27,720 research outputs found

    A review of contemporary techniques for measuring ergonomic wear comfort of protective and sport clothing

    Get PDF
    Protective and sport clothing is governed by protection requirements, performance, and comfort of the user. The comfort and impact performance of protective and sport clothing are typically subjectively measured, and this is a multifactorial and dynamic process. The aim of this review paper is to review the contemporary methodologies and approaches for measuring ergonomic wear comfort, including objective and subjective techniques. Special emphasis is given to the discussion of different methods, such as objective techniques, subjective techniques, and a combination of techniques, as well as a new biomechanical approach called modeling of skin. Literature indicates that there are four main techniques to measure wear comfort: subjective evaluation, objective measurements, a combination of subjective and objective techniques, and computer modeling of human–textile interaction. In objective measurement methods, the repeatability of results is excellent, and quantified results are obtained, but in some cases, such quantified results are quite different from the real perception of human comfort. Studies indicate that subjective analysis of comfort is less reliable than objective analysis because human subjects vary among themselves. Therefore, it can be concluded that a combination of objective and subjective measuring techniques could be the valid approach to model the comfort of textile materials

    Atomic force microscopic investigation of commercial pressure sensitive adhesives for forensic analysis

    Get PDF
    Pressure sensitive adhesive (PSA), such as those used in packaging and adhesive tapes, are very often encountered in forensic investigations. In criminal activities, packaging tapes may be used for sealing packets containing drugs, explosive devices, or questioned documents, while adhesive and electrical tapes are used occasionally in kidnapping cases. In this work, the potential of using atomic force microscopy (AFM) in both imaging and force mapping (FM) modes to derive additional analytical information from PSAs is demonstrated. AFM has been used to illustrate differences in the ultrastructural and nanomechanical properties of three visually distinguishable commercial PSAs to first test the feasibility of using this technique. Subsequently, AFM was used to detect nanoscopic differences between three visually indistinguishable PSAs

    Development of E-Skin Sensors and Their Applications

    Get PDF
    This is a poster presentation. The poster will present the students\u27 research results on E-skin sensor development and application

    Numerical and experimental studies of multi-ply woven carbon fibre prepreg forming process

    Get PDF
    Woven carbon fibre prepreg is being increasingly used in high-performance aerospace and automotive applications, primarily because of its superior mechanical properties and formability. A wide range of forming simulation options are available for predicting material deformation during the prepreg forming process, particularly change in fibre orientation. Development of a robust validated simulation model requires comprehensive material characterisation and reliable experimental validation techniques. This paper presents experimental and numerical methods for studying the fibre orientation in multi-ply woven carbon fibre prepreg forming process, using a double-dome geometry. The numerical study is performed using the commercial forming simulation software PAM-FORM and the material input data are generated from a comprehensive experimental material characterisation. Two experimental validation methods are adopted for fibre shear angle measurement: an optical method for measuring only the surface plies, and a novel CT scan method for measuring both the surface plies and the internal plies. The simulation results are compared against the experimental results in terms of fibre shear angle and the formation of wrinkles to assess the validity of the model

    A hysteretic multiscale formulation for nonlinear dynamic analysis of composite materials

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.A new multiscale finite element formulation is presented for nonlinear dynamic analysis of heterogeneous structures. The proposed multiscale approach utilizes the hysteretic finite element method to model the microstructure. Using the proposed computational scheme, the micro-basis functions, that are used to map the microdisplacement components to the coarse mesh, are only evaluated once and remain constant throughout the analysis procedure. This is accomplished by treating inelasticity at the micro-elemental level through properly defined hysteretic evolution equations. Two types of imposed boundary conditions are considered for the derivation of the multiscale basis functions, namely the linear and periodic boundary conditions. The validity of the proposed formulation as well as its computational efficiency are verified through illustrative numerical experiments

    A finite element model capable of predicting resin pockets for arbitrary inclusions in composite laminates

    Get PDF
    This work presents the progress in the development of a finite element model capable of predicting resin pockets occurring in composite structures with embedded sensors. The F.E.- model is built using standard tools in ABAQUS software, avoiding the need of specialized coding. Both progresses in material characterization as well as finite element modeling are shown. The model will eventually be used to optimize the shape of an embedded optical fibre interrogator used within the FP7 ‘SmartFiber’ projec

    Drape optimization in woven composites manufacture.

    Get PDF
    This paper addresses the optimisation of forming in manufacturing of composites. A simplified finite element model of draping is developed and implemented. The model incorporates the non-linear shear response of textiles and wrinkling due to buckling of tows. The model is validated against experimental results and it is concluded that it reproduces successfully the most important features of the process. The simple character of the model results in low computational times that allow its use within an optimisation procedure. A genetic algorithm is used to solve the optimisation problem of minimising the wrinkling in the formed component by selecting a suitable holding force distribution. The effect of regularisation is investigated and the L-curve is used to select a regularisation parameter value. Optimised designs resulting from the inversion procedure have significantly lower wrinkling than uniform holding force profiles, while regularisation allows force gradients to be kept relatively low so that suggested process designs are feasible

    Press forming a 0/90 cross-ply advanced thermoplastic composite using the double-dome benchmark geometry

    Get PDF
    A pre-consolidated thermoplastic advanced composite cross-ply sheet comprised of two uniaxial plies orientated at 0/90° has been thermoformed using tooling based on the double-dome bench-mark geometry. Mitigation of wrinkling was achieved using springs to apply tension to the forming sheet rather than using a friction-based blank-holder. The shear angle across the surface of the formed geometry has been measured and compared with data collected previously from experiments on woven engineering fabrics. The shear behaviour of the material has been characterised as a function of rate and temperature using the picture frame shear test technique. Multi-scale modelling predictions of the material’s shear behaviour have been incorporated in finite element forming predictions; the latter are compared against the experimental results
    • …
    corecore