property and   the   modality’s   property.   Table 3.2 shows the candidate 

modalities for each feature. 

Table 3.2 Candidate Modalities for Each Feature 
Feature/ 
Modality 

M1: 
Vibration 

M2: 
Viscosity 

M3: 
Depth 

M4:  
Audio 
Pitch 

M5:  
Unique Audio 

Cues 
F1: Intensity 9 9 9 9  F2: Texture 9 9 9 9  
F3: Shape 9 9 9 9  
F4: Color 9    9 

 

3.2.1 Problem Definition 

The formal definition of this assignment problem is: Given two sets, F, represents primary 

features of size 4 and M, denotes modalities of size 5, together with a cost function 

�ouMFC : . Find a bijection function :g F Mo  such that the cost function is 

minimized: 

 � �min , ij
i F j M

C i j x
� �
¦¦  (3.16) 

subject to the constraints: 

 1ij
j M

x
�

 ¦  for i F� , (3.17) 

 1ij
i F

x
�

 ¦  for j M� . (3.18) 

Variable xij denotes the assignment of feature i to modality j, taking value 1 if there is an 

assignment and 0 otherwise. According to Table 3.2, the cost of no assignment between i 

and j represented in the cost matrix C(i,j) are set to be infinity.  
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3.2.2 Cost Weighing  

After the objective function is defined, the individual cost cij in the cost matrix C(i,j) for 

conveying image feature i through sensory modality j, need to computed. In this thesis, 

the individual cost is calculated through data obtained from empirical experiments. 

Human subjects were recruited to perform the same tasks using feedbacks from all 

candidate modalities. The human performance was evaluated through response time and 

error rate. And then for each feature, all the candidate sensory modalities were ranked by 

its performance. The modality that showed higher performance has a higher ranking. The 

ranking of the modality was then used as individual cost in the cost matrix. For example, 

if the ranking of candidate modalities for feature intensity is: vibration > audio pitch > 

viscosity > depth, then the costs of mapping intensity to these modalities would be: 

vibration of cost 1, audio pitch of cost 2, viscosity of cost 3 and depth of cost 4. The 

following expression shows what the matrix looks like: 

 � � > @1, 1 3 4 2C j  f   (3.19) 

Since the objective is to minimize the total cost, the smaller digit indicates higher ranking 

and better option. 

 

3.2.3 Linear Assignment Algorithm 

An extension of Munkres or Hungarian Algorithm (Bourgeois & Lassalle, 1971) is 

applied to solve this problem with a rectangle cost matrix since the number of features is 

different from the number of available modalities. Besides adding lines of zero elements 

to the rectangle cost matrix to make it a square one and then apply the Munkres algorithm, 
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this   study   takes   advantage   of   Bourgeois   and   Lassalle’s   work   and   can   be   described   as  

follows. 

First of all, there are several preliminary steps before real algorithm begins. k  is defined 

to represent the minimum number of rows and columns. 

 � �min ,k n m  (3.20) 

where n is the number of rows and m is the number of columns. 

If the number of rows is greater than the number of columns, in each column, subtract the 

smallest item in it from each item in this column. Otherwise if the number of columns is 

greater than the number of rows, subtract the smallest item in each row from every item 

in that row. 

Step 1: Then after these preliminary steps, the first step is the same as the first step of 

Munkres algorithm. From left to right and up to down, find zeroes in the resulting matrix 

from preliminary step. Mark the zero as star, *0 , if there is no zero in its row or column 

been marked as star. Repeat this procedure for all zeroes. 

Step 2: The second step is to cover every column that contains a zero star *0 . If k  

columns are covered, then the starred zeroes are the expected independent set. Otherwise, 

further steps should be performed. 

