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ABSTRACT 

Pressure sensitive adhesives (PSAs), such as those used in packaging and adhesive 

tapes, are very often encountered in forensic investigations.  In criminal activities, 

packaging tapes may be used for sealing packets containing drugs, explosive devices, 

or questioned documents, while adhesive and electrical tapes are used occasionally in 

kidnapping cases.  In this work, the potential of using Atomic Force Microscopy 

(AFM) in both imaging and force mapping (FM) modes to derive additional analytical 

information from PSAs is demonstrated. AFM has been used to illustrate differences 

in the ultrastructural and nanomechanical properties of three visually distinguishable 

commercial PSAs to first test the feasibility of using this technique.  Subsequently, 

AFM was used to detect nanoscopic differences between three visually 

indistinguishable PSAs.    
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1.  Introduction 

A reliable characterisation of the items of recovery from a crime scene 

requires the most accurate forensic analyses using the state-of-the art techniques [1].  

Atomic force microscopy [2] has recently emerged as a possible useful tool for 

surface characterisation of a variety of materials through the analysis of their 

morphology and mechanical properties.  Amongst various other materials, such as 

hair [3], body fluids [4], documents [5], textile fibres [6, 7], and polymers [8], 

pressure sensitive adhesives (PSAs) [9-11] are also encountered in forensic 

investigations.  

Pressure sensitive adhesive tapes are employed in a variety of criminal activities such 

as the restraint of an individual during robbery and offences against a victim, the 

concealment and packaging of controlled drugs, and the enclosure of explosive 

devices.  Packaging materials including PSAs are produced in vast amounts and are 

ubiquitous in our modern society. It is broadly acknowledged that routinely used 

techniques (e.g. Fourier transform infrared spectroscopy, FT-IR, and pyrolisis-gas-

chromatography-mass-spectrometry, Py-GC-MS) in forensic science laboratories to 

identify chemical constituents [12-16] for discriminating PSAs are mostly effective 

[17,18].  However, AFM can provide supplementary and useful analytical data on 

PSAs due to its capability to map the surface morphological and mechanical 

properties of the adhesives.  Also, since PSA technology is based on finding the right 

balance between the cohesive and viscous properties of a polymer, their properties 

vary on different length scales ranging from macro- to nano- scales, and AFM can 

render the nanoscopic information.  The value of a forensic analysis lies in its ability 

to interpret the physical data obtained from items of recovery found at a crime scene 

and, hopefully, to link a particular suspect/source to it.  The Scientific Working Group 

for Materials Analysis (SWGMAT) of the Federal Bureau of Investigation (FBI) have 



 3 

reported the standards and guidelines for the forensic examination of pressure-

sensitive tapes [19]. 

In this work, the potential of using AFM in the imaging mode to examine the 

morphology of the specimens, as well as in the force mapping (FM) mode to 

investigate their mechanical properties to characterise PSAs is demonstrated.  The 

ability of AFM to observe the nanostructural and nanomechanical differences of 

commercial PSAs was first tested by analysing three visually distinguishable adhesive 

tapes viz. transparent OPP packaging tapes, brown packaging tapes, and green 

electrical insulation tapes.  Subsequently, colourless and transparent OPP packaging 

tapes from three UK distributors were analysed by AFM to verify the capability of 

this nanotool to show the finest surface differences of similar PSAs that are visually 

indistinguishable.     

 

2.  Experimental 

2.1 Commercial pressure sensitive adhesives 

Three different common commercial adhesives viz. transparent cello tape 

made of regenerated cellulose, brown packaging tape made of a waterproof low-static 

polypropylene film, and green electrical insulation tape made of a PVC 

(polyvinylchloride) film (Advanced Tapes International Limited, Leicester, England) 

were investigated.  These were followed by the investigation of colourless and 

transparent OPP packaging tapes from three UK distributors, namely Niceday - Large 

core office, Henkel – Adhesion J1626, and Eureka - Large clear tape.  

 

2.2 Atomic force microscopy (AFM) imaging 

The ultrastructure of the commercial PSAs was determined by using a 

commercial NTEGRA - AFM (NT-MDT, Moscow, Russia). The surface of each 

adhesive was scanned in semi-contact mode.  1 cm2 of each adhesive was mounted on 



 4 

a microscope glass slide by using a double-sided tape ensuring that the adhesive was 

levelled and strongly adhered to the slide.  

