10,884 research outputs found

    Text categorization by fuzzy domain adaptation

    Full text link
    Machine learning methods have attracted attention of researches in computational fields such as classification/categorization. However, these learning methods work under the assumption that the training and test data distributions are identical. In some real world applications, the training data (from the source domain) and test data (from the target domain) come from different domains and this may result in different data distributions. Moreover, the values of the features and/or labels of the data sets could be non-numeric and contain vague values. In this study, we propose a fuzzy domain adaptation method, which offers an effective way to deal with both issues. It utilizes the similarity concept to modify the target instances' labels, which were initially classified by a shift-unaware classifier. The proposed method is built on the given data and refines the labels. In this way it performs completely independently of the shift-unaware classifier. As an example of text categorization, 20Newsgroup data set is used in the experiments to validate the proposed method. The results, which are compared with those generated when using different baselines, demonstrate a significant improvement in the accuracy. © 2013 IEEE

    The category proliferation problem in ART neural networks

    Get PDF
    This article describes the design of a new model IKMART, for classification of documents and their incorporation into categories based on the KMART architecture. The architecture consists of two networks that mutually cooperate through the interconnection of weights and the output matrix of the coded documents. The architecture retains required network features such as incremental learning without the need of descriptive and input/output fuzzy data, learning acceleration and classification of documents and a minimal number of user-defined parameters. The conducted experiments with real documents showed a more precise categorization of documents and higher classification performance in comparison to the classic KMART algorithm.Web of Science145634

    Transfer Learning using Computational Intelligence: A Survey

    Get PDF
    Abstract Transfer learning aims to provide a framework to utilize previously-acquired knowledge to solve new but similar problems much more quickly and effectively. In contrast to classical machine learning methods, transfer learning methods exploit the knowledge accumulated from data in auxiliary domains to facilitate predictive modeling consisting of different data patterns in the current domain. To improve the performance of existing transfer learning methods and handle the knowledge transfer process in real-world systems, ..

    Typicality, graded membership, and vagueness

    Get PDF
    This paper addresses theoretical problems arising from the vagueness of language terms, and intuitions of the vagueness of the concepts to which they refer. It is argued that the central intuitions of prototype theory are sufficient to account for both typicality phenomena and psychological intuitions about degrees of membership in vaguely defined classes. The first section explains the importance of the relation between degrees of membership and typicality (or goodness of example) in conceptual categorization. The second and third section address arguments advanced by Osherson and Smith (1997), and Kamp and Partee (1995), that the two notions of degree of membership and typicality must relate to fundamentally different aspects of conceptual representations. A version of prototype theory—the Threshold Model—is proposed to counter these arguments and three possible solutions to the problems of logical selfcontradiction and tautology for vague categorizations are outlined. In the final section graded membership is related to the social construction of conceptual boundaries maintained through language use

    What to do about non-standard (or non-canonical) language in NLP

    Full text link
    Real world data differs radically from the benchmark corpora we use in natural language processing (NLP). As soon as we apply our technologies to the real world, performance drops. The reason for this problem is obvious: NLP models are trained on samples from a limited set of canonical varieties that are considered standard, most prominently English newswire. However, there are many dimensions, e.g., socio-demographics, language, genre, sentence type, etc. on which texts can differ from the standard. The solution is not obvious: we cannot control for all factors, and it is not clear how to best go beyond the current practice of training on homogeneous data from a single domain and language. In this paper, I review the notion of canonicity, and how it shapes our community's approach to language. I argue for leveraging what I call fortuitous data, i.e., non-obvious data that is hitherto neglected, hidden in plain sight, or raw data that needs to be refined. If we embrace the variety of this heterogeneous data by combining it with proper algorithms, we will not only produce more robust models, but will also enable adaptive language technology capable of addressing natural language variation.Comment: KONVENS 201

    Context for Ubiquitous Data Management

    Get PDF
    In response to the advance of ubiquitous computing technologies, we believe that for computer systems to be ubiquitous, they must be context-aware. In this paper, we address the impact of context-awareness on ubiquitous data management. To do this, we overview different characteristics of context in order to develop a clear understanding of context, as well as its implications and requirements for context-aware data management. References to recent research activities and applicable techniques are also provided

    Granular Fuzzy Regression Domain Adaptation in Takagi-Sugeno Fuzzy Models

    Full text link
    © 1993-2012 IEEE. In classical data-driven machine learning methods, massive amounts of labeled data are required to build a high-performance prediction model. However, the amount of labeled data in many real-world applications is insufficient, so establishing a prediction model is impossible. Transfer learning has recently emerged as a solution to this problem. It exploits the knowledge accumulated in auxiliary domains to help construct prediction models in a target domain with inadequate training data. Most existing transfer learning methods solve classification tasks; only a few are devoted to regression problems. In addition, the current methods ignore the inherent phenomenon of information granularity in transfer learning. In this study, granular computing techniques are applied to transfer learning. Three granular fuzzy regression domain adaptation methods to determine the estimated values for a regression target are proposed to address three challenging cases in domain adaptation. The proposed granular fuzzy regression domain adaptation methods change the input and/or output space of the source domain's model using space transformation, so that the fuzzy rules are more compatible with the target data. Experiments on synthetic and real-world datasets validate the effectiveness of the proposed methods

    A literature survey of methods for analysis of subjective language

    Get PDF
    Subjective language is used to express attitudes and opinions towards things, ideas and people. While content and topic centred natural language processing is now part of everyday life, analysis of subjective aspects of natural language have until recently been largely neglected by the research community. The explosive growth of personal blogs, consumer opinion sites and social network applications in the last years, have however created increased interest in subjective language analysis. This paper provides an overview of recent research conducted in the area
    corecore