Step 3: If the assignment is not completed by the second step, following steps should be 

followed which are the same as those steps in Munkres algorithm. The third step is to 

choose a uncovered zero and prime it to be '0  . If no zero is marked as star in its row, 

step 4 which is a sequence of changing between starred and primed zeroes should be 

followed. Repeat this step until all zeroes are covered. Then step 5 should be followed. 
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Step 4: 0Z  is defined as an uncovered prime zero '0 . 1Z  is defined as the star zero *0  in 

0Z  ‘s   column.   And   2Z  denotes the prime zeroes '0  in 1Z ’s   row.   Repeat   finding  

uncovered prime zeroes '0  until we find one with no star zero *0  in its column. Unstar 

every starred zero *0  in this process and star those primed zeroes. Erase all primes and 

not-covered line. Then follow step 2. 

Step 5: h  is defined as the smallest uncovered individual in the matrix. Add h to every 

covered row and then subtract it from each not-covered column. Then go back to step 3. 
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CHAPTER 4. EXPERIMENTS AND RESULTS 

4.1 Experiments 

To validate the approach presented, two experiments have been conducted. The goal of 

Experiment 1 is to determine the proper costs in the cost matrix C(i,j) illustrated 

previously in Chapter 3 from   subjects’   task performance. Different modalities were 

compared to rank and each modality was matched to every feature through human 

performance testing. The ranking was then applied as individual costs in the cost matrix. 

The best matching of modality and the associated feature to it was computed using the 

cost matrix solving equation 3.14. Experiment 2 compared this multimodal sensory 

substitution system with a traditional tactile paper approach using specialized thermal 

capsule paper. 

A computer-based image perception system with multimodal input/output channel was 

developed to support the main tasks in this research. Subjects were able to interact with 

the images shown on a screen through a haptic device (Force Dimension® Omega 6) 

with stylus end-effector. This device is utilized as a mouse pointer when force feedback 

is   not   activated.  When   force   feedback   is   deployed,   modality   “Depth”   and   “Viscosity”  

were   provided   through   this   haptic   device.   The   “Vibration”   feature   was   experienced  

through Tactors (Engineering Acoustics, Inc.) felt by the fingertips of the opposite hand. 

“Audio  Pitch”  and  “Unique  Audio  Cues”  were  generated  from  the  computer  speaker  (see
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 Figure 3.1). Approval for human subjects testing from Institutional Review Board (IRB) 

is attached in Appendix A. 

 

4.1.1 Experiment 1: Finding the Rank of Modalities 

The objective of experiment 1 is to find out the rank of modalities for each image feature. 

Six blindfolded subjects and one blind subject were recruited for this experiment. A 

Within-participants experiment was adopted so each subject was presented with all test 

conditions. Also, each subject was required to test all four primary features since the test 

on each feature is independent on other features. For each mapping from one feature to 

one modality, two images (highlighting a specific feature) were deployed. To alleviate 

the learning effect (Purchase, 2012), different test images were presented for each 

modality in this experiment. Two tasks were performed for each image and a post-

experiment survey was distributed after each group. Two different tasks were designed to 

permit generalizability. If only one task was used, the conclusions made would hold only 

for that particular task. One of the tasks performed in experiment 1 required participants 

to explore the whole image, which tested the performance of image navigation. The other 

task performed required participants to compare two specific objects, which tested the 

performance of differentiate certain features. 

For feature intensity, since it was mapped to four modalities and for each mapping two 

test images were used, eight test images were deployed in total. Also, two tasks were 

performed for each test image, so there were sixteen trials for feature intensity. Since 

feature texture and shape were mapped to four modalities and feature color was mapped 
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to two modalities (see Table 3.2), there were 56 trials total (16+16+16+8=56) in 

experiment 1 for each subjects. 

Response time and errors were recorded to evaluate human performance, which were 

used to compute the ranking of modalities for each feature. The test images and tasks for 

each feature are summarized in Table 4.1. 

Table 4.1 Summary of Test Images and Tasks for Each Primary Feature 
Features Test Images Tasks 

Intensity 

 

1. Which is the darkest object in this image? 

2. Compare the darkness difference between 

the left two objects and the right two objects. 

Which difference is larger? 

Texture 

 

1. Are the left two objects of the same 

texture? 

2. How many different textures are in this 

image? 