The surface topography of each adhesive was imaged by using silicon 

cantilevers (ATEC-NC, Nanosensors, Switzerland) with a nominal spring constant of 

45 N/m and a high resonance frequency (330 kHz).  The AFM images (5 µm × 5 µm 

in size and 512 × 512 pixels) were collected using a scan speed of 1.56 Hz. A lateral 

resolution of 30 nm was estimated for all the captured images. 

The imaging experiments were repeated on three randomly chosen areas of 

each slide and five samples were scanned, thereby giving a total of 15 measurements 

on each adhesive.  Apart from the visual observation of the surface morphology of 

each adhesive which was found to be consistent between different measurements, 

surface roughness analysis performed on each image clearly confirmed the 

repeatability and reliability of the AFM measurements.  The roughness of the 

adhesive surfaces was analysed by measuring the root mean square roughness, Rrms, 

on the whole AFM height image.  Rrms is defined as the standard deviation from the 

mean data plane of the h (height) values of the AFM images within a selected region 

on the surface: 
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where hi is the current height value, h , the height of the mean data plane, and N, the 

number of points within the selected region of a given area.  This analysis was carried 

out on raw AFM images (i.e. images that were neither flattened nor elaborated with 

any filter) by using the NT-MDT software.  The results are reported in Table 1 as 

average surface roughness ± standard deviation.  

The amplitude of the oscillation when the tip was in contact with the PSA 

surface was kept just below the free amplitude, which was typically 295 nm, in order 

to image the PSA surface in “soft-tapping” conditions to minimize indentation [8, 
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20,21] and damage to the surface.  A simultaneously generated phase image provided 

information on the energy dissipation between the tip and the sample surface [8,22].  

Dark regions in the phase images represented greater energy dissipation between the 

tip and cantilever.  The greater viscous component of the viscoelasticity [23] is 

responsible for causing this dissipation of energy.  Brighter regions were attributed to 

a surface with a lower viscous component and greater elasticity.  

 

2.3 AFM force mapping (AFM-FM) 

The nanomechanical properties of each of the commercial PSA were 

investigated by using the same AFM in force spectroscopy (AFM-FS) mode in order 

to create property maps of adhesive force and adhesion energy of the PSAs [8]. The 

AFM cantilevers (CSG10, NT-MDT, Moscow, Russia) used in the FS experiments 

were made from Si3N4.  These cantilevers were very soft with a nominal spring 

constant ~ 0.14 N/m and a resonant frequency ~ 20 kHz.  The tip (radius of curvature 

< 10 nm) microfabricated on the AFM cantilever was brought into contact with the 

surface of the adhesive tape.  The AFM-FM experiments were carried out over a grid 

of 20 × 20 points on a 5 × 5 µm2 area of the adhesive, and the FS curve on each point 

was recorded.  These measurements were again repeated on three randomly chosen 

areas of each slide and five samples, thus giving a total of 15 measurements for each 

adhesive.  During the AFM-FM experiments, an average normal force of 2 nN was 

applied by the AFM cantilever onto the adhesive tape.  The sample was lowered away 

from the tip at a speed of 0.45 µm/sec.  In each experiment, the maximum adhesive 

force of the particles forming the film to the tip (Fmax), the maximum distance of 

deformation of these particles (dmax), and the adhesion energy (γ) were measured (Fig. 

1). All AFM-FM experiments were performed in contact mode in air at room 

temperature. 
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The FS curves obtained during an AFM-FM experiment were in fact force-

height curves.  To transform the force-height curves into force-distance (F-d) curves, 

the real distance, d, between the sample and the AFM tip was calculated by 

subtracting the deflection of the cantilever, z, from the height values that 

corresponded to the measured piezo displacement, zpiezo: 

                                                   d = zpiezo – z.                                                  (2)  

Force spectroscopy experiments on adhesive films [24-28] have previously been 

performed to determine their nanomechanical properties.  However, in the AFM-FM 

experiments presented in this work the surface of the adhesive film was mapped 

point-by-point and 400 FS curves were collected in each experiment repeated over 15 

areas for each adhesive that allowed us to collect statistically significant data [8].  