Shape 

 

1. What is the shape of the top left object? 

2. How many different shapes are in this 

image? 

Color 
 

1. Are the left two objects of the same color? 

2. How many different colors are in this 

image? 

(A single task for each feature is comprised of a random selection of half of these test 

images.) 
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Response time and number of error answers of the tasks were recorded to evaluate human 

performance. The human performance of modalities for each feature was then used to 

decide the ranking of candidate modalities. The modality that showed less performance 

time and higher accuracy was ranked higher than the one of longer response time and 

lower accuracy. The rankings were then considered as the individual costs in the cost 

matrix to generate the optimal mapping between image features and sensory modalities.  

For detailed experiment procedures, please see Appendix B. 

 

4.1.2 Experiment 2: Comparing with print-out tactile paper 

This experiment validated the effectiveness and efficiency of the studied multimodal 

image perception method with respect to a standard method to convey perceptual 

information to BVI persons – a print-out tactile paper (see examples in Figure 4.1). Only 

intensity information is used to generate a tactile paper. In Figure 4.1 (b), it can be 

observed that dark regions are raised and higher than light regions. Within-participants 

experiments were applied with ten blindfolded subjects and four blind subjects in which 

each subject was presented with both methods. The order of method tested was 

randomized to decrease learning effect. Blood smear images of two different interests 

were tested. One is to differentiate between red blood cells and white blood cells. The 

other is to distinguish between normal red blood cells and sickle cells. Test images and 

tasks are shown in Table 4.2. Response time and errors are recorded to evaluate human 

performance. For detailed experiment procedures, please see Appendix B. 
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Table 4.2 Test Images and Tasks for Experiment 2 
 Test Images Tasks 

Red blood cell 

vs.  

White blood cell 
 

1. Which is the white blood cell in this image? 

2. How many red blood cells in this image? 

Sickle cell 
 

1. Which is the sickle cell in this image? 

2. How many normal red blood cells in this image? 
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Figure 4.1 Tactile paper using specialized thermal capsule paper. 
 

4.2 Results 

4.2.1 Experiment 1: Finding the Rank of Modalities 

The mean response times and error rates of each matching between modality and feature 

are shown from Figure 4.2 to Figure 4.5 in groups of features. ANOVA tests and t-tests 

were first performed to examine the significant differences in performance between 

different modalities. Data indicating no difference was not considered to determine the 

ranking of modalities. Since two tasks were performed for each feature (see Table 4.1), 
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response time was then evaluated to rank the modalities for both tasks. The modality 

shows less response time ranked higher than the one has longer response time. If any of 

the ranking based on response time does not result in a preference for the two tasks, error 

rate was then considered to determine the ranking of modalities. The modality of lower 

error rate ranked higher than the one of higher error rate. 

 

4.2.1.1 Intensity 

To investigate how significant each modality is different from others, one-way ANOVA 

tests are performed. The results show significant differences in performance between the 

four modalities. The F value of response time for task 1 and 2 are F1(3,52)=12.15, 

p=3.87e-6 and F2(3,52)=3.05, p=0.04, and the F value of error rate for task 1 and 2 are 

F1(3,52)=3.03, p=0.04 and F2(3,52)=2.98, p=0.04. Since all p-values are less than 0.05, 

there is significant difference between the four modalities. 

In Figure 4.2 (a), it was observed that for task 1, best performance was achieved through 

modality vibration, followed by audio pitch, viscosity and depth. However, for task 2, 

viscosity showed better performance than audio pitch while the other two remains the 

same. To solve the conflict in task 1 and 2, error rate was then considered. From Figure 

4.2 (b), it was observed that for both tasks, audio pitch showed higher accuracy than 

viscosity. In this case, the ranking of modalities for feature intensity is (from best to 

worst): vibration, audio pitch, viscosity and depth. The cost matrix for feature intensity 

would be: 

� � > @1, 1 3 4 2C j  f . 
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Further analysis was performed to study the relation between response time and error rate 

for task 2 since results of modality viscosity and depth shown in response time and error 

rate display conflicting performance (the improvement of one worsen the other). For 

Task 2, the response times indicate viscosity performs better than depth, however in error 

rate, depth showed better performance than viscosity. Therefore, the correlation 

coefficient was calculated to determine the nature of their relationship. The correlation 

coefficient between time/error values of task 2 is 0.28, which means the errors are not a 

direct consequence of fast responses.  
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Figure 4.2 Response time and error rate for feature Intensity. 

 

4.2.1.2 Texture 

In spite of the difference in error rate shown in Figure 4.3, it can be observed from the F 

value of response time for task 1 and 2   (F1(3,52)=4.10, p=0.01 and F2(3,49)=6.75, 

p=0.0006) and the F value of error rate for task 1 and 2 (F1(3,44)=3.05, p=0.04 and 

(a) 

(b) 
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F2(3,44)=2.53, p=0.07), that the difference in error rate  for task 2 is not significant when 

comparing the four modalities. Therefore, error rate for task 2 was not considered when 

deciding the ranking of four modalities.  

From response time for both tasks (see Figure 4.3 (a)), it is apparent that vibration 

performs best, followed by audio pitch, viscosity and depth. Also, observed from Figure 

4.3 (b), the error rate of task 1 showed similar ranking as response time. Vibration and 

audio pitch showed 100% accuracy, followed by viscosity and depth. Therefore, 

considered both response time and error rate, the ranking of modalities for feature texture 

is: vibration, audio pitch, viscosity and depth. The cost matrix of feature texture is 

represented as: 

� � > @2, 1 3 4 2C j  f . 
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Figure 4.3 Response time and error rate for feature Texture. 

 

4.2.1.3 Shape 

The F value of response time for task 1 and 2 are F1(3,43)=3.51, p=0.02 and 

F2(3,43)=3.61, p=0.02, and the F value of error rate for task 1 and 2 are F1(3,44)=3.27, 

p=0.03 and F2(3,44)=2.52, p=0.07. Since in task 2, the error rate did not show significant 

(a) 

(b) 
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difference between the four modalities, it was not considered in deciding the rank of 

modalities for feature shape.  

From Figure 4.4 (a), it can be observed that in both tasks, depth showed shorted response 

time, followed by viscosity, vibration and audio pitch. From task 1 error rate (see Figure 

4.4 (b)), it indicated same ranking of modalities as response time. Depth showed lowest 

error rate, followed by viscosity, vibration and audio pitch. Therefore, the ranking of 

modalities for feature is: depth, viscosity, vibration and audio pitch. The cost matrix for 

feature shape is represented as: 

� � > @3, 3 2 1 4C j  f . 
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Figure 4.4 Response time and error rate for feature Shape 

 

4.2.1.4 Color 

A t-test was performed for feature color on response time since there are only two 

candidate modalities and there is no difference between these two candidates on error rate 

(see Figure 4.5 (b)). The p-value for task 2 is smaller than 0.05, while it is not the case for 

(a) 

(b) 
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task 1 (p1=0.14, p2=0.04), which means there is significant difference between these two 

modalities for task 2. However, no conclusion can be drawn for task 1. Therefore, the 

response time for task 1 was not considered to decide the ranking of modalities for 

feature color. Figure 4.5 (a) shows that unique audio cues are associated to higher 

performance than vibration when representing feature color, since it has less response 

time for task 2. In this case, unique audio cues have been shown to be the optimal 

candidate for feature color. The cost matrix for feature color is shown as: 

� � > @4, 2 1C j  f f f . 

 

 

Figure 4.5 Response time and error rate for feature Color 

 

(a) 

(b) 
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4.2.1.5 Cost Matrix 

The ranking of modalities for each feature is summarized below. Smaller digit indicates 

higher ranking and better performance. 

x Intensity: (1) vibration, (2) audio pitch, (3) viscosity, (4) depth. 

x Texture: (1) vibration, (2) audio pitch, (3) viscosity, (4) depth. 

x Shape: (1) depth, (2) viscosity, (3) vibration, (4) audio pitch. 

x Color: (1) unique audio cues, (2) vibration. 