 

2.4 Nanomechanical properties 

A commercial software (Gigasoft ProEssentials v3 Package) was used to display 

the F-d curves.  Each of the 400 curves in a data set was individually shifted to remove 

its offset.  The maximum adhesive force of the tip to surface (Fmax / nN), the maximum 

distance of deformation of the sample (dmax / µm), and the adhesion energy (γ / 10-15 J) 

were calculated from the F-d curves by using a dedicated program written with 

Borland Delphi 7.0 software. The adhesion energy, γ, was obtained by integrating the 

area under the F-d curve.   

 

3.  Results and discussion 

3.1 Nanostructure of three visually distinguishable PSAs 

To test the ability of AFM to visualise the finest differences between PSAs, 

three visually distinguishable commercial adhesive tapes were studied.  The AFM 

phase images (size 5 × 5 µm2) of these tapes are depicted in Fig. 2.  Portions of these 

images zoomed to 2 × 2 µm2 are also shown.  The images for all the tapes show the 
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existence of two phases – a hard phase which is less energy dissipative and a soft 

phase that is more energy dissipative.  It may be pointed out here that if the regions of 

lower and higher viscosity are dispersed in the adhesive tape or film, the interaction of 

the AFM tip with the film surface can vary.  For instance, when the tip comes in 

contact with the more viscous region on the surface, more energy gets dissipated and 

the area being scanned appears dark in colour in the phase image [9].  Due to similar 

reasoning, less energy is dissipated on a lower viscosity region on the surface and it 

appears brighter in colour in the phase image [10].  It is thus clear that the phase 

image can render important information about the viscous properties of different 

constituent components of the PSA, as well as their distribution and relative 

abundance on the adhesive film surface.  The distribution of the two (hard and soft) 

phases in each of the three investigated tapes is found to be different.  The 

morphology of the transparent cello tape (Fig. 2a) shows the presence of individual 

adhesive polymer particles (dark spots) and possibly surfactant molecules (bright 

spots).  In the brown packaging tape (Fig. 2b) hardly any individual polymer particles 

are discernible, indicating that the particles may have coalesced in this adhesive film.  

The bright spots in Fig. 2b are probably the surfactant molecules.  The topography of 

the electrical insulation tape (Fig. 2c) is entirely different from the other two tapes, 

and a comparison reveals that the harder phase (bright spots) in it is present in 

relatively very small amounts. 

The morphological differences observed in the AFM images were confirmed 

quantitatively by surface roughness analysis (Table 1). The brown packaging tape was 

found to be smoother, Rrms = (35.3 ± 2.6) nm, while the insulation tape turned out to 

be rougher, Rrms = (96.7 ± 3.8) nm, possibly due to the presence of “crevices” on the 

tape surface. These results prove the capability of AFM to image the finest 

topological features of visually different PSAs. 
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3.2 Nanostructure of three visually indistinguishable OPP transparent PSAs 

The AFM phase images (size 5 × 5 µm2) of three colourless and transparent 

OPP adhesive tapes are shown in Fig. 3.  Portions of these images zoomed to 2 × 2 

µm2 are also shown. On the surface of the Henkel transparent cello tape individual 

adhesive polymer particles (dark spots) are visible with only a few very small hard 

particles (bright spots), possibly surfactant molecules, present (Fig. 3a) with a 

homogeneous distribution. This makes the surface of the Henkel tape quite smooth as 

confirmed by the roughness analysis (Rrms = (23.0 ± 3.8) nm, see Table 1).  

On the contrary, the surface of the Niceday transparent cello tape shows two 

distinct hard and soft phases (Fig. 3b). Only some individual polymer particles are 

visible (dark spots in 2 × 2 µm2 image) with most of them having coalesced in this 

more dissipative (soft) phase. The less dissipative (hard) phase probably constitutes of 

surfactant particles (bright spots). The presence of two distinct phases makes the 

surface of this tape rougher (Rrms = (38.8 ± 2.1) nm, see Table 1) as compared to the 

Henkel tape.   

Finally, the Eureka transparent cello tape showed a reasonably uniform 

morphology (Fig. 3c). Some polymer particles (dark spots) are still visible but most of 

them seem to have coalesced making the surface to appear relatively uniform with a 

randomly distributed hard (bright spots) phase present. The more uniform nature of 

the adhesive surface is also shown by a decrease in the surface roughness (Rrms = 

(32.2 ± 2.7) nm) as compared to that of the Niceday transparent cello tape (see Table 

1). 