Since the individual cost used in the cost matrix is the ranking of modalities for each 

feature, the cost matrix is defined as 

� �

1 3 4 2
1 3 4 2

,
3 2 1 4
2 1

C i j

fª º
« »f« » 
« »f
« »f f f¬ ¼

 

The optimal matching between modality and feature computed by the extended Munkres 

Algorithm (Bourgeois & Lassalle, 1971) is shown in Fig. 4.6. 

 

 

 
Figure 4.6 Optimal matching of modalities and primary features 
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4.2.2 Experiment 2: Comparing with print-out tactile paper 

A t-test is performed to validate the difference between the response time and error rates 

of two methods. The p-values of response time for the four tasks are: p1=1.7e
-5,  p2=8.4e-

9,   p3=1.7e-6   and      p4=2.5e-9.  All   these   p-values   indicated   significant   difference   between  

multimodal  method   and   tactile   paper. The p-values of error rate for the four tasks are: 

p1=7.4e-4, p2=0.03, p3=0.32 and  p4=0.09. Since the error rate for the last two tasks were 

not significant different, it was not considered. Figure 4.7 shows the mean response time 

and error rate for all the tasks in experiment 2. Although the multimodal method requires 

more time to accomplish one task, it shows higher accuracy in all tasks. And the error 

rate for the first two tasks indicated significant better performance of multimodal method 

with accuracy of 32.1% higher of task 1 and 29.17% higher of task 2 in differentiating 

white blood cells and red blood cells. 
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Figure 4.7 Response time and error rate for all tasks in experiment 2. 

 

To determine whether the higher accuracy came from longer response time, the 

correlation coefficient is calculated. Since the correlation value between time/error is 

positive (0.0064), it can be concluded that lower error rate is not a consequence of longer 

(a) 

(b) 



65 

 

65 

response time. We conclude that the multimodal method has higher accuracy because it 

provides a perceptually rich way to interpret images compared to using tactile paper. It 

was also observed during the experiments, that when using the multimodal method, most 

of the response time was taken to explore the image. Once a cell was located, it required 

little effort for the participants to recognize the type of cell. Briefly, a key factor that 

makes navigation of an image effortful, is the single-hand operation and loss of point of 

reference. In the traditional tactile paper method, both hands are utilized to locate an 

object and interpret its features. Also, the point of reference can be easily retrieved by the 

relative position of both hands.  

In the second experiment, error rate is considered a more important factor than resposne 

time, because the intent of our system is to be used as an educational tool to help BVI 

students and scientists learn and recognize the features of different histological images. 

Therefore, we believe it is more important for users to correctly identify intracellular 

structures, the shape of various types of cells, and make comparisons between cell types 

rather than improving the speed BVI students or scientists can recognize cell features.   
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CHAPTER 5. CONCLUSIONS AND FUTURE WORK 

In this thesis, a real-time multimodal image perception approach is developed to convey 

visual information to blind or visually impaired people. Images characterized by seven 

key features; intensity, color, shape, texture, etc., are represented through three different 

sensory channels of hearing, haptics and vibrotactility. A Bayesian network is 

constructed to infer the relationship between primary and peripheral image features. 

Linear assignment algorithm is utilized to optimize the matching between image features 

and sensorial modalities. This novel approach not only decreases the time and man power 

required to create traditional tactile print-outs, but allows computer-based image data to 

be interpretable by blind individuals in real-time. This HCI system can be connected to a 

light microscope or other scientific instruments that employ a computer monitor output in 

order to represent digitized image information to BVI users in real-time. This substitution 

of visual scientific data with other sensory outputs can allow students and scientists who 

are BLV to participate in many kinds of scientific investigation and experimentation that 

are currently unavailable to them. This ability allows them to understand visual scientific 

data that they had generated themselves, which is critical when conducting independent 

research. In addition, alternative sensorial perception of data that is typically rendered 

visually may provide unique or more in depth understanding of the results from the 

scientific instrument.   
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5.1 Possible Changes to Bayesian Network 

In this thesis, the Bayesian network constructed to infer peripheral image features from 

primary image features is based on a selection of candidate structures generated by 

human experts. Three candidate structures were generated by one science expert who is 

blind based on his experience and current literature. However, it is important to question 

whether instead of obtaining multiple responses from one expert, the approach should be 

getting one response from multiple experts that are BVI. Therefore, more human experts 

can be recruited in the future to generate candidate structures between peripheral and 

primary image features. Besides expert-based modeling, Genetic algorithm (GA) can also 

be utilized to generate candidate structures where the dependencies between nodes are 

generated   following   Genetic   algorithm’s   operations. The process generating Bayesian 

networks using Genetic algorithm is called evolution-based modeling (Yu-Ting Li & 

Juan P. Wachs, 2014a). The initial population of candidate structures is generated 

randomly. Then genetic operators, such as crossover and mutation, are used to generate 

new generations of candidate structures based on a selected portion of last generation. To 

select a portion of candidate structures from last generation, the score function (equation 

3.11) shown in Chapter 3.1.2.3 is used. The structures that show higher score than their 

antecedents are selected. The number of iterations is set according to empirical study 

requirements.  

 

5.2 Expanding the Modality Assignment Problem 

In addition to relating primary and peripheral image features through a Bayesian network, 

a linear assignment problem (LAP) was used to assign image features to different sensory 
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modalities based on using a cost weighing approach. The Cost matrix was constructed by 

evaluating   subjects’   performance  using a series of test images for each primary image 

feature. Besides utilizing linear assignment problem, our assignment problem between 

image features and sensory modalities can be extended to a quadratic assignment problem 

(QAP) as well, taking consideration of more factors, such as the inference relations 

among primary image features and the influence of one sensory modality to another. A 

quadratic assignment problem is also one of the fundamental optimization problems in 

deciding combinations that solves assignment problem with linear costs between two 

parties. With solutions of linear assignment problem, only the costs between each pair of 

the two parties are considered to make the assignments. To get a more accurate 

assignment solution, more information should be taken into consideration. By extended 

our problem to a quadratic assignment problem, two more matrices are required. 

According  to  this  thesis’s  problem,  one  matrix  is  required  to  represent  the  relationships  of  

the four primary image features and the other matrix is required to indicate the 

relationships between the five output sensory modalities. This quadratic assignment 

problem considers not only the linear cost between image features and sensory modalities, 

but also the inherent relations among features and modalities themselves. Since QAP also 

takes in consideration of the inner relation among both primary image features and 

sensory modalities, besides the linear cost between primary image features and sensory 

modalities, it should provide a more accurate assignment than the LAP. 
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5.3 Considerations for Future Experiments 

Besides the possible improvements of the methodologies applied in this thesis, the 

experiments deployed can be extended as well. Our real-time multimodal image 

perception system was compared to traditional tactile images with ten blindfolded and 

four blind subjects. Some researchers have shown no performance difference between 

blind and blindfolded subjects, while others find blind have a better developed sense 

(Enhancing performance for action and perception, 2011). Therefore, it is still necessary 

to recruit more blind participants to test our system. Besides print-out tactile images, 

other assistive technologies can be compared with our system as well. 3D printing tactile 

plates can be an option. 3D printed plates convey more information than tactile images, 

such as intensity, object patterns and relative relationships between objects (Greg J. 

Williams et al., 2014). Although empirical experiments showed that out multimodal 

system provides more visual information to BVI people than tactile images, it is 

worthwhile to test whether this is true compared to other currently available assistive 

technologies and how much more visual information can our system convey. 