These results demonstrate the ability of AFM to image the finest 

morphological differences of even otherwise visually indistinguishable PSAs. 
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3.3 Nanomechanical properties of three visually distinguishable PSAs 

Figure 4 shows the F-d curves obtained on three visually distinguishable tapes. 

The transparent cello tape depicts two well distinguished set of F-d curves as shown 

in Fig. 4a.  The curve on the left encompasses 3 adhesion peaks and shows a very 

large deformation, indicating that polymer fibrillation probably occurs during the 

unloading cycle of the AFM-FM experiment.  This behaviour indicates the presence 

of a very soft and highly viscous phase (possibly the adhesive polymer).  The F-d 

curve on the right (Fig. 4a) shows only 1 very sharp and narrow adhesion peak, 

corresponding to a very hard phase probably constituting of surfactant molecules.  

These results endorse the previous observations (see Section 3.1) from, the AFM 

phase images (Fig. 2a) where two distinct phases (hard and soft) were clearly visible.  

The brown packaging tape (Fig. 4b) also shows two different sets of F-d curves.  On 

the left, a typical F-d curve with 2 adhesion peaks and a broad deformation is 

presented, indicating the presence of quite a soft and viscous phase.  However, the 

height of the first adhesion peak (Fmax = 120 nN) is lower than that of the first 

adhesion peak for the transparent tape (Fmax = 148 nN), see Fig. 4a (Left).  Moreover, 

the deformation of the brown tape (dmax = 6.2 µm) observed in Fig. 4b is smaller than 

the deformation (dmax = 8.7 µm) seen in Fig. 4a for the transparent tape.  These results 

indicate that although both the transparent and brown tapes are made of highly soft 

and viscous adhesive polymers, the transparent tape is more viscous and softer than 

the brown tape, suggesting a higher degree of tackiness of the transparent tape 

compared to the brown tape.  The F-d curve on the right of Fig. 4b shows only 1 

adhesion peak corresponding to the hard phase of the brown tape.  However, the 

height and width (Fmax = 75 nN; dmax = 3.8 µm) of this peak are higher than those 

observed in Fig. 4a (Right) for the hard phase of the transparent tape (Fmax = 55 nN; 

dmax = 1.1 µm), indicating that the hard phase of the brown tape could be a surfactant-

rich phase in a mixture rather than pure surfactant as observed for the transparent 
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tape.  The electrical insulation tape (Fig. 4c) shows a similar behaviour to that of the 

transparent tape (Fig. 4a) with a very soft and viscous phase (Left, Fig. 4c) and a 

harder phase (Right, Fig. 4c).  However, the soft phase of the electrical insulation tape 

seems to be harder than that of the transparent cello tape as shown by the smaller 

heights of the peaks in Fig. 4c (Left) as compared to those in Fig. 4a (Left).  

Comparison of the F-d curves of the hard phases for the electrical insulation, 

transparent and brown tapes indicates that the insulation tape has a much softer hard 

phase than that of both the transparent and brown tapes.  This is suggested by the 

height of the single adhesion peak observed in the electrical insulation tape being 

much higher (Fmax = 130 nN) than those measured for the hard phases of the 

transparent and brown tapes (see Fig. 4).  This seems to imply that in the insulation 

tape the hard phase mainly results from an enrichment of the adhesive polymer with 

the surfactant rather than from pure surfactant alone which seems to be the case for 

the transparent tape.  These results are in agreement with the AFM phase images (see 

Section 3.1 and Fig. 2c) that show a relatively uniform topography with just a small 

amount of surfactant present in the electrical insulation tape. 

The Fmax, dmax, and γ distributions over 400 F-d curves obtained from AFM-

FM experiments are shown in Fig. 5. Two distinct populations can clearly be 

observed in all the three distributions for the three investigated tapes.  Undoubtedly, 

these correspond to the two distinct phases revealed earlier by the AFM phase images 

in Fig. 2 and the F-d curves in Fig. 4.  Certain differences are nevertheless 

discernible.  Unlike the transparent cello tape in Fig. 5a, for instance, the brown and 

electrical insulation packaging tapes in Figs. 5b and 5c, respectively show two 

subpopulations, in particular for the softer phase.  This seems to stem from the 

variation in the nature and composition of the polymer, copolymer, acrylic, surfactant, 

and tackifier in different types of adhesive tapes that differ in their detailed 

formulation.  It is known for example, that tackifiers are usually added to acrylic 
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formulations or polymers to increase the adhesive strength and energy, thereby 

boosting the peeling force and performance of the PSAs.  Poor miscibility can often 

lead to heterogeneity, thereby resulting in phase separation.  Different approaches are 

commonly used in the formulation processes, such as polymerisation, 

copolymerisation and blending, and such processes are continually being developed in 

order to improve the performance of the PSAs for particular applications in mind.   

The 2D AFM-FM adhesion energy maps, constructed on a grid of 20 × 20 

points over a 5 × 5 µm2 area of the adhesive tape, shown in Fig. 6, are also found to 

be different for the three investigated tapes.  The adhesion energy map allows 

visualisation of the precise localisation of different components of the adhesive.  Each 

square in the 2D map corresponds to one of the 400 points of the AFM-FM 

experiments and the grey scale is indicative of the magnitude of adhesion energy.  

The brighter (darker) the square in the grid, the higher (lower) the adhesion energy, 

and therefore the softer (harder) that particular component of the adhesive.  As also 

shown by the AFM images (see Fig. 2), the distribution of the hard phase (darker 

squares) is less uniform in the transparent tape (Fig. 6a) in comparison to the brown 

tape (Fig. 6b). In the transparent tape the hard and soft phases are reasonably well 

separated with a high contrast between them. The energy map for the electrical 

insulation tape (Fig. 6c) shows greater homogeneity compared to the map for the 

transparent tape, and this observation is consistent with the information obtained from 

the AFM images (see Fig.2).  

The above results clearly demonstrate that the morphology of the PSAs 

revealed by AFM imaging, the AFM F-d curves obtained from AFM force mapping 

(FM) experiments, the statistical distributions of Fmax, dmax, and γ over 400 F-d curves, 

and the 2D AFM-FM adhesion energy maps are all different for visually 

distinguishable commercially available adhesive tapes.   
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3.4 Nanomechanical properties of three visually indistinguishable OPP transparent 

PSAs 

The nanomechanical features of three visually similar OPP transparent cello 

tapes investigated by AFM-FM are shown in Fig. 7.  The transparent cello tape by 

Niceday shows two different sets of F-d curves (Fig. 7a).  In the curve on the left, the 

presence of three adhesion peaks confirms a very large deformation of the adhesive 

polymer.  This could be due to polymer fibrillation happening during the unloading 

cycle of the AFM-FM experiment.  This behaviour is possibly caused by the presence 

of a very soft and highly viscous phase (adhesive polymer).  The F-d curve on the 

right of Fig. 7a shows only 1 very sharp and narrow adhesion peak, which 

corresponds to a very hard phase, possibly a surfactant.  These results agree with the 

AFM phase images (see Fig. 3a) where two phases (hard and soft) were clearly 

visible.   

Unlike the cello tape by Niceday, the OPP transparent cello tape by Henkel 

(Fig. 7b) shows only one set of F-d curves.  This confirms the smooth surface of the 

PSA observed in the AFM images (Fig. 3b).  Fig. 7b depicts a typical F-d curve with 

2 adhesion peaks, a very large peak and a quite small peak. This broad deformation 

could be caused by the presence of quite a soft and viscous phase.  Interestingly, the 

height of the first adhesion peak (Fmax = 88 nN) is lower than that of the first adhesion 

peak for OPP tape by Niceday (Fmax = 135 nN, see the left F-d curve of Fig. 7a).  In 

addition, the deformation of the OPP tape by Henkel (dmax = 6.6 µm) is smaller than 

the deformation observed in the left F-d curve of Fig. 7a for the transparent tape by 

Niceday (dmax = 9.0 µm). These findings seem to indicate that although both of the 

three transparent tapes are made of highly soft and viscous adhesive polymers, the 

OPP tape by Niceday is more viscous and softer than that by Henkel.  This different 

behaviour could be due to a higher degree of tackiness of the OPP tape by Niceday 

compared to the OPP tape by Henkel.   
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The OPP cello tape by Eureka shows two populations which, however, do not 

differ much from each other, both showing 1 adhesion peak.  The height of the 

adhesion peak is slightly different for each population (Fmax = 91 nN for the F-d curve 

on the left and Fmax = 80 nN for the F-d curve on the right), indicating the presence of 

two phases (soft and hard).  The fact that these two populations appear similar could 

be due to coalescence of the hard and soft phase as also shown earlier by the AFM 

images (Fig. 3c).     