 

5.4 Possible Improvements for Human-computer Interaction 

From experimental results, it is observed that this multimodal approach takes more time 

than tactile paper to navigate and explore an image; however empirical experiments 

showed it higher accuracy in recognizing and analyzing objects within blood smear 

images. Observed from conducted experiments, most participants searched test images in 

a sequential manner that from left to right and top to bottom. Since they lost their point of 

reference when using only one hand, they might go repeatedly to the same place they 
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already searched or miss some area that they have not yet reached. So they need a lot of 

time to go back and forth checking if they missed anything, which makes navigation and 

exploration very time consuming. Therefore, in the future, we will research interaction 

methods to improve performance in image navigation. As discussed in Chapter 4.2.2, the 

utilization of single hand examination is considered as the main reason that makes the 

navigation and exploration of images so time consuming, compared to using both hands 

during the examination of traditional tactile paper images. More specific, in our 

multimodal image perception system, participants interact with the images through a 

haptic device with stylus end-effector. This stylus end-effector makes the interaction 

based on only one pixel in the image. While during the traditional tactile method, BVI 

persons interact with the tactile image using both their hands with a relatively large 

receptor area at their fingertips flexibly searching nearby areas. In our conducted 

experiments, participants were able to navigate the tactile image using both their hands. 

To validate the hypothesis that single-hand interaction makes image navigation more 

time consuming, further experiments can be conducted to test the response time when 

participants can interact with tactile images using only one finger compared to the stylus 

end-effector used in our multimodal system. Besides this one-finger stimulation 

experiment, a 7 degree of freedom (DOF) haptic device with a gripper end-effector (see 

Figure 5.1) can be utilized to improve the performance for image navigation and 

exploration. The 7 DOF haptic device with a gripper end-effector provides force 

feedback on the gripper as well. Both fingers on the gripper can feel the force feedback. 

A point of reference may be retrieved since two fingers are utilized and the relative 

positions of objects in the image can be inferred by the displacement of both fingers. 
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Besides single hand operation, a bimanual system with two haptic devices used 

concurrently by both hands is also a possible solution to improve the performance of 

image navigation. 

 

Figure 5.1 Force Dimension 7 DOF haptic device with a gripper end-effector. 
 

Another  logistical  difference  when  interpreting  tactile  paper  using  one’s  hands  is  that  the  

raised images on the paper are typically laid on a horizontal surface. However, when 

using our method, images are presented vertically on the computer screen. Whether the 

direction  of  perceiving  an  image  will  affect  participants’  performance  can  be  considered  

as a key point in future research. 
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Appendix A Consent Form 

Participants were required to read and sign a consent form before they start any 

experiments. The experimenter will read the consent form to participants blind or visually 

impaired. The approved consent form by Purdue University Institutional Review Board 

(IRB) is attached below. 
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Appendix B Experiment Procedures 

Experiment 1: 

Each participant was presented with all four image features. The experiment order to test 

modalities for each feature was randomized. Also, the experiment order to test each 

candidate modality for a feature was also randomized. Blindfolded subjects were required 

to put on an eye mask before they start the experiment. Before each new mapping from 

image features to sensory modalities was tested, a training trial was first performed. The 

two tasks used in real experiments were also tried in the training trial. Therefore, 

participants knew what they were going to find in the experiments. Participants were 

asked to press a button on the haptic device they use right before they began a task and 

press the button again once they got the answer. The button was used to record response 

time for each task. After each task was performed and the end-of-task button was pressed, 

participants were required to speak out the answer they got. Then they could start the next 

task once they pressed the start-of-task button. The right answers were released to 

participants in the training trial, while kept sealed in real experiments. After the 

experiments for each feature, participants could choose to have a short break or not. The 

whole experiment normally lasted from one hour to one and a half hours. 

 

Experiment 2: 

The second experiment followed the similar process of the first experiment. Each 

participant was presented with both multimodal method and print-out tactile images. Also, 

the test order was randomized to decrease learning effect. Training trials were performed 
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before any real experiments. While they were testing with tactile images, the response 

time was recorded by experimenters. After the whole experiments, feedbacks from 

participants were collected to analyze how people like the multimodal method studied in 

this thesis and what do they think about this method. This experiment normally took from 

half an hour to one hour. 
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