Comparison of the F-d curves of the soft phases for the three OPP transparent, 

tapes indicates that the soft phase of the Niceday tape is softer than that of the Henkel 

and Eureka tapes.   

The Fmax, dmax, and γ distributions over 400 F-d curves obtained from AFM-

FM experiments are shown in Fig. 8. Two well separated populations can be seen in 

the Fmax and γ distributions for the Niceday tape (Fig. 8a).  These distributions 

correspond to the two distinct phases observed in the AFM phase images in Fig. 3b 

and the F-d curves in Fig. 7a.  The Henkel tape shows only one distribution for Fmax 

and dmax which agrees with both the AFM images (Fig. 3a) and the F-d curves (Fig. 

7b).  Surprisingly, γ distribution in Fig. 8b shows the presence of a softer phase 

probably due to the presence of two different components (one soft and the other 

harder) in the adhesive formulation that were not visible in the AFM phase image.  

The Eureka tape shows the presence of two phases (one soft and the other hard) in all 

the three distributions, indicating the presence of two components in the formulation 

of the adhesive as also shown by the AFM images (Fig. 3c).  The adhesion peak of 

softer phase dominates the statistical distributions for Fmax and γ  which could be due 

to the coalescence of the hard phase with the soft phase as also seen earlier in the 

AFM images (Fig. 3c). 

The 2D AFM-FM adhesion energy maps, constructed on a grid of 20 × 20 

points over a 5 × 5 µm2 area of the OPP transparent cello tapes (Fig. 9), are also 
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different for the three investigated tapes.  As also shown by the AFM images (see Fig. 

3), the distribution of the hard phase (darker squares) is quite uniform in the OPP 

transparent tape by Niceday (Fig. 9a). The hard and soft phases are very well 

separated with a high contrast between them. The energy map for the OPP tape by 

Henkel (Fig. 9b) shows greater homogeneity compared to the map for the Niceday 

tape, and this observation is consistent with the information obtained from the AFM 

images shown in Fig. 3.  Although the energy map for the Eureka tape looks quite 

uniform (Fig. 9c), it is possible to see the presence of two different components (hard 

phase corresponding to darker squares and soft phase corresponding to brighter 

squares) as also confirmed by the AFM images (Fig. 3) and the F-d curves (Fig. 7). 

The above findings shed light on the potential of AFM as an additional 

technique to investigate the finest morphological and nanomechanical differences of 

visually indistinguishable PSAs. 

 

4.  Conclusions 

The present results have shown for the first time that nanotechnology 

techniques, such as AFM imaging and AFM force mapping (AFM-FM) can be 

employed to obtain useful additional analytical information from pressure sensitive 

adhesives commonly found in forensic examination.  These AFM techniques have 

been used successfully to demonstrate differences in ultrastructural and 

nanomechanical properties of different pressure sensitive adhesive (PSA) tapes. 

Statistical distributions of adhesion force (Fmax) and adhesion energy (γ) clearly 

showed the existence of distinct phases in PSAs whose distributions varied from one 

adhesive to another. AFM techniques can thus provide supplementary data at the 

nanoscale in the forensic examination of adhesives. 
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Tables 
 

 

* Average calculated over three randomly chosen areas on the same adhesive sample. 
† Average calculated over the five replicates of the same adhesive sample.   

 
 

Table 1 Surface roughness analysis on the six PSAs investigated 
 

 

Surface Roughness (nm) 

Adhesive tape Sample  

1* 

Sample 

 2* 

Sample 

3* 

Sample 

4* 

Sample 

5* 
Average† 

Transparent  

cello tape  
40.2±3.5 44.7±3.2 43.5±1.0 39.1±1.3 42.4±2.7 42.0±3.0 

Brown 

packaging 
33.2±1.7 32.8±3.9 34.0±3.4 34.7±2.5 34.0±3.0 35.3±2.6 

Green electrical  

insulation 
99.0±3.2 95.2±3.4 93.7±3.7 95.7±3.8 99.7±3.9 96.7±3.8 

Transparent OPP 

(Henkel) 
17.9±4.6 24.1±1.0 26.4±2.5 22.4±1.8 24.3±3.1 23.0±3.8 

Transparent OPP 

(Niceday) 
41.0±3.9 36.7±1.7 41.1±2.8 36.9±2.9 38.4±2.8 38.8±2.1 

Transparent OPP 

(Eureka) 
27.5±2.7 33.9±2.0 33.2±1.8 30.3±2.6 36.0±2.6 32.2±2.7 
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Figure captions 

 
Fig. 1.  (a) Sketch of a force spectroscopy experiment and explanation of a typical 

force spectroscopy curve; (b) An F-d curve. The meanings of Fmax, dmax, and γ are 

identified. 

Fig. 2.  AFM phase images 5 × 5 µm2 and high-resolution zoomed AFM images 2 × 2 

µm2 of the zones marked in squares for (a): transparent cello tape (the phase degree is 

78-83° for the 5 × 5 µm2 image and 80-88° for the 2 × 2 µm2 image), (b): brown 

packaging tape (the phase degree is 81-89° for the 5 × 5 µm2 image and 83-88° for the 

2 × 2 µm2 image) and (c): electrical insulation tape (the phase degree is 76-83° for the 

5 × 5 µm2 image and 80-85° for the 2 × 2 µm2 image). 

Fig. 3.  AFM phase images 5 × 5 µm2 and high-resolution zoomed AFM images 2 × 2 

µm2 of the zones marked in squares for (a): OPP transparent cello tape by Henkel (the 

phase degree is 80-81° for the 5 × 5 µm2 image and 80-82° for the 2 × 2 µm2 image), 

(b) : OPP transparent cello tape by Niceday (the phase degree is 73-84° for the 5 × 5 

µm2 image and 77-85° for the 2 × 2 µm2 image) and (c): OPP transparent cello tape 

by Eureka (the phase degree is 81-84° for the 5 × 5 µm2 image and 80-85° for the 2 × 

2 µm2 image).  

Fig. 4.  Typical trace and retrace F-d curves obtained on (a): transparent cello tape, 

(b): brown packaging tape, and (c): electrical insulation tape.  

Fig. 5.  Histograms showing the statistical distribution of Fmax, dmax, and γ over the F-

d curves obtained at 400 different grid points distributed evenly on a 5 × 5 µm2 area 

of the adhesive in (a): transparent cello, (b): brown packaging, and (c): electrical 

insulation tapes. 

Fig. 6.  The 2D AFM-FM adhesion energy maps on a grid of 20 × 20 points covering 

a 5 × 5 µm2 area of the adhesive in (a): the transparent cello tape, (b): the brown 

packaging tape, and (c): the electrical insulation tape.  The brighter (darker) is the 
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square, the higher (lower) the adhesion energy, and thus the softer (harder) is the 

component of the adhesive film.  The grey-coloured chart scale on the right-hand side 

of each figure indicates the associated adhesion energy value in 10-15 J corresponding 

to each colour shade. The adhesion energy values vary in the range (a) 0 - 6220 ×10-15 

J for the transparent cello tape, (b) 0 - 390 ×10-15 J for the brown tape; and (c) 0 - 

1025 ×10-15 J for the electrical insulation tape. 

Fig. 7.  Typical trace and retrace F-d curves obtained on (a): OPP transparent cello 

tape by Niceday, (b): OPP transparent cello tape by Henkel, and (c): OPP transparent 

cello tape by Eureka. 

Fig. 8.  Histograms showing the statistical distribution of Fmax, dmax, and γ over the F-

d curves obtained at 400 different grid points distributed evenly on a 5 × 5 µm2 area 

of the adhesive in (a): OPP transparent cello tape by Niceday, (b): OPP transparent 

cello tape by Henkel, and (c): OPP transparent cello tape by Eureka. 

Fig. 9.  The 2D AFM-FM adhesion energy maps on a grid of 20 × 20 points covering 

a 5 × 5 µm2 area of the adhesive in (a): OPP transparent cello tape by Niceday, (b): 

OPP transparent cello tape by Henkel, and (c): OPP transparent cello tape by Eureka.  

The brighter (darker) is the square, the higher (lower) the adhesion energy, and thus 

the softer (harder) is the component of the adhesive film.  The grey-coloured chart 

scale on the right-hand side of each figure indicates the associated adhesion energy 

value in 10-15 J corresponding to each colour shade. The scale is 0 – 1200 ×10-15 J for 

each map. 
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(a) : Transparent cello tape 

  
(b) : Brown packaging tape 

  
(c) : Electrical insulation tape 
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(a) : OPP transparent – Henkel 

  
(b) : OPP transparent – Niceday 

  
(c) : OPP transparent – Eureka 
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